Abstract

We report on mirrorless laser operation of Nd:YVO4 single- and double-cladding waveguides fabricated by femtosecond laser direct writing. Fundamental- (LP01) and high-order-mode (LP03, LP05) guiding and lasing have been observed in waveguides with different geometries and sizes. Double-cladding waveguides exhibit good guiding and lasing performance via inheriting advantages respectively from individual single cladding. As a result, continuous-wave lasing with a threshold as low as 59 mW is obtained, depending on the optical feedback provided only by Fresnel reflections at the waveguide end faces. By using few-layer graphene as saturable absorber, passively Q-switched operation in fabricated waveguides is also achieved.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing

A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell
Opt. Lett. 30(17) 2248-2250 (2005)

Femtosecond laser direct writing of evanescently-coupled planar waveguide laser arrays

Hongliang Liu, Yicun Yao, Pengfei Wu, and Yuechen Jia
Opt. Mater. Express 9(11) 4447-4455 (2019)

References

  • View by:
  • |
  • |
  • |

  1. C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
    [Crossref]
  2. M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
    [Crossref]
  3. R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide,” Optica 5(8), 1006–1011 (2018).
    [Crossref]
  4. A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
    [Crossref]
  5. M.K. Bhaskar, D. D. Sukachev, A. Sipahigil, R. E. Evans, M. J. Burek, C. T. Nguyen, L. J. Rogers, P. Siyushev, M. H. Metsch, H. Park, F. Jelezko, M. Lončar, and M. D. Lukin, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett. 118(22), 223603 (2017).
    [Crossref]
  6. A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
    [Crossref]
  7. C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
    [Crossref]
  8. C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications,” Prog. Quantum Electron. 45-46, 3–160 (2016).
    [Crossref]
  9. D. P. Shepherd, A. Choudhary, A. A. Lagatsky, P. Kannan, S. J. Beecher, R. W. Eason, J. I. Mackenzie, X. Feng, W. Sibbett, and C. T. A. Brown, “Ultrafast high-repetition-rate waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 16–24 (2016).
    [Crossref]
  10. Y. Jia and F. Chen, “Compact solid-state waveguide lasers operating in the pulsed regime: a review,” Chin. Opt. Lett. 17(1), 012302 (2019).
    [Crossref]
  11. G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
    [Crossref]
  12. S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
    [Crossref]
  13. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabitscale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
    [Crossref]
  14. N. Bozinovic, S. Golowich, P. Kristensen, and S. Ramachandran, “Control of orbital angular momentum of light with optical fibers,” Opt. Lett. 37(13), 2451–2453 (2012).
    [Crossref]
  15. A. Li, Y. Wang, Q. Hu, and W. Shieh, “Few-mode fiber based optical sensors,” Opt. Express 23(2), 1139–1150 (2015).
    [Crossref]
  16. Y. Weng, E. Ip, Z. Pan, and T. Wang, “Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers,” Opt. Express 23(7), 9024–9039 (2015).
    [Crossref]
  17. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
    [Crossref]
  18. A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
    [Crossref]
  19. A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett. 30(17), 2248–2250 (2005).
    [Crossref]
  20. F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
    [Crossref]
  21. S. Gross and M. Withford, “Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications,” Nanophotonics 4(3), 332–352 (2015).
    [Crossref]
  22. E. Kifle, P. Loiko, J. R. Vázquez de Aldana, C. Romero, A. Ródenas, V. Zakharov, A. Veniaminov, H. Yu, H. Zhang, Y. Chen, M. Aguiló, F. Díaz, U. Griebner, V. Petrov, and X. Mateos, “Fs-laser-written thulium waveguide lasers Q-switched by graphene and MoS2,” Opt. Express 27(6), 8745–8755 (2019).
    [Crossref]
  23. F. Piantedosi, G. Y. Chen, T. M. Monro, and D. G. Lancaster, “Widely tunable, high slope efficiency waveguide lasers in a Yb-doped glass chip operating at 1 µm,” Opt. Lett. 43(8), 1902–1905 (2018).
    [Crossref]
  24. C. Guerra-Olvera, G. R. Castillo, E. H. Penilla, G. Uahengo, J. E. Garay, and S. Camacho-Lopez, “Circular depressed cladding waveguides in mechanically robust, biocompatible nc-YSZ transparent ceramics by fs laser pulses,” J. Lightwave Technol. 37(13), 3119–3126 (2019).
    [Crossref]
  25. H. Liu, Y. Tan, J. R. Vázquez de Aldana, and F. Chen, “Efficient laser emission from cladding waveguide inscribed in Nd:GdVO4 crystal by direct femtosecond laser writing,” Opt. Lett. 39(15), 4553–4556 (2014).
    [Crossref]
  26. M. H. Kim, T. Calmano, S. Y. Choi, B. J. Lee, I. H. Baek, K. J. Ahn, D.-I. Yeom, C. Kränkel, and F. Rotermund, “Monolayer graphene coated Yb:YAG channel waveguides for Q-switched laser operation,” Opt. Mater. Express 6(8), 2468–2474 (2016).
    [Crossref]
  27. S. Y. Choi, T. Calmano, F. Rotermund, and C. Kränkel, “2-GHz carbon nanotube mode-locked Yb:YAG channel waveguide laser,” Opt. Express 26(5), 5140–5145 (2018).
    [Crossref]
  28. W. Bolaños, J. J. Carvajal, X. Mateos, G. S. Murugan, A. Z. Subramanian, J. S. Wilkinson, E. Cantelar, D. Jaque, G. Lifante, M. Aguiló, and F. Díaz, “Mirrorless buried waveguide laser in monoclinic double tungstates fabricated by a novel combination of ion milling and liquid phase epitaxy,” Opt. Express 18(26), 26937–26945 (2010).
    [Crossref]
  29. K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser in a monoclinic double tungstate with 70% slope efficiency,” Opt. Lett. 37(5), 887–889 (2012).
    [Crossref]
  30. J. M. de Mendívil, J. del Hoyo, J. Solís, M. C. Pujol, M. Aguiló, F. Díaz, and G. Lifante, “Mirrorless Yb3+-doped monoclinic double tungstate waveguide laser combining liquid phase epitaxy and multiplexed beam fs laser writing,” J. Lightwave Technol. 33(23), 4726–4730 (2015).
    [Crossref]
  31. Y. F. Chen, Y. C. Liu, Y. Y. Pan, D. Y. Gu, H. P. Cheng, C. H. Tsou, and H. C. Liang, “Efficient high-power dual-wavelength lime-green Nd:YVO4 lasers,” Opt. Lett. 44(6), 1323–1326 (2019).
    [Crossref]
  32. Y. F. Chen, Y. Y. Pan, Y. C. Liu, H. P. Cheng, C. H. Tsou, and H. C. Liang, “Efficient high-power continuous-wave lasers at green-lime-yellow wavelengths by using a Nd:YVO4 self-Raman crystal,” Opt. Express 27(3), 2029–2035 (2019).
    [Crossref]
  33. Y. Jia, F. Chen, and J. R. Vázquez de Aldana, “Efficient continuous-wave laser operation at 1064 nm in Nd:YVO4 cladding waveguides produced by femtosecond laser inscription,” Opt. Express 20(15), 16801–16806 (2012).
    [Crossref]
  34. N. Pavel, G. Salamu, F. Jipa, and M. Zamfirescu, “Diode-laser pumping into the emitting level for efficient lasing of depressed cladding waveguides realized in Nd:YVO4 by the direct femtosecondlaser writing technique,” Opt. Express 22(19), 23057–23065 (2014).
    [Crossref]
  35. W. Nie, R. Li, C. Cheng, Y. Chen, Q. Lu, C. Romero, J. R. Vázquez de Aldana, X. Hao, and F. Chen, “Room-temperature subnanosecond waveguide lasers in Nd:YVO4 Q-switched by phase-change VO2: A comparison with 2D materials,” Sci. Rep. 7(1), 46162 (2017).
    [Crossref]
  36. Z. Li, C. Cheng, N. Dong, C. Romero, Q. Lu, J. Wang, J. R. Vázquez de Aldana, Y. Tan, and F. Chen, “Q-switching of waveguide lasers based on graphene/WS2 van der Waals heterostructure,” Photonics Res. 5(5), 406–410 (2017).
    [Crossref]
  37. Z. Li, N. Dong, Y. Zhang, J. Wang, H. Yu, and F. Chen, “Mode-locked waveguide lasers modulated by rhenium diselenide as a new saturable absorber,” APL Photonics 3(8), 080802 (2018).
    [Crossref]
  38. Z. Li, Y. Zhang, C. Cheng, H. Yu, and F. Chen, “6.5 GHz Q-switched mode-locked waveguide lasers based on two-dimensional materials as saturable absorbers,” Opt. Express 26(9), 11321–11330 (2018).
    [Crossref]
  39. Y. Jia, J. R. Vázquez de Aldana, and F. Chen, “Efficient waveguide lasers in femtosecond laser inscribed double-cladding waveguides of Yb:YAG ceramics,” Opt. Mater. Express 3(5), 645–650 (2013).
    [Crossref]
  40. Y. Tan, Q. Luan, F. Liu, F. Chen, and J. R. Vázquez de Aldana, “Q-switched pulse laser generation from double-cladding Nd:YAG ceramics waveguides,” Opt. Express 21(16), 18963–18968 (2013).
    [Crossref]
  41. H. Liu, F. Chen, J. R. Vázquez de Aldana, and D. Jaque, “Femtosecond-laser inscribed double-cladding waveguides in Nd:YAG crystal: a promising prototype for integrated lasers,” Opt. Lett. 38(17), 3294–3297 (2013).
    [Crossref]
  42. J. A. Buck, Fundamentals of Optical Fibers (John Wiley & Sons, 2004).
  43. W. Koechner, Solid-State Laser Engineering (Springer, 2006).
  44. J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
    [Crossref]
  45. A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modelling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
    [Crossref]
  46. J. Nilsson and D. N. Payne, “High-power fiber lasers,” Science 332(6032), 921–922 (2011).
    [Crossref]
  47. G. Bharathan, T. T. Fernandez, M. Ams, R. I. Woodward, D. D. Hudson, and A. Fuerbach, “Optimized laser-written ZBLAN fiber Bragg gratings with high reflectivity and low loss,” Opt. Lett. 44(2), 423–426 (2019).
    [Crossref]
  48. G. Bharathan, D. D. Hudson, R. I. Woodward, S. D. Jackson, and A. Fuerbach, “In-fiber polarizer based on a 45-degree tilted fluoride fiber Bragg grating for mid-infrared fiber laser technology,” OSA Continuum 1(1), 56–63 (2018).
    [Crossref]

2019 (7)

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Y. Jia and F. Chen, “Compact solid-state waveguide lasers operating in the pulsed regime: a review,” Chin. Opt. Lett. 17(1), 012302 (2019).
[Crossref]

E. Kifle, P. Loiko, J. R. Vázquez de Aldana, C. Romero, A. Ródenas, V. Zakharov, A. Veniaminov, H. Yu, H. Zhang, Y. Chen, M. Aguiló, F. Díaz, U. Griebner, V. Petrov, and X. Mateos, “Fs-laser-written thulium waveguide lasers Q-switched by graphene and MoS2,” Opt. Express 27(6), 8745–8755 (2019).
[Crossref]

C. Guerra-Olvera, G. R. Castillo, E. H. Penilla, G. Uahengo, J. E. Garay, and S. Camacho-Lopez, “Circular depressed cladding waveguides in mechanically robust, biocompatible nc-YSZ transparent ceramics by fs laser pulses,” J. Lightwave Technol. 37(13), 3119–3126 (2019).
[Crossref]

Y. F. Chen, Y. C. Liu, Y. Y. Pan, D. Y. Gu, H. P. Cheng, C. H. Tsou, and H. C. Liang, “Efficient high-power dual-wavelength lime-green Nd:YVO4 lasers,” Opt. Lett. 44(6), 1323–1326 (2019).
[Crossref]

Y. F. Chen, Y. Y. Pan, Y. C. Liu, H. P. Cheng, C. H. Tsou, and H. C. Liang, “Efficient high-power continuous-wave lasers at green-lime-yellow wavelengths by using a Nd:YVO4 self-Raman crystal,” Opt. Express 27(3), 2029–2035 (2019).
[Crossref]

G. Bharathan, T. T. Fernandez, M. Ams, R. I. Woodward, D. D. Hudson, and A. Fuerbach, “Optimized laser-written ZBLAN fiber Bragg gratings with high reflectivity and low loss,” Opt. Lett. 44(2), 423–426 (2019).
[Crossref]

2018 (8)

G. Bharathan, D. D. Hudson, R. I. Woodward, S. D. Jackson, and A. Fuerbach, “In-fiber polarizer based on a 45-degree tilted fluoride fiber Bragg grating for mid-infrared fiber laser technology,” OSA Continuum 1(1), 56–63 (2018).
[Crossref]

Z. Li, N. Dong, Y. Zhang, J. Wang, H. Yu, and F. Chen, “Mode-locked waveguide lasers modulated by rhenium diselenide as a new saturable absorber,” APL Photonics 3(8), 080802 (2018).
[Crossref]

Z. Li, Y. Zhang, C. Cheng, H. Yu, and F. Chen, “6.5 GHz Q-switched mode-locked waveguide lasers based on two-dimensional materials as saturable absorbers,” Opt. Express 26(9), 11321–11330 (2018).
[Crossref]

F. Piantedosi, G. Y. Chen, T. M. Monro, and D. G. Lancaster, “Widely tunable, high slope efficiency waveguide lasers in a Yb-doped glass chip operating at 1 µm,” Opt. Lett. 43(8), 1902–1905 (2018).
[Crossref]

S. Y. Choi, T. Calmano, F. Rotermund, and C. Kränkel, “2-GHz carbon nanotube mode-locked Yb:YAG channel waveguide laser,” Opt. Express 26(5), 5140–5145 (2018).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide,” Optica 5(8), 1006–1011 (2018).
[Crossref]

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

2017 (4)

M.K. Bhaskar, D. D. Sukachev, A. Sipahigil, R. E. Evans, M. J. Burek, C. T. Nguyen, L. J. Rogers, P. Siyushev, M. H. Metsch, H. Park, F. Jelezko, M. Lončar, and M. D. Lukin, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett. 118(22), 223603 (2017).
[Crossref]

W. Nie, R. Li, C. Cheng, Y. Chen, Q. Lu, C. Romero, J. R. Vázquez de Aldana, X. Hao, and F. Chen, “Room-temperature subnanosecond waveguide lasers in Nd:YVO4 Q-switched by phase-change VO2: A comparison with 2D materials,” Sci. Rep. 7(1), 46162 (2017).
[Crossref]

Z. Li, C. Cheng, N. Dong, C. Romero, Q. Lu, J. Wang, J. R. Vázquez de Aldana, Y. Tan, and F. Chen, “Q-switching of waveguide lasers based on graphene/WS2 van der Waals heterostructure,” Photonics Res. 5(5), 406–410 (2017).
[Crossref]

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modelling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

2016 (4)

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref]

C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications,” Prog. Quantum Electron. 45-46, 3–160 (2016).
[Crossref]

D. P. Shepherd, A. Choudhary, A. A. Lagatsky, P. Kannan, S. J. Beecher, R. W. Eason, J. I. Mackenzie, X. Feng, W. Sibbett, and C. T. A. Brown, “Ultrafast high-repetition-rate waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 16–24 (2016).
[Crossref]

M. H. Kim, T. Calmano, S. Y. Choi, B. J. Lee, I. H. Baek, K. J. Ahn, D.-I. Yeom, C. Kränkel, and F. Rotermund, “Monolayer graphene coated Yb:YAG channel waveguides for Q-switched laser operation,” Opt. Mater. Express 6(8), 2468–2474 (2016).
[Crossref]

2015 (4)

2014 (6)

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
[Crossref]

H. Liu, Y. Tan, J. R. Vázquez de Aldana, and F. Chen, “Efficient laser emission from cladding waveguide inscribed in Nd:GdVO4 crystal by direct femtosecond laser writing,” Opt. Lett. 39(15), 4553–4556 (2014).
[Crossref]

N. Pavel, G. Salamu, F. Jipa, and M. Zamfirescu, “Diode-laser pumping into the emitting level for efficient lasing of depressed cladding waveguides realized in Nd:YVO4 by the direct femtosecondlaser writing technique,” Opt. Express 22(19), 23057–23065 (2014).
[Crossref]

2013 (4)

2012 (3)

2011 (2)

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
[Crossref]

J. Nilsson and D. N. Payne, “High-power fiber lasers,” Science 332(6032), 921–922 (2011).
[Crossref]

2010 (1)

2007 (1)

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

2005 (1)

1988 (1)

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Aguiló, M.

Ahn, K. J.

Ams, M.

Aravazhi, S.

Atikian, H. A.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref]

Baek, I. H.

Bai, N.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Beecher, S. J.

D. P. Shepherd, A. Choudhary, A. A. Lagatsky, P. Kannan, S. J. Beecher, R. W. Eason, J. I. Mackenzie, X. Feng, W. Sibbett, and C. T. A. Brown, “Ultrafast high-repetition-rate waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 16–24 (2016).
[Crossref]

Bertrand, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Bharathan, G.

Bhaskar, M. K.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref]

Bhaskar, M.K.

M.K. Bhaskar, D. D. Sukachev, A. Sipahigil, R. E. Evans, M. J. Burek, C. T. Nguyen, L. J. Rogers, P. Siyushev, M. H. Metsch, H. Park, F. Jelezko, M. Lončar, and M. D. Lukin, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett. 118(22), 223603 (2017).
[Crossref]

Bielejec, E.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref]

Boes, A.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

Bolaños, W.

Borregaard, J.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref]

Bowers, J.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabitscale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

N. Bozinovic, S. Golowich, P. Kristensen, and S. Ramachandran, “Control of orbital angular momentum of light with optical fibers,” Opt. Lett. 37(13), 2451–2453 (2012).
[Crossref]

Brown, C. T. A.

D. P. Shepherd, A. Choudhary, A. A. Lagatsky, P. Kannan, S. J. Beecher, R. W. Eason, J. I. Mackenzie, X. Feng, W. Sibbett, and C. T. A. Brown, “Ultrafast high-repetition-rate waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 16–24 (2016).
[Crossref]

Buck, J. A.

J. A. Buck, Fundamentals of Optical Fibers (John Wiley & Sons, 2004).

Burek, M. J.

M.K. Bhaskar, D. D. Sukachev, A. Sipahigil, R. E. Evans, M. J. Burek, C. T. Nguyen, L. J. Rogers, P. Siyushev, M. H. Metsch, H. Park, F. Jelezko, M. Lončar, and M. D. Lukin, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett. 118(22), 223603 (2017).
[Crossref]

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref]

Cai, X.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Caird, J. A.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Calmano, T.

Camacho, R. M.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref]

Camacho-Lopez, S.

Cantelar, E.

Carvajal, J. J.

Castillo, G. R.

Chandrasekhar, S.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Chang, L.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

Chase, L. L.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Chen, F.

Y. Jia and F. Chen, “Compact solid-state waveguide lasers operating in the pulsed regime: a review,” Chin. Opt. Lett. 17(1), 012302 (2019).
[Crossref]

Z. Li, N. Dong, Y. Zhang, J. Wang, H. Yu, and F. Chen, “Mode-locked waveguide lasers modulated by rhenium diselenide as a new saturable absorber,” APL Photonics 3(8), 080802 (2018).
[Crossref]

Z. Li, Y. Zhang, C. Cheng, H. Yu, and F. Chen, “6.5 GHz Q-switched mode-locked waveguide lasers based on two-dimensional materials as saturable absorbers,” Opt. Express 26(9), 11321–11330 (2018).
[Crossref]

Z. Li, C. Cheng, N. Dong, C. Romero, Q. Lu, J. Wang, J. R. Vázquez de Aldana, Y. Tan, and F. Chen, “Q-switching of waveguide lasers based on graphene/WS2 van der Waals heterostructure,” Photonics Res. 5(5), 406–410 (2017).
[Crossref]

W. Nie, R. Li, C. Cheng, Y. Chen, Q. Lu, C. Romero, J. R. Vázquez de Aldana, X. Hao, and F. Chen, “Room-temperature subnanosecond waveguide lasers in Nd:YVO4 Q-switched by phase-change VO2: A comparison with 2D materials,” Sci. Rep. 7(1), 46162 (2017).
[Crossref]

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

H. Liu, Y. Tan, J. R. Vázquez de Aldana, and F. Chen, “Efficient laser emission from cladding waveguide inscribed in Nd:GdVO4 crystal by direct femtosecond laser writing,” Opt. Lett. 39(15), 4553–4556 (2014).
[Crossref]

Y. Jia, J. R. Vázquez de Aldana, and F. Chen, “Efficient waveguide lasers in femtosecond laser inscribed double-cladding waveguides of Yb:YAG ceramics,” Opt. Mater. Express 3(5), 645–650 (2013).
[Crossref]

Y. Tan, Q. Luan, F. Liu, F. Chen, and J. R. Vázquez de Aldana, “Q-switched pulse laser generation from double-cladding Nd:YAG ceramics waveguides,” Opt. Express 21(16), 18963–18968 (2013).
[Crossref]

H. Liu, F. Chen, J. R. Vázquez de Aldana, and D. Jaque, “Femtosecond-laser inscribed double-cladding waveguides in Nd:YAG crystal: a promising prototype for integrated lasers,” Opt. Lett. 38(17), 3294–3297 (2013).
[Crossref]

Y. Jia, F. Chen, and J. R. Vázquez de Aldana, “Efficient continuous-wave laser operation at 1064 nm in Nd:YVO4 cladding waveguides produced by femtosecond laser inscription,” Opt. Express 20(15), 16801–16806 (2012).
[Crossref]

Chen, G. Y.

Chen, H.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Chen, X.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Chen, Y.

E. Kifle, P. Loiko, J. R. Vázquez de Aldana, C. Romero, A. Ródenas, V. Zakharov, A. Veniaminov, H. Yu, H. Zhang, Y. Chen, M. Aguiló, F. Díaz, U. Griebner, V. Petrov, and X. Mateos, “Fs-laser-written thulium waveguide lasers Q-switched by graphene and MoS2,” Opt. Express 27(6), 8745–8755 (2019).
[Crossref]

W. Nie, R. Li, C. Cheng, Y. Chen, Q. Lu, C. Romero, J. R. Vázquez de Aldana, X. Hao, and F. Chen, “Room-temperature subnanosecond waveguide lasers in Nd:YVO4 Q-switched by phase-change VO2: A comparison with 2D materials,” Sci. Rep. 7(1), 46162 (2017).
[Crossref]

Chen, Y. F.

Cheng, C.

Z. Li, Y. Zhang, C. Cheng, H. Yu, and F. Chen, “6.5 GHz Q-switched mode-locked waveguide lasers based on two-dimensional materials as saturable absorbers,” Opt. Express 26(9), 11321–11330 (2018).
[Crossref]

W. Nie, R. Li, C. Cheng, Y. Chen, Q. Lu, C. Romero, J. R. Vázquez de Aldana, X. Hao, and F. Chen, “Room-temperature subnanosecond waveguide lasers in Nd:YVO4 Q-switched by phase-change VO2: A comparison with 2D materials,” Sci. Rep. 7(1), 46162 (2017).
[Crossref]

Z. Li, C. Cheng, N. Dong, C. Romero, Q. Lu, J. Wang, J. R. Vázquez de Aldana, Y. Tan, and F. Chen, “Q-switching of waveguide lasers based on graphene/WS2 van der Waals heterostructure,” Photonics Res. 5(5), 406–410 (2017).
[Crossref]

Cheng, H. P.

Choi, S. Y.

Choudhary, A.

D. P. Shepherd, A. Choudhary, A. A. Lagatsky, P. Kannan, S. J. Beecher, R. W. Eason, J. I. Mackenzie, X. Feng, W. Sibbett, and C. T. A. Brown, “Ultrafast high-repetition-rate waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 16–24 (2016).
[Crossref]

Corcoran, B.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

de Mendívil, J. M.

del Hoyo, J.

Díaz, F.

Dong, N.

Z. Li, N. Dong, Y. Zhang, J. Wang, H. Yu, and F. Chen, “Mode-locked waveguide lasers modulated by rhenium diselenide as a new saturable absorber,” APL Photonics 3(8), 080802 (2018).
[Crossref]

Z. Li, C. Cheng, N. Dong, C. Romero, Q. Lu, J. Wang, J. R. Vázquez de Aldana, Y. Tan, and F. Chen, “Q-switching of waveguide lasers based on graphene/WS2 van der Waals heterostructure,” Photonics Res. 5(5), 406–410 (2017).
[Crossref]

Eason, R. W.

D. P. Shepherd, A. Choudhary, A. A. Lagatsky, P. Kannan, S. J. Beecher, R. W. Eason, J. I. Mackenzie, X. Feng, W. Sibbett, and C. T. A. Brown, “Ultrafast high-repetition-rate waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 16–24 (2016).
[Crossref]

Evans, R. E.

M.K. Bhaskar, D. D. Sukachev, A. Sipahigil, R. E. Evans, M. J. Burek, C. T. Nguyen, L. J. Rogers, P. Siyushev, M. H. Metsch, H. Park, F. Jelezko, M. Lončar, and M. D. Lukin, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett. 118(22), 223603 (2017).
[Crossref]

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref]

Feng, X.

D. P. Shepherd, A. Choudhary, A. A. Lagatsky, P. Kannan, S. J. Beecher, R. W. Eason, J. I. Mackenzie, X. Feng, W. Sibbett, and C. T. A. Brown, “Ultrafast high-repetition-rate waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 16–24 (2016).
[Crossref]

Fernandez, T. T.

Fuerbach, A.

Gao, S.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Garay, J. E.

García-Blanco, S. M.

Giacobino, E.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Giner, L.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Golowich, S.

Griebner, U.

E. Kifle, P. Loiko, J. R. Vázquez de Aldana, C. Romero, A. Ródenas, V. Zakharov, A. Veniaminov, H. Yu, H. Zhang, Y. Chen, M. Aguiló, F. Díaz, U. Griebner, V. Petrov, and X. Mateos, “Fs-laser-written thulium waveguide lasers Q-switched by graphene and MoS2,” Opt. Express 27(6), 8745–8755 (2019).
[Crossref]

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modelling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

Grivas, C.

C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications,” Prog. Quantum Electron. 45-46, 3–160 (2016).
[Crossref]

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser in a monoclinic double tungstate with 70% slope efficiency,” Opt. Lett. 37(5), 887–889 (2012).
[Crossref]

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
[Crossref]

Gross, S.

S. Gross and M. Withford, “Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications,” Nanophotonics 4(3), 332–352 (2015).
[Crossref]

S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
[Crossref]

Gu, D. Y.

Guerra-Olvera, C.

Guo, C.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Gusakova, N. V.

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modelling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

Hao, X.

W. Nie, R. Li, C. Cheng, Y. Chen, Q. Lu, C. Romero, J. R. Vázquez de Aldana, X. Hao, and F. Chen, “Room-temperature subnanosecond waveguide lasers in Nd:YVO4 Q-switched by phase-change VO2: A comparison with 2D materials,” Sci. Rep. 7(1), 46162 (2017).
[Crossref]

He, M.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

He, Y.

Hu, Q.

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabitscale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Hudson, D. D.

Ip, E.

Jackson, S. D.

Jaque, D.

Jelezko, F.

M.K. Bhaskar, D. D. Sukachev, A. Sipahigil, R. E. Evans, M. J. Burek, C. T. Nguyen, L. J. Rogers, P. Siyushev, M. H. Metsch, H. Park, F. Jelezko, M. Lončar, and M. D. Lukin, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett. 118(22), 223603 (2017).
[Crossref]

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref]

Jia, Y.

Jian, J.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Jipa, F.

Kannan, P.

D. P. Shepherd, A. Choudhary, A. A. Lagatsky, P. Kannan, S. J. Beecher, R. W. Eason, J. I. Mackenzie, X. Feng, W. Sibbett, and C. T. A. Brown, “Ultrafast high-repetition-rate waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 16–24 (2016).
[Crossref]

Khrushchev, I.

Kifle, E.

Kim, M. H.

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer, 2006).

Kränkel, C.

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabitscale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

N. Bozinovic, S. Golowich, P. Kristensen, and S. Ramachandran, “Control of orbital angular momentum of light with optical fibers,” Opt. Lett. 37(13), 2451–2453 (2012).
[Crossref]

Krupke, W. F.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Kuleshov, N. V.

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modelling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

Lagatsky, A. A.

D. P. Shepherd, A. Choudhary, A. A. Lagatsky, P. Kannan, S. J. Beecher, R. W. Eason, J. I. Mackenzie, X. Feng, W. Sibbett, and C. T. A. Brown, “Ultrafast high-repetition-rate waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 16–24 (2016).
[Crossref]

Lancaster, D. G.

Laurat, J.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Lee, B. J.

Li, A.

Li, G.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Li, M.

Li, R.

W. Nie, R. Li, C. Cheng, Y. Chen, Q. Lu, C. Romero, J. R. Vázquez de Aldana, X. Hao, and F. Chen, “Room-temperature subnanosecond waveguide lasers in Nd:YVO4 Q-switched by phase-change VO2: A comparison with 2D materials,” Sci. Rep. 7(1), 46162 (2017).
[Crossref]

Li, Z.

Z. Li, N. Dong, Y. Zhang, J. Wang, H. Yu, and F. Chen, “Mode-locked waveguide lasers modulated by rhenium diselenide as a new saturable absorber,” APL Photonics 3(8), 080802 (2018).
[Crossref]

Z. Li, Y. Zhang, C. Cheng, H. Yu, and F. Chen, “6.5 GHz Q-switched mode-locked waveguide lasers based on two-dimensional materials as saturable absorbers,” Opt. Express 26(9), 11321–11330 (2018).
[Crossref]

Z. Li, C. Cheng, N. Dong, C. Romero, Q. Lu, J. Wang, J. R. Vázquez de Aldana, Y. Tan, and F. Chen, “Q-switching of waveguide lasers based on graphene/WS2 van der Waals heterostructure,” Photonics Res. 5(5), 406–410 (2017).
[Crossref]

Liang, H.

Liang, H. C.

Lifante, G.

Lin, Q.

Liu, F.

Liu, H.

Liu, L.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Liu, Y. C.

Loiko, P.

E. Kifle, P. Loiko, J. R. Vázquez de Aldana, C. Romero, A. Ródenas, V. Zakharov, A. Veniaminov, H. Yu, H. Zhang, Y. Chen, M. Aguiló, F. Díaz, U. Griebner, V. Petrov, and X. Mateos, “Fs-laser-written thulium waveguide lasers Q-switched by graphene and MoS2,” Opt. Express 27(6), 8745–8755 (2019).
[Crossref]

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modelling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

Loncar, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

M.K. Bhaskar, D. D. Sukachev, A. Sipahigil, R. E. Evans, M. J. Burek, C. T. Nguyen, L. J. Rogers, P. Siyushev, M. H. Metsch, H. Park, F. Jelezko, M. Lončar, and M. D. Lukin, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett. 118(22), 223603 (2017).
[Crossref]

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref]

Love, J. D.

S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
[Crossref]

Lu, Q.

Z. Li, C. Cheng, N. Dong, C. Romero, Q. Lu, J. Wang, J. R. Vázquez de Aldana, Y. Tan, and F. Chen, “Q-switching of waveguide lasers based on graphene/WS2 van der Waals heterostructure,” Photonics Res. 5(5), 406–410 (2017).
[Crossref]

W. Nie, R. Li, C. Cheng, Y. Chen, Q. Lu, C. Romero, J. R. Vázquez de Aldana, X. Hao, and F. Chen, “Room-temperature subnanosecond waveguide lasers in Nd:YVO4 Q-switched by phase-change VO2: A comparison with 2D materials,” Sci. Rep. 7(1), 46162 (2017).
[Crossref]

Luan, Q.

Lukin, M. D.

M.K. Bhaskar, D. D. Sukachev, A. Sipahigil, R. E. Evans, M. J. Burek, C. T. Nguyen, L. J. Rogers, P. Siyushev, M. H. Metsch, H. Park, F. Jelezko, M. Lončar, and M. D. Lukin, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett. 118(22), 223603 (2017).
[Crossref]

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref]

Luo, R.

Mackenzie, J. I.

D. P. Shepherd, A. Choudhary, A. A. Lagatsky, P. Kannan, S. J. Beecher, R. W. Eason, J. I. Mackenzie, X. Feng, W. Sibbett, and C. T. A. Brown, “Ultrafast high-repetition-rate waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 16–24 (2016).
[Crossref]

Mateos, X.

Maxein, D.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Metsch, M. H.

M.K. Bhaskar, D. D. Sukachev, A. Sipahigil, R. E. Evans, M. J. Burek, C. T. Nguyen, L. J. Rogers, P. Siyushev, M. H. Metsch, H. Park, F. Jelezko, M. Lončar, and M. D. Lukin, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett. 118(22), 223603 (2017).
[Crossref]

Meuwly, C.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref]

Mitchell, A.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

Mitchell, J.

Molina-Terriza, G.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Monro, T. M.

Murugan, G. S.

Nguyen, C. T.

M.K. Bhaskar, D. D. Sukachev, A. Sipahigil, R. E. Evans, M. J. Burek, C. T. Nguyen, L. J. Rogers, P. Siyushev, M. H. Metsch, H. Park, F. Jelezko, M. Lončar, and M. D. Lukin, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett. 118(22), 223603 (2017).
[Crossref]

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref]

Nicolas, A.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Nie, W.

W. Nie, R. Li, C. Cheng, Y. Chen, Q. Lu, C. Romero, J. R. Vázquez de Aldana, X. Hao, and F. Chen, “Room-temperature subnanosecond waveguide lasers in Nd:YVO4 Q-switched by phase-change VO2: A comparison with 2D materials,” Sci. Rep. 7(1), 46162 (2017).
[Crossref]

Nilsson, J.

J. Nilsson and D. N. Payne, “High-power fiber lasers,” Science 332(6032), 921–922 (2011).
[Crossref]

Okhrimchuk, A. G.

Pacheco, J. L.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref]

Pan, Y. Y.

Pan, Z.

Park, H.

M.K. Bhaskar, D. D. Sukachev, A. Sipahigil, R. E. Evans, M. J. Burek, C. T. Nguyen, L. J. Rogers, P. Siyushev, M. H. Metsch, H. Park, F. Jelezko, M. Lončar, and M. D. Lukin, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett. 118(22), 223603 (2017).
[Crossref]

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref]

Pavel, N.

Payne, D. N.

J. Nilsson and D. N. Payne, “High-power fiber lasers,” Science 332(6032), 921–922 (2011).
[Crossref]

Payne, S. A.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Penilla, E. H.

Petrov, V.

E. Kifle, P. Loiko, J. R. Vázquez de Aldana, C. Romero, A. Ródenas, V. Zakharov, A. Veniaminov, H. Yu, H. Zhang, Y. Chen, M. Aguiló, F. Díaz, U. Griebner, V. Petrov, and X. Mateos, “Fs-laser-written thulium waveguide lasers Q-switched by graphene and MoS2,” Opt. Express 27(6), 8745–8755 (2019).
[Crossref]

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modelling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

Piantedosi, F.

Pollnau, M.

Pujol, M. C.

Ramachandran, S.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabitscale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

N. Bozinovic, S. Golowich, P. Kristensen, and S. Ramachandran, “Control of orbital angular momentum of light with optical fibers,” Opt. Lett. 37(13), 2451–2453 (2012).
[Crossref]

Ramponi, A. J.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Ren, Y.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabitscale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Riesen, N.

S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
[Crossref]

Ródenas, A.

Rogers, L. J.

M.K. Bhaskar, D. D. Sukachev, A. Sipahigil, R. E. Evans, M. J. Burek, C. T. Nguyen, L. J. Rogers, P. Siyushev, M. H. Metsch, H. Park, F. Jelezko, M. Lončar, and M. D. Lukin, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett. 118(22), 223603 (2017).
[Crossref]

Romero, C.

E. Kifle, P. Loiko, J. R. Vázquez de Aldana, C. Romero, A. Ródenas, V. Zakharov, A. Veniaminov, H. Yu, H. Zhang, Y. Chen, M. Aguiló, F. Díaz, U. Griebner, V. Petrov, and X. Mateos, “Fs-laser-written thulium waveguide lasers Q-switched by graphene and MoS2,” Opt. Express 27(6), 8745–8755 (2019).
[Crossref]

W. Nie, R. Li, C. Cheng, Y. Chen, Q. Lu, C. Romero, J. R. Vázquez de Aldana, X. Hao, and F. Chen, “Room-temperature subnanosecond waveguide lasers in Nd:YVO4 Q-switched by phase-change VO2: A comparison with 2D materials,” Sci. Rep. 7(1), 46162 (2017).
[Crossref]

Z. Li, C. Cheng, N. Dong, C. Romero, Q. Lu, J. Wang, J. R. Vázquez de Aldana, Y. Tan, and F. Chen, “Q-switching of waveguide lasers based on graphene/WS2 van der Waals heterostructure,” Photonics Res. 5(5), 406–410 (2017).
[Crossref]

Rotermund, F.

Ruan, Z.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Salamu, G.

Serres, J. M.

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modelling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

Shams-Ansari, A.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Shepherd, D. P.

D. P. Shepherd, A. Choudhary, A. A. Lagatsky, P. Kannan, S. J. Beecher, R. W. Eason, J. I. Mackenzie, X. Feng, W. Sibbett, and C. T. A. Brown, “Ultrafast high-repetition-rate waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 16–24 (2016).
[Crossref]

Shestakov, A. V.

Shieh, W.

Sibbett, W.

D. P. Shepherd, A. Choudhary, A. A. Lagatsky, P. Kannan, S. J. Beecher, R. W. Eason, J. I. Mackenzie, X. Feng, W. Sibbett, and C. T. A. Brown, “Ultrafast high-repetition-rate waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 16–24 (2016).
[Crossref]

Sipahigil, A.

M.K. Bhaskar, D. D. Sukachev, A. Sipahigil, R. E. Evans, M. J. Burek, C. T. Nguyen, L. J. Rogers, P. Siyushev, M. H. Metsch, H. Park, F. Jelezko, M. Lončar, and M. D. Lukin, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett. 118(22), 223603 (2017).
[Crossref]

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref]

Siyushev, P.

M.K. Bhaskar, D. D. Sukachev, A. Sipahigil, R. E. Evans, M. J. Burek, C. T. Nguyen, L. J. Rogers, P. Siyushev, M. H. Metsch, H. Park, F. Jelezko, M. Lončar, and M. D. Lukin, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett. 118(22), 223603 (2017).
[Crossref]

Solís, J.

Staber, P. R.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Subramanian, A. Z.

Sukachev, D. D.

M.K. Bhaskar, D. D. Sukachev, A. Sipahigil, R. E. Evans, M. J. Burek, C. T. Nguyen, L. J. Rogers, P. Siyushev, M. H. Metsch, H. Park, F. Jelezko, M. Lončar, and M. D. Lukin, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett. 118(22), 223603 (2017).
[Crossref]

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref]

Sun, S.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Tan, Y.

Torner, L.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Torres, J. P.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Tsou, C. H.

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabitscale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Uahengo, G.

van Dalfsen, K.

Vázquez de Aldana, J. R.

E. Kifle, P. Loiko, J. R. Vázquez de Aldana, C. Romero, A. Ródenas, V. Zakharov, A. Veniaminov, H. Yu, H. Zhang, Y. Chen, M. Aguiló, F. Díaz, U. Griebner, V. Petrov, and X. Mateos, “Fs-laser-written thulium waveguide lasers Q-switched by graphene and MoS2,” Opt. Express 27(6), 8745–8755 (2019).
[Crossref]

Z. Li, C. Cheng, N. Dong, C. Romero, Q. Lu, J. Wang, J. R. Vázquez de Aldana, Y. Tan, and F. Chen, “Q-switching of waveguide lasers based on graphene/WS2 van der Waals heterostructure,” Photonics Res. 5(5), 406–410 (2017).
[Crossref]

W. Nie, R. Li, C. Cheng, Y. Chen, Q. Lu, C. Romero, J. R. Vázquez de Aldana, X. Hao, and F. Chen, “Room-temperature subnanosecond waveguide lasers in Nd:YVO4 Q-switched by phase-change VO2: A comparison with 2D materials,” Sci. Rep. 7(1), 46162 (2017).
[Crossref]

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

H. Liu, Y. Tan, J. R. Vázquez de Aldana, and F. Chen, “Efficient laser emission from cladding waveguide inscribed in Nd:GdVO4 crystal by direct femtosecond laser writing,” Opt. Lett. 39(15), 4553–4556 (2014).
[Crossref]

Y. Jia, J. R. Vázquez de Aldana, and F. Chen, “Efficient waveguide lasers in femtosecond laser inscribed double-cladding waveguides of Yb:YAG ceramics,” Opt. Mater. Express 3(5), 645–650 (2013).
[Crossref]

Y. Tan, Q. Luan, F. Liu, F. Chen, and J. R. Vázquez de Aldana, “Q-switched pulse laser generation from double-cladding Nd:YAG ceramics waveguides,” Opt. Express 21(16), 18963–18968 (2013).
[Crossref]

H. Liu, F. Chen, J. R. Vázquez de Aldana, and D. Jaque, “Femtosecond-laser inscribed double-cladding waveguides in Nd:YAG crystal: a promising prototype for integrated lasers,” Opt. Lett. 38(17), 3294–3297 (2013).
[Crossref]

Y. Jia, F. Chen, and J. R. Vázquez de Aldana, “Efficient continuous-wave laser operation at 1064 nm in Nd:YVO4 cladding waveguides produced by femtosecond laser inscription,” Opt. Express 20(15), 16801–16806 (2012).
[Crossref]

Veissier, L.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Veniaminov, A.

Wang, C.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Wang, J.

Z. Li, N. Dong, Y. Zhang, J. Wang, H. Yu, and F. Chen, “Mode-locked waveguide lasers modulated by rhenium diselenide as a new saturable absorber,” APL Photonics 3(8), 080802 (2018).
[Crossref]

Z. Li, C. Cheng, N. Dong, C. Romero, Q. Lu, J. Wang, J. R. Vázquez de Aldana, Y. Tan, and F. Chen, “Q-switching of waveguide lasers based on graphene/WS2 van der Waals heterostructure,” Photonics Res. 5(5), 406–410 (2017).
[Crossref]

Wang, T.

Wang, Y.

Wen, X.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Weng, Y.

Wilkinson, J. S.

Willner, A. E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabitscale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Winzer, P.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Withford, M.

S. Gross and M. Withford, “Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications,” Nanophotonics 4(3), 332–352 (2015).
[Crossref]

Withford, M. J.

S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
[Crossref]

Woodward, R. I.

Xia, C.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Xu, M.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Xu, Y.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Yasukevich, A. S.

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modelling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

Yeom, D.-I.

Yu, H.

Yu, S.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabitscale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Yumashev, K. V.

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modelling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

Zakharov, V.

Zamfirescu, M.

Zhang, H.

Zhang, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Zhang, Y.

Z. Li, N. Dong, Y. Zhang, J. Wang, H. Yu, and F. Chen, “Mode-locked waveguide lasers modulated by rhenium diselenide as a new saturable absorber,” APL Photonics 3(8), 080802 (2018).
[Crossref]

Z. Li, Y. Zhang, C. Cheng, H. Yu, and F. Chen, “6.5 GHz Q-switched mode-locked waveguide lasers based on two-dimensional materials as saturable absorbers,” Opt. Express 26(9), 11321–11330 (2018).
[Crossref]

Zhao, N.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Zhou, L.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Adv. Opt. Photonics (1)

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

APL Photonics (1)

Z. Li, N. Dong, Y. Zhang, J. Wang, H. Yu, and F. Chen, “Mode-locked waveguide lasers modulated by rhenium diselenide as a new saturable absorber,” APL Photonics 3(8), 080802 (2018).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (1)

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. P. Shepherd, A. Choudhary, A. A. Lagatsky, P. Kannan, S. J. Beecher, R. W. Eason, J. I. Mackenzie, X. Feng, W. Sibbett, and C. T. A. Brown, “Ultrafast high-repetition-rate waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 16–24 (2016).
[Crossref]

J. Lightwave Technol. (2)

Laser Photonics Rev. (3)

S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
[Crossref]

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Nanophotonics (1)

S. Gross and M. Withford, “Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications,” Nanophotonics 4(3), 332–352 (2015).
[Crossref]

Nat. Photonics (2)

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Nat. Phys. (1)

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Nature (1)

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Opt. Commun. (1)

A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modelling of graphene Q-switched Tm lasers,” Opt. Commun. 389, 15–22 (2017).
[Crossref]

Opt. Express (10)

W. Bolaños, J. J. Carvajal, X. Mateos, G. S. Murugan, A. Z. Subramanian, J. S. Wilkinson, E. Cantelar, D. Jaque, G. Lifante, M. Aguiló, and F. Díaz, “Mirrorless buried waveguide laser in monoclinic double tungstates fabricated by a novel combination of ion milling and liquid phase epitaxy,” Opt. Express 18(26), 26937–26945 (2010).
[Crossref]

Y. Jia, F. Chen, and J. R. Vázquez de Aldana, “Efficient continuous-wave laser operation at 1064 nm in Nd:YVO4 cladding waveguides produced by femtosecond laser inscription,” Opt. Express 20(15), 16801–16806 (2012).
[Crossref]

Y. Tan, Q. Luan, F. Liu, F. Chen, and J. R. Vázquez de Aldana, “Q-switched pulse laser generation from double-cladding Nd:YAG ceramics waveguides,” Opt. Express 21(16), 18963–18968 (2013).
[Crossref]

N. Pavel, G. Salamu, F. Jipa, and M. Zamfirescu, “Diode-laser pumping into the emitting level for efficient lasing of depressed cladding waveguides realized in Nd:YVO4 by the direct femtosecondlaser writing technique,” Opt. Express 22(19), 23057–23065 (2014).
[Crossref]

A. Li, Y. Wang, Q. Hu, and W. Shieh, “Few-mode fiber based optical sensors,” Opt. Express 23(2), 1139–1150 (2015).
[Crossref]

Y. Weng, E. Ip, Z. Pan, and T. Wang, “Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers,” Opt. Express 23(7), 9024–9039 (2015).
[Crossref]

S. Y. Choi, T. Calmano, F. Rotermund, and C. Kränkel, “2-GHz carbon nanotube mode-locked Yb:YAG channel waveguide laser,” Opt. Express 26(5), 5140–5145 (2018).
[Crossref]

Z. Li, Y. Zhang, C. Cheng, H. Yu, and F. Chen, “6.5 GHz Q-switched mode-locked waveguide lasers based on two-dimensional materials as saturable absorbers,” Opt. Express 26(9), 11321–11330 (2018).
[Crossref]

E. Kifle, P. Loiko, J. R. Vázquez de Aldana, C. Romero, A. Ródenas, V. Zakharov, A. Veniaminov, H. Yu, H. Zhang, Y. Chen, M. Aguiló, F. Díaz, U. Griebner, V. Petrov, and X. Mateos, “Fs-laser-written thulium waveguide lasers Q-switched by graphene and MoS2,” Opt. Express 27(6), 8745–8755 (2019).
[Crossref]

Y. F. Chen, Y. Y. Pan, Y. C. Liu, H. P. Cheng, C. H. Tsou, and H. C. Liang, “Efficient high-power continuous-wave lasers at green-lime-yellow wavelengths by using a Nd:YVO4 self-Raman crystal,” Opt. Express 27(3), 2029–2035 (2019).
[Crossref]

Opt. Lett. (8)

Y. F. Chen, Y. C. Liu, Y. Y. Pan, D. Y. Gu, H. P. Cheng, C. H. Tsou, and H. C. Liang, “Efficient high-power dual-wavelength lime-green Nd:YVO4 lasers,” Opt. Lett. 44(6), 1323–1326 (2019).
[Crossref]

G. Bharathan, T. T. Fernandez, M. Ams, R. I. Woodward, D. D. Hudson, and A. Fuerbach, “Optimized laser-written ZBLAN fiber Bragg gratings with high reflectivity and low loss,” Opt. Lett. 44(2), 423–426 (2019).
[Crossref]

A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett. 30(17), 2248–2250 (2005).
[Crossref]

F. Piantedosi, G. Y. Chen, T. M. Monro, and D. G. Lancaster, “Widely tunable, high slope efficiency waveguide lasers in a Yb-doped glass chip operating at 1 µm,” Opt. Lett. 43(8), 1902–1905 (2018).
[Crossref]

H. Liu, F. Chen, J. R. Vázquez de Aldana, and D. Jaque, “Femtosecond-laser inscribed double-cladding waveguides in Nd:YAG crystal: a promising prototype for integrated lasers,” Opt. Lett. 38(17), 3294–3297 (2013).
[Crossref]

H. Liu, Y. Tan, J. R. Vázquez de Aldana, and F. Chen, “Efficient laser emission from cladding waveguide inscribed in Nd:GdVO4 crystal by direct femtosecond laser writing,” Opt. Lett. 39(15), 4553–4556 (2014).
[Crossref]

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser in a monoclinic double tungstate with 70% slope efficiency,” Opt. Lett. 37(5), 887–889 (2012).
[Crossref]

N. Bozinovic, S. Golowich, P. Kristensen, and S. Ramachandran, “Control of orbital angular momentum of light with optical fibers,” Opt. Lett. 37(13), 2451–2453 (2012).
[Crossref]

Opt. Mater. Express (2)

Optica (1)

OSA Continuum (1)

Photonics Res. (1)

Z. Li, C. Cheng, N. Dong, C. Romero, Q. Lu, J. Wang, J. R. Vázquez de Aldana, Y. Tan, and F. Chen, “Q-switching of waveguide lasers based on graphene/WS2 van der Waals heterostructure,” Photonics Res. 5(5), 406–410 (2017).
[Crossref]

Phys. Rev. Lett. (1)

M.K. Bhaskar, D. D. Sukachev, A. Sipahigil, R. E. Evans, M. J. Burek, C. T. Nguyen, L. J. Rogers, P. Siyushev, M. H. Metsch, H. Park, F. Jelezko, M. Lončar, and M. D. Lukin, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett. 118(22), 223603 (2017).
[Crossref]

Prog. Quantum Electron. (2)

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
[Crossref]

C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications,” Prog. Quantum Electron. 45-46, 3–160 (2016).
[Crossref]

Sci. Rep. (1)

W. Nie, R. Li, C. Cheng, Y. Chen, Q. Lu, C. Romero, J. R. Vázquez de Aldana, X. Hao, and F. Chen, “Room-temperature subnanosecond waveguide lasers in Nd:YVO4 Q-switched by phase-change VO2: A comparison with 2D materials,” Sci. Rep. 7(1), 46162 (2017).
[Crossref]

Science (3)

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science 354(6314), 847–850 (2016).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabitscale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

J. Nilsson and D. N. Payne, “High-power fiber lasers,” Science 332(6032), 921–922 (2011).
[Crossref]

Other (2)

J. A. Buck, Fundamentals of Optical Fibers (John Wiley & Sons, 2004).

W. Koechner, Solid-State Laser Engineering (Springer, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic diagram of the end-face coupling arrangement for waveguide characterization. The insets are cross-sectional images (upper-left) of different waveguide geometries and a photograph (lower-right) of the graphene/quartz plate. Scale bar denotes 50 µm.
Fig. 2.
Fig. 2. Modal profiles of Nd:YVO4 waveguides: (a) WG1, (b) WG2, (c) WG3, and (d) modelling for WG1, at 632.8 nm (upper figures) and 1064 nm (lower figures). The red dash circles indicate the spatial locations of the FsLDW tracks. Scale bar denotes 50 µm.
Fig. 3.
Fig. 3. Polar plot of optical transmittance of Nd:YVO4 waveguides and bulk measured with different polarizations of input light at 1064 nm.
Fig. 4.
Fig. 4. Output power as a function of incident power obtained from Nd:YVO4 cladding waveguides (left: WG1, middle: WG2, right: WG3) for TE (filled markers) and TM (open markers) polarized pump, respectively, employing incoupling lenses with focal lengths of 25 (circles) and 50 mm (cubes). Solid and dashed lines are linear fit of the experimental data.
Fig. 5.
Fig. 5. Laser modes at 1.06 µm of WG1 when using incoupling lens with different focal lengths: (a) f = 25 mm, (b) f = 50 mm, and (c) f = 100 mm.
Fig. 6.
Fig. 6. (a) Average output power as a function of incident power obtained from WG3 in Q-switched regime. The inset shows the laser mode. The red dash circles indicate the spatial locations of the FsLDW tracks. (b) Oscilloscope trace of the Q-switched pulse train at repetition rate of 7.1 MHz. The (c) pulse duration, (d) repetition rate and (e) single pulse energy of the delivered pulses as a function of the incident pump power.

Tables (1)

Tables Icon

Table 1. Nd:YVO4 waveguide total losses (coupling losses + propagation losses) estimated from Fig. 3

Metrics