Abstract

Single-ring hollow-core photonic crystal fibers, consisting of a ring of one or two thin-walled glass capillaries surrounding a central hollow core, hold great promise for use in optical communications and beam delivery, and are already being successfully exploited for extreme pulse compression and efficient wavelength conversion in gases. However, achieving low loss over long (km) lengths requires highly accurate maintenance of the microstructure—a major fabrication challenge. In certain applications, for example adiabatic mode transformers, it is advantageous to taper the fibers, but no technique exists for measuring the delicate and complex microstructure without first cleaving the taper at several positions along its length. In this Letter, we present a simple non-destructive optical method for measuring the diameter of individual capillaries. Based on recording the spectrum scattered from whispering gallery modes excited in the capillary walls, the technique is highly robust, allowing real-time measurement of fiber structure during the draw with sub-micron accuracy.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Strong circular dichroism for the HE11 mode in twisted single-ring hollow-core photonic crystal fiber

P. Roth, Y. Chen, M. C. Günendi, R. Beravat, N. N. Edavalath, M. H. Frosz, G. Ahmed, G. K. L. Wong, and P. St. J. Russell
Optica 5(10) 1315-1321 (2018)

Real-time Doppler-assisted tomography of microstructured fibers by side-scattering

Alessio Stefani, Michael H. Frosz, Tijmen G. Euser, Gordon K. L. Wong, and Philip St.J. Russell
Opt. Express 22(21) 25570-25579 (2014)

Cavity-enhanced laser absorption spectroscopy using microresonator whispering-gallery modes

G. Farca, S. I. Shopova, and A. T. Rosenberger
Opt. Express 15(25) 17443-17448 (2007)

References

  • View by:
  • |
  • |
  • |

  1. J. F. Owen, P. W. Barber, B. J. Messinger, and R. K. Chang, “Determination of optical-fiber diameter from resonances in the elastic-scattering spectrum,” Opt. Lett. 6(6), 272–274 (1981).
    [Crossref]
  2. A. Ashkin, J. M. Dziedzic, and R. H. Stolen, “Outer diameter measurement of low birefringence optical fibers by a new resonant backscatter technique,” Appl. Opt. 20(13), 2299–2303 (1981).
    [Crossref]
  3. A. W. Poon, R. K. Chang, and J. A. Lock, “Spiral morphology-dependent resonances in an optical fiber: effects of fiber tilt and focused Gaussian beam illumination,” Opt. Lett. 23(14), 1105–1107 (1998).
    [Crossref]
  4. T. A. Birks, J. C. Knight, and T. E. Dimmick, “High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment,” IEEE Photonics Technol. Lett. 12(2), 182–183 (2000).
    [Crossref]
  5. P. St.J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [Crossref]
  6. G. T. Jasion, J. R. Hayes, N. V. Wheeler, Y. Chen, T. D. Bradley, D. J. Richardson, and F. Poletti, “Fabrication of tubular anti-resonant hollow core fibers: modelling, draw dynamics and process optimization,” Opt. Express 27(15), 20567–20582 (2019).
    [Crossref]
  7. A. Stefani, M. H. Frosz, T. G. Euser, G. K. L. Wong, and P. St.J. Russell, “Real-time Doppler-assisted tomography of microstructured fibers by side-scattering,” Opt. Express 22(21), 25570–25579 (2014).
    [Crossref]
  8. W. Gorski and W. Osten, “Tomographic imaging of photonic crystal fibers,” Opt. Lett. 32(14), 1977–1979 (2007).
    [Crossref]
  9. S. R. Sandoghchi, G. T. Jasion, N. V. Wheeler, S. Jain, Z. Lian, J. P. Wooler, R. P. Boardman, N. Baddela, Y. Chen, J. Hayes, E. N. Fokoua, T. Bradley, D. R. Gray, S. M. Mousavi, M. Petrovich, F. Poletti, and D. J. Richardson, “X-ray tomography for structural analysis of microstructured and multimaterial optical fibers and preforms,” Opt. Express 22(21), 26181–26192 (2014).
    [Crossref]
  10. S. Schmidt, T. Tiess, S. Schrotter, A. Schwuchow, M. Jäger, H. Bartelt, A. Tünnermann, and H. Gross, “Noninvasive characterization of optical fibers,” Opt. Lett. 42(23), 4946–4949 (2017).
    [Crossref]
  11. X. B. Xu, X. Y. Wang, T. T. Zhu, F. Y. Gao, and N. F. Song, “Nondestructive determination of the core size of a hollow-core photonic bandgap fiber using Fabry-Perot interference,” Opt. Lett. 43(13), 3045–3048 (2018).
    [Crossref]
  12. M. H. Frosz, R. Pennetta, M. T. Enders, G. Ahmed, and P. St.J. Russell, “Non-invasive real-time characterization of hollow-core photonic crystal fibres using whispering gallery mode spectroscopy,” in 2019 Conference on Lasers and Electro-Optics and Europe & European Quantum Electronics Conference, Centre Munich, Germany, 23June2019, CJ-3.6.
  13. B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4(2), 209–217 (2017).
    [Crossref]
  14. U. Elu, M. Baudisch, H. Pires, F. Tani, M. H. Frosz, F. Köttig, A. Ermolov, P. St. J. Russell, and J. Biegert, “High average power and single-cycle pulses from a mid-IR optical parametric chirped pulse amplifier,” Optica 4(9), 1024–1029 (2017).
    [Crossref]
  15. P. Roth, Y. Chen, M. C. Günendi, R. Beravat, N. N. Edavalath, M. H. Frosz, G. Ahmed, G. K. L. Wong, and P. St. J. Russell, “Strong circular dichroism for the HE11 mode in twisted single-ring hollow-core photonic crystal fiber,” Optica 5(10), 1315–1321 (2018).
    [Crossref]
  16. R. Pennetta, M. T. Enders, M. H. Frosz, F. Tani, and P. St.J. Russell, “Fabrication and non-destructive characterization of tapered single-ring hollow-core photonic crystal fiber,” APL Photonics 4(5), 056105 (2019).
    [Crossref]
  17. H. Kogelnik, “Theory of dielectric waveguides,” in Integrated Optics, T. Tamir, ed. (Springer, 1975) pp. 13–81.
  18. C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T. Arena, and K. W. Eliceiri, “ImageJ2: ImageJ for the next generation of scientific image data,” BMC Bioinformatics 18(1), 529 (2017).
    [Crossref]
  19. T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavik, E. N. Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3 dB/km data transmitting antiresonant hollow core fibre,” in 2018 European Conference on Optical Communication (ECOC), pp. 1–3 (2018).
    [Crossref]
  20. S.-F. Gao, Y.-F. Wang, W. Ding, D.-L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
    [Crossref]

2019 (2)

R. Pennetta, M. T. Enders, M. H. Frosz, F. Tani, and P. St.J. Russell, “Fabrication and non-destructive characterization of tapered single-ring hollow-core photonic crystal fiber,” APL Photonics 4(5), 056105 (2019).
[Crossref]

G. T. Jasion, J. R. Hayes, N. V. Wheeler, Y. Chen, T. D. Bradley, D. J. Richardson, and F. Poletti, “Fabrication of tubular anti-resonant hollow core fibers: modelling, draw dynamics and process optimization,” Opt. Express 27(15), 20567–20582 (2019).
[Crossref]

2018 (3)

2017 (4)

2014 (2)

2007 (1)

2003 (1)

P. St.J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref]

2000 (1)

T. A. Birks, J. C. Knight, and T. E. Dimmick, “High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment,” IEEE Photonics Technol. Lett. 12(2), 182–183 (2000).
[Crossref]

1998 (1)

1981 (2)

Ahmed, G.

P. Roth, Y. Chen, M. C. Günendi, R. Beravat, N. N. Edavalath, M. H. Frosz, G. Ahmed, G. K. L. Wong, and P. St. J. Russell, “Strong circular dichroism for the HE11 mode in twisted single-ring hollow-core photonic crystal fiber,” Optica 5(10), 1315–1321 (2018).
[Crossref]

M. H. Frosz, R. Pennetta, M. T. Enders, G. Ahmed, and P. St.J. Russell, “Non-invasive real-time characterization of hollow-core photonic crystal fibres using whispering gallery mode spectroscopy,” in 2019 Conference on Lasers and Electro-Optics and Europe & European Quantum Electronics Conference, Centre Munich, Germany, 23June2019, CJ-3.6.

Amsanpally, A.

Arena, E. T.

C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T. Arena, and K. W. Eliceiri, “ImageJ2: ImageJ for the next generation of scientific image data,” BMC Bioinformatics 18(1), 529 (2017).
[Crossref]

Ashkin, A.

Baddela, N.

Barber, P. W.

Bartelt, H.

Baudisch, M.

Bawn, S.

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavik, E. N. Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3 dB/km data transmitting antiresonant hollow core fibre,” in 2018 European Conference on Optical Communication (ECOC), pp. 1–3 (2018).
[Crossref]

Baz, A.

Benabid, F.

Beravat, R.

Biegert, J.

Birks, T. A.

T. A. Birks, J. C. Knight, and T. E. Dimmick, “High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment,” IEEE Photonics Technol. Lett. 12(2), 182–183 (2000).
[Crossref]

Blondy, J. M.

Boardman, R. P.

Bradley, T.

Bradley, T. D.

G. T. Jasion, J. R. Hayes, N. V. Wheeler, Y. Chen, T. D. Bradley, D. J. Richardson, and F. Poletti, “Fabrication of tubular anti-resonant hollow core fibers: modelling, draw dynamics and process optimization,” Opt. Express 27(15), 20567–20582 (2019).
[Crossref]

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavik, E. N. Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3 dB/km data transmitting antiresonant hollow core fibre,” in 2018 European Conference on Optical Communication (ECOC), pp. 1–3 (2018).
[Crossref]

Chafer, M.

Chang, R. K.

Chen, Y.

Davidson, I. A.

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavik, E. N. Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3 dB/km data transmitting antiresonant hollow core fibre,” in 2018 European Conference on Optical Communication (ECOC), pp. 1–3 (2018).
[Crossref]

Debord, B.

DeZonia, B. E.

C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T. Arena, and K. W. Eliceiri, “ImageJ2: ImageJ for the next generation of scientific image data,” BMC Bioinformatics 18(1), 529 (2017).
[Crossref]

Dimmick, T. E.

T. A. Birks, J. C. Knight, and T. E. Dimmick, “High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment,” IEEE Photonics Technol. Lett. 12(2), 182–183 (2000).
[Crossref]

Ding, W.

S.-F. Gao, Y.-F. Wang, W. Ding, D.-L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Dziedzic, J. M.

Edavalath, N. N.

Eliceiri, K. W.

C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T. Arena, and K. W. Eliceiri, “ImageJ2: ImageJ for the next generation of scientific image data,” BMC Bioinformatics 18(1), 529 (2017).
[Crossref]

Elu, U.

Enders, M. T.

R. Pennetta, M. T. Enders, M. H. Frosz, F. Tani, and P. St.J. Russell, “Fabrication and non-destructive characterization of tapered single-ring hollow-core photonic crystal fiber,” APL Photonics 4(5), 056105 (2019).
[Crossref]

M. H. Frosz, R. Pennetta, M. T. Enders, G. Ahmed, and P. St.J. Russell, “Non-invasive real-time characterization of hollow-core photonic crystal fibres using whispering gallery mode spectroscopy,” in 2019 Conference on Lasers and Electro-Optics and Europe & European Quantum Electronics Conference, Centre Munich, Germany, 23June2019, CJ-3.6.

Ermolov, A.

Euser, T. G.

Fokoua, E. N.

S. R. Sandoghchi, G. T. Jasion, N. V. Wheeler, S. Jain, Z. Lian, J. P. Wooler, R. P. Boardman, N. Baddela, Y. Chen, J. Hayes, E. N. Fokoua, T. Bradley, D. R. Gray, S. M. Mousavi, M. Petrovich, F. Poletti, and D. J. Richardson, “X-ray tomography for structural analysis of microstructured and multimaterial optical fibers and preforms,” Opt. Express 22(21), 26181–26192 (2014).
[Crossref]

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavik, E. N. Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3 dB/km data transmitting antiresonant hollow core fibre,” in 2018 European Conference on Optical Communication (ECOC), pp. 1–3 (2018).
[Crossref]

Frosz, M. H.

R. Pennetta, M. T. Enders, M. H. Frosz, F. Tani, and P. St.J. Russell, “Fabrication and non-destructive characterization of tapered single-ring hollow-core photonic crystal fiber,” APL Photonics 4(5), 056105 (2019).
[Crossref]

P. Roth, Y. Chen, M. C. Günendi, R. Beravat, N. N. Edavalath, M. H. Frosz, G. Ahmed, G. K. L. Wong, and P. St. J. Russell, “Strong circular dichroism for the HE11 mode in twisted single-ring hollow-core photonic crystal fiber,” Optica 5(10), 1315–1321 (2018).
[Crossref]

U. Elu, M. Baudisch, H. Pires, F. Tani, M. H. Frosz, F. Köttig, A. Ermolov, P. St. J. Russell, and J. Biegert, “High average power and single-cycle pulses from a mid-IR optical parametric chirped pulse amplifier,” Optica 4(9), 1024–1029 (2017).
[Crossref]

A. Stefani, M. H. Frosz, T. G. Euser, G. K. L. Wong, and P. St.J. Russell, “Real-time Doppler-assisted tomography of microstructured fibers by side-scattering,” Opt. Express 22(21), 25570–25579 (2014).
[Crossref]

M. H. Frosz, R. Pennetta, M. T. Enders, G. Ahmed, and P. St.J. Russell, “Non-invasive real-time characterization of hollow-core photonic crystal fibres using whispering gallery mode spectroscopy,” in 2019 Conference on Lasers and Electro-Optics and Europe & European Quantum Electronics Conference, Centre Munich, Germany, 23June2019, CJ-3.6.

Gao, F. Y.

Gao, S.-F.

S.-F. Gao, Y.-F. Wang, W. Ding, D.-L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Gérôme, F.

Gorski, W.

Gray, D. R.

Gross, H.

Gu, S.

S.-F. Gao, Y.-F. Wang, W. Ding, D.-L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Günendi, M. C.

Hayes, J.

Hayes, J. R.

G. T. Jasion, J. R. Hayes, N. V. Wheeler, Y. Chen, T. D. Bradley, D. J. Richardson, and F. Poletti, “Fabrication of tubular anti-resonant hollow core fibers: modelling, draw dynamics and process optimization,” Opt. Express 27(15), 20567–20582 (2019).
[Crossref]

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavik, E. N. Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3 dB/km data transmitting antiresonant hollow core fibre,” in 2018 European Conference on Optical Communication (ECOC), pp. 1–3 (2018).
[Crossref]

Hiner, M. C.

C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T. Arena, and K. W. Eliceiri, “ImageJ2: ImageJ for the next generation of scientific image data,” BMC Bioinformatics 18(1), 529 (2017).
[Crossref]

Hugonnot, E.

Jäger, M.

Jain, S.

Jasion, G. T.

Jiang, D.-L.

S.-F. Gao, Y.-F. Wang, W. Ding, D.-L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Knight, J. C.

T. A. Birks, J. C. Knight, and T. E. Dimmick, “High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment,” IEEE Photonics Technol. Lett. 12(2), 182–183 (2000).
[Crossref]

Kogelnik, H.

H. Kogelnik, “Theory of dielectric waveguides,” in Integrated Optics, T. Tamir, ed. (Springer, 1975) pp. 13–81.

Köttig, F.

Lian, Z.

Lock, J. A.

Maurel, M.

Messinger, B. J.

Mousavi, S. M.

Osten, W.

Owen, J. F.

Pennetta, R.

R. Pennetta, M. T. Enders, M. H. Frosz, F. Tani, and P. St.J. Russell, “Fabrication and non-destructive characterization of tapered single-ring hollow-core photonic crystal fiber,” APL Photonics 4(5), 056105 (2019).
[Crossref]

M. H. Frosz, R. Pennetta, M. T. Enders, G. Ahmed, and P. St.J. Russell, “Non-invasive real-time characterization of hollow-core photonic crystal fibres using whispering gallery mode spectroscopy,” in 2019 Conference on Lasers and Electro-Optics and Europe & European Quantum Electronics Conference, Centre Munich, Germany, 23June2019, CJ-3.6.

Petrovich, M.

Petrovich, M. N.

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavik, E. N. Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3 dB/km data transmitting antiresonant hollow core fibre,” in 2018 European Conference on Optical Communication (ECOC), pp. 1–3 (2018).
[Crossref]

Pires, H.

Poletti, F.

Poon, A. W.

Richardson, D. J.

Roth, P.

Rueden, C. T.

C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T. Arena, and K. W. Eliceiri, “ImageJ2: ImageJ for the next generation of scientific image data,” BMC Bioinformatics 18(1), 529 (2017).
[Crossref]

Russell, P. St. J.

Russell, P. St.J.

R. Pennetta, M. T. Enders, M. H. Frosz, F. Tani, and P. St.J. Russell, “Fabrication and non-destructive characterization of tapered single-ring hollow-core photonic crystal fiber,” APL Photonics 4(5), 056105 (2019).
[Crossref]

A. Stefani, M. H. Frosz, T. G. Euser, G. K. L. Wong, and P. St.J. Russell, “Real-time Doppler-assisted tomography of microstructured fibers by side-scattering,” Opt. Express 22(21), 25570–25579 (2014).
[Crossref]

P. St.J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref]

M. H. Frosz, R. Pennetta, M. T. Enders, G. Ahmed, and P. St.J. Russell, “Non-invasive real-time characterization of hollow-core photonic crystal fibres using whispering gallery mode spectroscopy,” in 2019 Conference on Lasers and Electro-Optics and Europe & European Quantum Electronics Conference, Centre Munich, Germany, 23June2019, CJ-3.6.

Sakr, H.

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavik, E. N. Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3 dB/km data transmitting antiresonant hollow core fibre,” in 2018 European Conference on Optical Communication (ECOC), pp. 1–3 (2018).
[Crossref]

Sandoghchi, S. R.

S. R. Sandoghchi, G. T. Jasion, N. V. Wheeler, S. Jain, Z. Lian, J. P. Wooler, R. P. Boardman, N. Baddela, Y. Chen, J. Hayes, E. N. Fokoua, T. Bradley, D. R. Gray, S. M. Mousavi, M. Petrovich, F. Poletti, and D. J. Richardson, “X-ray tomography for structural analysis of microstructured and multimaterial optical fibers and preforms,” Opt. Express 22(21), 26181–26192 (2014).
[Crossref]

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavik, E. N. Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3 dB/km data transmitting antiresonant hollow core fibre,” in 2018 European Conference on Optical Communication (ECOC), pp. 1–3 (2018).
[Crossref]

Schindelin, J.

C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T. Arena, and K. W. Eliceiri, “ImageJ2: ImageJ for the next generation of scientific image data,” BMC Bioinformatics 18(1), 529 (2017).
[Crossref]

Schmidt, S.

Schrotter, S.

Schwuchow, A.

Scol, F.

Slavik, R.

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavik, E. N. Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3 dB/km data transmitting antiresonant hollow core fibre,” in 2018 European Conference on Optical Communication (ECOC), pp. 1–3 (2018).
[Crossref]

Song, N. F.

Stefani, A.

Stolen, R. H.

Tani, F.

R. Pennetta, M. T. Enders, M. H. Frosz, F. Tani, and P. St.J. Russell, “Fabrication and non-destructive characterization of tapered single-ring hollow-core photonic crystal fiber,” APL Photonics 4(5), 056105 (2019).
[Crossref]

U. Elu, M. Baudisch, H. Pires, F. Tani, M. H. Frosz, F. Köttig, A. Ermolov, P. St. J. Russell, and J. Biegert, “High average power and single-cycle pulses from a mid-IR optical parametric chirped pulse amplifier,” Optica 4(9), 1024–1029 (2017).
[Crossref]

Taranta, A.

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavik, E. N. Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3 dB/km data transmitting antiresonant hollow core fibre,” in 2018 European Conference on Optical Communication (ECOC), pp. 1–3 (2018).
[Crossref]

Thomas, J. P.

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavik, E. N. Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3 dB/km data transmitting antiresonant hollow core fibre,” in 2018 European Conference on Optical Communication (ECOC), pp. 1–3 (2018).
[Crossref]

Tiess, T.

Tünnermann, A.

Vincetti, L.

Walter, A. E.

C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T. Arena, and K. W. Eliceiri, “ImageJ2: ImageJ for the next generation of scientific image data,” BMC Bioinformatics 18(1), 529 (2017).
[Crossref]

Wang, P.

S.-F. Gao, Y.-F. Wang, W. Ding, D.-L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Wang, X. Y.

Wang, Y.-F.

S.-F. Gao, Y.-F. Wang, W. Ding, D.-L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Wheeler, N. V.

Wong, G. K. L.

Wooler, J. P.

Xu, X. B.

Zhang, X.

S.-F. Gao, Y.-F. Wang, W. Ding, D.-L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Zhu, T. T.

APL Photonics (1)

R. Pennetta, M. T. Enders, M. H. Frosz, F. Tani, and P. St.J. Russell, “Fabrication and non-destructive characterization of tapered single-ring hollow-core photonic crystal fiber,” APL Photonics 4(5), 056105 (2019).
[Crossref]

Appl. Opt. (1)

BMC Bioinformatics (1)

C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T. Arena, and K. W. Eliceiri, “ImageJ2: ImageJ for the next generation of scientific image data,” BMC Bioinformatics 18(1), 529 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

T. A. Birks, J. C. Knight, and T. E. Dimmick, “High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment,” IEEE Photonics Technol. Lett. 12(2), 182–183 (2000).
[Crossref]

Nat. Commun. (1)

S.-F. Gao, Y.-F. Wang, W. Ding, D.-L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Optica (3)

Science (1)

P. St.J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref]

Other (3)

M. H. Frosz, R. Pennetta, M. T. Enders, G. Ahmed, and P. St.J. Russell, “Non-invasive real-time characterization of hollow-core photonic crystal fibres using whispering gallery mode spectroscopy,” in 2019 Conference on Lasers and Electro-Optics and Europe & European Quantum Electronics Conference, Centre Munich, Germany, 23June2019, CJ-3.6.

H. Kogelnik, “Theory of dielectric waveguides,” in Integrated Optics, T. Tamir, ed. (Springer, 1975) pp. 13–81.

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavik, E. N. Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3 dB/km data transmitting antiresonant hollow core fibre,” in 2018 European Conference on Optical Communication (ECOC), pp. 1–3 (2018).
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1       Broad-band pulse transversely exciting whispering gallery modes in a single-ring hollow-core fiber (half of the structure shown). The intensity of the E-field is shown.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a) Sketch of the ray path that excites a WGM in a capillary at θcap = 60°. Gray indicates glass and white indicates hollow regions of the SR-PCF. (b) Close-up of the ray paths at the point where the capillary is fused to the jacket tube, illustrating the different coupling mechanisms. A: evanescent tunneling, B: ray escapes, C: direct excitation, D: evanescent tunneling.
Fig. 2.
Fig. 2. FDTD snap-shots of the fields in the SR-PCF at three different times for the same geometry as in Fig. 1. The colors (red for positive and blue for negative) represent the amplitude of the magnetic field pointing along the fiber axis. (a) The pulse wavefronts propagate through the jacket tube towards the capillary. (b) The pulse travels around the capillary. (c) The pulse reaches the point Q and partly couples out, a small fraction continuing around the capillary. Also see Visualization 1.
Fig. 3.
Fig. 3. Phase (solid) and group (dashed) indices for the $m = 0$ (blue) and $m = 1$ (red) modes of an air-clad planar waveguide 300 nm thick made from silica glass for a fixed silica index of 1.44 (used in the FDTD modelling). The gray curves were calculated with the dispersion of silica included. The group index can be related directly to the frequency or wavelength spacing between adjacent WGMs using the expressions in Eq. (1). The $m = 1$ mode cuts off at 636 nm. The values of group index used to calculate the capillary diameter in Fig. 4 are ${n_{\textrm{G}0}} = 1.485$ at longer wavelength ($m = 0$ mode) and ${n_{\textrm{G1}}} = 1.555$ at shorter wavelength ($m = 1$ mode).
Fig. 4.
Fig. 4. (a) Spectrum of the light emerging from the capillary (dc = 14 µm, t = 300 nm) for the configuration in Fig. 1, simulated by FDTD modelling for fixed silica index of 1.44. Fundamental ($m = 0$) waveguide modes are excited in the 420-1200 nm band (blue) and $m = 1$ modes are excited in the 300-420 nm band (red). (b) Fourier transform of S(ν) for the two bands, plotted against capillary diameter, as explained in the text.
Fig. 5.
Fig. 5. (a) Sketch of the measurement set-up. LP: linear polarizer. (b) Example of measured spectrum. (c) Fourier transform of the experimentally measured spectrum, scaled using Eq. (2) and ${n_{\textrm{G}0}} = 1.414$.
Fig. 6.
Fig. 6. Capillary diameter measured during fiber drawing with the WGM technique (blue) using the scaling factor ${n_{\textrm{G}0}} = 1.484$. The vertical lines indicate the times at which the pressure applied to the capillaries was changed. The insets show SEM images made post-drawing, and the SEM-measured diameter is shown by red bars, the length indicating the standard deviation between the 5 capillaries.
Fig. 7.
Fig. 7. (a) SEM of the fiber microstructure. The effective diameter of each capillary, estimated from the SEM, is written in. Comparison with (b) shows that each capillary can be identified with good agreement. (b) An example of the scattered signals detected during a post-drawing measurement in which a SR-PCF was rotated. The angle was scanned in steps of 0.1° and the scaling factor ${n_{G0}} = 1.55$ (valid for $t = 370\textrm{ nm}$, $\lambda \sim 615\textrm{ nm}$) was used.
Fig. 8.
Fig. 8. Diameter of a single capillary along a 550 mm length of SR-PCF, obtained by finding the vertex of a parabola fitted to the V-shaped signals (Fig. 7(b)). The fiber was scanned in 5 mm steps. Two measurements are shown, the second being made after reversing the fiber in the set-up.
Fig. 9.
Fig. 9. (a) FDTD analysis of a nested two-capillary structure (inset) [19] yields a four-peaked Fourier transform, corresponding to resonator diameters dc1, dc2, ${d_{\textrm{c}1}} + {d_{\textrm{c}2}}$, and ${d_{\textrm{c}1}} - {d_{\textrm{c}2}}$ (dashed vertical lines). The latter resonance occurs due to spectral interference between light travelling in the inner and outer capillaries. (b) A split capillary structure (inset) [20] yields peaks corresponding to equivalent resonator diameters dc1 and ${{{d_{\textrm{c}1}}({1 + {\pi \mathord{\left/ {\vphantom {\pi 2}} \right.} 2}} )} \mathord{\left/ {\vphantom {{{d_{\textrm{c}1}}({1 + {\pi \mathord{\left/ {\vphantom {\pi 2}} \right.} 2}} )} \pi }} \right.} \pi }$ (dashed vertical lines).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

δ λ λ = δ ν ν = v G m π d c ν = c π d c ν ( n m ( ν ) + ν n m ( ν ) ν ) 1 = c π d c ν 1 n G m ( ν ) ,
d c = c π n G m k ,
Δ d c 1 π n G 0 ( λ min 1 λ max 1 ) ,
t 2 d c2 = d c 1 t 1 V f / V d ,

Metrics