Abstract

Ultrashort laser pulses, featuring remarkable spectral tunability, are highly demanded for nonlinear light-matter interactions in a variety of molecules. Here, we report on the generation of soliton-plasma-driven ultrashort pulses with both bandwidth- and wavelength-tunability in the visible spectral region. Using He-filled single-ring photonic crystal fiber (SR-PCF), we demonstrate in the experiments that the spectral bandwidths of blueshifting solitons can be manipulated by adjusting the input pulse energy, gas pressure and core diameter of the SR-PCF, while the central wavelengths of these solitons can be continuously tuned over 200 nm. We found that in a large-core SR-PCF (24.6-µm core diameter), the bandwidths of blueshifting solitons can be effectively broaden to near 100 nm, pointing out the possibility of generating few-cycle, wavelength-tunable visible pulses using this set-up. In addition, we observed in the experiments that in a small-core SR-PCF (with a core diameter of 17 µm), the blueshifting solitons show little residual light near the pump wavelength, resulting in a high-efficiency frequency up-conversion process. These experimental results, confirmed by numerical simulations, pave the way to a new generation of compact, ultrashort light sources with excellent tunability at visible wavelengths, which may have many applications in the fields of time-resolved spectroscopy and ultrafast nonlinear optics.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Wavelength-tunable few-cycle pulses in visible region generated through soliton-plasma interactions

Zhiyuan Huang, Ding Wang, Yifei Chen, Ruirui Zhao, Yu Zhao, Sungmo Nam, Changhwan Lim, Yujie Peng, Juan Du, and Yuxin Leng
Opt. Express 26(26) 34977-34993 (2018)

Continuously wavelength-tunable blueshifting soliton generated in gas-filled photonic crystal fibers

Z. Y. Huang, Y. F. Chen, F. Yu, D. Wang, R. R. Zhao, Y. Zhao, S. F. Gao, Y. Y. Wang, P. Wang, M. Pang, and Y. X. Leng
Opt. Lett. 44(7) 1805-1808 (2019)

Generation of broadband mid-IR and UV light in gas-filled single-ring hollow-core PCF

Marco Cassataro, David Novoa, Mehmet C. Günendi, Nitin N. Edavalath, Michael H. Frosz, John C. Travers, and Philip St.J. Russell
Opt. Express 25(7) 7637-7644 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. H. Zewail, “Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond,” J. Phys. Chem. A 104(24), 5660–5694 (2000).
    [Crossref]
  2. A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond Time-Resolved Photoelectron Spectroscopy,” Chem. Rev. 104(4), 1719–1758 (2004).
    [Crossref]
  3. M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419(6909), 803–807 (2002).
    [Crossref]
  4. O. A. Sytina, I. H. M. van Stokkum, D. J. Heyes, C. N. Hunter, R. van Grondelle, and M. L. Groot, “Protochlorophyllide Excited-State Dynamics in Organic Solvents Studied by Time-Resolved Visible and Mid-Infrared Spectroscopy,” J. Phys. Chem. B 114(12), 4335–4344 (2010).
    [Crossref]
  5. D. J. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Y. Li, and Y. X. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015).
    [Crossref]
  6. M. Bradler, C. Homann, and E. Riedle, “Mid-IR femtosecond pulse generation on the microjoule level up to 5 µm at high repetition rates,” Opt. Lett. 36(21), 4212–4214 (2011).
    [Crossref]
  7. Y. X. Tang, L. G. Wright, K. Charan, T. Y. Wang, C. Xu, and F. W. Wise, “Generation of intense 100 fs solitons tunable from 2 to 4.3 µm in fluoride fiber,” Optica 3(9), 948–951 (2016).
    [Crossref]
  8. G. Soboń, T. Martynkien, K. Tarnowski, P. Mergo, and J. Sotor, “Generation of sub-100 fs pulses tunable from 1700 to 2100 nm from a compact frequency-shifted Er-fiber laser,” Photonics Res. 5(3), 151–155 (2017).
    [Crossref]
  9. G. Soboń, T. Martynkien, D. Tomaszewska, K. Tarnowski, P. Mergo, and J. Sotor, “All-in-fiber amplification and compression of coherent frequency-shifted solitons tunable in the 1800-2000nm range,” Photonics Res. 6(5), 368–372 (2018).
    [Crossref]
  10. D. Steinbach, W. Hügel, and M. Wegener, “Generation and detection of blue 10.0-fs pulses,” J. Opt. Soc. Am. B 15(3), 1231–1234 (1998).
    [Crossref]
  11. S. Backus, J. Peatross, Z. Zeek, A. Rundquist, G. Taft, M. M. Murnane, and H. C. Kapteyn, “16-fs, 1-µJ ultraviolet pulses generated by third-harmonic conversion in air,” Opt. Lett. 21(9), 665–667 (1996).
    [Crossref]
  12. Z. H. Chang, A. Rundquist, H. W. Wang, M. M. Murnane, and H. C. Kapteyn, “Generation of Coherent Soft X Rays at 2.7 nm Using High Harmonics,” Phys. Rev. Lett. 79(16), 2967–2970 (1997).
    [Crossref]
  13. C. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch, M. Schnürer, C. Kan, M. Lenzner, P. Wobrauschek, and F. Krausz, “Generation of coherent X-rays in the water window using 5-femtosecond laser pulses,” Science 278(5338), 661–664 (1997).
    [Crossref]
  14. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science 298(5592), 399–402 (2002).
    [Crossref]
  15. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 µm,” Opt. Express 19(2), 1441–1448 (2011).
    [Crossref]
  16. M. H. Frosz, P. Roth, M. C. Günendi, and P. S. J. Russell, “Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers,” Photonics Res. 5(2), 88–91 (2017).
    [Crossref]
  17. A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446 (2019).
    [Crossref]
  18. E. A. Stepanov, A. A. Voronin, F. Meng, A. V. Mitrofanov, D. A. Sidorov-Biryukov, M. V. Rozhko, P. B. Glek, Y. Li, A. B. Fedotov, A. Pugžlys, A. Baltuška, B. Liu, S. Gao, Y. Wang, P. Wang, M. Hu, and A. M. Zheltikov, “Multioctave supercontinua from shock-coupled soliton self-compression,” Phys. Rev. A 99(3), 033855 (2019).
    [Crossref]
  19. X. Ding, M. S. Habib, R. Amezcua-Correa, and J. Moses, “Near-octave intense mid-infrared by adiabatic down-conversion in hollow anti-resonant fiber,” Opt. Lett. 44(5), 1084–1087 (2019).
    [Crossref]
  20. M. S. Habib, C. Markos, O. Bang, and M. Bache, “Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers,” Opt. Lett. 42(11), 2232–2235 (2017).
    [Crossref]
  21. J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited],” J. Opt. Soc. Am. B 28(12), A11–A26 (2011).
    [Crossref]
  22. P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
    [Crossref]
  23. C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
    [Crossref]
  24. N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright Spatially Coherent Wavelength-Tunable Deep-UV Laser Source Using an Ar-Filled Photonic Crystal Fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
    [Crossref]
  25. A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, and P. S. J. Russell, “Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber,” Phys. Rev. A 92(3), 033821 (2015).
    [Crossref]
  26. F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. S. J. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2(4), 292–300 (2015).
    [Crossref]
  27. D. Novoa, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Photoionization-induced emission of tunable few-cycle midinfrared dispersive waves in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 115(3), 033901 (2015).
    [Crossref]
  28. J. C. Travers, T. F. Grigorova, C. Brahms, and F. Belli, “High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres,” Nat. Photonics 13(8), 547–554 (2019).
    [Crossref]
  29. F. Köttig, F. Tani, C. Martens Biersach, J. C. Travers, and P. St. J. Russell, “Generation of microjoule pulses in the deep ultraviolet at megahertz repetition rates,” Optica 4(10), 1272–1276 (2017).
    [Crossref]
  30. P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. J. Russell, “Femtosecond Nonlinear Fiber Optics in the Ionization Regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
    [Crossref]
  31. Z. Y. Huang, D. Wang, Y. F. Chen, R. R. Zhao, Y. Zhao, S. Nam, C. Lim, Y. J. Peng, J. Du, and Y. X. Leng, “Wavelength-tunable few-cycle pulses in visible region generated through soliton-plasma interactions,” Opt. Express 26(26), 34977–34993 (2018).
    [Crossref]
  32. Z. Y. Huang, Y. F. Chen, F. Yu, D. Wang, R. R. Zhao, Y. Zhao, S. F. Gao, Y. Y. Wang, P. Wang, M. Pang, and Y. X. Leng, “Continuously wavelength-tunable blueshifting soliton generated in gas-filled photonic crystal fibers,” Opt. Lett. 44(7), 1805–1808 (2019).
    [Crossref]
  33. M. Bache, M. S. Habib, C. Markos, and J. Lægsgaard, “Poor-man’s model of hollow-core anti-resonant fibers,” J. Opt. Soc. Am. B 36(1), 69–80 (2019).
    [Crossref]
  34. M. I. Hasan, N. Akhmediev, and W. Chang, “Empirical formulae for dispersion and effective mode area in hollow-core antiresonant fibers,” J. Lightwave Technol. 36(18), 4060–4065 (2018).
    [Crossref]
  35. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
    [Crossref]
  36. F. Yu, M. Cann, A. Brunton, W. Wadsworth, and J. Knight, “Single-mode solarization-free hollow-core fiber for ultraviolet pulse delivery,” Opt. Express 26(8), 10879–10887 (2018).
    [Crossref]
  37. M. A. Finger, N. Y. Joly, T. Weiss, and P. S. J. Russell, “Accuracy of the capillary approximation for gas-filled kagomé-style photonic crystal fibers,” Opt. Lett. 39(4), 821–824 (2014).
    [Crossref]
  38. F. Tani, F. Köttig, D. Novoa, R. Keding, and P. S. J. Russell, “Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers,” Photonics Res. 6(2), 84–88 (2018).
    [Crossref]
  39. P. Kinsler, “Optical pulse propagation with minimal approximations,” Phys. Rev. A 81(1), 013819 (2010).
    [Crossref]
  40. W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. S. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19(21), 21018–21027 (2011).
    [Crossref]
  41. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
    [Crossref]
  42. A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23(5), 924–934 (1966).
  43. M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64(6), 1191–1194 (1986).
  44. L. Bergé, “Self-compression of 2 µm laser filaments,” Opt. Express 16(26), 21529–21543 (2008).
    [Crossref]
  45. W. Chang, P. Hölzer, J. C. Travers, and P. S. J. Russell, “Combined soliton pulse compression and plasma-related frequency upconversion in gas-filled photonic crystal fiber,” Opt. Lett. 38(16), 2984–2987 (2013).
    [Crossref]

2019 (6)

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446 (2019).
[Crossref]

E. A. Stepanov, A. A. Voronin, F. Meng, A. V. Mitrofanov, D. A. Sidorov-Biryukov, M. V. Rozhko, P. B. Glek, Y. Li, A. B. Fedotov, A. Pugžlys, A. Baltuška, B. Liu, S. Gao, Y. Wang, P. Wang, M. Hu, and A. M. Zheltikov, “Multioctave supercontinua from shock-coupled soliton self-compression,” Phys. Rev. A 99(3), 033855 (2019).
[Crossref]

X. Ding, M. S. Habib, R. Amezcua-Correa, and J. Moses, “Near-octave intense mid-infrared by adiabatic down-conversion in hollow anti-resonant fiber,” Opt. Lett. 44(5), 1084–1087 (2019).
[Crossref]

Z. Y. Huang, Y. F. Chen, F. Yu, D. Wang, R. R. Zhao, Y. Zhao, S. F. Gao, Y. Y. Wang, P. Wang, M. Pang, and Y. X. Leng, “Continuously wavelength-tunable blueshifting soliton generated in gas-filled photonic crystal fibers,” Opt. Lett. 44(7), 1805–1808 (2019).
[Crossref]

M. Bache, M. S. Habib, C. Markos, and J. Lægsgaard, “Poor-man’s model of hollow-core anti-resonant fibers,” J. Opt. Soc. Am. B 36(1), 69–80 (2019).
[Crossref]

J. C. Travers, T. F. Grigorova, C. Brahms, and F. Belli, “High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres,” Nat. Photonics 13(8), 547–554 (2019).
[Crossref]

2018 (5)

F. Yu, M. Cann, A. Brunton, W. Wadsworth, and J. Knight, “Single-mode solarization-free hollow-core fiber for ultraviolet pulse delivery,” Opt. Express 26(8), 10879–10887 (2018).
[Crossref]

M. I. Hasan, N. Akhmediev, and W. Chang, “Empirical formulae for dispersion and effective mode area in hollow-core antiresonant fibers,” J. Lightwave Technol. 36(18), 4060–4065 (2018).
[Crossref]

G. Soboń, T. Martynkien, D. Tomaszewska, K. Tarnowski, P. Mergo, and J. Sotor, “All-in-fiber amplification and compression of coherent frequency-shifted solitons tunable in the 1800-2000nm range,” Photonics Res. 6(5), 368–372 (2018).
[Crossref]

F. Tani, F. Köttig, D. Novoa, R. Keding, and P. S. J. Russell, “Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers,” Photonics Res. 6(2), 84–88 (2018).
[Crossref]

Z. Y. Huang, D. Wang, Y. F. Chen, R. R. Zhao, Y. Zhao, S. Nam, C. Lim, Y. J. Peng, J. Du, and Y. X. Leng, “Wavelength-tunable few-cycle pulses in visible region generated through soliton-plasma interactions,” Opt. Express 26(26), 34977–34993 (2018).
[Crossref]

2017 (5)

M. S. Habib, C. Markos, O. Bang, and M. Bache, “Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers,” Opt. Lett. 42(11), 2232–2235 (2017).
[Crossref]

G. Soboń, T. Martynkien, K. Tarnowski, P. Mergo, and J. Sotor, “Generation of sub-100 fs pulses tunable from 1700 to 2100 nm from a compact frequency-shifted Er-fiber laser,” Photonics Res. 5(3), 151–155 (2017).
[Crossref]

F. Köttig, F. Tani, C. Martens Biersach, J. C. Travers, and P. St. J. Russell, “Generation of microjoule pulses in the deep ultraviolet at megahertz repetition rates,” Optica 4(10), 1272–1276 (2017).
[Crossref]

M. H. Frosz, P. Roth, M. C. Günendi, and P. S. J. Russell, “Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers,” Photonics Res. 5(2), 88–91 (2017).
[Crossref]

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

2016 (1)

2015 (4)

D. J. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Y. Li, and Y. X. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015).
[Crossref]

A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, and P. S. J. Russell, “Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber,” Phys. Rev. A 92(3), 033821 (2015).
[Crossref]

F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. S. J. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2(4), 292–300 (2015).
[Crossref]

D. Novoa, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Photoionization-induced emission of tunable few-cycle midinfrared dispersive waves in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 115(3), 033901 (2015).
[Crossref]

2014 (2)

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

M. A. Finger, N. Y. Joly, T. Weiss, and P. S. J. Russell, “Accuracy of the capillary approximation for gas-filled kagomé-style photonic crystal fibers,” Opt. Lett. 39(4), 821–824 (2014).
[Crossref]

2013 (1)

2011 (6)

2010 (2)

O. A. Sytina, I. H. M. van Stokkum, D. J. Heyes, C. N. Hunter, R. van Grondelle, and M. L. Groot, “Protochlorophyllide Excited-State Dynamics in Organic Solvents Studied by Time-Resolved Visible and Mid-Infrared Spectroscopy,” J. Phys. Chem. B 114(12), 4335–4344 (2010).
[Crossref]

P. Kinsler, “Optical pulse propagation with minimal approximations,” Phys. Rev. A 81(1), 013819 (2010).
[Crossref]

2008 (1)

2007 (1)

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[Crossref]

2004 (1)

A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond Time-Resolved Photoelectron Spectroscopy,” Chem. Rev. 104(4), 1719–1758 (2004).
[Crossref]

2002 (2)

M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419(6909), 803–807 (2002).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science 298(5592), 399–402 (2002).
[Crossref]

2000 (1)

A. H. Zewail, “Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond,” J. Phys. Chem. A 104(24), 5660–5694 (2000).
[Crossref]

1998 (1)

1997 (2)

Z. H. Chang, A. Rundquist, H. W. Wang, M. M. Murnane, and H. C. Kapteyn, “Generation of Coherent Soft X Rays at 2.7 nm Using High Harmonics,” Phys. Rev. Lett. 79(16), 2967–2970 (1997).
[Crossref]

C. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch, M. Schnürer, C. Kan, M. Lenzner, P. Wobrauschek, and F. Krausz, “Generation of coherent X-rays in the water window using 5-femtosecond laser pulses,” Science 278(5338), 661–664 (1997).
[Crossref]

1996 (1)

1986 (1)

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64(6), 1191–1194 (1986).

1966 (1)

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23(5), 924–934 (1966).

1964 (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Abdolvand, A.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. S. J. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2(4), 292–300 (2015).
[Crossref]

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Adamu, A. I.

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446 (2019).
[Crossref]

Akhmediev, N.

Amezcua-Correa, R.

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446 (2019).
[Crossref]

X. Ding, M. S. Habib, R. Amezcua-Correa, and J. Moses, “Near-octave intense mid-infrared by adiabatic down-conversion in hollow anti-resonant fiber,” Opt. Lett. 44(5), 1084–1087 (2019).
[Crossref]

Ammosov, M. V.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64(6), 1191–1194 (1986).

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science 298(5592), 399–402 (2002).
[Crossref]

Bache, M.

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446 (2019).
[Crossref]

M. Bache, M. S. Habib, C. Markos, and J. Lægsgaard, “Poor-man’s model of hollow-core anti-resonant fibers,” J. Opt. Soc. Am. B 36(1), 69–80 (2019).
[Crossref]

M. S. Habib, C. Markos, O. Bang, and M. Bache, “Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers,” Opt. Lett. 42(11), 2232–2235 (2017).
[Crossref]

Backus, S.

Baltuška, A.

E. A. Stepanov, A. A. Voronin, F. Meng, A. V. Mitrofanov, D. A. Sidorov-Biryukov, M. V. Rozhko, P. B. Glek, Y. Li, A. B. Fedotov, A. Pugžlys, A. Baltuška, B. Liu, S. Gao, Y. Wang, P. Wang, M. Hu, and A. M. Zheltikov, “Multioctave supercontinua from shock-coupled soliton self-compression,” Phys. Rev. A 99(3), 033855 (2019).
[Crossref]

Bang, O.

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446 (2019).
[Crossref]

M. S. Habib, C. Markos, O. Bang, and M. Bache, “Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers,” Opt. Lett. 42(11), 2232–2235 (2017).
[Crossref]

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Belli, F.

J. C. Travers, T. F. Grigorova, C. Brahms, and F. Belli, “High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres,” Nat. Photonics 13(8), 547–554 (2019).
[Crossref]

F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. S. J. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2(4), 292–300 (2015).
[Crossref]

Benabid, F.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science 298(5592), 399–402 (2002).
[Crossref]

Bergé, L.

L. Bergé, “Self-compression of 2 µm laser filaments,” Opt. Express 16(26), 21529–21543 (2008).
[Crossref]

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[Crossref]

Biancalana, F.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright Spatially Coherent Wavelength-Tunable Deep-UV Laser Source Using an Ar-Filled Photonic Crystal Fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. J. Russell, “Femtosecond Nonlinear Fiber Optics in the Ionization Regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref]

Biriukov, A. S.

Bradler, M.

Bragg, A. E.

A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond Time-Resolved Photoelectron Spectroscopy,” Chem. Rev. 104(4), 1719–1758 (2004).
[Crossref]

Brahms, C.

J. C. Travers, T. F. Grigorova, C. Brahms, and F. Belli, “High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres,” Nat. Photonics 13(8), 547–554 (2019).
[Crossref]

Brunton, A.

Burnett, N. H.

C. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch, M. Schnürer, C. Kan, M. Lenzner, P. Wobrauschek, and F. Krausz, “Generation of coherent X-rays in the water window using 5-femtosecond laser pulses,” Science 278(5338), 661–664 (1997).
[Crossref]

Cann, M.

Cassataro, M.

D. Novoa, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Photoionization-induced emission of tunable few-cycle midinfrared dispersive waves in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 115(3), 033901 (2015).
[Crossref]

Chang, W.

M. I. Hasan, N. Akhmediev, and W. Chang, “Empirical formulae for dispersion and effective mode area in hollow-core antiresonant fibers,” J. Lightwave Technol. 36(18), 4060–4065 (2018).
[Crossref]

F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. S. J. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2(4), 292–300 (2015).
[Crossref]

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

W. Chang, P. Hölzer, J. C. Travers, and P. S. J. Russell, “Combined soliton pulse compression and plasma-related frequency upconversion in gas-filled photonic crystal fiber,” Opt. Lett. 38(16), 2984–2987 (2013).
[Crossref]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. S. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19(21), 21018–21027 (2011).
[Crossref]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. J. Russell, “Femtosecond Nonlinear Fiber Optics in the Ionization Regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright Spatially Coherent Wavelength-Tunable Deep-UV Laser Source Using an Ar-Filled Photonic Crystal Fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited],” J. Opt. Soc. Am. B 28(12), A11–A26 (2011).
[Crossref]

Chang, Z. H.

Z. H. Chang, A. Rundquist, H. W. Wang, M. M. Murnane, and H. C. Kapteyn, “Generation of Coherent Soft X Rays at 2.7 nm Using High Harmonics,” Phys. Rev. Lett. 79(16), 2967–2970 (1997).
[Crossref]

Charan, K.

Chen, Y. F.

Delone, N. B.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64(6), 1191–1194 (1986).

Dianov, E. M.

Ding, X.

Drescher, M.

M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419(6909), 803–807 (2002).
[Crossref]

Du, J.

Z. Y. Huang, D. Wang, Y. F. Chen, R. R. Zhao, Y. Zhao, S. Nam, C. Lim, Y. J. Peng, J. Du, and Y. X. Leng, “Wavelength-tunable few-cycle pulses in visible region generated through soliton-plasma interactions,” Opt. Express 26(26), 34977–34993 (2018).
[Crossref]

D. J. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Y. Li, and Y. X. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015).
[Crossref]

Eggleton, B. J.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Ermolov, A.

A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, and P. S. J. Russell, “Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber,” Phys. Rev. A 92(3), 033821 (2015).
[Crossref]

Fedotov, A. B.

E. A. Stepanov, A. A. Voronin, F. Meng, A. V. Mitrofanov, D. A. Sidorov-Biryukov, M. V. Rozhko, P. B. Glek, Y. Li, A. B. Fedotov, A. Pugžlys, A. Baltuška, B. Liu, S. Gao, Y. Wang, P. Wang, M. Hu, and A. M. Zheltikov, “Multioctave supercontinua from shock-coupled soliton self-compression,” Phys. Rev. A 99(3), 033855 (2019).
[Crossref]

Finger, M. A.

Frosz, M. H.

M. H. Frosz, P. Roth, M. C. Günendi, and P. S. J. Russell, “Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers,” Photonics Res. 5(2), 88–91 (2017).
[Crossref]

A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, and P. S. J. Russell, “Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber,” Phys. Rev. A 92(3), 033821 (2015).
[Crossref]

Gao, S.

E. A. Stepanov, A. A. Voronin, F. Meng, A. V. Mitrofanov, D. A. Sidorov-Biryukov, M. V. Rozhko, P. B. Glek, Y. Li, A. B. Fedotov, A. Pugžlys, A. Baltuška, B. Liu, S. Gao, Y. Wang, P. Wang, M. Hu, and A. M. Zheltikov, “Multioctave supercontinua from shock-coupled soliton self-compression,” Phys. Rev. A 99(3), 033855 (2019).
[Crossref]

Gao, S. F.

Glek, P. B.

E. A. Stepanov, A. A. Voronin, F. Meng, A. V. Mitrofanov, D. A. Sidorov-Biryukov, M. V. Rozhko, P. B. Glek, Y. Li, A. B. Fedotov, A. Pugžlys, A. Baltuška, B. Liu, S. Gao, Y. Wang, P. Wang, M. Hu, and A. M. Zheltikov, “Multioctave supercontinua from shock-coupled soliton self-compression,” Phys. Rev. A 99(3), 033855 (2019).
[Crossref]

Grigorova, T. F.

J. C. Travers, T. F. Grigorova, C. Brahms, and F. Belli, “High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres,” Nat. Photonics 13(8), 547–554 (2019).
[Crossref]

Groot, M. L.

O. A. Sytina, I. H. M. van Stokkum, D. J. Heyes, C. N. Hunter, R. van Grondelle, and M. L. Groot, “Protochlorophyllide Excited-State Dynamics in Organic Solvents Studied by Time-Resolved Visible and Mid-Infrared Spectroscopy,” J. Phys. Chem. B 114(12), 4335–4344 (2010).
[Crossref]

Günendi, M. C.

M. H. Frosz, P. Roth, M. C. Günendi, and P. S. J. Russell, “Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers,” Photonics Res. 5(2), 88–91 (2017).
[Crossref]

Habib, M. S.

Han, D. J.

D. J. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Y. Li, and Y. X. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015).
[Crossref]

Hasan, M. I.

Heinzmann, U.

M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419(6909), 803–807 (2002).
[Crossref]

Hentschel, M.

M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419(6909), 803–807 (2002).
[Crossref]

Heyes, D. J.

O. A. Sytina, I. H. M. van Stokkum, D. J. Heyes, C. N. Hunter, R. van Grondelle, and M. L. Groot, “Protochlorophyllide Excited-State Dynamics in Organic Solvents Studied by Time-Resolved Visible and Mid-Infrared Spectroscopy,” J. Phys. Chem. B 114(12), 4335–4344 (2010).
[Crossref]

Hölzer, P.

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

W. Chang, P. Hölzer, J. C. Travers, and P. S. J. Russell, “Combined soliton pulse compression and plasma-related frequency upconversion in gas-filled photonic crystal fiber,” Opt. Lett. 38(16), 2984–2987 (2013).
[Crossref]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. S. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19(21), 21018–21027 (2011).
[Crossref]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. J. Russell, “Femtosecond Nonlinear Fiber Optics in the Ionization Regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright Spatially Coherent Wavelength-Tunable Deep-UV Laser Source Using an Ar-Filled Photonic Crystal Fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref]

Homann, C.

Hu, M.

E. A. Stepanov, A. A. Voronin, F. Meng, A. V. Mitrofanov, D. A. Sidorov-Biryukov, M. V. Rozhko, P. B. Glek, Y. Li, A. B. Fedotov, A. Pugžlys, A. Baltuška, B. Liu, S. Gao, Y. Wang, P. Wang, M. Hu, and A. M. Zheltikov, “Multioctave supercontinua from shock-coupled soliton self-compression,” Phys. Rev. A 99(3), 033855 (2019).
[Crossref]

Huang, Z. Y.

Hügel, W.

Hunter, C. N.

O. A. Sytina, I. H. M. van Stokkum, D. J. Heyes, C. N. Hunter, R. van Grondelle, and M. L. Groot, “Protochlorophyllide Excited-State Dynamics in Organic Solvents Studied by Time-Resolved Visible and Mid-Infrared Spectroscopy,” J. Phys. Chem. B 114(12), 4335–4344 (2010).
[Crossref]

Joly, N. Y.

M. A. Finger, N. Y. Joly, T. Weiss, and P. S. J. Russell, “Accuracy of the capillary approximation for gas-filled kagomé-style photonic crystal fibers,” Opt. Lett. 39(4), 821–824 (2014).
[Crossref]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. J. Russell, “Femtosecond Nonlinear Fiber Optics in the Ionization Regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. S. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19(21), 21018–21027 (2011).
[Crossref]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited],” J. Opt. Soc. Am. B 28(12), A11–A26 (2011).
[Crossref]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright Spatially Coherent Wavelength-Tunable Deep-UV Laser Source Using an Ar-Filled Photonic Crystal Fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref]

Kan, C.

C. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch, M. Schnürer, C. Kan, M. Lenzner, P. Wobrauschek, and F. Krausz, “Generation of coherent X-rays in the water window using 5-femtosecond laser pulses,” Science 278(5338), 661–664 (1997).
[Crossref]

Kapteyn, H. C.

Z. H. Chang, A. Rundquist, H. W. Wang, M. M. Murnane, and H. C. Kapteyn, “Generation of Coherent Soft X Rays at 2.7 nm Using High Harmonics,” Phys. Rev. Lett. 79(16), 2967–2970 (1997).
[Crossref]

S. Backus, J. Peatross, Z. Zeek, A. Rundquist, G. Taft, M. M. Murnane, and H. C. Kapteyn, “16-fs, 1-µJ ultraviolet pulses generated by third-harmonic conversion in air,” Opt. Lett. 21(9), 665–667 (1996).
[Crossref]

Kasparian, J.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[Crossref]

Keding, R.

F. Tani, F. Köttig, D. Novoa, R. Keding, and P. S. J. Russell, “Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers,” Photonics Res. 6(2), 84–88 (2018).
[Crossref]

Kienberger, R.

M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419(6909), 803–807 (2002).
[Crossref]

Kinsler, P.

P. Kinsler, “Optical pulse propagation with minimal approximations,” Phys. Rev. A 81(1), 013819 (2010).
[Crossref]

Kleineberg, U.

M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419(6909), 803–807 (2002).
[Crossref]

Knight, J.

Knight, J. C.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science 298(5592), 399–402 (2002).
[Crossref]

Kobayashi, T.

D. J. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Y. Li, and Y. X. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015).
[Crossref]

Koppitsch, R.

C. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch, M. Schnürer, C. Kan, M. Lenzner, P. Wobrauschek, and F. Krausz, “Generation of coherent X-rays in the water window using 5-femtosecond laser pulses,” Science 278(5338), 661–664 (1997).
[Crossref]

Kosolapov, A. F.

Köttig, F.

F. Tani, F. Köttig, D. Novoa, R. Keding, and P. S. J. Russell, “Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers,” Photonics Res. 6(2), 84–88 (2018).
[Crossref]

F. Köttig, F. Tani, C. Martens Biersach, J. C. Travers, and P. St. J. Russell, “Generation of microjoule pulses in the deep ultraviolet at megahertz repetition rates,” Optica 4(10), 1272–1276 (2017).
[Crossref]

Krainov, V. P.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64(6), 1191–1194 (1986).

Krausz, F.

M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419(6909), 803–807 (2002).
[Crossref]

C. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch, M. Schnürer, C. Kan, M. Lenzner, P. Wobrauschek, and F. Krausz, “Generation of coherent X-rays in the water window using 5-femtosecond laser pulses,” Science 278(5338), 661–664 (1997).
[Crossref]

Lægsgaard, J.

Leng, Y. X.

Lenzner, M.

C. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch, M. Schnürer, C. Kan, M. Lenzner, P. Wobrauschek, and F. Krausz, “Generation of coherent X-rays in the water window using 5-femtosecond laser pulses,” Science 278(5338), 661–664 (1997).
[Crossref]

Li, Y.

E. A. Stepanov, A. A. Voronin, F. Meng, A. V. Mitrofanov, D. A. Sidorov-Biryukov, M. V. Rozhko, P. B. Glek, Y. Li, A. B. Fedotov, A. Pugžlys, A. Baltuška, B. Liu, S. Gao, Y. Wang, P. Wang, M. Hu, and A. M. Zheltikov, “Multioctave supercontinua from shock-coupled soliton self-compression,” Phys. Rev. A 99(3), 033855 (2019).
[Crossref]

Li, Y. Y.

D. J. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Y. Li, and Y. X. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015).
[Crossref]

Lim, C.

Liu, B.

E. A. Stepanov, A. A. Voronin, F. Meng, A. V. Mitrofanov, D. A. Sidorov-Biryukov, M. V. Rozhko, P. B. Glek, Y. Li, A. B. Fedotov, A. Pugžlys, A. Baltuška, B. Liu, S. Gao, Y. Wang, P. Wang, M. Hu, and A. M. Zheltikov, “Multioctave supercontinua from shock-coupled soliton self-compression,” Phys. Rev. A 99(3), 033855 (2019).
[Crossref]

Lopez, J. E. A.

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446 (2019).
[Crossref]

Mak, K. F.

A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, and P. S. J. Russell, “Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber,” Phys. Rev. A 92(3), 033821 (2015).
[Crossref]

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Markos, C.

M. Bache, M. S. Habib, C. Markos, and J. Lægsgaard, “Poor-man’s model of hollow-core anti-resonant fibers,” J. Opt. Soc. Am. B 36(1), 69–80 (2019).
[Crossref]

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446 (2019).
[Crossref]

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

M. S. Habib, C. Markos, O. Bang, and M. Bache, “Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers,” Opt. Lett. 42(11), 2232–2235 (2017).
[Crossref]

Martens Biersach, C.

Martynkien, T.

G. Soboń, T. Martynkien, D. Tomaszewska, K. Tarnowski, P. Mergo, and J. Sotor, “All-in-fiber amplification and compression of coherent frequency-shifted solitons tunable in the 1800-2000nm range,” Photonics Res. 6(5), 368–372 (2018).
[Crossref]

G. Soboń, T. Martynkien, K. Tarnowski, P. Mergo, and J. Sotor, “Generation of sub-100 fs pulses tunable from 1700 to 2100 nm from a compact frequency-shifted Er-fiber laser,” Photonics Res. 5(3), 151–155 (2017).
[Crossref]

Meng, F.

E. A. Stepanov, A. A. Voronin, F. Meng, A. V. Mitrofanov, D. A. Sidorov-Biryukov, M. V. Rozhko, P. B. Glek, Y. Li, A. B. Fedotov, A. Pugžlys, A. Baltuška, B. Liu, S. Gao, Y. Wang, P. Wang, M. Hu, and A. M. Zheltikov, “Multioctave supercontinua from shock-coupled soliton self-compression,” Phys. Rev. A 99(3), 033855 (2019).
[Crossref]

Mergo, P.

G. Soboń, T. Martynkien, D. Tomaszewska, K. Tarnowski, P. Mergo, and J. Sotor, “All-in-fiber amplification and compression of coherent frequency-shifted solitons tunable in the 1800-2000nm range,” Photonics Res. 6(5), 368–372 (2018).
[Crossref]

G. Soboń, T. Martynkien, K. Tarnowski, P. Mergo, and J. Sotor, “Generation of sub-100 fs pulses tunable from 1700 to 2100 nm from a compact frequency-shifted Er-fiber laser,” Photonics Res. 5(3), 151–155 (2017).
[Crossref]

Mitrofanov, A. V.

E. A. Stepanov, A. A. Voronin, F. Meng, A. V. Mitrofanov, D. A. Sidorov-Biryukov, M. V. Rozhko, P. B. Glek, Y. Li, A. B. Fedotov, A. Pugžlys, A. Baltuška, B. Liu, S. Gao, Y. Wang, P. Wang, M. Hu, and A. M. Zheltikov, “Multioctave supercontinua from shock-coupled soliton self-compression,” Phys. Rev. A 99(3), 033855 (2019).
[Crossref]

Miyatake, T.

D. J. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Y. Li, and Y. X. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015).
[Crossref]

Moses, J.

Murnane, M. M.

Z. H. Chang, A. Rundquist, H. W. Wang, M. M. Murnane, and H. C. Kapteyn, “Generation of Coherent Soft X Rays at 2.7 nm Using High Harmonics,” Phys. Rev. Lett. 79(16), 2967–2970 (1997).
[Crossref]

S. Backus, J. Peatross, Z. Zeek, A. Rundquist, G. Taft, M. M. Murnane, and H. C. Kapteyn, “16-fs, 1-µJ ultraviolet pulses generated by third-harmonic conversion in air,” Opt. Lett. 21(9), 665–667 (1996).
[Crossref]

Nam, S.

Nazarkin, A.

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. J. Russell, “Femtosecond Nonlinear Fiber Optics in the Ionization Regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. S. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19(21), 21018–21027 (2011).
[Crossref]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright Spatially Coherent Wavelength-Tunable Deep-UV Laser Source Using an Ar-Filled Photonic Crystal Fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref]

Neumark, D. M.

A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond Time-Resolved Photoelectron Spectroscopy,” Chem. Rev. 104(4), 1719–1758 (2004).
[Crossref]

Nold, J.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright Spatially Coherent Wavelength-Tunable Deep-UV Laser Source Using an Ar-Filled Photonic Crystal Fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited],” J. Opt. Soc. Am. B 28(12), A11–A26 (2011).
[Crossref]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. S. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19(21), 21018–21027 (2011).
[Crossref]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. J. Russell, “Femtosecond Nonlinear Fiber Optics in the Ionization Regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref]

Novoa, D.

F. Tani, F. Köttig, D. Novoa, R. Keding, and P. S. J. Russell, “Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers,” Photonics Res. 6(2), 84–88 (2018).
[Crossref]

D. Novoa, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Photoionization-induced emission of tunable few-cycle midinfrared dispersive waves in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 115(3), 033901 (2015).
[Crossref]

Nuter, R.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[Crossref]

Pang, M.

Peatross, J.

Peng, Y. J.

Perelomov, A. M.

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23(5), 924–934 (1966).

Petersen, C. R.

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446 (2019).
[Crossref]

Plotnichenko, V. G.

Popov, V. S.

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23(5), 924–934 (1966).

Pryamikov, A. D.

Pugžlys, A.

E. A. Stepanov, A. A. Voronin, F. Meng, A. V. Mitrofanov, D. A. Sidorov-Biryukov, M. V. Rozhko, P. B. Glek, Y. Li, A. B. Fedotov, A. Pugžlys, A. Baltuška, B. Liu, S. Gao, Y. Wang, P. Wang, M. Hu, and A. M. Zheltikov, “Multioctave supercontinua from shock-coupled soliton self-compression,” Phys. Rev. A 99(3), 033855 (2019).
[Crossref]

Riedle, E.

Roth, P.

M. H. Frosz, P. Roth, M. C. Günendi, and P. S. J. Russell, “Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers,” Photonics Res. 5(2), 88–91 (2017).
[Crossref]

Rozhko, M. V.

E. A. Stepanov, A. A. Voronin, F. Meng, A. V. Mitrofanov, D. A. Sidorov-Biryukov, M. V. Rozhko, P. B. Glek, Y. Li, A. B. Fedotov, A. Pugžlys, A. Baltuška, B. Liu, S. Gao, Y. Wang, P. Wang, M. Hu, and A. M. Zheltikov, “Multioctave supercontinua from shock-coupled soliton self-compression,” Phys. Rev. A 99(3), 033855 (2019).
[Crossref]

Rundquist, A.

Z. H. Chang, A. Rundquist, H. W. Wang, M. M. Murnane, and H. C. Kapteyn, “Generation of Coherent Soft X Rays at 2.7 nm Using High Harmonics,” Phys. Rev. Lett. 79(16), 2967–2970 (1997).
[Crossref]

S. Backus, J. Peatross, Z. Zeek, A. Rundquist, G. Taft, M. M. Murnane, and H. C. Kapteyn, “16-fs, 1-µJ ultraviolet pulses generated by third-harmonic conversion in air,” Opt. Lett. 21(9), 665–667 (1996).
[Crossref]

Russell, P. S. J.

F. Tani, F. Köttig, D. Novoa, R. Keding, and P. S. J. Russell, “Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers,” Photonics Res. 6(2), 84–88 (2018).
[Crossref]

M. H. Frosz, P. Roth, M. C. Günendi, and P. S. J. Russell, “Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers,” Photonics Res. 5(2), 88–91 (2017).
[Crossref]

F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. S. J. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2(4), 292–300 (2015).
[Crossref]

D. Novoa, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Photoionization-induced emission of tunable few-cycle midinfrared dispersive waves in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 115(3), 033901 (2015).
[Crossref]

A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, and P. S. J. Russell, “Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber,” Phys. Rev. A 92(3), 033821 (2015).
[Crossref]

M. A. Finger, N. Y. Joly, T. Weiss, and P. S. J. Russell, “Accuracy of the capillary approximation for gas-filled kagomé-style photonic crystal fibers,” Opt. Lett. 39(4), 821–824 (2014).
[Crossref]

W. Chang, P. Hölzer, J. C. Travers, and P. S. J. Russell, “Combined soliton pulse compression and plasma-related frequency upconversion in gas-filled photonic crystal fiber,” Opt. Lett. 38(16), 2984–2987 (2013).
[Crossref]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. S. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19(21), 21018–21027 (2011).
[Crossref]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright Spatially Coherent Wavelength-Tunable Deep-UV Laser Source Using an Ar-Filled Photonic Crystal Fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. J. Russell, “Femtosecond Nonlinear Fiber Optics in the Ionization Regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science 298(5592), 399–402 (2002).
[Crossref]

Russell, P. St. J.

Saleh, M. F.

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. J. Russell, “Femtosecond Nonlinear Fiber Optics in the Ionization Regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref]

Sartania, S.

C. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch, M. Schnürer, C. Kan, M. Lenzner, P. Wobrauschek, and F. Krausz, “Generation of coherent X-rays in the water window using 5-femtosecond laser pulses,” Science 278(5338), 661–664 (1997).
[Crossref]

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Schnürer, M.

C. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch, M. Schnürer, C. Kan, M. Lenzner, P. Wobrauschek, and F. Krausz, “Generation of coherent X-rays in the water window using 5-femtosecond laser pulses,” Science 278(5338), 661–664 (1997).
[Crossref]

Schülzgen, A.

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446 (2019).
[Crossref]

Scrinzi, A.

M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419(6909), 803–807 (2002).
[Crossref]

Semjonov, S. L.

Sidorov-Biryukov, D. A.

E. A. Stepanov, A. A. Voronin, F. Meng, A. V. Mitrofanov, D. A. Sidorov-Biryukov, M. V. Rozhko, P. B. Glek, Y. Li, A. B. Fedotov, A. Pugžlys, A. Baltuška, B. Liu, S. Gao, Y. Wang, P. Wang, M. Hu, and A. M. Zheltikov, “Multioctave supercontinua from shock-coupled soliton self-compression,” Phys. Rev. A 99(3), 033855 (2019).
[Crossref]

Skupin, S.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[Crossref]

Sobon, G.

G. Soboń, T. Martynkien, D. Tomaszewska, K. Tarnowski, P. Mergo, and J. Sotor, “All-in-fiber amplification and compression of coherent frequency-shifted solitons tunable in the 1800-2000nm range,” Photonics Res. 6(5), 368–372 (2018).
[Crossref]

G. Soboń, T. Martynkien, K. Tarnowski, P. Mergo, and J. Sotor, “Generation of sub-100 fs pulses tunable from 1700 to 2100 nm from a compact frequency-shifted Er-fiber laser,” Photonics Res. 5(3), 151–155 (2017).
[Crossref]

Sotor, J.

G. Soboń, T. Martynkien, D. Tomaszewska, K. Tarnowski, P. Mergo, and J. Sotor, “All-in-fiber amplification and compression of coherent frequency-shifted solitons tunable in the 1800-2000nm range,” Photonics Res. 6(5), 368–372 (2018).
[Crossref]

G. Soboń, T. Martynkien, K. Tarnowski, P. Mergo, and J. Sotor, “Generation of sub-100 fs pulses tunable from 1700 to 2100 nm from a compact frequency-shifted Er-fiber laser,” Photonics Res. 5(3), 151–155 (2017).
[Crossref]

Spielmann, C.

C. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch, M. Schnürer, C. Kan, M. Lenzner, P. Wobrauschek, and F. Krausz, “Generation of coherent X-rays in the water window using 5-femtosecond laser pulses,” Science 278(5338), 661–664 (1997).
[Crossref]

Steinbach, D.

Stepanov, E. A.

E. A. Stepanov, A. A. Voronin, F. Meng, A. V. Mitrofanov, D. A. Sidorov-Biryukov, M. V. Rozhko, P. B. Glek, Y. Li, A. B. Fedotov, A. Pugžlys, A. Baltuška, B. Liu, S. Gao, Y. Wang, P. Wang, M. Hu, and A. M. Zheltikov, “Multioctave supercontinua from shock-coupled soliton self-compression,” Phys. Rev. A 99(3), 033855 (2019).
[Crossref]

Stolow, A.

A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond Time-Resolved Photoelectron Spectroscopy,” Chem. Rev. 104(4), 1719–1758 (2004).
[Crossref]

Sytina, O. A.

O. A. Sytina, I. H. M. van Stokkum, D. J. Heyes, C. N. Hunter, R. van Grondelle, and M. L. Groot, “Protochlorophyllide Excited-State Dynamics in Organic Solvents Studied by Time-Resolved Visible and Mid-Infrared Spectroscopy,” J. Phys. Chem. B 114(12), 4335–4344 (2010).
[Crossref]

Taft, G.

Tamiaki, H.

D. J. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Y. Li, and Y. X. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015).
[Crossref]

Tang, Y. X.

Tani, F.

F. Tani, F. Köttig, D. Novoa, R. Keding, and P. S. J. Russell, “Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers,” Photonics Res. 6(2), 84–88 (2018).
[Crossref]

F. Köttig, F. Tani, C. Martens Biersach, J. C. Travers, and P. St. J. Russell, “Generation of microjoule pulses in the deep ultraviolet at megahertz repetition rates,” Optica 4(10), 1272–1276 (2017).
[Crossref]

Tarnowski, K.

G. Soboń, T. Martynkien, D. Tomaszewska, K. Tarnowski, P. Mergo, and J. Sotor, “All-in-fiber amplification and compression of coherent frequency-shifted solitons tunable in the 1800-2000nm range,” Photonics Res. 6(5), 368–372 (2018).
[Crossref]

G. Soboń, T. Martynkien, K. Tarnowski, P. Mergo, and J. Sotor, “Generation of sub-100 fs pulses tunable from 1700 to 2100 nm from a compact frequency-shifted Er-fiber laser,” Photonics Res. 5(3), 151–155 (2017).
[Crossref]

Terent’ev, M. V.

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23(5), 924–934 (1966).

Tomaszewska, D.

G. Soboń, T. Martynkien, D. Tomaszewska, K. Tarnowski, P. Mergo, and J. Sotor, “All-in-fiber amplification and compression of coherent frequency-shifted solitons tunable in the 1800-2000nm range,” Photonics Res. 6(5), 368–372 (2018).
[Crossref]

Travers, J. C.

J. C. Travers, T. F. Grigorova, C. Brahms, and F. Belli, “High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres,” Nat. Photonics 13(8), 547–554 (2019).
[Crossref]

F. Köttig, F. Tani, C. Martens Biersach, J. C. Travers, and P. St. J. Russell, “Generation of microjoule pulses in the deep ultraviolet at megahertz repetition rates,” Optica 4(10), 1272–1276 (2017).
[Crossref]

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

D. Novoa, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Photoionization-induced emission of tunable few-cycle midinfrared dispersive waves in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 115(3), 033901 (2015).
[Crossref]

F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. S. J. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2(4), 292–300 (2015).
[Crossref]

A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, and P. S. J. Russell, “Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber,” Phys. Rev. A 92(3), 033821 (2015).
[Crossref]

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

W. Chang, P. Hölzer, J. C. Travers, and P. S. J. Russell, “Combined soliton pulse compression and plasma-related frequency upconversion in gas-filled photonic crystal fiber,” Opt. Lett. 38(16), 2984–2987 (2013).
[Crossref]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. S. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19(21), 21018–21027 (2011).
[Crossref]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. J. Russell, “Femtosecond Nonlinear Fiber Optics in the Ionization Regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited],” J. Opt. Soc. Am. B 28(12), A11–A26 (2011).
[Crossref]

Uiberacker, M.

M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419(6909), 803–807 (2002).
[Crossref]

van Grondelle, R.

O. A. Sytina, I. H. M. van Stokkum, D. J. Heyes, C. N. Hunter, R. van Grondelle, and M. L. Groot, “Protochlorophyllide Excited-State Dynamics in Organic Solvents Studied by Time-Resolved Visible and Mid-Infrared Spectroscopy,” J. Phys. Chem. B 114(12), 4335–4344 (2010).
[Crossref]

van Stokkum, I. H. M.

O. A. Sytina, I. H. M. van Stokkum, D. J. Heyes, C. N. Hunter, R. van Grondelle, and M. L. Groot, “Protochlorophyllide Excited-State Dynamics in Organic Solvents Studied by Time-Resolved Visible and Mid-Infrared Spectroscopy,” J. Phys. Chem. B 114(12), 4335–4344 (2010).
[Crossref]

Voronin, A. A.

E. A. Stepanov, A. A. Voronin, F. Meng, A. V. Mitrofanov, D. A. Sidorov-Biryukov, M. V. Rozhko, P. B. Glek, Y. Li, A. B. Fedotov, A. Pugžlys, A. Baltuška, B. Liu, S. Gao, Y. Wang, P. Wang, M. Hu, and A. M. Zheltikov, “Multioctave supercontinua from shock-coupled soliton self-compression,” Phys. Rev. A 99(3), 033855 (2019).
[Crossref]

Wadsworth, W.

Wang, D.

Wang, H. W.

Z. H. Chang, A. Rundquist, H. W. Wang, M. M. Murnane, and H. C. Kapteyn, “Generation of Coherent Soft X Rays at 2.7 nm Using High Harmonics,” Phys. Rev. Lett. 79(16), 2967–2970 (1997).
[Crossref]

Wang, P.

E. A. Stepanov, A. A. Voronin, F. Meng, A. V. Mitrofanov, D. A. Sidorov-Biryukov, M. V. Rozhko, P. B. Glek, Y. Li, A. B. Fedotov, A. Pugžlys, A. Baltuška, B. Liu, S. Gao, Y. Wang, P. Wang, M. Hu, and A. M. Zheltikov, “Multioctave supercontinua from shock-coupled soliton self-compression,” Phys. Rev. A 99(3), 033855 (2019).
[Crossref]

Z. Y. Huang, Y. F. Chen, F. Yu, D. Wang, R. R. Zhao, Y. Zhao, S. F. Gao, Y. Y. Wang, P. Wang, M. Pang, and Y. X. Leng, “Continuously wavelength-tunable blueshifting soliton generated in gas-filled photonic crystal fibers,” Opt. Lett. 44(7), 1805–1808 (2019).
[Crossref]

Wang, T. Y.

Wang, Y.

E. A. Stepanov, A. A. Voronin, F. Meng, A. V. Mitrofanov, D. A. Sidorov-Biryukov, M. V. Rozhko, P. B. Glek, Y. Li, A. B. Fedotov, A. Pugžlys, A. Baltuška, B. Liu, S. Gao, Y. Wang, P. Wang, M. Hu, and A. M. Zheltikov, “Multioctave supercontinua from shock-coupled soliton self-compression,” Phys. Rev. A 99(3), 033855 (2019).
[Crossref]

Wang, Y. Y.

Wegener, M.

Weiss, T.

Westerwalbesloh, T.

M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419(6909), 803–807 (2002).
[Crossref]

Wise, F. W.

Wobrauschek, P.

C. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch, M. Schnürer, C. Kan, M. Lenzner, P. Wobrauschek, and F. Krausz, “Generation of coherent X-rays in the water window using 5-femtosecond laser pulses,” Science 278(5338), 661–664 (1997).
[Crossref]

Wolf, J. P.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[Crossref]

Wong, G. K. L.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright Spatially Coherent Wavelength-Tunable Deep-UV Laser Source Using an Ar-Filled Photonic Crystal Fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref]

Wright, L. G.

Xu, C.

Yakovlev, V.

M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419(6909), 803–807 (2002).
[Crossref]

Yu, F.

Zeek, Z.

Zewail, A. H.

A. H. Zewail, “Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond,” J. Phys. Chem. A 104(24), 5660–5694 (2000).
[Crossref]

Zhao, R. R.

Zhao, Y.

Zheltikov, A. M.

E. A. Stepanov, A. A. Voronin, F. Meng, A. V. Mitrofanov, D. A. Sidorov-Biryukov, M. V. Rozhko, P. B. Glek, Y. Li, A. B. Fedotov, A. Pugžlys, A. Baltuška, B. Liu, S. Gao, Y. Wang, P. Wang, M. Hu, and A. M. Zheltikov, “Multioctave supercontinua from shock-coupled soliton self-compression,” Phys. Rev. A 99(3), 033855 (2019).
[Crossref]

Zhou, B.

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446 (2019).
[Crossref]

Bell Syst. Tech. J. (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Chem. Rev. (1)

A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond Time-Resolved Photoelectron Spectroscopy,” Chem. Rev. 104(4), 1719–1758 (2004).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (3)

J. Phys. Chem. A (1)

A. H. Zewail, “Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond,” J. Phys. Chem. A 104(24), 5660–5694 (2000).
[Crossref]

J. Phys. Chem. B (2)

O. A. Sytina, I. H. M. van Stokkum, D. J. Heyes, C. N. Hunter, R. van Grondelle, and M. L. Groot, “Protochlorophyllide Excited-State Dynamics in Organic Solvents Studied by Time-Resolved Visible and Mid-Infrared Spectroscopy,” J. Phys. Chem. B 114(12), 4335–4344 (2010).
[Crossref]

D. J. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Y. Li, and Y. X. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015).
[Crossref]

Nat. Photonics (2)

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

J. C. Travers, T. F. Grigorova, C. Brahms, and F. Belli, “High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres,” Nat. Photonics 13(8), 547–554 (2019).
[Crossref]

Nature (1)

M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419(6909), 803–807 (2002).
[Crossref]

Opt. Express (5)

Opt. Lett. (7)

Z. Y. Huang, Y. F. Chen, F. Yu, D. Wang, R. R. Zhao, Y. Zhao, S. F. Gao, Y. Y. Wang, P. Wang, M. Pang, and Y. X. Leng, “Continuously wavelength-tunable blueshifting soliton generated in gas-filled photonic crystal fibers,” Opt. Lett. 44(7), 1805–1808 (2019).
[Crossref]

M. A. Finger, N. Y. Joly, T. Weiss, and P. S. J. Russell, “Accuracy of the capillary approximation for gas-filled kagomé-style photonic crystal fibers,” Opt. Lett. 39(4), 821–824 (2014).
[Crossref]

W. Chang, P. Hölzer, J. C. Travers, and P. S. J. Russell, “Combined soliton pulse compression and plasma-related frequency upconversion in gas-filled photonic crystal fiber,” Opt. Lett. 38(16), 2984–2987 (2013).
[Crossref]

M. S. Habib, C. Markos, O. Bang, and M. Bache, “Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers,” Opt. Lett. 42(11), 2232–2235 (2017).
[Crossref]

X. Ding, M. S. Habib, R. Amezcua-Correa, and J. Moses, “Near-octave intense mid-infrared by adiabatic down-conversion in hollow anti-resonant fiber,” Opt. Lett. 44(5), 1084–1087 (2019).
[Crossref]

S. Backus, J. Peatross, Z. Zeek, A. Rundquist, G. Taft, M. M. Murnane, and H. C. Kapteyn, “16-fs, 1-µJ ultraviolet pulses generated by third-harmonic conversion in air,” Opt. Lett. 21(9), 665–667 (1996).
[Crossref]

M. Bradler, C. Homann, and E. Riedle, “Mid-IR femtosecond pulse generation on the microjoule level up to 5 µm at high repetition rates,” Opt. Lett. 36(21), 4212–4214 (2011).
[Crossref]

Optica (3)

Photonics Res. (4)

G. Soboń, T. Martynkien, K. Tarnowski, P. Mergo, and J. Sotor, “Generation of sub-100 fs pulses tunable from 1700 to 2100 nm from a compact frequency-shifted Er-fiber laser,” Photonics Res. 5(3), 151–155 (2017).
[Crossref]

G. Soboń, T. Martynkien, D. Tomaszewska, K. Tarnowski, P. Mergo, and J. Sotor, “All-in-fiber amplification and compression of coherent frequency-shifted solitons tunable in the 1800-2000nm range,” Photonics Res. 6(5), 368–372 (2018).
[Crossref]

F. Tani, F. Köttig, D. Novoa, R. Keding, and P. S. J. Russell, “Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers,” Photonics Res. 6(2), 84–88 (2018).
[Crossref]

M. H. Frosz, P. Roth, M. C. Günendi, and P. S. J. Russell, “Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers,” Photonics Res. 5(2), 88–91 (2017).
[Crossref]

Phys. Rev. A (3)

A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, and P. S. J. Russell, “Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber,” Phys. Rev. A 92(3), 033821 (2015).
[Crossref]

E. A. Stepanov, A. A. Voronin, F. Meng, A. V. Mitrofanov, D. A. Sidorov-Biryukov, M. V. Rozhko, P. B. Glek, Y. Li, A. B. Fedotov, A. Pugžlys, A. Baltuška, B. Liu, S. Gao, Y. Wang, P. Wang, M. Hu, and A. M. Zheltikov, “Multioctave supercontinua from shock-coupled soliton self-compression,” Phys. Rev. A 99(3), 033855 (2019).
[Crossref]

P. Kinsler, “Optical pulse propagation with minimal approximations,” Phys. Rev. A 81(1), 013819 (2010).
[Crossref]

Phys. Rev. Lett. (4)

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright Spatially Coherent Wavelength-Tunable Deep-UV Laser Source Using an Ar-Filled Photonic Crystal Fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref]

D. Novoa, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Photoionization-induced emission of tunable few-cycle midinfrared dispersive waves in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 115(3), 033901 (2015).
[Crossref]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. J. Russell, “Femtosecond Nonlinear Fiber Optics in the Ionization Regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref]

Z. H. Chang, A. Rundquist, H. W. Wang, M. M. Murnane, and H. C. Kapteyn, “Generation of Coherent Soft X Rays at 2.7 nm Using High Harmonics,” Phys. Rev. Lett. 79(16), 2967–2970 (1997).
[Crossref]

Rep. Prog. Phys. (1)

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[Crossref]

Rev. Mod. Phys. (1)

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Sci. Rep. (1)

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446 (2019).
[Crossref]

Science (2)

C. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch, M. Schnürer, C. Kan, M. Lenzner, P. Wobrauschek, and F. Krausz, “Generation of coherent X-rays in the water window using 5-femtosecond laser pulses,” Science 278(5338), 661–664 (1997).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science 298(5592), 399–402 (2002).
[Crossref]

Sov. Phys. JETP (2)

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23(5), 924–934 (1966).

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64(6), 1191–1194 (1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Experimental set-up includes the two stages: (I) Pulse-compression stage and (II) Soliton stage. FSW, fused silica window; HWP, half-wave plate; WGP, wire grid polarizer; MFW, magnesium fluoride (MgF2) window. (b) Scanning electron micrograph of the SR-PCF with 24.6-µm core diameter and 215-nm wall thickness. (c) Measured (red solid line) and simulated (green solid line) fiber losses of the fundamental mode HE11 of the SR-PCF, calculated by the Bouncing-ray model. (d) Simulated dispersion of the SR-PCF filled with 12-bar He gas using the empirical formulae (dark-orange solid line) and the MS capillary model (dark-purple solid line). In both (c) and (d), the light gray bars indicate the resonant spectral regions of the SR-PCF. (e)–(g) Same as in (b)–(d) except for the core diameter of 17 µm and wall thickness of 132 nm. In addition, the simulated dispersion in (g) is calculated at the 13.1-bar He gas.
Fig. 2.
Fig. 2. The normalized spectral intensities (on the linear scale) after propagating a 17-cm-long SR-PCF (24.6-µm core diameter) filled with 12-bar He (a) and 14-bar He (b) at different input energies. In both (a) and (b), the light gray bars point out the first resonant spectral region of the SR-PCF. (c) Same as in (a) and (b), but for 17-µm core diameter and 13.1-bar He gas in the experiment. A–G denote the near-field output beam profiles after 17-cm-long He-filled SR-PCF using the 40-nm FWHM bandpass filters centered at different central wavelengths 700 nm (E), 650 nm (A, C, F), and 600 nm (B, D, G). The filtered normalized spectra in (a)–(c) are both marked as red solid lines.
Fig. 3.
Fig. 3. (a)–(c) Measured spectral widths (FWHM) (blue and green circle lines) and central wavelengths (red and dark-orange square lines) of the blueshifting solitons in Figs. 2(a)–2(c) as a function of input pulse energy. The corresponding soliton order is shown on the upper axis, and the ZDWs in Figs. 2(a)–2(c) are 289 nm, 298 nm, and 251 nm, respectively.
Fig. 4.
Fig. 4. Simulated spectral evolutions after a 17-cm-long SR-PCF filled with He gas, calculated using the MS capillary model (a) and the empirical formulae [(b), (c) and (d)]. In simulations the fiber loss is calculated by the BR model, and the wall thickness is set at 138 nm when the core-cladding resonance is considered. (i) and (ii) indicate the blueshifting soliton and the emission of narrow-band spectral peak, respectively. (a) and (b) The spectral evolutions as a function of the core diameter of the SR-PCF filled with 8-bar He, and the peaks of the blueshifting solitons are both centered at 600 nm through adjusting input pulse energy. (c) The spectral evolutions with respect to gas pressure in the SR-PCF with 20-µm core diameter at the input energy of 5 µJ. (d) The spectral evolutions versus input pulse energy using the 20-µm core diameter and 8-bar He gas. The white circle lines in (a)–(d) indicate the maximum plasma density as the function of input energy or gas pressure.
Fig. 5.
Fig. 5. The normalized spectral intensities (on the linear scale) obtained from Figs. 4(b)–4(d) as the function of core diameter (a), gas pressure (b) and input pulse energy (c).
Fig. 6.
Fig. 6. The spectral widths (FWHM) (left axis) calculated from Figs. 4(b)–4(d) as the function of core diameter (a), gas pressure (b), and input energy (c), respectively. The corresponding soliton order and ZDWs are shown on the right or upper axis of Fig. 6.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

z E ~ ( z , ω ) = i [ β ( ω ) ω / ω v p v p ] E ~ ( z , ω ) α ( ω ) E ~ ( z , ω ) / α ( ω ) E ~ ( z , ω ) 2 2 + i ω 2 P ~ N L ( z , ω ) / i ω 2 P ~ N L ( z , ω ) 2 c 2 ε 0 β ( ω ) 2 c 2 ε 0 β ( ω ) ,
P N L ( z , t ) = ε 0 χ ( 3 ) E ( z , t ) 3 + t ρ ( z , t ) t U i E ( z , t ) d t + e 2 m e t ρ ( z , t ) E ( z , t ) d t d t ,
t ρ = W ( I ) ( ρ n t ρ ) + σ ρ I / σ ρ I U i U i f ( ρ ) ,

Metrics