Abstract

Commercial-off-the-shelf (COTS) devices enabled visible light communication (VLC) for Internet of things (IoT) applications has attracted extensive attentions from both academic and industrial communities, thanks to the pervasive deployments of light emitting diode (LED) lighting infrastructure. However, due to the limitation of frequency response and non-linearity of the commercial illuminating LED light consisting of multiple LED chips, the achievable data rate is far less than that provided by the experimental VLC system with a single LED with specialized devices, e.g., lens. To this end, we propose a power-of-2 arrangement scheme for LED chips to generate spatial summing modulation with low control complexity, and demonstrate its availability in an orthogonal frequency division multiplexing (OFDM) VLC system purely built upon COTS devices. It significantly differs from a conventional OFDM VLC system relying on digital-to-analog converter (DAC) and analog signal chain, which is complex and confined by LED’s non-linearity, thanks to we design a novel digital-to-light converter (DLC) which can output 256 light intensities linearly and be directly controlled by the discrete digital signals generated by the OFDM modulator. An experimental demonstration with employing the QAM-OFDM modulation scheme successfully confirms the effectiveness of the proposed spatial summing VLC system, which can achieve low BERs of below the forward error correct (FEC) threshold of $3.8\times 10^{-3}$ for both QAM8 and QAM16 running transmission frequency of 300 kHz under a communication distance of 0.8 m. It demonstrates the promising potential for delivering a data rate at hundred kbps level with this novel spatial summing based OFDM VLC system, which is sufficient for many IoT applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Demirkol, D. Camps-Mur, J. Paradells, M. Combalia, W. Popoola, and H. Haas, “Powering the internet of things through light communication,” IEEE Commun. Mag. 57(6), 107–113 (2019).
    [Crossref]
  2. J.-Y. Sung, C. Chow, and C.-H. Yeh, “Dimming-discrete-multi-tone (dmt) for simultaneous color control and high speed visible light communication,” Opt. Express 22(7), 7538–7543 (2014).
    [Crossref]
  3. C.-H. Yeh, Y.-L. Liu, and C.-W. Chow, “Real-time thite-light phosphor-LED visible light communication (VLC) with compact Size,” Opt. Express 21(22), 26192–26197 (2013).
    [Crossref]
  4. K. Ying, Z. Yu, R. J. Baxley, H. Qian, G.-K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wireless Commun. 22(2), 36–45 (2015).
    [Crossref]
  5. C. H. Yeh, C. W. Chow, Y. F. Liu, and P. Y. Huang, “Simple digital fir equalizer design for improving the phosphor led modulation bandwidth in visible light communication,” Opt. Quantum Electron. 45(8), 901–905 (2013).
    [Crossref]
  6. C. Hsu, C. Chow, I. Lu, Y. Liu, C. Yeh, and Y. Liu, “High speed imaging $3 \times 3$3×3 mimo phosphor white-light led based visible light communication system,” IEEE Photonics J. 8(6), 1–6 (2016).
    [Crossref]
  7. J.-Y. Sung, C. Chow, and C.-H. Yeh, “Is blue optical filter necessary in high speed phosphor-based white light led visible light communications?” Opt. Express 22(17), 20646–20651 (2014).
    [Crossref]
  8. H. Elgala, R. Mesleh, and H. Haas, “Non-Linearity effects and predistortion in optical OFDM wireless transmission Using LEDs,” Inderscience Int. J. Ultra Wideband Commun. Syst. 1(2), 143–150 (2009).
    [Crossref]
  9. H. Qian, S. Yao, S. Cai, and T. Zhou, “Adaptive postdistortion for nonlinear LEDs in visible light communications,” IEEE Photonics J. 6(4), 1–8 (2014).
    [Crossref]
  10. X. Huang, Z. Wang, J. Shi, Y. Wang, and N. Chi, “1.6 Gbit/s phosphorescent white LED based VLC transmission using A cascaded pre-equalization circuit and A differential outputs PIN receiver,” Opt. Express 23(17), 22034–22042 (2015).
    [Crossref]
  11. J. Du, W. Xu, H. Zhang, and C. Zhao, “Visible light communications using spatial summing pam with led array,” in 2017 IEEE Wireless Communications and Networking Conference (WCNC), (2017), pp. 1–6.
  12. A. Yang, Y. Wu, M. Kavehrad, and G. Ni, “Grouped modulation scheme for led array module in a visible light communication system,” IEEE Wireless Commun. 22(2), 24–28 (2015).
    [Crossref]
  13. Y. Yang, J. Luo, C. Chen, W.-D. Zhong, and L. Chen, “SynLight: synthetic light emission for fast transmission in COTS device-enabled VLC,” in Proc. of the 38th IEEE INFOCOM, (2019), pp. 1–9.
  14. J. F. Li, Z. T. Huang, R. Q. Zhang, F. X. Zeng, M. Jiang, and Y. F. Ji, “Superposed pulse amplitude modulation for visible light communication,” Opt. Express 21(25), 31006–31011 (2013).
    [Crossref]
  15. C. Xi, A. Mirvakili, and V. J. Koomson, “A visible light communication system demonstration based on 16-level pulse amplitude modulation of an led array,” in 2012 Symposium on Photonics and Optoelectronics, (2012), pp. 1–4.
  16. T. Fath, C. Heller, and H. Haas, “Optical wireless transmitter employing discrete power level stepping,” J. Lightwave Technol. 31(11), 1734–1743 (2013).
    [Crossref]
  17. M. S. A. Mossaad, S. Hranilovic, and L. Lampe, “Visible light communications using ofdm and multiple leds,” IEEE Trans. Commun. 63(11), 4304–4313 (2015).
    [Crossref]
  18. A. D. Griffiths, M. S. Islim, J. Herrnsdorf, J. J. D. McKendry, R. Henderson, H. Haas, E. Gu, and M. D. Dawson, “Cmos-integrated gan led array for discrete power level stepping in visible light communications,” Opt. Express 25(8), A338–A345 (2017).
    [Crossref]
  19. C. Chen, W. Zhong, and L. Zhao, “Sparse bayesian rvm regression based channel estimation for im/dd ofdm-vlc systems with reduced training overhead,” in 2017 IEEE International Conference on Communications Workshops (ICC Workshops), (2017), pp. 162–167.
  20. R. Mesleh, H. Elgala, and H. Haas, “Led nonlinearity mitigation techniques in optical wireless ofdm communication systems,” J. Opt. Commun. Netw. 4(11), 865–875 (2012).
    [Crossref]
  21. L. C. Mathias, J. C. M. Filho, and T. Abrao, “Predistortion and pre-equalization for nonlinearities and low-pass effect mitigation in ofdm-vlc systems,” Appl. Opt. 58(19), 5328–5338 (2019).
    [Crossref]
  22. I. Stefan, H. Elgala, and H. Haas, “Study of dimming and led nonlinearity for aco-ofdm based vlc systems,” in 2012 IEEE Wireless Communications and Networking Conference (WCNC), (2012), pp. 990–994.
  23. H. Elgala, R. Mesleh, and H. Haas, “An led model for intensity-modulated optical communication systems,” IEEE Photonics Technol. Lett. 22(11), 835–837 (2010).
    [Crossref]

2019 (2)

I. Demirkol, D. Camps-Mur, J. Paradells, M. Combalia, W. Popoola, and H. Haas, “Powering the internet of things through light communication,” IEEE Commun. Mag. 57(6), 107–113 (2019).
[Crossref]

L. C. Mathias, J. C. M. Filho, and T. Abrao, “Predistortion and pre-equalization for nonlinearities and low-pass effect mitigation in ofdm-vlc systems,” Appl. Opt. 58(19), 5328–5338 (2019).
[Crossref]

2017 (1)

2016 (1)

C. Hsu, C. Chow, I. Lu, Y. Liu, C. Yeh, and Y. Liu, “High speed imaging $3 \times 3$3×3 mimo phosphor white-light led based visible light communication system,” IEEE Photonics J. 8(6), 1–6 (2016).
[Crossref]

2015 (4)

M. S. A. Mossaad, S. Hranilovic, and L. Lampe, “Visible light communications using ofdm and multiple leds,” IEEE Trans. Commun. 63(11), 4304–4313 (2015).
[Crossref]

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G.-K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wireless Commun. 22(2), 36–45 (2015).
[Crossref]

X. Huang, Z. Wang, J. Shi, Y. Wang, and N. Chi, “1.6 Gbit/s phosphorescent white LED based VLC transmission using A cascaded pre-equalization circuit and A differential outputs PIN receiver,” Opt. Express 23(17), 22034–22042 (2015).
[Crossref]

A. Yang, Y. Wu, M. Kavehrad, and G. Ni, “Grouped modulation scheme for led array module in a visible light communication system,” IEEE Wireless Commun. 22(2), 24–28 (2015).
[Crossref]

2014 (3)

2013 (4)

2012 (1)

2010 (1)

H. Elgala, R. Mesleh, and H. Haas, “An led model for intensity-modulated optical communication systems,” IEEE Photonics Technol. Lett. 22(11), 835–837 (2010).
[Crossref]

2009 (1)

H. Elgala, R. Mesleh, and H. Haas, “Non-Linearity effects and predistortion in optical OFDM wireless transmission Using LEDs,” Inderscience Int. J. Ultra Wideband Commun. Syst. 1(2), 143–150 (2009).
[Crossref]

Abrao, T.

Baxley, R. J.

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G.-K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wireless Commun. 22(2), 36–45 (2015).
[Crossref]

Cai, S.

H. Qian, S. Yao, S. Cai, and T. Zhou, “Adaptive postdistortion for nonlinear LEDs in visible light communications,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Camps-Mur, D.

I. Demirkol, D. Camps-Mur, J. Paradells, M. Combalia, W. Popoola, and H. Haas, “Powering the internet of things through light communication,” IEEE Commun. Mag. 57(6), 107–113 (2019).
[Crossref]

Chang, G.-K.

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G.-K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wireless Commun. 22(2), 36–45 (2015).
[Crossref]

Chen, C.

Y. Yang, J. Luo, C. Chen, W.-D. Zhong, and L. Chen, “SynLight: synthetic light emission for fast transmission in COTS device-enabled VLC,” in Proc. of the 38th IEEE INFOCOM, (2019), pp. 1–9.

C. Chen, W. Zhong, and L. Zhao, “Sparse bayesian rvm regression based channel estimation for im/dd ofdm-vlc systems with reduced training overhead,” in 2017 IEEE International Conference on Communications Workshops (ICC Workshops), (2017), pp. 162–167.

Chen, L.

Y. Yang, J. Luo, C. Chen, W.-D. Zhong, and L. Chen, “SynLight: synthetic light emission for fast transmission in COTS device-enabled VLC,” in Proc. of the 38th IEEE INFOCOM, (2019), pp. 1–9.

Chi, N.

Chow, C.

Chow, C. W.

C. H. Yeh, C. W. Chow, Y. F. Liu, and P. Y. Huang, “Simple digital fir equalizer design for improving the phosphor led modulation bandwidth in visible light communication,” Opt. Quantum Electron. 45(8), 901–905 (2013).
[Crossref]

Chow, C.-W.

Combalia, M.

I. Demirkol, D. Camps-Mur, J. Paradells, M. Combalia, W. Popoola, and H. Haas, “Powering the internet of things through light communication,” IEEE Commun. Mag. 57(6), 107–113 (2019).
[Crossref]

Dawson, M. D.

Demirkol, I.

I. Demirkol, D. Camps-Mur, J. Paradells, M. Combalia, W. Popoola, and H. Haas, “Powering the internet of things through light communication,” IEEE Commun. Mag. 57(6), 107–113 (2019).
[Crossref]

Du, J.

J. Du, W. Xu, H. Zhang, and C. Zhao, “Visible light communications using spatial summing pam with led array,” in 2017 IEEE Wireless Communications and Networking Conference (WCNC), (2017), pp. 1–6.

Elgala, H.

R. Mesleh, H. Elgala, and H. Haas, “Led nonlinearity mitigation techniques in optical wireless ofdm communication systems,” J. Opt. Commun. Netw. 4(11), 865–875 (2012).
[Crossref]

H. Elgala, R. Mesleh, and H. Haas, “An led model for intensity-modulated optical communication systems,” IEEE Photonics Technol. Lett. 22(11), 835–837 (2010).
[Crossref]

H. Elgala, R. Mesleh, and H. Haas, “Non-Linearity effects and predistortion in optical OFDM wireless transmission Using LEDs,” Inderscience Int. J. Ultra Wideband Commun. Syst. 1(2), 143–150 (2009).
[Crossref]

I. Stefan, H. Elgala, and H. Haas, “Study of dimming and led nonlinearity for aco-ofdm based vlc systems,” in 2012 IEEE Wireless Communications and Networking Conference (WCNC), (2012), pp. 990–994.

Fath, T.

Filho, J. C. M.

Griffiths, A. D.

Gu, E.

Haas, H.

I. Demirkol, D. Camps-Mur, J. Paradells, M. Combalia, W. Popoola, and H. Haas, “Powering the internet of things through light communication,” IEEE Commun. Mag. 57(6), 107–113 (2019).
[Crossref]

A. D. Griffiths, M. S. Islim, J. Herrnsdorf, J. J. D. McKendry, R. Henderson, H. Haas, E. Gu, and M. D. Dawson, “Cmos-integrated gan led array for discrete power level stepping in visible light communications,” Opt. Express 25(8), A338–A345 (2017).
[Crossref]

T. Fath, C. Heller, and H. Haas, “Optical wireless transmitter employing discrete power level stepping,” J. Lightwave Technol. 31(11), 1734–1743 (2013).
[Crossref]

R. Mesleh, H. Elgala, and H. Haas, “Led nonlinearity mitigation techniques in optical wireless ofdm communication systems,” J. Opt. Commun. Netw. 4(11), 865–875 (2012).
[Crossref]

H. Elgala, R. Mesleh, and H. Haas, “An led model for intensity-modulated optical communication systems,” IEEE Photonics Technol. Lett. 22(11), 835–837 (2010).
[Crossref]

H. Elgala, R. Mesleh, and H. Haas, “Non-Linearity effects and predistortion in optical OFDM wireless transmission Using LEDs,” Inderscience Int. J. Ultra Wideband Commun. Syst. 1(2), 143–150 (2009).
[Crossref]

I. Stefan, H. Elgala, and H. Haas, “Study of dimming and led nonlinearity for aco-ofdm based vlc systems,” in 2012 IEEE Wireless Communications and Networking Conference (WCNC), (2012), pp. 990–994.

Heller, C.

Henderson, R.

Herrnsdorf, J.

Hranilovic, S.

M. S. A. Mossaad, S. Hranilovic, and L. Lampe, “Visible light communications using ofdm and multiple leds,” IEEE Trans. Commun. 63(11), 4304–4313 (2015).
[Crossref]

Hsu, C.

C. Hsu, C. Chow, I. Lu, Y. Liu, C. Yeh, and Y. Liu, “High speed imaging $3 \times 3$3×3 mimo phosphor white-light led based visible light communication system,” IEEE Photonics J. 8(6), 1–6 (2016).
[Crossref]

Huang, P. Y.

C. H. Yeh, C. W. Chow, Y. F. Liu, and P. Y. Huang, “Simple digital fir equalizer design for improving the phosphor led modulation bandwidth in visible light communication,” Opt. Quantum Electron. 45(8), 901–905 (2013).
[Crossref]

Huang, X.

Huang, Z. T.

Islim, M. S.

Ji, Y. F.

Jiang, M.

Kavehrad, M.

A. Yang, Y. Wu, M. Kavehrad, and G. Ni, “Grouped modulation scheme for led array module in a visible light communication system,” IEEE Wireless Commun. 22(2), 24–28 (2015).
[Crossref]

Koomson, V. J.

C. Xi, A. Mirvakili, and V. J. Koomson, “A visible light communication system demonstration based on 16-level pulse amplitude modulation of an led array,” in 2012 Symposium on Photonics and Optoelectronics, (2012), pp. 1–4.

Lampe, L.

M. S. A. Mossaad, S. Hranilovic, and L. Lampe, “Visible light communications using ofdm and multiple leds,” IEEE Trans. Commun. 63(11), 4304–4313 (2015).
[Crossref]

Li, J. F.

Liu, Y.

C. Hsu, C. Chow, I. Lu, Y. Liu, C. Yeh, and Y. Liu, “High speed imaging $3 \times 3$3×3 mimo phosphor white-light led based visible light communication system,” IEEE Photonics J. 8(6), 1–6 (2016).
[Crossref]

C. Hsu, C. Chow, I. Lu, Y. Liu, C. Yeh, and Y. Liu, “High speed imaging $3 \times 3$3×3 mimo phosphor white-light led based visible light communication system,” IEEE Photonics J. 8(6), 1–6 (2016).
[Crossref]

Liu, Y. F.

C. H. Yeh, C. W. Chow, Y. F. Liu, and P. Y. Huang, “Simple digital fir equalizer design for improving the phosphor led modulation bandwidth in visible light communication,” Opt. Quantum Electron. 45(8), 901–905 (2013).
[Crossref]

Liu, Y.-L.

Lu, I.

C. Hsu, C. Chow, I. Lu, Y. Liu, C. Yeh, and Y. Liu, “High speed imaging $3 \times 3$3×3 mimo phosphor white-light led based visible light communication system,” IEEE Photonics J. 8(6), 1–6 (2016).
[Crossref]

Luo, J.

Y. Yang, J. Luo, C. Chen, W.-D. Zhong, and L. Chen, “SynLight: synthetic light emission for fast transmission in COTS device-enabled VLC,” in Proc. of the 38th IEEE INFOCOM, (2019), pp. 1–9.

Mathias, L. C.

McKendry, J. J. D.

Mesleh, R.

R. Mesleh, H. Elgala, and H. Haas, “Led nonlinearity mitigation techniques in optical wireless ofdm communication systems,” J. Opt. Commun. Netw. 4(11), 865–875 (2012).
[Crossref]

H. Elgala, R. Mesleh, and H. Haas, “An led model for intensity-modulated optical communication systems,” IEEE Photonics Technol. Lett. 22(11), 835–837 (2010).
[Crossref]

H. Elgala, R. Mesleh, and H. Haas, “Non-Linearity effects and predistortion in optical OFDM wireless transmission Using LEDs,” Inderscience Int. J. Ultra Wideband Commun. Syst. 1(2), 143–150 (2009).
[Crossref]

Mirvakili, A.

C. Xi, A. Mirvakili, and V. J. Koomson, “A visible light communication system demonstration based on 16-level pulse amplitude modulation of an led array,” in 2012 Symposium on Photonics and Optoelectronics, (2012), pp. 1–4.

Mossaad, M. S. A.

M. S. A. Mossaad, S. Hranilovic, and L. Lampe, “Visible light communications using ofdm and multiple leds,” IEEE Trans. Commun. 63(11), 4304–4313 (2015).
[Crossref]

Ni, G.

A. Yang, Y. Wu, M. Kavehrad, and G. Ni, “Grouped modulation scheme for led array module in a visible light communication system,” IEEE Wireless Commun. 22(2), 24–28 (2015).
[Crossref]

Paradells, J.

I. Demirkol, D. Camps-Mur, J. Paradells, M. Combalia, W. Popoola, and H. Haas, “Powering the internet of things through light communication,” IEEE Commun. Mag. 57(6), 107–113 (2019).
[Crossref]

Popoola, W.

I. Demirkol, D. Camps-Mur, J. Paradells, M. Combalia, W. Popoola, and H. Haas, “Powering the internet of things through light communication,” IEEE Commun. Mag. 57(6), 107–113 (2019).
[Crossref]

Qian, H.

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G.-K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wireless Commun. 22(2), 36–45 (2015).
[Crossref]

H. Qian, S. Yao, S. Cai, and T. Zhou, “Adaptive postdistortion for nonlinear LEDs in visible light communications,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Shi, J.

Stefan, I.

I. Stefan, H. Elgala, and H. Haas, “Study of dimming and led nonlinearity for aco-ofdm based vlc systems,” in 2012 IEEE Wireless Communications and Networking Conference (WCNC), (2012), pp. 990–994.

Sung, J.-Y.

Wang, Y.

Wang, Z.

Wu, Y.

A. Yang, Y. Wu, M. Kavehrad, and G. Ni, “Grouped modulation scheme for led array module in a visible light communication system,” IEEE Wireless Commun. 22(2), 24–28 (2015).
[Crossref]

Xi, C.

C. Xi, A. Mirvakili, and V. J. Koomson, “A visible light communication system demonstration based on 16-level pulse amplitude modulation of an led array,” in 2012 Symposium on Photonics and Optoelectronics, (2012), pp. 1–4.

Xu, W.

J. Du, W. Xu, H. Zhang, and C. Zhao, “Visible light communications using spatial summing pam with led array,” in 2017 IEEE Wireless Communications and Networking Conference (WCNC), (2017), pp. 1–6.

Yang, A.

A. Yang, Y. Wu, M. Kavehrad, and G. Ni, “Grouped modulation scheme for led array module in a visible light communication system,” IEEE Wireless Commun. 22(2), 24–28 (2015).
[Crossref]

Yang, Y.

Y. Yang, J. Luo, C. Chen, W.-D. Zhong, and L. Chen, “SynLight: synthetic light emission for fast transmission in COTS device-enabled VLC,” in Proc. of the 38th IEEE INFOCOM, (2019), pp. 1–9.

Yao, S.

H. Qian, S. Yao, S. Cai, and T. Zhou, “Adaptive postdistortion for nonlinear LEDs in visible light communications,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Yeh, C.

C. Hsu, C. Chow, I. Lu, Y. Liu, C. Yeh, and Y. Liu, “High speed imaging $3 \times 3$3×3 mimo phosphor white-light led based visible light communication system,” IEEE Photonics J. 8(6), 1–6 (2016).
[Crossref]

Yeh, C. H.

C. H. Yeh, C. W. Chow, Y. F. Liu, and P. Y. Huang, “Simple digital fir equalizer design for improving the phosphor led modulation bandwidth in visible light communication,” Opt. Quantum Electron. 45(8), 901–905 (2013).
[Crossref]

Yeh, C.-H.

Ying, K.

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G.-K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wireless Commun. 22(2), 36–45 (2015).
[Crossref]

Yu, Z.

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G.-K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wireless Commun. 22(2), 36–45 (2015).
[Crossref]

Zeng, F. X.

Zhang, H.

J. Du, W. Xu, H. Zhang, and C. Zhao, “Visible light communications using spatial summing pam with led array,” in 2017 IEEE Wireless Communications and Networking Conference (WCNC), (2017), pp. 1–6.

Zhang, R. Q.

Zhao, C.

J. Du, W. Xu, H. Zhang, and C. Zhao, “Visible light communications using spatial summing pam with led array,” in 2017 IEEE Wireless Communications and Networking Conference (WCNC), (2017), pp. 1–6.

Zhao, L.

C. Chen, W. Zhong, and L. Zhao, “Sparse bayesian rvm regression based channel estimation for im/dd ofdm-vlc systems with reduced training overhead,” in 2017 IEEE International Conference on Communications Workshops (ICC Workshops), (2017), pp. 162–167.

Zhong, W.

C. Chen, W. Zhong, and L. Zhao, “Sparse bayesian rvm regression based channel estimation for im/dd ofdm-vlc systems with reduced training overhead,” in 2017 IEEE International Conference on Communications Workshops (ICC Workshops), (2017), pp. 162–167.

Zhong, W.-D.

Y. Yang, J. Luo, C. Chen, W.-D. Zhong, and L. Chen, “SynLight: synthetic light emission for fast transmission in COTS device-enabled VLC,” in Proc. of the 38th IEEE INFOCOM, (2019), pp. 1–9.

Zhou, G. T.

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G.-K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wireless Commun. 22(2), 36–45 (2015).
[Crossref]

Zhou, T.

H. Qian, S. Yao, S. Cai, and T. Zhou, “Adaptive postdistortion for nonlinear LEDs in visible light communications,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Appl. Opt. (1)

IEEE Commun. Mag. (1)

I. Demirkol, D. Camps-Mur, J. Paradells, M. Combalia, W. Popoola, and H. Haas, “Powering the internet of things through light communication,” IEEE Commun. Mag. 57(6), 107–113 (2019).
[Crossref]

IEEE Photonics J. (2)

H. Qian, S. Yao, S. Cai, and T. Zhou, “Adaptive postdistortion for nonlinear LEDs in visible light communications,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

C. Hsu, C. Chow, I. Lu, Y. Liu, C. Yeh, and Y. Liu, “High speed imaging $3 \times 3$3×3 mimo phosphor white-light led based visible light communication system,” IEEE Photonics J. 8(6), 1–6 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. Elgala, R. Mesleh, and H. Haas, “An led model for intensity-modulated optical communication systems,” IEEE Photonics Technol. Lett. 22(11), 835–837 (2010).
[Crossref]

IEEE Trans. Commun. (1)

M. S. A. Mossaad, S. Hranilovic, and L. Lampe, “Visible light communications using ofdm and multiple leds,” IEEE Trans. Commun. 63(11), 4304–4313 (2015).
[Crossref]

IEEE Wireless Commun. (2)

A. Yang, Y. Wu, M. Kavehrad, and G. Ni, “Grouped modulation scheme for led array module in a visible light communication system,” IEEE Wireless Commun. 22(2), 24–28 (2015).
[Crossref]

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G.-K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wireless Commun. 22(2), 36–45 (2015).
[Crossref]

Inderscience Int. J. Ultra Wideband Commun. Syst. (1)

H. Elgala, R. Mesleh, and H. Haas, “Non-Linearity effects and predistortion in optical OFDM wireless transmission Using LEDs,” Inderscience Int. J. Ultra Wideband Commun. Syst. 1(2), 143–150 (2009).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Commun. Netw. (1)

Opt. Express (6)

Opt. Quantum Electron. (1)

C. H. Yeh, C. W. Chow, Y. F. Liu, and P. Y. Huang, “Simple digital fir equalizer design for improving the phosphor led modulation bandwidth in visible light communication,” Opt. Quantum Electron. 45(8), 901–905 (2013).
[Crossref]

Other (5)

Y. Yang, J. Luo, C. Chen, W.-D. Zhong, and L. Chen, “SynLight: synthetic light emission for fast transmission in COTS device-enabled VLC,” in Proc. of the 38th IEEE INFOCOM, (2019), pp. 1–9.

C. Xi, A. Mirvakili, and V. J. Koomson, “A visible light communication system demonstration based on 16-level pulse amplitude modulation of an led array,” in 2012 Symposium on Photonics and Optoelectronics, (2012), pp. 1–4.

J. Du, W. Xu, H. Zhang, and C. Zhao, “Visible light communications using spatial summing pam with led array,” in 2017 IEEE Wireless Communications and Networking Conference (WCNC), (2017), pp. 1–6.

C. Chen, W. Zhong, and L. Zhao, “Sparse bayesian rvm regression based channel estimation for im/dd ofdm-vlc systems with reduced training overhead,” in 2017 IEEE International Conference on Communications Workshops (ICC Workshops), (2017), pp. 162–167.

I. Stefan, H. Elgala, and H. Haas, “Study of dimming and led nonlinearity for aco-ofdm based vlc systems,” in 2012 IEEE Wireless Communications and Networking Conference (WCNC), (2012), pp. 990–994.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. System block diagrams of two different VLC transmitters.
Fig. 2.
Fig. 2. Experimental testbed with the novel LED transmitter.
Fig. 3.
Fig. 3. The frequency response and output linearity of the proposed transmitter.
Fig. 4.
Fig. 4. Measured BER under different transmission frequency and quantization resolutions.
Fig. 5.
Fig. 5. Performance comparison under different quantization resolutions.
Fig. 6.
Fig. 6. Measured BER versus various communication distance.

Tables (1)

Tables Icon

Table 1. Summary of spatial summing based VLC systems.