Abstract

Efficient nonlinear phenomena in integrated waveguides imply the realization in a nonlinear material of tightly confining waveguides sustaining guided modes with a small effective area with ultra-low propagation losses as well as high-power damage thresholds. However, when the waveguide cross-sectional dimensions keep shrinking, propagation losses and the probability of failure events tend to increase dramatically. In this work, we report both the fabrication and testing of high-confinement, ultralow-loss silicon nitride waveguides and resonators showing average attenuation coefficients as low as ∼3 dB/m across the S-, C-, and L bands for 1.6-µm-width × 800-nm-height dimensions, with intrinsic quality factors approaching ∼107 in the C band. The present technology results in very high cross-wafer device performance uniformities, low thermal susceptibility, and high power damage thresholds. In particular, we developed here an optimized fully subtractive process introducing a novel chemical-physical multistep annealing and encapsulation fabrication method, resulting in high quality Si3N4-based photonic integrated circuits for energy-efficient nonlinear photonics and quantum optics.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of a high-Q factor ring resonator using LSCVD deposited Si3N4 film

Xiaoyang Cheng, Jianxun Hong, Andrew M. Spring, and Shiyoshi Yokoyama
Opt. Mater. Express 7(7) 2182-2187 (2017)

Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators

Martin H. P. Pfeiffer, Clemens Herkommer, Junqiu Liu, Hairun Guo, Maxim Karpov, Erwan Lucas, Michael Zervas, and Tobias J. Kippenberg
Optica 4(7) 684-691 (2017)

High confinement, high yield Si3N4 waveguides for nonlinear optical applications

Jörn P. Epping, Marcel Hoekman, Richard Mateman, Arne Leinse, René G. Heideman, Albert van Rees, Peter J.M. van der Slot, Chris J. Lee, and Klaus-J. Boller
Opt. Express 23(2) 642-648 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
    [Crossref]
  2. S. Ramelow, A. Farsi, Z. Vernon, S. Clemmen, X. Ji, J. E. Sipe, M. Liscidini, M. Lipson, and A. L. Gaeta, “Strong nonlinear coupling in a Si3N4 ring resonator,” Phys. Rev. Lett. 122(15), 153906 (2019).
    [Crossref]
  3. F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. 9, 14013 (2014).
    [Crossref]
  4. M. Belt, J. Bovington, R. Moreira, J. F. Bauters, M. J. Heck, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Sidewall gratings in ultra-low-loss Si3N4 planar waveguides,” Opt. Express 21(1), 1181 (2013).
    [Crossref]
  5. T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
    [Crossref]
  6. P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, and R. Rosenberger, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
    [Crossref]
  7. W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 7957 (2015).
    [Crossref]
  8. D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. luestone, and N. Volet, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
    [Crossref]
  9. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
    [Crossref]
  10. N. G. Pavlov, S. Koptyaev, G. V. Lihachev, A. S. Voloshin, A. S. Gorodnitskiy, M. V. Ryabko, S. V. Polonsky, and M. L. Gorodetsky, “Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes,” Nat. Photonics 12(11), 694–698 (2018).
    [Crossref]
  11. M. J. Weber, D. Milam, and W. L. Smith, “Nonlinear refractive index of glasses and crystals,” Opt. Eng. 17(5), 463 (1978).
    [Crossref]
  12. X. Ji, A. B. Felippe, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4(6), 619 (2017).
    [Crossref]
  13. Y. Xuan, Y. Liu, L. T. Varghese, A. J. Metcalf, X. Xue, P. H. Wang, K. Han, J. A. Jaramillo-Villegas, A. Al Noman, C. Wang, and S. Kim, “High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation,” Optica 3(11), 1171 (2016).
    [Crossref]
  14. D. T. Spencer, J. F. Bauters, M. J. R. Heck, and J. E. Bowers, “Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime,” Optica 1(3), 153 (2014).
    [Crossref]
  15. T. Herr, V. Brasch, J. Jost, I. Mirgorodskiy, G. Lihachev, M. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113(12), 123901 (2014).
    [Crossref]
  16. M. H. P. Pfeiffer, J. Liu, A. S. Raja, T. Morais, B. Ghadiani, and T. J. Kippenberg, “Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins,” Optica 5(7), 884 (2018).
    [Crossref]
  17. M. H. P. Pfeiffer, J. Liu, M. Geiselmann, and T. J. Kippenberg, “Coupling ideality of integrated planar high-Q microresonators,” Phys. Rev. Appl. 7(2), 024026 (2017).
    [Crossref]
  18. M. H. P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Photonic Damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(6), C4 (2018).
    [Crossref]
  19. H. El Dirani, M. Casale, S. Kerdiles, C. Socquet-Clerc, X. Letartre, C. Monat, and C. Sciancalepore, “Crack-free silicon-nitride-on-insulator nonlinear circuits for continuum generation in the C-band,” IEEE Photonics Technol. Lett. 30(4), 355–358 (2018).
    [Crossref]
  20. H. El Dirani, A. Kamel, M. Casale, S. Kerdiles, C. Monat, X. Letartre, M. Pu, L. K. Oxenløwe, K. Yvind, and C. Sciancalepore, “Annealing-free Si3N4 frequency combs for monolithic integration with Si photonics,” Appl. Phys. Lett. 113(8), 081102 (2018).
    [Crossref]
  21. L. Azarnouche, E. Pargon, K. Menguelti, M. Fouchier, O. Joubert, P. Gouraud, and C. Verove, “Benefits of plasma treatments on critical dimension control and line width roughness transfer during gate patterning,” J. Vac. Sci. Technol., B 31(1), 012205 (2013).
    [Crossref]
  22. D. Beery, K. Reinhardt, P. B. Smith, J. Kelley, and A. Sivasothy, “Post etch residue removal: novel dry clean technology using densified fluid cleaning (DFC),” in IEEE International Interconnect Technology Conference (Cat. No. 99EX247) (1999), pp. 140–142.
  23. M. Schaepkens, T. E. F. M. Standaert, N. R. Rueger, P. G. M. Sebel, G. S. Oehrlein, and J. M. Cook, “Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2-to-Si mechanism,” J. Vac. Sci. Technol., A 17(1), 26–37 (1999).
    [Crossref]
  24. J. H. Ye and M. S. Zhou, “Carbon-rich plasma induced damage in silicon nitride etch,” J. Electrochem. Soc. 147(3), 1168–1174 (2000).
    [Crossref]
  25. G. Kissinger, D. Kot, I. Costina, and M. Lisker, “On the impact of strained PECVD nitride layers on oxide precipitate nucleation in silicon,” ECS J. Solid State Sci. Technol. 8(9), N125–N133 (2019).
    [Crossref]
  26. F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
    [Crossref]
  27. M. Fouchier, E. Pargon, and B. Bardet, “An atomic force microscopy-based method for line edge roughness measurement,” J. Appl. Phys. 113(10), 104903 (2013).
    [Crossref]
  28. L. Azarnouche, “Challenges in reducing the roughness of 193 nm photoresist patterns,” PhD thesis from University of Grenoble (2012).
  29. J. Z. Xie, “Stability of hydrogen in silicon nitride films deposited by low-pressure and plasma enhanced chemical vapor deposition techniques,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 7(2), 150 (1989).
    [Crossref]
  30. C. Bellegarde, E. Pargon, C. Sciancalepore, C. Petit-Etienne, V. Hughes, D. Robin-Brosse, J.-M. Hartmann, and P. Lyan, “Improvement of sidewall roughness of sub-micron SOI waveguides by hydrogen plasma and annealing,” IEEE Photonics Technol. Lett. 30(7), 591–594 (2018).
    [Crossref]
  31. B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Fully integrated ultra-low power Kerr comb generation,” Nature 562(7727), 401–405 (2018).
    [Crossref]
  32. A. Matsko, A. Savchenkov, D. Strekalov, V. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion,” Phys. Rev. A 71(3), 033804 (2005).
    [Crossref]
  33. S. A. Raja, A. Voloshin, H. Guo, S. Agafonova, J. Liu, A. S. Gorodnitskiy, M. Karpov, N. G. Pavlov, E. Lucas, R. R. Galiev, A. E. Shitikov, J. D. Jost, M. L. Gorodetsky, and T. J. Kippenberg, “Electrically pumped photonic integrated soliton microcomb,” Nat. Commun. 10(1), 680 (2019).
    [Crossref]
  34. A. L. Gaeta, M. Lipson, and T. J. Kippenberg, “Photonic-chip-based frequency combs,” Nat. Photonics 13(3), 158–169 (2019).
    [Crossref]
  35. S. Boust, H. El Dirani, F. Duport, L. Youssef, S. Kerdiles, Y. Robert, C. Petit-Etienne, M. Faugeron, E. Vinet, M. Viallet, E. Pargon, C. Sciancalepore, and F. Van Dijk, “Compact optical frequency comb source based on a DFB butt-coupled to a silicon nitride microring,” IEEE Microwave Photonics Conference, (2019).
  36. J. Liu, A. S. Raja, M. Karpov, B. Ghadiani, M. H. P. Pfeiffer, B. Du, N. J. Engelsen, H. Guo, Mi. Zervas, and T. J. Kippenberg, “Ultralow-power chip-based soliton microcombs for photonic integration,” Optica 5(10), 1347–1353 (2018).
    [Crossref]

2019 (4)

S. Ramelow, A. Farsi, Z. Vernon, S. Clemmen, X. Ji, J. E. Sipe, M. Liscidini, M. Lipson, and A. L. Gaeta, “Strong nonlinear coupling in a Si3N4 ring resonator,” Phys. Rev. Lett. 122(15), 153906 (2019).
[Crossref]

G. Kissinger, D. Kot, I. Costina, and M. Lisker, “On the impact of strained PECVD nitride layers on oxide precipitate nucleation in silicon,” ECS J. Solid State Sci. Technol. 8(9), N125–N133 (2019).
[Crossref]

S. A. Raja, A. Voloshin, H. Guo, S. Agafonova, J. Liu, A. S. Gorodnitskiy, M. Karpov, N. G. Pavlov, E. Lucas, R. R. Galiev, A. E. Shitikov, J. D. Jost, M. L. Gorodetsky, and T. J. Kippenberg, “Electrically pumped photonic integrated soliton microcomb,” Nat. Commun. 10(1), 680 (2019).
[Crossref]

A. L. Gaeta, M. Lipson, and T. J. Kippenberg, “Photonic-chip-based frequency combs,” Nat. Photonics 13(3), 158–169 (2019).
[Crossref]

2018 (9)

J. Liu, A. S. Raja, M. Karpov, B. Ghadiani, M. H. P. Pfeiffer, B. Du, N. J. Engelsen, H. Guo, Mi. Zervas, and T. J. Kippenberg, “Ultralow-power chip-based soliton microcombs for photonic integration,” Optica 5(10), 1347–1353 (2018).
[Crossref]

C. Bellegarde, E. Pargon, C. Sciancalepore, C. Petit-Etienne, V. Hughes, D. Robin-Brosse, J.-M. Hartmann, and P. Lyan, “Improvement of sidewall roughness of sub-micron SOI waveguides by hydrogen plasma and annealing,” IEEE Photonics Technol. Lett. 30(7), 591–594 (2018).
[Crossref]

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Fully integrated ultra-low power Kerr comb generation,” Nature 562(7727), 401–405 (2018).
[Crossref]

M. H. P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Photonic Damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(6), C4 (2018).
[Crossref]

H. El Dirani, M. Casale, S. Kerdiles, C. Socquet-Clerc, X. Letartre, C. Monat, and C. Sciancalepore, “Crack-free silicon-nitride-on-insulator nonlinear circuits for continuum generation in the C-band,” IEEE Photonics Technol. Lett. 30(4), 355–358 (2018).
[Crossref]

H. El Dirani, A. Kamel, M. Casale, S. Kerdiles, C. Monat, X. Letartre, M. Pu, L. K. Oxenløwe, K. Yvind, and C. Sciancalepore, “Annealing-free Si3N4 frequency combs for monolithic integration with Si photonics,” Appl. Phys. Lett. 113(8), 081102 (2018).
[Crossref]

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. luestone, and N. Volet, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref]

N. G. Pavlov, S. Koptyaev, G. V. Lihachev, A. S. Voloshin, A. S. Gorodnitskiy, M. V. Ryabko, S. V. Polonsky, and M. L. Gorodetsky, “Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes,” Nat. Photonics 12(11), 694–698 (2018).
[Crossref]

M. H. P. Pfeiffer, J. Liu, A. S. Raja, T. Morais, B. Ghadiani, and T. J. Kippenberg, “Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins,” Optica 5(7), 884 (2018).
[Crossref]

2017 (3)

M. H. P. Pfeiffer, J. Liu, M. Geiselmann, and T. J. Kippenberg, “Coupling ideality of integrated planar high-Q microresonators,” Phys. Rev. Appl. 7(2), 024026 (2017).
[Crossref]

X. Ji, A. B. Felippe, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4(6), 619 (2017).
[Crossref]

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, and R. Rosenberger, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

2016 (1)

2015 (1)

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 7957 (2015).
[Crossref]

2014 (3)

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. 9, 14013 (2014).
[Crossref]

D. T. Spencer, J. F. Bauters, M. J. R. Heck, and J. E. Bowers, “Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime,” Optica 1(3), 153 (2014).
[Crossref]

T. Herr, V. Brasch, J. Jost, I. Mirgorodskiy, G. Lihachev, M. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113(12), 123901 (2014).
[Crossref]

2013 (3)

M. Belt, J. Bovington, R. Moreira, J. F. Bauters, M. J. Heck, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Sidewall gratings in ultra-low-loss Si3N4 planar waveguides,” Opt. Express 21(1), 1181 (2013).
[Crossref]

L. Azarnouche, E. Pargon, K. Menguelti, M. Fouchier, O. Joubert, P. Gouraud, and C. Verove, “Benefits of plasma treatments on critical dimension control and line width roughness transfer during gate patterning,” J. Vac. Sci. Technol., B 31(1), 012205 (2013).
[Crossref]

M. Fouchier, E. Pargon, and B. Bardet, “An atomic force microscopy-based method for line edge roughness measurement,” J. Appl. Phys. 113(10), 104903 (2013).
[Crossref]

2012 (2)

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

2008 (1)

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
[Crossref]

2005 (1)

A. Matsko, A. Savchenkov, D. Strekalov, V. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion,” Phys. Rev. A 71(3), 033804 (2005).
[Crossref]

2000 (1)

J. H. Ye and M. S. Zhou, “Carbon-rich plasma induced damage in silicon nitride etch,” J. Electrochem. Soc. 147(3), 1168–1174 (2000).
[Crossref]

1999 (1)

M. Schaepkens, T. E. F. M. Standaert, N. R. Rueger, P. G. M. Sebel, G. S. Oehrlein, and J. M. Cook, “Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2-to-Si mechanism,” J. Vac. Sci. Technol., A 17(1), 26–37 (1999).
[Crossref]

1994 (1)

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

1989 (1)

J. Z. Xie, “Stability of hydrogen in silicon nitride films deposited by low-pressure and plasma enhanced chemical vapor deposition techniques,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 7(2), 150 (1989).
[Crossref]

1978 (1)

M. J. Weber, D. Milam, and W. L. Smith, “Nonlinear refractive index of glasses and crystals,” Opt. Eng. 17(5), 463 (1978).
[Crossref]

Agafonova, S.

S. A. Raja, A. Voloshin, H. Guo, S. Agafonova, J. Liu, A. S. Gorodnitskiy, M. Karpov, N. G. Pavlov, E. Lucas, R. R. Galiev, A. E. Shitikov, J. D. Jost, M. L. Gorodetsky, and T. J. Kippenberg, “Electrically pumped photonic integrated soliton microcomb,” Nat. Commun. 10(1), 680 (2019).
[Crossref]

Al Noman, A.

Anderson, M. H.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, and R. Rosenberger, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Armenise, M. N.

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. 9, 14013 (2014).
[Crossref]

Azarnouche, L.

L. Azarnouche, E. Pargon, K. Menguelti, M. Fouchier, O. Joubert, P. Gouraud, and C. Verove, “Benefits of plasma treatments on critical dimension control and line width roughness transfer during gate patterning,” J. Vac. Sci. Technol., B 31(1), 012205 (2013).
[Crossref]

L. Azarnouche, “Challenges in reducing the roughness of 193 nm photoresist patterns,” PhD thesis from University of Grenoble (2012).

Bardet, B.

M. Fouchier, E. Pargon, and B. Bardet, “An atomic force microscopy-based method for line edge roughness measurement,” J. Appl. Phys. 113(10), 104903 (2013).
[Crossref]

Barton, J. S.

Bauters, J. F.

Beery, D.

D. Beery, K. Reinhardt, P. B. Smith, J. Kelley, and A. Sivasothy, “Post etch residue removal: novel dry clean technology using densified fluid cleaning (DFC),” in IEEE International Interconnect Technology Conference (Cat. No. 99EX247) (1999), pp. 140–142.

Bellegarde, C.

C. Bellegarde, E. Pargon, C. Sciancalepore, C. Petit-Etienne, V. Hughes, D. Robin-Brosse, J.-M. Hartmann, and P. Lyan, “Improvement of sidewall roughness of sub-micron SOI waveguides by hydrogen plasma and annealing,” IEEE Photonics Technol. Lett. 30(7), 591–594 (2018).
[Crossref]

Belt, M.

Blumenthal, D. J.

Boust, S.

S. Boust, H. El Dirani, F. Duport, L. Youssef, S. Kerdiles, Y. Robert, C. Petit-Etienne, M. Faugeron, E. Vinet, M. Viallet, E. Pargon, C. Sciancalepore, and F. Van Dijk, “Compact optical frequency comb source based on a DFB butt-coupled to a silicon nitride microring,” IEEE Microwave Photonics Conference, (2019).

Bovington, J.

Bowers, J. E.

Brasch, V.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, and R. Rosenberger, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

T. Herr, V. Brasch, J. Jost, I. Mirgorodskiy, G. Lihachev, M. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113(12), 123901 (2014).
[Crossref]

Briles, T. C.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. luestone, and N. Volet, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref]

Bryant, A.

Cardenas, J.

Casale, M.

H. El Dirani, M. Casale, S. Kerdiles, C. Socquet-Clerc, X. Letartre, C. Monat, and C. Sciancalepore, “Crack-free silicon-nitride-on-insulator nonlinear circuits for continuum generation in the C-band,” IEEE Photonics Technol. Lett. 30(4), 355–358 (2018).
[Crossref]

H. El Dirani, A. Kamel, M. Casale, S. Kerdiles, C. Monat, X. Letartre, M. Pu, L. K. Oxenløwe, K. Yvind, and C. Sciancalepore, “Annealing-free Si3N4 frequency combs for monolithic integration with Si photonics,” Appl. Phys. Lett. 113(8), 081102 (2018).
[Crossref]

Chen, T.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Ciminelli, C.

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. 9, 14013 (2014).
[Crossref]

Clemmen, S.

S. Ramelow, A. Farsi, Z. Vernon, S. Clemmen, X. Ji, J. E. Sipe, M. Liscidini, M. Lipson, and A. L. Gaeta, “Strong nonlinear coupling in a Si3N4 ring resonator,” Phys. Rev. Lett. 122(15), 153906 (2019).
[Crossref]

Cook, J. M.

M. Schaepkens, T. E. F. M. Standaert, N. R. Rueger, P. G. M. Sebel, G. S. Oehrlein, and J. M. Cook, “Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2-to-Si mechanism,” J. Vac. Sci. Technol., A 17(1), 26–37 (1999).
[Crossref]

Costina, I.

G. Kissinger, D. Kot, I. Costina, and M. Lisker, “On the impact of strained PECVD nitride layers on oxide precipitate nucleation in silicon,” ECS J. Solid State Sci. Technol. 8(9), N125–N133 (2019).
[Crossref]

Cryan, M. J.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
[Crossref]

Dell’Olio, F.

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. 9, 14013 (2014).
[Crossref]

Drake, T.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. luestone, and N. Volet, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref]

Du, B.

Duport, F.

S. Boust, H. El Dirani, F. Duport, L. Youssef, S. Kerdiles, Y. Robert, C. Petit-Etienne, M. Faugeron, E. Vinet, M. Viallet, E. Pargon, C. Sciancalepore, and F. Van Dijk, “Compact optical frequency comb source based on a DFB butt-coupled to a silicon nitride microring,” IEEE Microwave Photonics Conference, (2019).

Dutt, A.

El Dirani, H.

H. El Dirani, A. Kamel, M. Casale, S. Kerdiles, C. Monat, X. Letartre, M. Pu, L. K. Oxenløwe, K. Yvind, and C. Sciancalepore, “Annealing-free Si3N4 frequency combs for monolithic integration with Si photonics,” Appl. Phys. Lett. 113(8), 081102 (2018).
[Crossref]

H. El Dirani, M. Casale, S. Kerdiles, C. Socquet-Clerc, X. Letartre, C. Monat, and C. Sciancalepore, “Crack-free silicon-nitride-on-insulator nonlinear circuits for continuum generation in the C-band,” IEEE Photonics Technol. Lett. 30(4), 355–358 (2018).
[Crossref]

S. Boust, H. El Dirani, F. Duport, L. Youssef, S. Kerdiles, Y. Robert, C. Petit-Etienne, M. Faugeron, E. Vinet, M. Viallet, E. Pargon, C. Sciancalepore, and F. Van Dijk, “Compact optical frequency comb source based on a DFB butt-coupled to a silicon nitride microring,” IEEE Microwave Photonics Conference, (2019).

Eliyahu, D.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 7957 (2015).
[Crossref]

Engelsen, N. J.

Farsi, A.

S. Ramelow, A. Farsi, Z. Vernon, S. Clemmen, X. Ji, J. E. Sipe, M. Liscidini, M. Lipson, and A. L. Gaeta, “Strong nonlinear coupling in a Si3N4 ring resonator,” Phys. Rev. Lett. 122(15), 153906 (2019).
[Crossref]

Faugeron, M.

S. Boust, H. El Dirani, F. Duport, L. Youssef, S. Kerdiles, Y. Robert, C. Petit-Etienne, M. Faugeron, E. Vinet, M. Viallet, E. Pargon, C. Sciancalepore, and F. Van Dijk, “Compact optical frequency comb source based on a DFB butt-coupled to a silicon nitride microring,” IEEE Microwave Photonics Conference, (2019).

Felippe, A. B.

Fouchier, M.

M. Fouchier, E. Pargon, and B. Bardet, “An atomic force microscopy-based method for line edge roughness measurement,” J. Appl. Phys. 113(10), 104903 (2013).
[Crossref]

L. Azarnouche, E. Pargon, K. Menguelti, M. Fouchier, O. Joubert, P. Gouraud, and C. Verove, “Benefits of plasma treatments on critical dimension control and line width roughness transfer during gate patterning,” J. Vac. Sci. Technol., B 31(1), 012205 (2013).
[Crossref]

Fredrick, C.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. luestone, and N. Volet, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref]

Gaeta, A. L.

A. L. Gaeta, M. Lipson, and T. J. Kippenberg, “Photonic-chip-based frequency combs,” Nat. Photonics 13(3), 158–169 (2019).
[Crossref]

S. Ramelow, A. Farsi, Z. Vernon, S. Clemmen, X. Ji, J. E. Sipe, M. Liscidini, M. Lipson, and A. L. Gaeta, “Strong nonlinear coupling in a Si3N4 ring resonator,” Phys. Rev. Lett. 122(15), 153906 (2019).
[Crossref]

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Fully integrated ultra-low power Kerr comb generation,” Nature 562(7727), 401–405 (2018).
[Crossref]

X. Ji, A. B. Felippe, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4(6), 619 (2017).
[Crossref]

Galiev, R. R.

S. A. Raja, A. Voloshin, H. Guo, S. Agafonova, J. Liu, A. S. Gorodnitskiy, M. Karpov, N. G. Pavlov, E. Lucas, R. R. Galiev, A. E. Shitikov, J. D. Jost, M. L. Gorodetsky, and T. J. Kippenberg, “Electrically pumped photonic integrated soliton microcomb,” Nat. Commun. 10(1), 680 (2019).
[Crossref]

Gavartin, E.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Geiselmann, M.

M. H. P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Photonic Damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(6), C4 (2018).
[Crossref]

M. H. P. Pfeiffer, J. Liu, M. Geiselmann, and T. J. Kippenberg, “Coupling ideality of integrated planar high-Q microresonators,” Phys. Rev. Appl. 7(2), 024026 (2017).
[Crossref]

Ghadiani, B.

Gorodetsky, M.

T. Herr, V. Brasch, J. Jost, I. Mirgorodskiy, G. Lihachev, M. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113(12), 123901 (2014).
[Crossref]

Gorodetsky, M. L.

S. A. Raja, A. Voloshin, H. Guo, S. Agafonova, J. Liu, A. S. Gorodnitskiy, M. Karpov, N. G. Pavlov, E. Lucas, R. R. Galiev, A. E. Shitikov, J. D. Jost, M. L. Gorodetsky, and T. J. Kippenberg, “Electrically pumped photonic integrated soliton microcomb,” Nat. Commun. 10(1), 680 (2019).
[Crossref]

N. G. Pavlov, S. Koptyaev, G. V. Lihachev, A. S. Voloshin, A. S. Gorodnitskiy, M. V. Ryabko, S. V. Polonsky, and M. L. Gorodetsky, “Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes,” Nat. Photonics 12(11), 694–698 (2018).
[Crossref]

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Gorodnitskiy, A. S.

S. A. Raja, A. Voloshin, H. Guo, S. Agafonova, J. Liu, A. S. Gorodnitskiy, M. Karpov, N. G. Pavlov, E. Lucas, R. R. Galiev, A. E. Shitikov, J. D. Jost, M. L. Gorodetsky, and T. J. Kippenberg, “Electrically pumped photonic integrated soliton microcomb,” Nat. Commun. 10(1), 680 (2019).
[Crossref]

N. G. Pavlov, S. Koptyaev, G. V. Lihachev, A. S. Voloshin, A. S. Gorodnitskiy, M. V. Ryabko, S. V. Polonsky, and M. L. Gorodetsky, “Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes,” Nat. Photonics 12(11), 694–698 (2018).
[Crossref]

Gouraud, P.

L. Azarnouche, E. Pargon, K. Menguelti, M. Fouchier, O. Joubert, P. Gouraud, and C. Verove, “Benefits of plasma treatments on critical dimension control and line width roughness transfer during gate patterning,” J. Vac. Sci. Technol., B 31(1), 012205 (2013).
[Crossref]

Guo, H.

S. A. Raja, A. Voloshin, H. Guo, S. Agafonova, J. Liu, A. S. Gorodnitskiy, M. Karpov, N. G. Pavlov, E. Lucas, R. R. Galiev, A. E. Shitikov, J. D. Jost, M. L. Gorodetsky, and T. J. Kippenberg, “Electrically pumped photonic integrated soliton microcomb,” Nat. Commun. 10(1), 680 (2019).
[Crossref]

J. Liu, A. S. Raja, M. Karpov, B. Ghadiani, M. H. P. Pfeiffer, B. Du, N. J. Engelsen, H. Guo, Mi. Zervas, and T. J. Kippenberg, “Ultralow-power chip-based soliton microcombs for photonic integration,” Optica 5(10), 1347–1353 (2018).
[Crossref]

Han, K.

Hartinger, K.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Hartmann, J.-M.

C. Bellegarde, E. Pargon, C. Sciancalepore, C. Petit-Etienne, V. Hughes, D. Robin-Brosse, J.-M. Hartmann, and P. Lyan, “Improvement of sidewall roughness of sub-micron SOI waveguides by hydrogen plasma and annealing,” IEEE Photonics Technol. Lett. 30(7), 591–594 (2018).
[Crossref]

Heck, M. J.

Heck, M. J. R.

Herkommer, C.

M. H. P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Photonic Damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(6), C4 (2018).
[Crossref]

Herr, T.

T. Herr, V. Brasch, J. Jost, I. Mirgorodskiy, G. Lihachev, M. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113(12), 123901 (2014).
[Crossref]

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Holzwarth, R.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Hughes, V.

C. Bellegarde, E. Pargon, C. Sciancalepore, C. Petit-Etienne, V. Hughes, D. Robin-Brosse, J.-M. Hartmann, and P. Lyan, “Improvement of sidewall roughness of sub-micron SOI waveguides by hydrogen plasma and annealing,” IEEE Photonics Technol. Lett. 30(7), 591–594 (2018).
[Crossref]

Ilchenko, V.

A. Matsko, A. Savchenkov, D. Strekalov, V. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion,” Phys. Rev. A 71(3), 033804 (2005).
[Crossref]

Ilchenko, V. S.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 7957 (2015).
[Crossref]

Ilic, B. R.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. luestone, and N. Volet, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref]

Jaramillo-Villegas, J. A.

Jeon, S.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Ji, X.

S. Ramelow, A. Farsi, Z. Vernon, S. Clemmen, X. Ji, J. E. Sipe, M. Liscidini, M. Lipson, and A. L. Gaeta, “Strong nonlinear coupling in a Si3N4 ring resonator,” Phys. Rev. Lett. 122(15), 153906 (2019).
[Crossref]

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Fully integrated ultra-low power Kerr comb generation,” Nature 562(7727), 401–405 (2018).
[Crossref]

X. Ji, A. B. Felippe, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4(6), 619 (2017).
[Crossref]

Jost, J.

T. Herr, V. Brasch, J. Jost, I. Mirgorodskiy, G. Lihachev, M. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113(12), 123901 (2014).
[Crossref]

Jost, J. D.

S. A. Raja, A. Voloshin, H. Guo, S. Agafonova, J. Liu, A. S. Gorodnitskiy, M. Karpov, N. G. Pavlov, E. Lucas, R. R. Galiev, A. E. Shitikov, J. D. Jost, M. L. Gorodetsky, and T. J. Kippenberg, “Electrically pumped photonic integrated soliton microcomb,” Nat. Commun. 10(1), 680 (2019).
[Crossref]

Joubert, O.

L. Azarnouche, E. Pargon, K. Menguelti, M. Fouchier, O. Joubert, P. Gouraud, and C. Verove, “Benefits of plasma treatments on critical dimension control and line width roughness transfer during gate patterning,” J. Vac. Sci. Technol., B 31(1), 012205 (2013).
[Crossref]

Kamel, A.

H. El Dirani, A. Kamel, M. Casale, S. Kerdiles, C. Monat, X. Letartre, M. Pu, L. K. Oxenløwe, K. Yvind, and C. Sciancalepore, “Annealing-free Si3N4 frequency combs for monolithic integration with Si photonics,” Appl. Phys. Lett. 113(8), 081102 (2018).
[Crossref]

Karpov, M.

S. A. Raja, A. Voloshin, H. Guo, S. Agafonova, J. Liu, A. S. Gorodnitskiy, M. Karpov, N. G. Pavlov, E. Lucas, R. R. Galiev, A. E. Shitikov, J. D. Jost, M. L. Gorodetsky, and T. J. Kippenberg, “Electrically pumped photonic integrated soliton microcomb,” Nat. Commun. 10(1), 680 (2019).
[Crossref]

J. Liu, A. S. Raja, M. Karpov, B. Ghadiani, M. H. P. Pfeiffer, B. Du, N. J. Engelsen, H. Guo, Mi. Zervas, and T. J. Kippenberg, “Ultralow-power chip-based soliton microcombs for photonic integration,” Optica 5(10), 1347–1353 (2018).
[Crossref]

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, and R. Rosenberger, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Kelley, J.

D. Beery, K. Reinhardt, P. B. Smith, J. Kelley, and A. Sivasothy, “Post etch residue removal: novel dry clean technology using densified fluid cleaning (DFC),” in IEEE International Interconnect Technology Conference (Cat. No. 99EX247) (1999), pp. 140–142.

Kemal, J. N.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, and R. Rosenberger, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Kerdiles, S.

H. El Dirani, A. Kamel, M. Casale, S. Kerdiles, C. Monat, X. Letartre, M. Pu, L. K. Oxenløwe, K. Yvind, and C. Sciancalepore, “Annealing-free Si3N4 frequency combs for monolithic integration with Si photonics,” Appl. Phys. Lett. 113(8), 081102 (2018).
[Crossref]

H. El Dirani, M. Casale, S. Kerdiles, C. Socquet-Clerc, X. Letartre, C. Monat, and C. Sciancalepore, “Crack-free silicon-nitride-on-insulator nonlinear circuits for continuum generation in the C-band,” IEEE Photonics Technol. Lett. 30(4), 355–358 (2018).
[Crossref]

S. Boust, H. El Dirani, F. Duport, L. Youssef, S. Kerdiles, Y. Robert, C. Petit-Etienne, M. Faugeron, E. Vinet, M. Viallet, E. Pargon, C. Sciancalepore, and F. Van Dijk, “Compact optical frequency comb source based on a DFB butt-coupled to a silicon nitride microring,” IEEE Microwave Photonics Conference, (2019).

Kim, S.

Kippenberg, T. J.

A. L. Gaeta, M. Lipson, and T. J. Kippenberg, “Photonic-chip-based frequency combs,” Nat. Photonics 13(3), 158–169 (2019).
[Crossref]

S. A. Raja, A. Voloshin, H. Guo, S. Agafonova, J. Liu, A. S. Gorodnitskiy, M. Karpov, N. G. Pavlov, E. Lucas, R. R. Galiev, A. E. Shitikov, J. D. Jost, M. L. Gorodetsky, and T. J. Kippenberg, “Electrically pumped photonic integrated soliton microcomb,” Nat. Commun. 10(1), 680 (2019).
[Crossref]

M. H. P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Photonic Damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(6), C4 (2018).
[Crossref]

M. H. P. Pfeiffer, J. Liu, A. S. Raja, T. Morais, B. Ghadiani, and T. J. Kippenberg, “Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins,” Optica 5(7), 884 (2018).
[Crossref]

J. Liu, A. S. Raja, M. Karpov, B. Ghadiani, M. H. P. Pfeiffer, B. Du, N. J. Engelsen, H. Guo, Mi. Zervas, and T. J. Kippenberg, “Ultralow-power chip-based soliton microcombs for photonic integration,” Optica 5(10), 1347–1353 (2018).
[Crossref]

M. H. P. Pfeiffer, J. Liu, M. Geiselmann, and T. J. Kippenberg, “Coupling ideality of integrated planar high-Q microresonators,” Phys. Rev. Appl. 7(2), 024026 (2017).
[Crossref]

T. Herr, V. Brasch, J. Jost, I. Mirgorodskiy, G. Lihachev, M. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113(12), 123901 (2014).
[Crossref]

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Kissinger, G.

G. Kissinger, D. Kot, I. Costina, and M. Lisker, “On the impact of strained PECVD nitride layers on oxide precipitate nucleation in silicon,” ECS J. Solid State Sci. Technol. 8(9), N125–N133 (2019).
[Crossref]

Koptyaev, S.

N. G. Pavlov, S. Koptyaev, G. V. Lihachev, A. S. Voloshin, A. S. Gorodnitskiy, M. V. Ryabko, S. V. Polonsky, and M. L. Gorodetsky, “Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes,” Nat. Photonics 12(11), 694–698 (2018).
[Crossref]

Kordts, A.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, and R. Rosenberger, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Kot, D.

G. Kissinger, D. Kot, I. Costina, and M. Lisker, “On the impact of strained PECVD nitride layers on oxide precipitate nucleation in silicon,” ECS J. Solid State Sci. Technol. 8(9), N125–N133 (2019).
[Crossref]

Lacey, J. P. R.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

Lee, H.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Letartre, X.

H. El Dirani, M. Casale, S. Kerdiles, C. Socquet-Clerc, X. Letartre, C. Monat, and C. Sciancalepore, “Crack-free silicon-nitride-on-insulator nonlinear circuits for continuum generation in the C-band,” IEEE Photonics Technol. Lett. 30(4), 355–358 (2018).
[Crossref]

H. El Dirani, A. Kamel, M. Casale, S. Kerdiles, C. Monat, X. Letartre, M. Pu, L. K. Oxenløwe, K. Yvind, and C. Sciancalepore, “Annealing-free Si3N4 frequency combs for monolithic integration with Si photonics,” Appl. Phys. Lett. 113(8), 081102 (2018).
[Crossref]

Li, J.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Li, Q.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. luestone, and N. Volet, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref]

Liang, W.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 7957 (2015).
[Crossref]

Lihachev, G.

T. Herr, V. Brasch, J. Jost, I. Mirgorodskiy, G. Lihachev, M. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113(12), 123901 (2014).
[Crossref]

Lihachev, G. V.

N. G. Pavlov, S. Koptyaev, G. V. Lihachev, A. S. Voloshin, A. S. Gorodnitskiy, M. V. Ryabko, S. V. Polonsky, and M. L. Gorodetsky, “Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes,” Nat. Photonics 12(11), 694–698 (2018).
[Crossref]

Lipson, M.

A. L. Gaeta, M. Lipson, and T. J. Kippenberg, “Photonic-chip-based frequency combs,” Nat. Photonics 13(3), 158–169 (2019).
[Crossref]

S. Ramelow, A. Farsi, Z. Vernon, S. Clemmen, X. Ji, J. E. Sipe, M. Liscidini, M. Lipson, and A. L. Gaeta, “Strong nonlinear coupling in a Si3N4 ring resonator,” Phys. Rev. Lett. 122(15), 153906 (2019).
[Crossref]

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Fully integrated ultra-low power Kerr comb generation,” Nature 562(7727), 401–405 (2018).
[Crossref]

X. Ji, A. B. Felippe, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4(6), 619 (2017).
[Crossref]

Liscidini, M.

S. Ramelow, A. Farsi, Z. Vernon, S. Clemmen, X. Ji, J. E. Sipe, M. Liscidini, M. Lipson, and A. L. Gaeta, “Strong nonlinear coupling in a Si3N4 ring resonator,” Phys. Rev. Lett. 122(15), 153906 (2019).
[Crossref]

Lisker, M.

G. Kissinger, D. Kot, I. Costina, and M. Lisker, “On the impact of strained PECVD nitride layers on oxide precipitate nucleation in silicon,” ECS J. Solid State Sci. Technol. 8(9), N125–N133 (2019).
[Crossref]

Liu, J.

S. A. Raja, A. Voloshin, H. Guo, S. Agafonova, J. Liu, A. S. Gorodnitskiy, M. Karpov, N. G. Pavlov, E. Lucas, R. R. Galiev, A. E. Shitikov, J. D. Jost, M. L. Gorodetsky, and T. J. Kippenberg, “Electrically pumped photonic integrated soliton microcomb,” Nat. Commun. 10(1), 680 (2019).
[Crossref]

M. H. P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Photonic Damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(6), C4 (2018).
[Crossref]

J. Liu, A. S. Raja, M. Karpov, B. Ghadiani, M. H. P. Pfeiffer, B. Du, N. J. Engelsen, H. Guo, Mi. Zervas, and T. J. Kippenberg, “Ultralow-power chip-based soliton microcombs for photonic integration,” Optica 5(10), 1347–1353 (2018).
[Crossref]

M. H. P. Pfeiffer, J. Liu, A. S. Raja, T. Morais, B. Ghadiani, and T. J. Kippenberg, “Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins,” Optica 5(7), 884 (2018).
[Crossref]

M. H. P. Pfeiffer, J. Liu, M. Geiselmann, and T. J. Kippenberg, “Coupling ideality of integrated planar high-Q microresonators,” Phys. Rev. Appl. 7(2), 024026 (2017).
[Crossref]

Liu, Y.

Lucas, E.

S. A. Raja, A. Voloshin, H. Guo, S. Agafonova, J. Liu, A. S. Gorodnitskiy, M. Karpov, N. G. Pavlov, E. Lucas, R. R. Galiev, A. E. Shitikov, J. D. Jost, M. L. Gorodetsky, and T. J. Kippenberg, “Electrically pumped photonic integrated soliton microcomb,” Nat. Commun. 10(1), 680 (2019).
[Crossref]

luestone, A.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. luestone, and N. Volet, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref]

Lyan, P.

C. Bellegarde, E. Pargon, C. Sciancalepore, C. Petit-Etienne, V. Hughes, D. Robin-Brosse, J.-M. Hartmann, and P. Lyan, “Improvement of sidewall roughness of sub-micron SOI waveguides by hydrogen plasma and annealing,” IEEE Photonics Technol. Lett. 30(7), 591–594 (2018).
[Crossref]

Maleki, L.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 7957 (2015).
[Crossref]

A. Matsko, A. Savchenkov, D. Strekalov, V. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion,” Phys. Rev. A 71(3), 033804 (2005).
[Crossref]

Marin-Palomo, P.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, and R. Rosenberger, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Matsko, A.

A. Matsko, A. Savchenkov, D. Strekalov, V. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion,” Phys. Rev. A 71(3), 033804 (2005).
[Crossref]

Matsko, A. B.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 7957 (2015).
[Crossref]

Menguelti, K.

L. Azarnouche, E. Pargon, K. Menguelti, M. Fouchier, O. Joubert, P. Gouraud, and C. Verove, “Benefits of plasma treatments on critical dimension control and line width roughness transfer during gate patterning,” J. Vac. Sci. Technol., B 31(1), 012205 (2013).
[Crossref]

Metcalf, A. J.

Milam, D.

M. J. Weber, D. Milam, and W. L. Smith, “Nonlinear refractive index of glasses and crystals,” Opt. Eng. 17(5), 463 (1978).
[Crossref]

Mirgorodskiy, I.

T. Herr, V. Brasch, J. Jost, I. Mirgorodskiy, G. Lihachev, M. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113(12), 123901 (2014).
[Crossref]

Monat, C.

H. El Dirani, M. Casale, S. Kerdiles, C. Socquet-Clerc, X. Letartre, C. Monat, and C. Sciancalepore, “Crack-free silicon-nitride-on-insulator nonlinear circuits for continuum generation in the C-band,” IEEE Photonics Technol. Lett. 30(4), 355–358 (2018).
[Crossref]

H. El Dirani, A. Kamel, M. Casale, S. Kerdiles, C. Monat, X. Letartre, M. Pu, L. K. Oxenløwe, K. Yvind, and C. Sciancalepore, “Annealing-free Si3N4 frequency combs for monolithic integration with Si photonics,” Appl. Phys. Lett. 113(8), 081102 (2018).
[Crossref]

Morais, T.

M. H. P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Photonic Damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(6), C4 (2018).
[Crossref]

M. H. P. Pfeiffer, J. Liu, A. S. Raja, T. Morais, B. Ghadiani, and T. J. Kippenberg, “Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins,” Optica 5(7), 884 (2018).
[Crossref]

Moreira, R.

O’Brien, J. L.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
[Crossref]

Oehrlein, G. S.

M. Schaepkens, T. E. F. M. Standaert, N. R. Rueger, P. G. M. Sebel, G. S. Oehrlein, and J. M. Cook, “Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2-to-Si mechanism,” J. Vac. Sci. Technol., A 17(1), 26–37 (1999).
[Crossref]

Okawachi, Y.

Oxenløwe, L. K.

H. El Dirani, A. Kamel, M. Casale, S. Kerdiles, C. Monat, X. Letartre, M. Pu, L. K. Oxenløwe, K. Yvind, and C. Sciancalepore, “Annealing-free Si3N4 frequency combs for monolithic integration with Si photonics,” Appl. Phys. Lett. 113(8), 081102 (2018).
[Crossref]

Painter, O.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Pargon, E.

C. Bellegarde, E. Pargon, C. Sciancalepore, C. Petit-Etienne, V. Hughes, D. Robin-Brosse, J.-M. Hartmann, and P. Lyan, “Improvement of sidewall roughness of sub-micron SOI waveguides by hydrogen plasma and annealing,” IEEE Photonics Technol. Lett. 30(7), 591–594 (2018).
[Crossref]

L. Azarnouche, E. Pargon, K. Menguelti, M. Fouchier, O. Joubert, P. Gouraud, and C. Verove, “Benefits of plasma treatments on critical dimension control and line width roughness transfer during gate patterning,” J. Vac. Sci. Technol., B 31(1), 012205 (2013).
[Crossref]

M. Fouchier, E. Pargon, and B. Bardet, “An atomic force microscopy-based method for line edge roughness measurement,” J. Appl. Phys. 113(10), 104903 (2013).
[Crossref]

S. Boust, H. El Dirani, F. Duport, L. Youssef, S. Kerdiles, Y. Robert, C. Petit-Etienne, M. Faugeron, E. Vinet, M. Viallet, E. Pargon, C. Sciancalepore, and F. Van Dijk, “Compact optical frequency comb source based on a DFB butt-coupled to a silicon nitride microring,” IEEE Microwave Photonics Conference, (2019).

Pavlov, N. G.

S. A. Raja, A. Voloshin, H. Guo, S. Agafonova, J. Liu, A. S. Gorodnitskiy, M. Karpov, N. G. Pavlov, E. Lucas, R. R. Galiev, A. E. Shitikov, J. D. Jost, M. L. Gorodetsky, and T. J. Kippenberg, “Electrically pumped photonic integrated soliton microcomb,” Nat. Commun. 10(1), 680 (2019).
[Crossref]

N. G. Pavlov, S. Koptyaev, G. V. Lihachev, A. S. Voloshin, A. S. Gorodnitskiy, M. V. Ryabko, S. V. Polonsky, and M. L. Gorodetsky, “Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes,” Nat. Photonics 12(11), 694–698 (2018).
[Crossref]

Payne, F. P.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

Petit-Etienne, C.

C. Bellegarde, E. Pargon, C. Sciancalepore, C. Petit-Etienne, V. Hughes, D. Robin-Brosse, J.-M. Hartmann, and P. Lyan, “Improvement of sidewall roughness of sub-micron SOI waveguides by hydrogen plasma and annealing,” IEEE Photonics Technol. Lett. 30(7), 591–594 (2018).
[Crossref]

S. Boust, H. El Dirani, F. Duport, L. Youssef, S. Kerdiles, Y. Robert, C. Petit-Etienne, M. Faugeron, E. Vinet, M. Viallet, E. Pargon, C. Sciancalepore, and F. Van Dijk, “Compact optical frequency comb source based on a DFB butt-coupled to a silicon nitride microring,” IEEE Microwave Photonics Conference, (2019).

Pfeiffer, M. H.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, and R. Rosenberger, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Pfeiffer, M. H. P.

M. H. P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Photonic Damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(6), C4 (2018).
[Crossref]

M. H. P. Pfeiffer, J. Liu, A. S. Raja, T. Morais, B. Ghadiani, and T. J. Kippenberg, “Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins,” Optica 5(7), 884 (2018).
[Crossref]

J. Liu, A. S. Raja, M. Karpov, B. Ghadiani, M. H. P. Pfeiffer, B. Du, N. J. Engelsen, H. Guo, Mi. Zervas, and T. J. Kippenberg, “Ultralow-power chip-based soliton microcombs for photonic integration,” Optica 5(10), 1347–1353 (2018).
[Crossref]

M. H. P. Pfeiffer, J. Liu, M. Geiselmann, and T. J. Kippenberg, “Coupling ideality of integrated planar high-Q microresonators,” Phys. Rev. Appl. 7(2), 024026 (2017).
[Crossref]

Pfeifle, J.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, and R. Rosenberger, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Politi, A.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
[Crossref]

Polonsky, S. V.

N. G. Pavlov, S. Koptyaev, G. V. Lihachev, A. S. Voloshin, A. S. Gorodnitskiy, M. V. Ryabko, S. V. Polonsky, and M. L. Gorodetsky, “Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes,” Nat. Photonics 12(11), 694–698 (2018).
[Crossref]

Pu, M.

H. El Dirani, A. Kamel, M. Casale, S. Kerdiles, C. Monat, X. Letartre, M. Pu, L. K. Oxenløwe, K. Yvind, and C. Sciancalepore, “Annealing-free Si3N4 frequency combs for monolithic integration with Si photonics,” Appl. Phys. Lett. 113(8), 081102 (2018).
[Crossref]

Raja, A. S.

Raja, S. A.

S. A. Raja, A. Voloshin, H. Guo, S. Agafonova, J. Liu, A. S. Gorodnitskiy, M. Karpov, N. G. Pavlov, E. Lucas, R. R. Galiev, A. E. Shitikov, J. D. Jost, M. L. Gorodetsky, and T. J. Kippenberg, “Electrically pumped photonic integrated soliton microcomb,” Nat. Commun. 10(1), 680 (2019).
[Crossref]

Ramelow, S.

S. Ramelow, A. Farsi, Z. Vernon, S. Clemmen, X. Ji, J. E. Sipe, M. Liscidini, M. Lipson, and A. L. Gaeta, “Strong nonlinear coupling in a Si3N4 ring resonator,” Phys. Rev. Lett. 122(15), 153906 (2019).
[Crossref]

Rarity, J. G.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
[Crossref]

Reinhardt, K.

D. Beery, K. Reinhardt, P. B. Smith, J. Kelley, and A. Sivasothy, “Post etch residue removal: novel dry clean technology using densified fluid cleaning (DFC),” in IEEE International Interconnect Technology Conference (Cat. No. 99EX247) (1999), pp. 140–142.

Riemensberger, J.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Robert, Y.

S. Boust, H. El Dirani, F. Duport, L. Youssef, S. Kerdiles, Y. Robert, C. Petit-Etienne, M. Faugeron, E. Vinet, M. Viallet, E. Pargon, C. Sciancalepore, and F. Van Dijk, “Compact optical frequency comb source based on a DFB butt-coupled to a silicon nitride microring,” IEEE Microwave Photonics Conference, (2019).

Roberts, S. P.

Robin-Brosse, D.

C. Bellegarde, E. Pargon, C. Sciancalepore, C. Petit-Etienne, V. Hughes, D. Robin-Brosse, J.-M. Hartmann, and P. Lyan, “Improvement of sidewall roughness of sub-micron SOI waveguides by hydrogen plasma and annealing,” IEEE Photonics Technol. Lett. 30(7), 591–594 (2018).
[Crossref]

Rosenberger, R.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, and R. Rosenberger, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Rueger, N. R.

M. Schaepkens, T. E. F. M. Standaert, N. R. Rueger, P. G. M. Sebel, G. S. Oehrlein, and J. M. Cook, “Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2-to-Si mechanism,” J. Vac. Sci. Technol., A 17(1), 26–37 (1999).
[Crossref]

Ryabko, M. V.

N. G. Pavlov, S. Koptyaev, G. V. Lihachev, A. S. Voloshin, A. S. Gorodnitskiy, M. V. Ryabko, S. V. Polonsky, and M. L. Gorodetsky, “Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes,” Nat. Photonics 12(11), 694–698 (2018).
[Crossref]

Savchenkov, A.

A. Matsko, A. Savchenkov, D. Strekalov, V. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion,” Phys. Rev. A 71(3), 033804 (2005).
[Crossref]

Savchenkov, A. A.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 7957 (2015).
[Crossref]

Schaepkens, M.

M. Schaepkens, T. E. F. M. Standaert, N. R. Rueger, P. G. M. Sebel, G. S. Oehrlein, and J. M. Cook, “Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2-to-Si mechanism,” J. Vac. Sci. Technol., A 17(1), 26–37 (1999).
[Crossref]

Sciancalepore, C.

H. El Dirani, A. Kamel, M. Casale, S. Kerdiles, C. Monat, X. Letartre, M. Pu, L. K. Oxenløwe, K. Yvind, and C. Sciancalepore, “Annealing-free Si3N4 frequency combs for monolithic integration with Si photonics,” Appl. Phys. Lett. 113(8), 081102 (2018).
[Crossref]

C. Bellegarde, E. Pargon, C. Sciancalepore, C. Petit-Etienne, V. Hughes, D. Robin-Brosse, J.-M. Hartmann, and P. Lyan, “Improvement of sidewall roughness of sub-micron SOI waveguides by hydrogen plasma and annealing,” IEEE Photonics Technol. Lett. 30(7), 591–594 (2018).
[Crossref]

H. El Dirani, M. Casale, S. Kerdiles, C. Socquet-Clerc, X. Letartre, C. Monat, and C. Sciancalepore, “Crack-free silicon-nitride-on-insulator nonlinear circuits for continuum generation in the C-band,” IEEE Photonics Technol. Lett. 30(4), 355–358 (2018).
[Crossref]

S. Boust, H. El Dirani, F. Duport, L. Youssef, S. Kerdiles, Y. Robert, C. Petit-Etienne, M. Faugeron, E. Vinet, M. Viallet, E. Pargon, C. Sciancalepore, and F. Van Dijk, “Compact optical frequency comb source based on a DFB butt-coupled to a silicon nitride microring,” IEEE Microwave Photonics Conference, (2019).

Sebel, P. G. M.

M. Schaepkens, T. E. F. M. Standaert, N. R. Rueger, P. G. M. Sebel, G. S. Oehrlein, and J. M. Cook, “Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2-to-Si mechanism,” J. Vac. Sci. Technol., A 17(1), 26–37 (1999).
[Crossref]

Seidel, D.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 7957 (2015).
[Crossref]

Shitikov, A. E.

S. A. Raja, A. Voloshin, H. Guo, S. Agafonova, J. Liu, A. S. Gorodnitskiy, M. Karpov, N. G. Pavlov, E. Lucas, R. R. Galiev, A. E. Shitikov, J. D. Jost, M. L. Gorodetsky, and T. J. Kippenberg, “Electrically pumped photonic integrated soliton microcomb,” Nat. Commun. 10(1), 680 (2019).
[Crossref]

Sinclair, L. C.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. luestone, and N. Volet, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref]

Sipe, J. E.

S. Ramelow, A. Farsi, Z. Vernon, S. Clemmen, X. Ji, J. E. Sipe, M. Liscidini, M. Lipson, and A. L. Gaeta, “Strong nonlinear coupling in a Si3N4 ring resonator,” Phys. Rev. Lett. 122(15), 153906 (2019).
[Crossref]

Sivasothy, A.

D. Beery, K. Reinhardt, P. B. Smith, J. Kelley, and A. Sivasothy, “Post etch residue removal: novel dry clean technology using densified fluid cleaning (DFC),” in IEEE International Interconnect Technology Conference (Cat. No. 99EX247) (1999), pp. 140–142.

Smith, P. B.

D. Beery, K. Reinhardt, P. B. Smith, J. Kelley, and A. Sivasothy, “Post etch residue removal: novel dry clean technology using densified fluid cleaning (DFC),” in IEEE International Interconnect Technology Conference (Cat. No. 99EX247) (1999), pp. 140–142.

Smith, W. L.

M. J. Weber, D. Milam, and W. L. Smith, “Nonlinear refractive index of glasses and crystals,” Opt. Eng. 17(5), 463 (1978).
[Crossref]

Socquet-Clerc, C.

H. El Dirani, M. Casale, S. Kerdiles, C. Socquet-Clerc, X. Letartre, C. Monat, and C. Sciancalepore, “Crack-free silicon-nitride-on-insulator nonlinear circuits for continuum generation in the C-band,” IEEE Photonics Technol. Lett. 30(4), 355–358 (2018).
[Crossref]

Spencer, D. T.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. luestone, and N. Volet, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref]

D. T. Spencer, J. F. Bauters, M. J. R. Heck, and J. E. Bowers, “Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime,” Optica 1(3), 153 (2014).
[Crossref]

Standaert, T. E. F. M.

M. Schaepkens, T. E. F. M. Standaert, N. R. Rueger, P. G. M. Sebel, G. S. Oehrlein, and J. M. Cook, “Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2-to-Si mechanism,” J. Vac. Sci. Technol., A 17(1), 26–37 (1999).
[Crossref]

Stern, B.

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Fully integrated ultra-low power Kerr comb generation,” Nature 562(7727), 401–405 (2018).
[Crossref]

Stone, J.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. luestone, and N. Volet, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref]

Strekalov, D.

A. Matsko, A. Savchenkov, D. Strekalov, V. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion,” Phys. Rev. A 71(3), 033804 (2005).
[Crossref]

Tatoli, T.

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. 9, 14013 (2014).
[Crossref]

Trocha, P.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, and R. Rosenberger, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Vahala, K. J.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Van Dijk, F.

S. Boust, H. El Dirani, F. Duport, L. Youssef, S. Kerdiles, Y. Robert, C. Petit-Etienne, M. Faugeron, E. Vinet, M. Viallet, E. Pargon, C. Sciancalepore, and F. Van Dijk, “Compact optical frequency comb source based on a DFB butt-coupled to a silicon nitride microring,” IEEE Microwave Photonics Conference, (2019).

Varghese, L. T.

Vernon, Z.

S. Ramelow, A. Farsi, Z. Vernon, S. Clemmen, X. Ji, J. E. Sipe, M. Liscidini, M. Lipson, and A. L. Gaeta, “Strong nonlinear coupling in a Si3N4 ring resonator,” Phys. Rev. Lett. 122(15), 153906 (2019).
[Crossref]

Verove, C.

L. Azarnouche, E. Pargon, K. Menguelti, M. Fouchier, O. Joubert, P. Gouraud, and C. Verove, “Benefits of plasma treatments on critical dimension control and line width roughness transfer during gate patterning,” J. Vac. Sci. Technol., B 31(1), 012205 (2013).
[Crossref]

Viallet, M.

S. Boust, H. El Dirani, F. Duport, L. Youssef, S. Kerdiles, Y. Robert, C. Petit-Etienne, M. Faugeron, E. Vinet, M. Viallet, E. Pargon, C. Sciancalepore, and F. Van Dijk, “Compact optical frequency comb source based on a DFB butt-coupled to a silicon nitride microring,” IEEE Microwave Photonics Conference, (2019).

Vinet, E.

S. Boust, H. El Dirani, F. Duport, L. Youssef, S. Kerdiles, Y. Robert, C. Petit-Etienne, M. Faugeron, E. Vinet, M. Viallet, E. Pargon, C. Sciancalepore, and F. Van Dijk, “Compact optical frequency comb source based on a DFB butt-coupled to a silicon nitride microring,” IEEE Microwave Photonics Conference, (2019).

Volet, N.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. luestone, and N. Volet, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref]

Voloshin, A.

S. A. Raja, A. Voloshin, H. Guo, S. Agafonova, J. Liu, A. S. Gorodnitskiy, M. Karpov, N. G. Pavlov, E. Lucas, R. R. Galiev, A. E. Shitikov, J. D. Jost, M. L. Gorodetsky, and T. J. Kippenberg, “Electrically pumped photonic integrated soliton microcomb,” Nat. Commun. 10(1), 680 (2019).
[Crossref]

Voloshin, A. S.

N. G. Pavlov, S. Koptyaev, G. V. Lihachev, A. S. Voloshin, A. S. Gorodnitskiy, M. V. Ryabko, S. V. Polonsky, and M. L. Gorodetsky, “Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes,” Nat. Photonics 12(11), 694–698 (2018).
[Crossref]

Wang, C.

Wang, C. Y.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Wang, P. H.

Weber, M. J.

M. J. Weber, D. Milam, and W. L. Smith, “Nonlinear refractive index of glasses and crystals,” Opt. Eng. 17(5), 463 (1978).
[Crossref]

Westly, D.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. luestone, and N. Volet, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref]

Wolf, S.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, and R. Rosenberger, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Xie, J. Z.

J. Z. Xie, “Stability of hydrogen in silicon nitride films deposited by low-pressure and plasma enhanced chemical vapor deposition techniques,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 7(2), 150 (1989).
[Crossref]

Xuan, Y.

Xue, X.

Yang, K. Y.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Ye, J. H.

J. H. Ye and M. S. Zhou, “Carbon-rich plasma induced damage in silicon nitride etch,” J. Electrochem. Soc. 147(3), 1168–1174 (2000).
[Crossref]

Youssef, L.

S. Boust, H. El Dirani, F. Duport, L. Youssef, S. Kerdiles, Y. Robert, C. Petit-Etienne, M. Faugeron, E. Vinet, M. Viallet, E. Pargon, C. Sciancalepore, and F. Van Dijk, “Compact optical frequency comb source based on a DFB butt-coupled to a silicon nitride microring,” IEEE Microwave Photonics Conference, (2019).

Yu, S.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
[Crossref]

Yvind, K.

H. El Dirani, A. Kamel, M. Casale, S. Kerdiles, C. Monat, X. Letartre, M. Pu, L. K. Oxenløwe, K. Yvind, and C. Sciancalepore, “Annealing-free Si3N4 frequency combs for monolithic integration with Si photonics,” Appl. Phys. Lett. 113(8), 081102 (2018).
[Crossref]

Zervas, M.

M. H. P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Photonic Damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(6), C4 (2018).
[Crossref]

Zervas, Mi.

Zhou, M. S.

J. H. Ye and M. S. Zhou, “Carbon-rich plasma induced damage in silicon nitride etch,” J. Electrochem. Soc. 147(3), 1168–1174 (2000).
[Crossref]

Appl. Phys. Lett. (1)

H. El Dirani, A. Kamel, M. Casale, S. Kerdiles, C. Monat, X. Letartre, M. Pu, L. K. Oxenløwe, K. Yvind, and C. Sciancalepore, “Annealing-free Si3N4 frequency combs for monolithic integration with Si photonics,” Appl. Phys. Lett. 113(8), 081102 (2018).
[Crossref]

ECS J. Solid State Sci. Technol. (1)

G. Kissinger, D. Kot, I. Costina, and M. Lisker, “On the impact of strained PECVD nitride layers on oxide precipitate nucleation in silicon,” ECS J. Solid State Sci. Technol. 8(9), N125–N133 (2019).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. H. P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Photonic Damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(6), C4 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (2)

H. El Dirani, M. Casale, S. Kerdiles, C. Socquet-Clerc, X. Letartre, C. Monat, and C. Sciancalepore, “Crack-free silicon-nitride-on-insulator nonlinear circuits for continuum generation in the C-band,” IEEE Photonics Technol. Lett. 30(4), 355–358 (2018).
[Crossref]

C. Bellegarde, E. Pargon, C. Sciancalepore, C. Petit-Etienne, V. Hughes, D. Robin-Brosse, J.-M. Hartmann, and P. Lyan, “Improvement of sidewall roughness of sub-micron SOI waveguides by hydrogen plasma and annealing,” IEEE Photonics Technol. Lett. 30(7), 591–594 (2018).
[Crossref]

J. Appl. Phys. (1)

M. Fouchier, E. Pargon, and B. Bardet, “An atomic force microscopy-based method for line edge roughness measurement,” J. Appl. Phys. 113(10), 104903 (2013).
[Crossref]

J. Electrochem. Soc. (1)

J. H. Ye and M. S. Zhou, “Carbon-rich plasma induced damage in silicon nitride etch,” J. Electrochem. Soc. 147(3), 1168–1174 (2000).
[Crossref]

J. Eur. Opt. Soc. (1)

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. 9, 14013 (2014).
[Crossref]

J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. (1)

J. Z. Xie, “Stability of hydrogen in silicon nitride films deposited by low-pressure and plasma enhanced chemical vapor deposition techniques,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 7(2), 150 (1989).
[Crossref]

J. Vac. Sci. Technol., A (1)

M. Schaepkens, T. E. F. M. Standaert, N. R. Rueger, P. G. M. Sebel, G. S. Oehrlein, and J. M. Cook, “Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2-to-Si mechanism,” J. Vac. Sci. Technol., A 17(1), 26–37 (1999).
[Crossref]

J. Vac. Sci. Technol., B (1)

L. Azarnouche, E. Pargon, K. Menguelti, M. Fouchier, O. Joubert, P. Gouraud, and C. Verove, “Benefits of plasma treatments on critical dimension control and line width roughness transfer during gate patterning,” J. Vac. Sci. Technol., B 31(1), 012205 (2013).
[Crossref]

Nat. Commun. (2)

S. A. Raja, A. Voloshin, H. Guo, S. Agafonova, J. Liu, A. S. Gorodnitskiy, M. Karpov, N. G. Pavlov, E. Lucas, R. R. Galiev, A. E. Shitikov, J. D. Jost, M. L. Gorodetsky, and T. J. Kippenberg, “Electrically pumped photonic integrated soliton microcomb,” Nat. Commun. 10(1), 680 (2019).
[Crossref]

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 7957 (2015).
[Crossref]

Nat. Photonics (4)

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

N. G. Pavlov, S. Koptyaev, G. V. Lihachev, A. S. Voloshin, A. S. Gorodnitskiy, M. V. Ryabko, S. V. Polonsky, and M. L. Gorodetsky, “Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes,” Nat. Photonics 12(11), 694–698 (2018).
[Crossref]

A. L. Gaeta, M. Lipson, and T. J. Kippenberg, “Photonic-chip-based frequency combs,” Nat. Photonics 13(3), 158–169 (2019).
[Crossref]

Nature (3)

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Fully integrated ultra-low power Kerr comb generation,” Nature 562(7727), 401–405 (2018).
[Crossref]

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, and R. Rosenberger, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. luestone, and N. Volet, “An optical-frequency synthesizer using integrated photonics,” Nature 557(7703), 81–85 (2018).
[Crossref]

Opt. Eng. (1)

M. J. Weber, D. Milam, and W. L. Smith, “Nonlinear refractive index of glasses and crystals,” Opt. Eng. 17(5), 463 (1978).
[Crossref]

Opt. Express (1)

Opt. Quantum Electron. (1)

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

Optica (5)

Phys. Rev. A (1)

A. Matsko, A. Savchenkov, D. Strekalov, V. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion,” Phys. Rev. A 71(3), 033804 (2005).
[Crossref]

Phys. Rev. Appl. (1)

M. H. P. Pfeiffer, J. Liu, M. Geiselmann, and T. J. Kippenberg, “Coupling ideality of integrated planar high-Q microresonators,” Phys. Rev. Appl. 7(2), 024026 (2017).
[Crossref]

Phys. Rev. Lett. (2)

T. Herr, V. Brasch, J. Jost, I. Mirgorodskiy, G. Lihachev, M. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113(12), 123901 (2014).
[Crossref]

S. Ramelow, A. Farsi, Z. Vernon, S. Clemmen, X. Ji, J. E. Sipe, M. Liscidini, M. Lipson, and A. L. Gaeta, “Strong nonlinear coupling in a Si3N4 ring resonator,” Phys. Rev. Lett. 122(15), 153906 (2019).
[Crossref]

Science (1)

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
[Crossref]

Other (3)

S. Boust, H. El Dirani, F. Duport, L. Youssef, S. Kerdiles, Y. Robert, C. Petit-Etienne, M. Faugeron, E. Vinet, M. Viallet, E. Pargon, C. Sciancalepore, and F. Van Dijk, “Compact optical frequency comb source based on a DFB butt-coupled to a silicon nitride microring,” IEEE Microwave Photonics Conference, (2019).

L. Azarnouche, “Challenges in reducing the roughness of 193 nm photoresist patterns,” PhD thesis from University of Grenoble (2012).

D. Beery, K. Reinhardt, P. B. Smith, J. Kelley, and A. Sivasothy, “Post etch residue removal: novel dry clean technology using densified fluid cleaning (DFC),” in IEEE International Interconnect Technology Conference (Cat. No. 99EX247) (1999), pp. 140–142.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematics of the twist-and-grow and multistep chemical-physical annealing process for ultralow-loss tightly confining Si3N4 waveguides. a) A 3-µm-thick wet oxidation of 200-mm Si wafer is followed by a twist-and-grow deposition of Si3N4 films until matching the desired film thickness (800 nm). b) Images of Si3N4 films with and without using this approach. c) Fluorocarbon-based dry etching and wafer bow compensation and d) reduction of top waveguide roughness to sub-Angstrom levels by CMP on the non-patterned films. e) Example of a 1.6-µm-wide, 800-nm-thick Si3N4 waveguide using CMP and fluorocarbon-based plasma etching process, with sidewalls slope angle < 2°. f) SEM cross-section of the encapsulated bus waveguide and microresonator. g) Multistep H2/O2/N2 in-situ annealing of patterned core Si3N4 waveguides. h) Multistep encapsulation via a low-temperature silicon dioxide liner prior to high-density plasma silica layers encapsulation.
Fig. 2.
Fig. 2. Schematic representation of a) the optical measurement setup used for the characterization of microresonators and test structures. Direct laser scanning spectroscopy is carried out using a high-sensitivity photodetector. b) Microscope image of the 200-GHz-FSR ring resonators with different bus/ring gap configurations. Input/output (I/O) signal is collected via surface grating couplers (SGCs) operating in TE-polarization.
Fig. 3.
Fig. 3. (a) Waveguide sidewalls roughness evolution during the fabrication process (lithography, dry etching) including comparison between different post-etching annealing strategies (T1, T2, and T3). (b) Quality factors and their corresponding standard deviations as a function of the annealing treatment used. The data show average and statistical dispersion of Q0 values in the wavelength interval 1550–1570 nm, centered at 1560 nm and sampled across 20 different dies. c) Resonance doublet at λ = 1560 nm with an extracted fitted intrinsic linewidth κ0/2π of 23 MHz corresponding to an intrinsic Q0 ∼ 8.5×106, and fitted splitting rate Ω/2π = 62 MHz (wafer T3). d) Resonance at λ = 1520 nm with a fitted intrinsic linewidth κ0/2π of 36 MHz corresponding to an intrinsic Q0 ∼ 5.3×106.
Fig. 4.
Fig. 4. (a) Extinction ratios cross-die vs. gap distribution of overcoupled (zone I), near to critically-coupled (zone II), and undercoupled (zone III) 200-GHz resonators devices. (b, d) Intrinsic linewidths (MHz) and their absolute variation against the average linewidth across the 1500–1600 nm wavelengths (S, C, and L bands), (c) intrinsic linewidths (MHz) and (e) extinction ratios of critically coupled devices (coupling gap = 550 nm) measured in a wavelength interval of 20 nm centered at 1560 nm, and sampled across 20 different dies (with respective average values indicated by a red dashed line). The 20 dies relative positions on the 200-mm T3 wafer are indicated in the inset of (c, e).
Fig. 5.
Fig. 5. (a) TXRF analysis of metallic contamination of as-deposited Si3N4 films described and processed in this work. Statistical dispersion over 125 wafers of metallic impurities in the film (blue boxes), with red dots indicating “outlier” measurement points. The red line (labeled as UCL) show the “upper contamination limit” allowed in a production-level CMOS pilot line, with 5×1010 atoms/cm2 and 5×1011 atoms/cm2 as hard limits imposed on the specific metal element. (b) Extracted resonance drags (MHz) for different dropped powers (mW) revealing the resonator thermal susceptibility χth = 185 MHz/mW at 1560 nm wavelength. (c) Image of a failure event when a CW input optical power of + 38 dBm is coupled to a Si3N4 waveguide. The failure event has been observed only once during measurements at such power levels. No failure event was observed on any microresonator during device testing at such high power levels.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T = [ 1 κ e x / κ e x 2 π 2 π 2 ( i ( f f 1 ) + κ 01 / κ 01 2 π 2 π + κ e x / κ e x 2 π 2 π ) κ e x / κ e x 2 π 2 π 2 ( i ( f f 2 ) + κ 02 / κ 02 2 π 2 π + κ e x / κ e x 2 π 2 π ) ] 2 ,