Abstract

In flexible optical networks, lightpaths are routed from source to destination thanks to reconfigurable optical add-drop multiplexers (ROADMs) placed in every node connected by a line system. As ROADMs are based on wavelength selective switches (WSSs), which imply channel filtering, a non negligible performance reduction can be observed when lightpaths traverse many network nodes. Control plane software network controllers that base their decision on the quality of transmission of the physical layer must also take into account the impact of ROADMs cascading. The penalties caused by WSS cascading in single-carrier systems are mostly driven by uncompensated inter-symbol interference (ISI), and therefore their evaluation cannot be based on simple analytical solutions as required for real-time network control. In this paper, we consider a 200G optical system based on multi-subcarrier (MSC) modulation with hybrid modulation formats. Using a fully analytical framework, we show that it is possible to predict ROADM-induced penalties offline and accurately estimate the required settings for their transmitter-side mitigation through bit and/or power-loading. Moreover, resorting to both simulations and experiments, we also demonstrate that properly optimized MSC signals can provide an increased resilience to ROADM filtering with respect to standard single-carrier systems: applying analytically-driven bit-loading over $8\times 4$ Gbaud and $16\times 2$ Gbaud MSC signals after crossing 8 cascaded WSSs in a noise loading scenario, we experimentally found $\sim$2 dB gain in required SNR with respect to a traditional 32 Gbaud single-carrier signal.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multi-subcarrier flexible bit-loading enabled capacity improvement in meshed optical networks with cascaded ROADMs

Meng Xiang, Qunbi Zhuge, Meng Qiu, Fangyuan Zhang, Xingyu Zhou, Ming Tang, Songnian Fu, and David V. Plant
Opt. Express 25(21) 25046-25058 (2017)

Generalized weighted crosstalk for DWDM systems with cascaded wavelength-selective switches

Mark Filer and Sorin Tibuleac
Opt. Express 20(16) 17620-17631 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. Benisha, R. T. Prabu, and D. V. Thulasi Bai, “Requirements and challenges of 5G cellular systems,” in International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics, (2016).
  2. T. Zami, I. Fernandez de Jauregui Ruiz, A. Ghazisaeidi, and B. Lavigne, “Growing impact of optical filtering in future WDM networks,” in Optical Fiber Communication Conference (OFC), (2019).
  3. L. Li, A. Abd El-Rahman, and J. Cartledge, “Effect of bandwidth narrowing due to cascaded wavelength elective switches on the generalized mutual information of probabilistically shaped 64-QAM systems,” in European Conference of Optical Communication (ECOC), (2018).
  4. T. Rahman, A. Napoli, D. Rafique, B. Spinnler, M. Kuschnerov, I. Lobato, B. Clouet, M. Bohn, C. Okonkwo, and H. de Waardt, “On the mitigation of optical filtering penalties originating from ROADM cascade,” IEEE Photonics Technol. Lett. 26(2), 154–157 (2014).
    [Crossref]
  5. M. Filer and S. Tibuleac, “Cascaded ROADM Tolerance of mQAM optical signals employing nyquist shaping,” in IEEE Photonics Conference, (2014).
  6. Q. Wang, Y. Yue, J. Yao, and J. Anderson, “Adaptive compensation of bandwidth narrowing effect for coherent in-phase quadrature transponder through finite impulse response filter,” Appl. Sci. 9(9), 1950 (2019).
    [Crossref]
  7. P. Poggiolini, A. Nespola, Y. Jiang, G. Bosco, A. Carena, L. Bertignono, S. M. Bilal, S. Abrate, and F. Forghieri, “Analytical and experimental results on system maximum reach increase through symbol rate optimization,” J. Lightwave Technol. 34(8), 1872–1885 (2016).
    [Crossref]
  8. F. P. Guiomar, L. Bertignono, A. Nespola, and A. Carena, “Frequency-domain hybrid modulation formats for high bit-rate flexibility and nonlinear robustness,” J. Lightwave Technol. 36(20), 4856–4870 (2018).
    [Crossref]
  9. A. Kumpera, V. Dominic, A. Awadalla, L. Dardis, J. Rahn, S. Sanders, M. Mitchell, P. Mertz, G. Shartle, S. Jackson, S. Blakey, M. Sokar, D. Krause, H. Sun, K. Wu, and P. Cannon, “Real-time superchannel transmission over 10,500 km submarine link at 4.66 b/s/Hz spectral efficiency,” Opt. Express 26(12), 15039–15044 (2018).
    [Crossref]
  10. F. P. Guiomar, A. Lorences-Riesgo, A. M. Rosa Brusin, D. F. Morillo, A. Carena, and P. P. Monteiro, “Reducing ROADM filtering penalties using subcarrier multiplexing with offline bit and power loading,” in European Conference of Optical Communication (ECOC), (2018).
  11. F. P. Guiomar, R. Li, C. R. S. Fludger, A. Carena, and V. Curri, “Hybrid modulation formats enabling elastic fixed-grid optical networks,” J. Opt. Commun. Netw. 8(7), A92–A100 (2016).
    [Crossref]
  12. M. Xiang, Q. Zhuge, X. Zhou, M. Qiu, F. Zhang, T. M. Hoang, M. Y. S. Sowailem, M. Tang, D. Liu, S. Fu, and D. V. Plant, “Filtering tolerant digital subcarrier multiplexing system with flexible bit and power loading,” in Optical Fiber Communications Conference and Exhibition (OFC), (2017).
  13. M. Xiang, Q. Zhuge, M. Qiu, F. Zhang, X. Zhou, M. Tang, S. Fu, and D. V. Plant, “Multi-subcarrier flexible bit-loading enable capacity improvement in meshed optical networks with cascaded ROADMs,” Opt. Express 25(21), 25046–25058 (2017).
    [Crossref]
  14. E. Giacoumidis, X. Q. Jin, A. Tsokanos, and J. M. Tang, “Statistical performance comparisons of optical ofdm adaptive loading algorithms in multimode fiber-based transmission systems,” IEEE Photonics J. 2(6), 1051–1059 (2010).
    [Crossref]
  15. T. A. Strasser and J. L. Wagener, “Wavelength-selective switches for ROADM applications,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1150–1157 (2010).
    [Crossref]
  16. C. Pulikkaseril, L. A. Stewart, M. A. F. Roelens, G. W. Baxter, S. Poole, and S. Frisken, “Spectral modeling of channel band shapes in wavelength selective switches,” Opt. Express 19(9), 8458–8470 (2011).
    [Crossref]
  17. P. Vitthaladevuni and M.-S. Alouini, “A closed-form expression for the exact BER of generalized PAM and QAM constellations,” IEEE Trans. Commun. 52(5), 698–700 (2004).
    [Crossref]
  18. P. Vitthaladevuni, M.-S. Alouini, and J. Kieffer, “Exact BER computation for cross QAM constellations,” IEEE Trans. Wireless Commun. 4(6), 3039–3050 (2005).
    [Crossref]
  19. A. Alvarado, E. Agrell, D. Lavery, R. Maher, and P. Bayvel, “Replacing the soft-decision FEC limit paradigm in the design of optical communication systems,” J. Lightwave Technol. 33(20), 4338–4352 (2015).
    [Crossref]
  20. G. Tzimpragos, C. Kachris, I. B. Djordjevic, M. Cvijetic, D. Soudris, and I. Tomkos, “A survey on FEC codes for 100 G and beyond optical networks,” IEEE Commun. Surv. Tutorials 18(1), 209–221 (2016).
    [Crossref]

2019 (1)

Q. Wang, Y. Yue, J. Yao, and J. Anderson, “Adaptive compensation of bandwidth narrowing effect for coherent in-phase quadrature transponder through finite impulse response filter,” Appl. Sci. 9(9), 1950 (2019).
[Crossref]

2018 (2)

2017 (1)

2016 (3)

2015 (1)

2014 (1)

T. Rahman, A. Napoli, D. Rafique, B. Spinnler, M. Kuschnerov, I. Lobato, B. Clouet, M. Bohn, C. Okonkwo, and H. de Waardt, “On the mitigation of optical filtering penalties originating from ROADM cascade,” IEEE Photonics Technol. Lett. 26(2), 154–157 (2014).
[Crossref]

2011 (1)

2010 (2)

E. Giacoumidis, X. Q. Jin, A. Tsokanos, and J. M. Tang, “Statistical performance comparisons of optical ofdm adaptive loading algorithms in multimode fiber-based transmission systems,” IEEE Photonics J. 2(6), 1051–1059 (2010).
[Crossref]

T. A. Strasser and J. L. Wagener, “Wavelength-selective switches for ROADM applications,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1150–1157 (2010).
[Crossref]

2005 (1)

P. Vitthaladevuni, M.-S. Alouini, and J. Kieffer, “Exact BER computation for cross QAM constellations,” IEEE Trans. Wireless Commun. 4(6), 3039–3050 (2005).
[Crossref]

2004 (1)

P. Vitthaladevuni and M.-S. Alouini, “A closed-form expression for the exact BER of generalized PAM and QAM constellations,” IEEE Trans. Commun. 52(5), 698–700 (2004).
[Crossref]

Abd El-Rahman, A.

L. Li, A. Abd El-Rahman, and J. Cartledge, “Effect of bandwidth narrowing due to cascaded wavelength elective switches on the generalized mutual information of probabilistically shaped 64-QAM systems,” in European Conference of Optical Communication (ECOC), (2018).

Abrate, S.

Agrell, E.

Alouini, M.-S.

P. Vitthaladevuni, M.-S. Alouini, and J. Kieffer, “Exact BER computation for cross QAM constellations,” IEEE Trans. Wireless Commun. 4(6), 3039–3050 (2005).
[Crossref]

P. Vitthaladevuni and M.-S. Alouini, “A closed-form expression for the exact BER of generalized PAM and QAM constellations,” IEEE Trans. Commun. 52(5), 698–700 (2004).
[Crossref]

Alvarado, A.

Anderson, J.

Q. Wang, Y. Yue, J. Yao, and J. Anderson, “Adaptive compensation of bandwidth narrowing effect for coherent in-phase quadrature transponder through finite impulse response filter,” Appl. Sci. 9(9), 1950 (2019).
[Crossref]

Awadalla, A.

Baxter, G. W.

Bayvel, P.

Benisha, M.

M. Benisha, R. T. Prabu, and D. V. Thulasi Bai, “Requirements and challenges of 5G cellular systems,” in International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics, (2016).

Bertignono, L.

Bilal, S. M.

Blakey, S.

Bohn, M.

T. Rahman, A. Napoli, D. Rafique, B. Spinnler, M. Kuschnerov, I. Lobato, B. Clouet, M. Bohn, C. Okonkwo, and H. de Waardt, “On the mitigation of optical filtering penalties originating from ROADM cascade,” IEEE Photonics Technol. Lett. 26(2), 154–157 (2014).
[Crossref]

Bosco, G.

Cannon, P.

Carena, A.

Cartledge, J.

L. Li, A. Abd El-Rahman, and J. Cartledge, “Effect of bandwidth narrowing due to cascaded wavelength elective switches on the generalized mutual information of probabilistically shaped 64-QAM systems,” in European Conference of Optical Communication (ECOC), (2018).

Clouet, B.

T. Rahman, A. Napoli, D. Rafique, B. Spinnler, M. Kuschnerov, I. Lobato, B. Clouet, M. Bohn, C. Okonkwo, and H. de Waardt, “On the mitigation of optical filtering penalties originating from ROADM cascade,” IEEE Photonics Technol. Lett. 26(2), 154–157 (2014).
[Crossref]

Curri, V.

Cvijetic, M.

G. Tzimpragos, C. Kachris, I. B. Djordjevic, M. Cvijetic, D. Soudris, and I. Tomkos, “A survey on FEC codes for 100 G and beyond optical networks,” IEEE Commun. Surv. Tutorials 18(1), 209–221 (2016).
[Crossref]

Dardis, L.

de Waardt, H.

T. Rahman, A. Napoli, D. Rafique, B. Spinnler, M. Kuschnerov, I. Lobato, B. Clouet, M. Bohn, C. Okonkwo, and H. de Waardt, “On the mitigation of optical filtering penalties originating from ROADM cascade,” IEEE Photonics Technol. Lett. 26(2), 154–157 (2014).
[Crossref]

Djordjevic, I. B.

G. Tzimpragos, C. Kachris, I. B. Djordjevic, M. Cvijetic, D. Soudris, and I. Tomkos, “A survey on FEC codes for 100 G and beyond optical networks,” IEEE Commun. Surv. Tutorials 18(1), 209–221 (2016).
[Crossref]

Dominic, V.

Fernandez de Jauregui Ruiz, I.

T. Zami, I. Fernandez de Jauregui Ruiz, A. Ghazisaeidi, and B. Lavigne, “Growing impact of optical filtering in future WDM networks,” in Optical Fiber Communication Conference (OFC), (2019).

Filer, M.

M. Filer and S. Tibuleac, “Cascaded ROADM Tolerance of mQAM optical signals employing nyquist shaping,” in IEEE Photonics Conference, (2014).

Fludger, C. R. S.

Forghieri, F.

Frisken, S.

Fu, S.

M. Xiang, Q. Zhuge, M. Qiu, F. Zhang, X. Zhou, M. Tang, S. Fu, and D. V. Plant, “Multi-subcarrier flexible bit-loading enable capacity improvement in meshed optical networks with cascaded ROADMs,” Opt. Express 25(21), 25046–25058 (2017).
[Crossref]

M. Xiang, Q. Zhuge, X. Zhou, M. Qiu, F. Zhang, T. M. Hoang, M. Y. S. Sowailem, M. Tang, D. Liu, S. Fu, and D. V. Plant, “Filtering tolerant digital subcarrier multiplexing system with flexible bit and power loading,” in Optical Fiber Communications Conference and Exhibition (OFC), (2017).

Ghazisaeidi, A.

T. Zami, I. Fernandez de Jauregui Ruiz, A. Ghazisaeidi, and B. Lavigne, “Growing impact of optical filtering in future WDM networks,” in Optical Fiber Communication Conference (OFC), (2019).

Giacoumidis, E.

E. Giacoumidis, X. Q. Jin, A. Tsokanos, and J. M. Tang, “Statistical performance comparisons of optical ofdm adaptive loading algorithms in multimode fiber-based transmission systems,” IEEE Photonics J. 2(6), 1051–1059 (2010).
[Crossref]

Guiomar, F. P.

Hoang, T. M.

M. Xiang, Q. Zhuge, X. Zhou, M. Qiu, F. Zhang, T. M. Hoang, M. Y. S. Sowailem, M. Tang, D. Liu, S. Fu, and D. V. Plant, “Filtering tolerant digital subcarrier multiplexing system with flexible bit and power loading,” in Optical Fiber Communications Conference and Exhibition (OFC), (2017).

Jackson, S.

Jiang, Y.

Jin, X. Q.

E. Giacoumidis, X. Q. Jin, A. Tsokanos, and J. M. Tang, “Statistical performance comparisons of optical ofdm adaptive loading algorithms in multimode fiber-based transmission systems,” IEEE Photonics J. 2(6), 1051–1059 (2010).
[Crossref]

Kachris, C.

G. Tzimpragos, C. Kachris, I. B. Djordjevic, M. Cvijetic, D. Soudris, and I. Tomkos, “A survey on FEC codes for 100 G and beyond optical networks,” IEEE Commun. Surv. Tutorials 18(1), 209–221 (2016).
[Crossref]

Kieffer, J.

P. Vitthaladevuni, M.-S. Alouini, and J. Kieffer, “Exact BER computation for cross QAM constellations,” IEEE Trans. Wireless Commun. 4(6), 3039–3050 (2005).
[Crossref]

Krause, D.

Kumpera, A.

Kuschnerov, M.

T. Rahman, A. Napoli, D. Rafique, B. Spinnler, M. Kuschnerov, I. Lobato, B. Clouet, M. Bohn, C. Okonkwo, and H. de Waardt, “On the mitigation of optical filtering penalties originating from ROADM cascade,” IEEE Photonics Technol. Lett. 26(2), 154–157 (2014).
[Crossref]

Lavery, D.

Lavigne, B.

T. Zami, I. Fernandez de Jauregui Ruiz, A. Ghazisaeidi, and B. Lavigne, “Growing impact of optical filtering in future WDM networks,” in Optical Fiber Communication Conference (OFC), (2019).

Li, L.

L. Li, A. Abd El-Rahman, and J. Cartledge, “Effect of bandwidth narrowing due to cascaded wavelength elective switches on the generalized mutual information of probabilistically shaped 64-QAM systems,” in European Conference of Optical Communication (ECOC), (2018).

Li, R.

Liu, D.

M. Xiang, Q. Zhuge, X. Zhou, M. Qiu, F. Zhang, T. M. Hoang, M. Y. S. Sowailem, M. Tang, D. Liu, S. Fu, and D. V. Plant, “Filtering tolerant digital subcarrier multiplexing system with flexible bit and power loading,” in Optical Fiber Communications Conference and Exhibition (OFC), (2017).

Lobato, I.

T. Rahman, A. Napoli, D. Rafique, B. Spinnler, M. Kuschnerov, I. Lobato, B. Clouet, M. Bohn, C. Okonkwo, and H. de Waardt, “On the mitigation of optical filtering penalties originating from ROADM cascade,” IEEE Photonics Technol. Lett. 26(2), 154–157 (2014).
[Crossref]

Lorences-Riesgo, A.

F. P. Guiomar, A. Lorences-Riesgo, A. M. Rosa Brusin, D. F. Morillo, A. Carena, and P. P. Monteiro, “Reducing ROADM filtering penalties using subcarrier multiplexing with offline bit and power loading,” in European Conference of Optical Communication (ECOC), (2018).

Maher, R.

Mertz, P.

Mitchell, M.

Monteiro, P. P.

F. P. Guiomar, A. Lorences-Riesgo, A. M. Rosa Brusin, D. F. Morillo, A. Carena, and P. P. Monteiro, “Reducing ROADM filtering penalties using subcarrier multiplexing with offline bit and power loading,” in European Conference of Optical Communication (ECOC), (2018).

Morillo, D. F.

F. P. Guiomar, A. Lorences-Riesgo, A. M. Rosa Brusin, D. F. Morillo, A. Carena, and P. P. Monteiro, “Reducing ROADM filtering penalties using subcarrier multiplexing with offline bit and power loading,” in European Conference of Optical Communication (ECOC), (2018).

Napoli, A.

T. Rahman, A. Napoli, D. Rafique, B. Spinnler, M. Kuschnerov, I. Lobato, B. Clouet, M. Bohn, C. Okonkwo, and H. de Waardt, “On the mitigation of optical filtering penalties originating from ROADM cascade,” IEEE Photonics Technol. Lett. 26(2), 154–157 (2014).
[Crossref]

Nespola, A.

Okonkwo, C.

T. Rahman, A. Napoli, D. Rafique, B. Spinnler, M. Kuschnerov, I. Lobato, B. Clouet, M. Bohn, C. Okonkwo, and H. de Waardt, “On the mitigation of optical filtering penalties originating from ROADM cascade,” IEEE Photonics Technol. Lett. 26(2), 154–157 (2014).
[Crossref]

Plant, D. V.

M. Xiang, Q. Zhuge, M. Qiu, F. Zhang, X. Zhou, M. Tang, S. Fu, and D. V. Plant, “Multi-subcarrier flexible bit-loading enable capacity improvement in meshed optical networks with cascaded ROADMs,” Opt. Express 25(21), 25046–25058 (2017).
[Crossref]

M. Xiang, Q. Zhuge, X. Zhou, M. Qiu, F. Zhang, T. M. Hoang, M. Y. S. Sowailem, M. Tang, D. Liu, S. Fu, and D. V. Plant, “Filtering tolerant digital subcarrier multiplexing system with flexible bit and power loading,” in Optical Fiber Communications Conference and Exhibition (OFC), (2017).

Poggiolini, P.

Poole, S.

Prabu, R. T.

M. Benisha, R. T. Prabu, and D. V. Thulasi Bai, “Requirements and challenges of 5G cellular systems,” in International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics, (2016).

Pulikkaseril, C.

Qiu, M.

M. Xiang, Q. Zhuge, M. Qiu, F. Zhang, X. Zhou, M. Tang, S. Fu, and D. V. Plant, “Multi-subcarrier flexible bit-loading enable capacity improvement in meshed optical networks with cascaded ROADMs,” Opt. Express 25(21), 25046–25058 (2017).
[Crossref]

M. Xiang, Q. Zhuge, X. Zhou, M. Qiu, F. Zhang, T. M. Hoang, M. Y. S. Sowailem, M. Tang, D. Liu, S. Fu, and D. V. Plant, “Filtering tolerant digital subcarrier multiplexing system with flexible bit and power loading,” in Optical Fiber Communications Conference and Exhibition (OFC), (2017).

Rafique, D.

T. Rahman, A. Napoli, D. Rafique, B. Spinnler, M. Kuschnerov, I. Lobato, B. Clouet, M. Bohn, C. Okonkwo, and H. de Waardt, “On the mitigation of optical filtering penalties originating from ROADM cascade,” IEEE Photonics Technol. Lett. 26(2), 154–157 (2014).
[Crossref]

Rahman, T.

T. Rahman, A. Napoli, D. Rafique, B. Spinnler, M. Kuschnerov, I. Lobato, B. Clouet, M. Bohn, C. Okonkwo, and H. de Waardt, “On the mitigation of optical filtering penalties originating from ROADM cascade,” IEEE Photonics Technol. Lett. 26(2), 154–157 (2014).
[Crossref]

Rahn, J.

Roelens, M. A. F.

Rosa Brusin, A. M.

F. P. Guiomar, A. Lorences-Riesgo, A. M. Rosa Brusin, D. F. Morillo, A. Carena, and P. P. Monteiro, “Reducing ROADM filtering penalties using subcarrier multiplexing with offline bit and power loading,” in European Conference of Optical Communication (ECOC), (2018).

Sanders, S.

Shartle, G.

Sokar, M.

Soudris, D.

G. Tzimpragos, C. Kachris, I. B. Djordjevic, M. Cvijetic, D. Soudris, and I. Tomkos, “A survey on FEC codes for 100 G and beyond optical networks,” IEEE Commun. Surv. Tutorials 18(1), 209–221 (2016).
[Crossref]

Sowailem, M. Y. S.

M. Xiang, Q. Zhuge, X. Zhou, M. Qiu, F. Zhang, T. M. Hoang, M. Y. S. Sowailem, M. Tang, D. Liu, S. Fu, and D. V. Plant, “Filtering tolerant digital subcarrier multiplexing system with flexible bit and power loading,” in Optical Fiber Communications Conference and Exhibition (OFC), (2017).

Spinnler, B.

T. Rahman, A. Napoli, D. Rafique, B. Spinnler, M. Kuschnerov, I. Lobato, B. Clouet, M. Bohn, C. Okonkwo, and H. de Waardt, “On the mitigation of optical filtering penalties originating from ROADM cascade,” IEEE Photonics Technol. Lett. 26(2), 154–157 (2014).
[Crossref]

Stewart, L. A.

Strasser, T. A.

T. A. Strasser and J. L. Wagener, “Wavelength-selective switches for ROADM applications,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1150–1157 (2010).
[Crossref]

Sun, H.

Tang, J. M.

E. Giacoumidis, X. Q. Jin, A. Tsokanos, and J. M. Tang, “Statistical performance comparisons of optical ofdm adaptive loading algorithms in multimode fiber-based transmission systems,” IEEE Photonics J. 2(6), 1051–1059 (2010).
[Crossref]

Tang, M.

M. Xiang, Q. Zhuge, M. Qiu, F. Zhang, X. Zhou, M. Tang, S. Fu, and D. V. Plant, “Multi-subcarrier flexible bit-loading enable capacity improvement in meshed optical networks with cascaded ROADMs,” Opt. Express 25(21), 25046–25058 (2017).
[Crossref]

M. Xiang, Q. Zhuge, X. Zhou, M. Qiu, F. Zhang, T. M. Hoang, M. Y. S. Sowailem, M. Tang, D. Liu, S. Fu, and D. V. Plant, “Filtering tolerant digital subcarrier multiplexing system with flexible bit and power loading,” in Optical Fiber Communications Conference and Exhibition (OFC), (2017).

Thulasi Bai, D. V.

M. Benisha, R. T. Prabu, and D. V. Thulasi Bai, “Requirements and challenges of 5G cellular systems,” in International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics, (2016).

Tibuleac, S.

M. Filer and S. Tibuleac, “Cascaded ROADM Tolerance of mQAM optical signals employing nyquist shaping,” in IEEE Photonics Conference, (2014).

Tomkos, I.

G. Tzimpragos, C. Kachris, I. B. Djordjevic, M. Cvijetic, D. Soudris, and I. Tomkos, “A survey on FEC codes for 100 G and beyond optical networks,” IEEE Commun. Surv. Tutorials 18(1), 209–221 (2016).
[Crossref]

Tsokanos, A.

E. Giacoumidis, X. Q. Jin, A. Tsokanos, and J. M. Tang, “Statistical performance comparisons of optical ofdm adaptive loading algorithms in multimode fiber-based transmission systems,” IEEE Photonics J. 2(6), 1051–1059 (2010).
[Crossref]

Tzimpragos, G.

G. Tzimpragos, C. Kachris, I. B. Djordjevic, M. Cvijetic, D. Soudris, and I. Tomkos, “A survey on FEC codes for 100 G and beyond optical networks,” IEEE Commun. Surv. Tutorials 18(1), 209–221 (2016).
[Crossref]

Vitthaladevuni, P.

P. Vitthaladevuni, M.-S. Alouini, and J. Kieffer, “Exact BER computation for cross QAM constellations,” IEEE Trans. Wireless Commun. 4(6), 3039–3050 (2005).
[Crossref]

P. Vitthaladevuni and M.-S. Alouini, “A closed-form expression for the exact BER of generalized PAM and QAM constellations,” IEEE Trans. Commun. 52(5), 698–700 (2004).
[Crossref]

Wagener, J. L.

T. A. Strasser and J. L. Wagener, “Wavelength-selective switches for ROADM applications,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1150–1157 (2010).
[Crossref]

Wang, Q.

Q. Wang, Y. Yue, J. Yao, and J. Anderson, “Adaptive compensation of bandwidth narrowing effect for coherent in-phase quadrature transponder through finite impulse response filter,” Appl. Sci. 9(9), 1950 (2019).
[Crossref]

Wu, K.

Xiang, M.

M. Xiang, Q. Zhuge, M. Qiu, F. Zhang, X. Zhou, M. Tang, S. Fu, and D. V. Plant, “Multi-subcarrier flexible bit-loading enable capacity improvement in meshed optical networks with cascaded ROADMs,” Opt. Express 25(21), 25046–25058 (2017).
[Crossref]

M. Xiang, Q. Zhuge, X. Zhou, M. Qiu, F. Zhang, T. M. Hoang, M. Y. S. Sowailem, M. Tang, D. Liu, S. Fu, and D. V. Plant, “Filtering tolerant digital subcarrier multiplexing system with flexible bit and power loading,” in Optical Fiber Communications Conference and Exhibition (OFC), (2017).

Yao, J.

Q. Wang, Y. Yue, J. Yao, and J. Anderson, “Adaptive compensation of bandwidth narrowing effect for coherent in-phase quadrature transponder through finite impulse response filter,” Appl. Sci. 9(9), 1950 (2019).
[Crossref]

Yue, Y.

Q. Wang, Y. Yue, J. Yao, and J. Anderson, “Adaptive compensation of bandwidth narrowing effect for coherent in-phase quadrature transponder through finite impulse response filter,” Appl. Sci. 9(9), 1950 (2019).
[Crossref]

Zami, T.

T. Zami, I. Fernandez de Jauregui Ruiz, A. Ghazisaeidi, and B. Lavigne, “Growing impact of optical filtering in future WDM networks,” in Optical Fiber Communication Conference (OFC), (2019).

Zhang, F.

M. Xiang, Q. Zhuge, M. Qiu, F. Zhang, X. Zhou, M. Tang, S. Fu, and D. V. Plant, “Multi-subcarrier flexible bit-loading enable capacity improvement in meshed optical networks with cascaded ROADMs,” Opt. Express 25(21), 25046–25058 (2017).
[Crossref]

M. Xiang, Q. Zhuge, X. Zhou, M. Qiu, F. Zhang, T. M. Hoang, M. Y. S. Sowailem, M. Tang, D. Liu, S. Fu, and D. V. Plant, “Filtering tolerant digital subcarrier multiplexing system with flexible bit and power loading,” in Optical Fiber Communications Conference and Exhibition (OFC), (2017).

Zhou, X.

M. Xiang, Q. Zhuge, M. Qiu, F. Zhang, X. Zhou, M. Tang, S. Fu, and D. V. Plant, “Multi-subcarrier flexible bit-loading enable capacity improvement in meshed optical networks with cascaded ROADMs,” Opt. Express 25(21), 25046–25058 (2017).
[Crossref]

M. Xiang, Q. Zhuge, X. Zhou, M. Qiu, F. Zhang, T. M. Hoang, M. Y. S. Sowailem, M. Tang, D. Liu, S. Fu, and D. V. Plant, “Filtering tolerant digital subcarrier multiplexing system with flexible bit and power loading,” in Optical Fiber Communications Conference and Exhibition (OFC), (2017).

Zhuge, Q.

M. Xiang, Q. Zhuge, M. Qiu, F. Zhang, X. Zhou, M. Tang, S. Fu, and D. V. Plant, “Multi-subcarrier flexible bit-loading enable capacity improvement in meshed optical networks with cascaded ROADMs,” Opt. Express 25(21), 25046–25058 (2017).
[Crossref]

M. Xiang, Q. Zhuge, X. Zhou, M. Qiu, F. Zhang, T. M. Hoang, M. Y. S. Sowailem, M. Tang, D. Liu, S. Fu, and D. V. Plant, “Filtering tolerant digital subcarrier multiplexing system with flexible bit and power loading,” in Optical Fiber Communications Conference and Exhibition (OFC), (2017).

Appl. Sci. (1)

Q. Wang, Y. Yue, J. Yao, and J. Anderson, “Adaptive compensation of bandwidth narrowing effect for coherent in-phase quadrature transponder through finite impulse response filter,” Appl. Sci. 9(9), 1950 (2019).
[Crossref]

IEEE Commun. Surv. Tutorials (1)

G. Tzimpragos, C. Kachris, I. B. Djordjevic, M. Cvijetic, D. Soudris, and I. Tomkos, “A survey on FEC codes for 100 G and beyond optical networks,” IEEE Commun. Surv. Tutorials 18(1), 209–221 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. A. Strasser and J. L. Wagener, “Wavelength-selective switches for ROADM applications,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1150–1157 (2010).
[Crossref]

IEEE Photonics J. (1)

E. Giacoumidis, X. Q. Jin, A. Tsokanos, and J. M. Tang, “Statistical performance comparisons of optical ofdm adaptive loading algorithms in multimode fiber-based transmission systems,” IEEE Photonics J. 2(6), 1051–1059 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (1)

T. Rahman, A. Napoli, D. Rafique, B. Spinnler, M. Kuschnerov, I. Lobato, B. Clouet, M. Bohn, C. Okonkwo, and H. de Waardt, “On the mitigation of optical filtering penalties originating from ROADM cascade,” IEEE Photonics Technol. Lett. 26(2), 154–157 (2014).
[Crossref]

IEEE Trans. Commun. (1)

P. Vitthaladevuni and M.-S. Alouini, “A closed-form expression for the exact BER of generalized PAM and QAM constellations,” IEEE Trans. Commun. 52(5), 698–700 (2004).
[Crossref]

IEEE Trans. Wireless Commun. (1)

P. Vitthaladevuni, M.-S. Alouini, and J. Kieffer, “Exact BER computation for cross QAM constellations,” IEEE Trans. Wireless Commun. 4(6), 3039–3050 (2005).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Commun. Netw. (1)

Opt. Express (3)

Other (6)

F. P. Guiomar, A. Lorences-Riesgo, A. M. Rosa Brusin, D. F. Morillo, A. Carena, and P. P. Monteiro, “Reducing ROADM filtering penalties using subcarrier multiplexing with offline bit and power loading,” in European Conference of Optical Communication (ECOC), (2018).

M. Filer and S. Tibuleac, “Cascaded ROADM Tolerance of mQAM optical signals employing nyquist shaping,” in IEEE Photonics Conference, (2014).

M. Benisha, R. T. Prabu, and D. V. Thulasi Bai, “Requirements and challenges of 5G cellular systems,” in International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics, (2016).

T. Zami, I. Fernandez de Jauregui Ruiz, A. Ghazisaeidi, and B. Lavigne, “Growing impact of optical filtering in future WDM networks,” in Optical Fiber Communication Conference (OFC), (2019).

L. Li, A. Abd El-Rahman, and J. Cartledge, “Effect of bandwidth narrowing due to cascaded wavelength elective switches on the generalized mutual information of probabilistically shaped 64-QAM systems,” in European Conference of Optical Communication (ECOC), (2018).

M. Xiang, Q. Zhuge, X. Zhou, M. Qiu, F. Zhang, T. M. Hoang, M. Y. S. Sowailem, M. Tang, D. Liu, S. Fu, and D. V. Plant, “Filtering tolerant digital subcarrier multiplexing system with flexible bit and power loading,” in Optical Fiber Communications Conference and Exhibition (OFC), (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Effects of the transfer functions of (a) a real WSS filter and of (b) the zeroth-order approximated WSS filter on an $8\times 4$ GBaud MSC input signal after 8 cascaded WSSs.
Fig. 2.
Fig. 2. Block diagram of the optimization and control process we propose based on the zeroth-order approximation for the WSS transfer function.
Fig. 3.
Fig. 3. Impact of the number of subcarriers on (a) the total WSS-induced loss and (b) the required SNR, without applying any bit and/or power-loading strategy. The simulated optical filtering corresponds to 8 cascaded WSSs.
Fig. 4.
Fig. 4. Required SNR for an increasing number of cascaded WSSs in case of (a) lumped noise at the RX without equalization, (b) lumped noise at the RX with equalization, (c) equally distributed noise without equalization, (d) equally distributed noise with equalization. In (a)–(d), PL and/or BL curves are the result of a brute-force optimization. Then (e) theoretical required SNR for an increasing number of cascaded WSSs obtained using the analytical framework and (f) error deviation between the simulation and the theory only for the case with equalization.
Fig. 5.
Fig. 5. Comparison of BPL based on theoretical PRs (red dashed line) and BPL based on brute-force optimized PRs (black dashed line) with equalization for an $8\times 4$ GBaud MSC signal and lumped noise.
Fig. 6.
Fig. 6. (a) Theoretical PRs per subcarrier and (b) optimized PRs obtained from brute-force BPL for an $8\times 4$ GBaud signal in a lumped noise scenario.
Fig. 7.
Fig. 7. Comparison among different power ratio strategies in terms of required SNR versus number of subcarriers for (a) 2, (b) 4, (c) 6 and (d) 8 cascaded WSSs.
Fig. 8.
Fig. 8. Experimental setup for the optical back-to-back scenario with ROADM filtering emulation.
Fig. 9.
Fig. 9. Experimental traces obtained from the OSA for the emulation of a different number of cascaded ROADMs ($N_{\mathrm {WSS}}=0\dots 8$).
Fig. 10.
Fig. 10. Experimental required SNR versus number of subcarriers for (a) 2, (b) 4, (c) 6 and (d) 8 cascaded WSSs.

Tables (1)

Tables Icon

Table 1. Best FDHMF constellations for different number of cascaded WSSs respectively based on theory (on the left) and on brute-force BPL optimization (on the right) for a $8\times 4$ GBaud signal in a lumped noise scenario.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

S(f)=[12erf(B/2f2σ)12erf(B/2f2σ)]NWSS,
L^SCn=fSCnRs2(1+α)fSCn+Rs2(1+α)|S(f)p(ffSCn)|2df,
fSCn=(nNSC+12)(1+α)Rs,
L^SCn=1RsfSCnRs2fSCn+Rs2|S(f)|2df.
SNRSCn=SNRMSC10log10(L^SCn)+PRSCn,
PRSCn=10log10(NSCPSCnn=1NSCPSCn).
BERSCn=Ψ(SNRSCn,MSCn),
BERMSC(SNRSC,MSC)=1n=1NSClog2(MSCn)n=1NSCΨ(SNRSCn,MSCn)log2(MSCn),
PRSC,PL=argminPRSCR[BERMSC(SNRMSC10log10(L^SC)+PRSC,MSC)],
MSC,BL=argminMSCn=2k,kI[BERMSC(SNRSC,MSC)],
[MSC,BPL,PRSC,BPL]=argminPRSCRMSCn=2k,kI[BERMSC(SNRMSC10log10(L^SC)+PRSC,MSC)].
Ψ(SNRMSC)<1NSCk=1NSCΨ(SNRSCk),