Abstract

We design and fabricate an on-substrate bowtie photonic crystal (PhC) cavity in silicon. By optimizing the bowtie shapes in the unit cells of the PhC cavity, the maximum of the electric field can be highly confined in the bowtie tips. Due to such confinement, an ultra-low mode volume of ∼0.1(λ/nSi)3 is achieved, which is more than an order of magnitude smaller than the previous on-substrate nanobeam cavities. An ultra-high quality (Q) factor as large as 106 is predicted by simulation, and up to $1.4 \times {10^4}$ is measured in experiment. The observation of pronounced thermo-optic bistability is consistent with the strong confinement of light in the cavities.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref]
  2. S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
    [Crossref]
  3. S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
    [Crossref]
  4. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
    [Crossref]
  5. M. SoljaČiĆ and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Materials 3(4), 211–219 (2004).
  6. D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast Photon-Photon Interaction in a Strongly Coupled Quantum Dot-Cavity System,” Phys. Rev. Lett. 108(9), 093604 (2012).
    [Crossref]
  7. S. Sun, H. Kim, Z. Luo, G. S. Solomon, and E. Waks, “A single-photon switch and transistor enabled by a solid-state quantum memory,” Science 361(6397), 57–60 (2018).
    [Crossref]
  8. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities,” Science 317(5839), 783–787 (2007).
    [Crossref]
  9. P. Xu, J. Zheng, J. Zhou, Y. Chen, C. Zou, and A. Majumdar, “Multi-slot photonic crystal cavities for high-sensitivity refractive index sensing,” Opt. Express 27(3), 3609–3616 (2019).
    [Crossref]
  10. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
    [Crossref]
  11. M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics,” Opt. Express 15(8), 4694–4704 (2007).
    [Crossref]
  12. E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y.-G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18(15), 15859–15869 (2010).
    [Crossref]
  13. Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
    [Crossref]
  14. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
    [Crossref]
  15. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
    [Crossref]
  16. Q. Quan, I. B. Burgess, S. K. Y. Tang, D. L. Floyd, and M. Loncar, “High-Q, low index-contrast polymeric photonic crystal nanobeam cavities,” Opt. Express 19(22), 22191–22197 (2011).
    [Crossref]
  17. A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. De la Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16(16), 12084–12089 (2008).
    [Crossref]
  18. J. D. Ryckman and S. M. Weiss, “Low mode volume slotted photonic crystal single nanobeam cavity,” Appl. Phys. Lett. 101(7), 071104 (2012).
    [Crossref]
  19. P. Seidler, K. Lister, U. Drechsler, J. Hofrichter, and T. Stoeferle, “Slotted photonic crystal nanobeam cavity with an ultrahigh quality factor-to-mode volume ratio,” Opt. Express 21(26), 32468–32483 (2013).
    [Crossref]
  20. A. Gondarenko and M. Lipson, “Low modal volume dipole-like dielectric slab resonator,” Opt. Express 16(22), 17689–17694 (2008).
    [Crossref]
  21. S. Hu and S. M. Weiss, “Design of Photonic Crystal Cavities for Extreme Light Concentration,” ACS Photonics 3(9), 1647–1653 (2016).
    [Crossref]
  22. H. Choi, M. Heuck, and D. Englund, “Self-Similar Nanocavity Design with Ultrasmall Mode Volume for Single-Photon Nonlinearities,” Phys. Rev. Lett. 118(22), 223605 (2017).
    [Crossref]
  23. S. Hu, M. Khater, R. Salas-Montiel, E. Kratschmer, S. Engelmann, W. M. J. Green, and S. M. Weiss, “Experimental realization of deep-subwavelength confinement in dielectric optical resonators,” Sci. Adv. 4(8), eaat2355 (2018).
    [Crossref]
  24. T. K. Fryett, Y. Chen, J. Whitehead, Z. M. Peycke, X. Xu, and A. Majumdar, “Encapsulated Silicon Nitride Nanobeam Cavity for Hybrid Nanophotonics,” ACS Photonics 5(6), 2176–2181 (2018).
    [Crossref]
  25. Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
    [Crossref]
  26. Y. Zhang, S. Han, S. Zhang, P. Liu, and Y. Shi, “High-Q and High-Sensitivity Photonic Crystal Cavity Sensor,” IEEE Photonics J. 7(5), 1–6 (2015).
    [Crossref]
  27. L.-D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Express 17(23), 21108–21117 (2009).
    [Crossref]
  28. T. Uesugi, B.-S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14(1), 377–386 (2006).
    [Crossref]
  29. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29(20), 2387–2389 (2004).
    [Crossref]
  30. L. Jin, X. Fu, B. Yang, Y. Shi, and D. Dai, “Optical bistability in a high-Q racetrack resonator based on small SU-8 ridge waveguides,” Opt. Lett. 38(12), 2134–2136 (2013).
    [Crossref]
  31. J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express 15(24), 16161–16176 (2007).
    [Crossref]
  32. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13(7), 2678–2687 (2005).
    [Crossref]

2019 (1)

2018 (3)

S. Sun, H. Kim, Z. Luo, G. S. Solomon, and E. Waks, “A single-photon switch and transistor enabled by a solid-state quantum memory,” Science 361(6397), 57–60 (2018).
[Crossref]

S. Hu, M. Khater, R. Salas-Montiel, E. Kratschmer, S. Engelmann, W. M. J. Green, and S. M. Weiss, “Experimental realization of deep-subwavelength confinement in dielectric optical resonators,” Sci. Adv. 4(8), eaat2355 (2018).
[Crossref]

T. K. Fryett, Y. Chen, J. Whitehead, Z. M. Peycke, X. Xu, and A. Majumdar, “Encapsulated Silicon Nitride Nanobeam Cavity for Hybrid Nanophotonics,” ACS Photonics 5(6), 2176–2181 (2018).
[Crossref]

2017 (1)

H. Choi, M. Heuck, and D. Englund, “Self-Similar Nanocavity Design with Ultrasmall Mode Volume for Single-Photon Nonlinearities,” Phys. Rev. Lett. 118(22), 223605 (2017).
[Crossref]

2016 (1)

S. Hu and S. M. Weiss, “Design of Photonic Crystal Cavities for Extreme Light Concentration,” ACS Photonics 3(9), 1647–1653 (2016).
[Crossref]

2015 (2)

Y. Zhang, S. Han, S. Zhang, P. Liu, and Y. Shi, “High-Q and High-Sensitivity Photonic Crystal Cavity Sensor,” IEEE Photonics J. 7(5), 1–6 (2015).
[Crossref]

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref]

2013 (2)

2012 (3)

J. D. Ryckman and S. M. Weiss, “Low mode volume slotted photonic crystal single nanobeam cavity,” Appl. Phys. Lett. 101(7), 071104 (2012).
[Crossref]

D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast Photon-Photon Interaction in a Strongly Coupled Quantum Dot-Cavity System,” Phys. Rev. Lett. 108(9), 093604 (2012).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

2011 (2)

2010 (4)

E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y.-G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18(15), 15859–15869 (2010).
[Crossref]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

2009 (2)

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

L.-D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Express 17(23), 21108–21117 (2009).
[Crossref]

2008 (2)

2007 (3)

2006 (1)

2005 (1)

2004 (2)

V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29(20), 2387–2389 (2004).
[Crossref]

M. SoljaČiĆ and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Materials 3(4), 211–219 (2004).

2003 (2)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref]

Adibi, A.

Akahane, Y.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref]

Almeida, V. R.

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities,” Science 317(5839), 783–787 (2007).
[Crossref]

Asano, T.

T. Uesugi, B.-S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14(1), 377–386 (2006).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref]

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bajcsy, M.

D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast Photon-Photon Interaction in a Strongly Coupled Quantum Dot-Cavity System,” Phys. Rev. Lett. 108(9), 093604 (2012).
[Crossref]

Bermel, P.

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bravo-Abad, J.

Buckley, S.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref]

Burgess, I. B.

Chen, Y.

P. Xu, J. Zheng, J. Zhou, Y. Chen, C. Zou, and A. Majumdar, “Multi-slot photonic crystal cavities for high-sensitivity refractive index sensing,” Opt. Express 27(3), 3609–3616 (2019).
[Crossref]

T. K. Fryett, Y. Chen, J. Whitehead, Z. M. Peycke, X. Xu, and A. Majumdar, “Encapsulated Silicon Nitride Nanobeam Cavity for Hybrid Nanophotonics,” ACS Photonics 5(6), 2176–2181 (2018).
[Crossref]

Choi, H.

H. Choi, M. Heuck, and D. Englund, “Self-Similar Nanocavity Design with Ultrasmall Mode Volume for Single-Photon Nonlinearities,” Phys. Rev. Lett. 118(22), 223605 (2017).
[Crossref]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Dai, D.

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

De la Rue, R. M.

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Deotare, P. B.

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

Drechsler, U.

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Engelmann, S.

S. Hu, M. Khater, R. Salas-Montiel, E. Kratschmer, S. Engelmann, W. M. J. Green, and S. M. Weiss, “Experimental realization of deep-subwavelength confinement in dielectric optical resonators,” Sci. Adv. 4(8), eaat2355 (2018).
[Crossref]

Englund, D.

H. Choi, M. Heuck, and D. Englund, “Self-Similar Nanocavity Design with Ultrasmall Mode Volume for Single-Photon Nonlinearities,” Phys. Rev. Lett. 118(22), 223605 (2017).
[Crossref]

D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast Photon-Photon Interaction in a Strongly Coupled Quantum Dot-Cavity System,” Phys. Rev. Lett. 108(9), 093604 (2012).
[Crossref]

Faraon, A.

D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast Photon-Photon Interaction in a Strongly Coupled Quantum Dot-Cavity System,” Phys. Rev. Lett. 108(9), 093604 (2012).
[Crossref]

Feng, L.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref]

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities,” Science 317(5839), 783–787 (2007).
[Crossref]

Floyd, D. L.

Frank, I. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities,” Science 317(5839), 783–787 (2007).
[Crossref]

Fryett, T. K.

T. K. Fryett, Y. Chen, J. Whitehead, Z. M. Peycke, X. Xu, and A. Majumdar, “Encapsulated Silicon Nitride Nanobeam Cavity for Hybrid Nanophotonics,” ACS Photonics 5(6), 2176–2181 (2018).
[Crossref]

Fu, X.

Gondarenko, A.

Green, W. M. J.

S. Hu, M. Khater, R. Salas-Montiel, E. Kratschmer, S. Engelmann, W. M. J. Green, and S. M. Weiss, “Experimental realization of deep-subwavelength confinement in dielectric optical resonators,” Sci. Adv. 4(8), eaat2355 (2018).
[Crossref]

Han, S.

Y. Zhang, S. Han, S. Zhang, P. Liu, and Y. Shi, “High-Q and High-Sensitivity Photonic Crystal Cavity Sensor,” IEEE Photonics J. 7(5), 1–6 (2015).
[Crossref]

Haret, L.-D.

Hatami, F.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref]

Heuck, M.

H. Choi, M. Heuck, and D. Englund, “Self-Similar Nanocavity Design with Ultrasmall Mode Volume for Single-Photon Nonlinearities,” Phys. Rev. Lett. 118(22), 223605 (2017).
[Crossref]

Hofrichter, J.

Hu, S.

S. Hu, M. Khater, R. Salas-Montiel, E. Kratschmer, S. Engelmann, W. M. J. Green, and S. M. Weiss, “Experimental realization of deep-subwavelength confinement in dielectric optical resonators,” Sci. Adv. 4(8), eaat2355 (2018).
[Crossref]

S. Hu and S. M. Weiss, “Design of Photonic Crystal Cavities for Extreme Light Concentration,” ACS Photonics 3(9), 1647–1653 (2016).
[Crossref]

Jin, L.

Joannopoulos, J. D.

J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express 15(24), 16161–16176 (2007).
[Crossref]

M. SoljaČiĆ and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Materials 3(4), 211–219 (2004).

Johnson, N. P.

Johnson, S. G.

Kakitsuka, T.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Kawaguchi, Y.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Kawasaki, K.

Khan, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

Khater, M.

S. Hu, M. Khater, R. Salas-Montiel, E. Kratschmer, S. Engelmann, W. M. J. Green, and S. M. Weiss, “Experimental realization of deep-subwavelength confinement in dielectric optical resonators,” Sci. Adv. 4(8), eaat2355 (2018).
[Crossref]

Kim, H.

S. Sun, H. Kim, Z. Luo, G. S. Solomon, and E. Waks, “A single-photon switch and transistor enabled by a solid-state quantum memory,” Science 361(6397), 57–60 (2018).
[Crossref]

Kira, G.

Kratschmer, E.

S. Hu, M. Khater, R. Salas-Montiel, E. Kratschmer, S. Engelmann, W. M. J. Green, and S. M. Weiss, “Experimental realization of deep-subwavelength confinement in dielectric optical resonators,” Sci. Adv. 4(8), eaat2355 (2018).
[Crossref]

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities,” Science 317(5839), 783–787 (2007).
[Crossref]

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Kuramochi, E.

Lipson, M.

Lister, K.

Liu, P.

Y. Zhang, S. Han, S. Zhang, P. Liu, and Y. Shi, “High-Q and High-Sensitivity Photonic Crystal Cavity Sensor,” IEEE Photonics J. 7(5), 1–6 (2015).
[Crossref]

Loncar, M.

Q. Quan, I. B. Burgess, S. K. Y. Tang, D. L. Floyd, and M. Loncar, “High-Q, low index-contrast polymeric photonic crystal nanobeam cavities,” Opt. Express 19(22), 22191–22197 (2011).
[Crossref]

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[Crossref]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

Luo, Z.

S. Sun, H. Kim, Z. Luo, G. S. Solomon, and E. Waks, “A single-photon switch and transistor enabled by a solid-state quantum memory,” Science 361(6397), 57–60 (2018).
[Crossref]

Majumdar, A.

P. Xu, J. Zheng, J. Zhou, Y. Chen, C. Zou, and A. Majumdar, “Multi-slot photonic crystal cavities for high-sensitivity refractive index sensing,” Opt. Express 27(3), 3609–3616 (2019).
[Crossref]

T. K. Fryett, Y. Chen, J. Whitehead, Z. M. Peycke, X. Xu, and A. Majumdar, “Encapsulated Silicon Nitride Nanobeam Cavity for Hybrid Nanophotonics,” ACS Photonics 5(6), 2176–2181 (2018).
[Crossref]

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref]

D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast Photon-Photon Interaction in a Strongly Coupled Quantum Dot-Cavity System,” Phys. Rev. Lett. 108(9), 093604 (2012).
[Crossref]

Mandrus, D. G.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref]

Matsuo, S.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

McCutcheon, M. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

Mitsugi, S.

Noda, S.

T. Uesugi, B.-S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14(1), 377–386 (2006).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref]

Notomi, M.

Nozaki, K.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

Petroff, P.

D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast Photon-Photon Interaction in a Strongly Coupled Quantum Dot-Cavity System,” Phys. Rev. Lett. 108(9), 093604 (2012).
[Crossref]

Peycke, Z. M.

T. K. Fryett, Y. Chen, J. Whitehead, Z. M. Peycke, X. Xu, and A. Majumdar, “Encapsulated Silicon Nitride Nanobeam Cavity for Hybrid Nanophotonics,” ACS Photonics 5(6), 2176–2181 (2018).
[Crossref]

Quan, Q.

Rodriguez, A.

Roh, Y.-G.

Ryckman, J. D.

J. D. Ryckman and S. M. Weiss, “Low mode volume slotted photonic crystal single nanobeam cavity,” Appl. Phys. Lett. 101(7), 071104 (2012).
[Crossref]

Salas-Montiel, R.

S. Hu, M. Khater, R. Salas-Montiel, E. Kratschmer, S. Engelmann, W. M. J. Green, and S. M. Weiss, “Experimental realization of deep-subwavelength confinement in dielectric optical resonators,” Sci. Adv. 4(8), eaat2355 (2018).
[Crossref]

Sato, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Schaibley, J. R.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref]

Segawa, T.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Seidler, P.

Shi, Y.

Y. Zhang, S. Han, S. Zhang, P. Liu, and Y. Shi, “High-Q and High-Sensitivity Photonic Crystal Cavity Sensor,” IEEE Photonics J. 7(5), 1–6 (2015).
[Crossref]

L. Jin, X. Fu, B. Yang, Y. Shi, and D. Dai, “Optical bistability in a high-Q racetrack resonator based on small SU-8 ridge waveguides,” Opt. Lett. 38(12), 2134–2136 (2013).
[Crossref]

Shinya, A.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13(7), 2678–2687 (2005).
[Crossref]

Soljacic, M.

J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express 15(24), 16161–16176 (2007).
[Crossref]

M. SoljaČiĆ and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Materials 3(4), 211–219 (2004).

Solomon, G. S.

S. Sun, H. Kim, Z. Luo, G. S. Solomon, and E. Waks, “A single-photon switch and transistor enabled by a solid-state quantum memory,” Science 361(6397), 57–60 (2018).
[Crossref]

Soltani, M.

Song, B.-S.

T. Uesugi, B.-S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14(1), 377–386 (2006).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref]

Sorel, M.

Stoeferle, T.

Sun, S.

S. Sun, H. Kim, Z. Luo, G. S. Solomon, and E. Waks, “A single-photon switch and transistor enabled by a solid-state quantum memory,” Science 361(6397), 57–60 (2018).
[Crossref]

Tanabe, T.

Tang, S. K. Y.

Taniyama, H.

E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y.-G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18(15), 15859–15869 (2010).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

Uesugi, T.

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities,” Science 317(5839), 783–787 (2007).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref]

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Vuckovic, J.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref]

D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast Photon-Photon Interaction in a Strongly Coupled Quantum Dot-Cavity System,” Phys. Rev. Lett. 108(9), 093604 (2012).
[Crossref]

Waks, E.

S. Sun, H. Kim, Z. Luo, G. S. Solomon, and E. Waks, “A single-photon switch and transistor enabled by a solid-state quantum memory,” Science 361(6397), 57–60 (2018).
[Crossref]

Weiss, S. M.

S. Hu, M. Khater, R. Salas-Montiel, E. Kratschmer, S. Engelmann, W. M. J. Green, and S. M. Weiss, “Experimental realization of deep-subwavelength confinement in dielectric optical resonators,” Sci. Adv. 4(8), eaat2355 (2018).
[Crossref]

S. Hu and S. M. Weiss, “Design of Photonic Crystal Cavities for Extreme Light Concentration,” ACS Photonics 3(9), 1647–1653 (2016).
[Crossref]

J. D. Ryckman and S. M. Weiss, “Low mode volume slotted photonic crystal single nanobeam cavity,” Appl. Phys. Lett. 101(7), 071104 (2012).
[Crossref]

Whitehead, J.

T. K. Fryett, Y. Chen, J. Whitehead, Z. M. Peycke, X. Xu, and A. Majumdar, “Encapsulated Silicon Nitride Nanobeam Cavity for Hybrid Nanophotonics,” ACS Photonics 5(6), 2176–2181 (2018).
[Crossref]

Wu, S.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref]

Xu, P.

Xu, X.

T. K. Fryett, Y. Chen, J. Whitehead, Z. M. Peycke, X. Xu, and A. Majumdar, “Encapsulated Silicon Nitride Nanobeam Cavity for Hybrid Nanophotonics,” ACS Photonics 5(6), 2176–2181 (2018).
[Crossref]

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref]

Yan, J.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref]

Yang, B.

Yao, W.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref]

Yegnanarayanan, S.

Zain, A. R. M.

Zhang, S.

Y. Zhang, S. Han, S. Zhang, P. Liu, and Y. Shi, “High-Q and High-Sensitivity Photonic Crystal Cavity Sensor,” IEEE Photonics J. 7(5), 1–6 (2015).
[Crossref]

Zhang, Y.

Y. Zhang, S. Han, S. Zhang, P. Liu, and Y. Shi, “High-Q and High-Sensitivity Photonic Crystal Cavity Sensor,” IEEE Photonics J. 7(5), 1–6 (2015).
[Crossref]

Zheng, J.

Zhou, J.

Zou, C.

ACS Photonics (2)

S. Hu and S. M. Weiss, “Design of Photonic Crystal Cavities for Extreme Light Concentration,” ACS Photonics 3(9), 1647–1653 (2016).
[Crossref]

T. K. Fryett, Y. Chen, J. Whitehead, Z. M. Peycke, X. Xu, and A. Majumdar, “Encapsulated Silicon Nitride Nanobeam Cavity for Hybrid Nanophotonics,” ACS Photonics 5(6), 2176–2181 (2018).
[Crossref]

Appl. Phys. Lett. (3)

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

J. D. Ryckman and S. M. Weiss, “Low mode volume slotted photonic crystal single nanobeam cavity,” Appl. Phys. Lett. 101(7), 071104 (2012).
[Crossref]

IEEE Photonics J. (1)

Y. Zhang, S. Han, S. Zhang, P. Liu, and Y. Shi, “High-Q and High-Sensitivity Photonic Crystal Cavity Sensor,” IEEE Photonics J. 7(5), 1–6 (2015).
[Crossref]

Laser Photonics Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Nat. Materials (1)

M. SoljaČiĆ and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Materials 3(4), 211–219 (2004).

Nat. Photonics (2)

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

Nature (3)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref]

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref]

Opt. Express (12)

M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics,” Opt. Express 15(8), 4694–4704 (2007).
[Crossref]

E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y.-G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18(15), 15859–15869 (2010).
[Crossref]

P. Seidler, K. Lister, U. Drechsler, J. Hofrichter, and T. Stoeferle, “Slotted photonic crystal nanobeam cavity with an ultrahigh quality factor-to-mode volume ratio,” Opt. Express 21(26), 32468–32483 (2013).
[Crossref]

A. Gondarenko and M. Lipson, “Low modal volume dipole-like dielectric slab resonator,” Opt. Express 16(22), 17689–17694 (2008).
[Crossref]

Q. Quan, I. B. Burgess, S. K. Y. Tang, D. L. Floyd, and M. Loncar, “High-Q, low index-contrast polymeric photonic crystal nanobeam cavities,” Opt. Express 19(22), 22191–22197 (2011).
[Crossref]

A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. De la Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16(16), 12084–12089 (2008).
[Crossref]

L.-D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Express 17(23), 21108–21117 (2009).
[Crossref]

T. Uesugi, B.-S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14(1), 377–386 (2006).
[Crossref]

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[Crossref]

J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express 15(24), 16161–16176 (2007).
[Crossref]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13(7), 2678–2687 (2005).
[Crossref]

P. Xu, J. Zheng, J. Zhou, Y. Chen, C. Zou, and A. Majumdar, “Multi-slot photonic crystal cavities for high-sensitivity refractive index sensing,” Opt. Express 27(3), 3609–3616 (2019).
[Crossref]

Opt. Lett. (2)

Phys. Rev. Lett. (2)

H. Choi, M. Heuck, and D. Englund, “Self-Similar Nanocavity Design with Ultrasmall Mode Volume for Single-Photon Nonlinearities,” Phys. Rev. Lett. 118(22), 223605 (2017).
[Crossref]

D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast Photon-Photon Interaction in a Strongly Coupled Quantum Dot-Cavity System,” Phys. Rev. Lett. 108(9), 093604 (2012).
[Crossref]

Sci. Adv. (1)

S. Hu, M. Khater, R. Salas-Montiel, E. Kratschmer, S. Engelmann, W. M. J. Green, and S. M. Weiss, “Experimental realization of deep-subwavelength confinement in dielectric optical resonators,” Sci. Adv. 4(8), eaat2355 (2018).
[Crossref]

Science (2)

S. Sun, H. Kim, Z. Luo, G. S. Solomon, and E. Waks, “A single-photon switch and transistor enabled by a solid-state quantum memory,” Science 361(6397), 57–60 (2018).
[Crossref]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities,” Science 317(5839), 783–787 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Schematic of the bowtie PhC cavity in silicon-on-insulator platform. (b) Top view of the bowtie PhC cavity. Inset: enlarged view of the framed part. The electric field distribution at the resonance wavelength (c) in the xy plane and (d) in the xz plane. (e)The blue line (Wx = 0.6a) and red lines (Wx = 0.84a) show the band diagram of the bowtie PhC cavity. The yellow dashed line indicates the resonant frequency. The gray region indicates the light cone of the silica. The corresponding field distributions of lower band-edge mode in the center unit cell at the (f) top view (xy plane) and (g) cross-sectional view (yz plane).
Fig. 2.
Fig. 2. The variation of the Q factor and the mode volume of the bowtie PhC with a change in the (a) tip width of the Wc, (b) width Wx(0) of the bowtie-shaped unit cell, (c) Wb, and (d) number of the Gaussian mirror (Nmirror).
Fig. 3.
Fig. 3. (a), (b) The SEM of all device and the coupling region connecting the strip/bowtie structure waveguides. (c) SEM of the GC. (d) The measured transmission spectrum of the bowtie PhC cavity in air. The fundamental mode has a Q factor of 1.4×104 at λ=1525.8 nm.
Fig. 4.
Fig. 4. (a) Asymmetric transmission spectra of the bowtie PhC single nanobeam cavity resonant mode at different input powers, showing optical bistability. The laser wavelength was swept from shorter to longer wavelengths across the cavity resonance. (b) Resonance-wavelength λres as a functin of the output power.
Fig. 5.
Fig. 5. (a) Transmission spectrum of the fabricated bowtie PhC single nanobeam cavity at different ambient temperatures. (b) Resonant wavelength varies with the ambient temperature for the bowtie PhC nanobeam cavity. The pink line indicates the error estimates with 95% prediction interval.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V m = ε ( r ) | E ( r ) | 2 d V max ( ε ( r ) | E ( r ) | 2 ) ,