Abstract

A tilted-pulse-front pumped terahertz pulse source is proposed for the generation of extremely high field single-cycle terahertz pulses. The very simple and compact source consists of a single crystal slab having a blazed reflection grating grooved in its back surface. Its further important advantages are the energy scalability and the symmetric THz beam profile. Generation of $\sim$50 MV/cm focused field with 10.8 mJ terahertz pulse energy is predicted for a 7 cm diameter LiNbO$_3$ crystal, if the pump pulse is of 870 mJ energy, 1030 nm central wavelength and 1 ps pulse duration. Such sources can decisively promote the realization of THz driven electron and proton accelerators and open the way for a new generation concept of terahertz pulses having extreme high field.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Numerical investigation of a scalable setup for efficient terahertz generation using a segmented tilted-pulse-front excitation

László Pálfalvi, György Tóth, Levente Tokodi, Zsuzsanna Márton, József András Fülöp, Gábor Almási, and János Hebling
Opt. Express 25(24) 29560-29573 (2017)

Numerical investigation of imaging-free terahertz generation setup using segmented tilted-pulse-front excitation

György Tóth, László Pálfalvi, József A. Fülöp, Gergő Krizsán, Nicholas H. Matlis, Gábor Almási, and János Hebling
Opt. Express 27(5) 7762-7775 (2019)

Towards generation of mJ-level ultrashort THz pulses by optical rectification

József András Fülöp, László Pálfalvi, Matthias C. Hoffmann, and János Hebling
Opt. Express 19(16) 15090-15097 (2011)

References

  • View by:
  • |
  • |
  • |

  1. E. A. Nanni, K.-H. H. W. R. Huang, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
    [Crossref]
  2. D.-F. Zhang, A. Fallahi, M. Hemmer, X.-J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (steam),” Nat. Photonics 12(6), 336–342 (2018).
    [Crossref]
  3. L. Pálfalvi, J. A. Fülöp, G. Tóth, and J. Hebling, “Evanescent-wave proton postaccelerator driven by intense thz pulse,” Phys. Rev. Spec. Top.--Accel. Beams 17(3), 031301 (2014).
    [Crossref]
  4. A. Sharma, Z. Tibai, and J. Hebling, “Intense tera-hertz laser driven proton acceleration in plasmas,” Phys. Plasmas 23(6), 063111 (2016).
    [Crossref]
  5. C. Vicario, A. V. Ovchinnikov, S. I. Ashitkov, M. B. Agranat, V. E. Fortov, and C. P. Hauri, “Generation of 0.9-mj thz pulses in dstms pumped by a cr:mg2sio4 laser,” Opt. Lett. 39(23), 6632–6635 (2014).
    [Crossref]
  6. J. Hebling, G. Almási, I. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large-area thz-pulse generation,” Opt. Express 10(21), 1161–1166 (2002).
    [Crossref]
  7. J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of thz pulses with 0.4 mj energy,” Opt. Express 22(17), 20155–20163 (2014).
    [Crossref]
  8. J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
    [Crossref]
  9. M. Kunitski, M. Richter, M. D. Thomson, A. Vredenborg, J. Wu, T. Jahnke, M. Schöffler, H. Schmidt-Böcking, H. G. Roskos, and R. Dörner, “Optimization of single-cycle terahertz generation in linbo3 for sub-50 femtosecond pump pulses,” Opt. Express 21(6), 6826–6836 (2013).
    [Crossref]
  10. J. Hebling, “Derivation of the pulse front tilt caused by angular dispersion,” Opt. Quantum Electron. 28(12), 1759–1763 (1996).
    [Crossref]
  11. L. Pálfalvi, J. A. Fülöp, G. Almási, and J. Hebling, “Novel setups for extremely high power single-cycle terahertz pulse generation by optical rectification,” Appl. Phys. Lett. 92(17), 171107 (2008).
    [Crossref]
  12. J. A. Fülöp, G. Polónyi, B. Monoszlai, G. Andriukaitis, T. Balciunas, A. Pugzlys, G. Arthur, A. Baltuska, and J. Hebling, “Highly efficient scalable monolithic semiconductor terahertz pulse source,” Optica 3(10), 1075–1078 (2016).
    [Crossref]
  13. Z. Ollmann, J. Hebling, and G. Almási, “Design of a contact grating setup for mj-energy thz pulse generation by optical rectification,” Appl. Phys. B: Lasers Opt. 108(4), 821–826 (2012).
    [Crossref]
  14. M. Tsubouchi, K. Nagashima, F. Yoshida, Y. Ochi, and M. Maruyama, “Contact grating device with fabry-perot resonator for effective terahertz light generation,” Opt. Lett. 39(18), 5439–5442 (2014).
    [Crossref]
  15. B. K. Ofori-Okai, P. Sivarajah, W. R. Huang, and K. A. Nelson, “Thz generation using a reflective stair-step echelon,” Opt. Express 24(5), 5057–5068 (2016).
    [Crossref]
  16. L. Pálfalvi, G. Tóth, L. Tokodi, Z. Márton, J. A. Fülöp, G. Almási, and J. Hebling, “Numerical investigation of a scalable setup for efficient terahertz generation using a segmented tilted-pulse-front excitation,” Opt. Express 25(24), 29560–29573 (2017).
    [Crossref]
  17. P. S. Nugraha, G. Krizsán, C. Lombosi, L. Pálfalvi, G. Tóth, G. Almási, J. A. Fülöp, and J. Hebling, “Demonstration of a tilted-pulse-front pumped plane-parallel slab terahertz source,” Opt. Lett. 44(4), 1023–1026 (2019).
    [Crossref]
  18. G. Tóth, L. Pálfalvi, J. A. Fülöp, G. Krizsán, N. H. Matlis, G. Almási, and J. Hebling, “Numerical investigation of imaging-free terahertz generation setup using segmented tilted-pulse-front excitation,” Opt. Express 27(5), 7762–7775 (2019).
    [Crossref]
  19. D. Huo, Z. J. Choong, Y. Shi, J. Hedley, and Y. Zhao, “Diamond micro-milling of lithium niobate for sensing applications,” J. Micromech. Microeng. 26(9), 095005 (2016).
    [Crossref]
  20. M. I. Bakunov and B. Bodrov, “Terahertz generation with tilted-front laser pulses in a contact-grating scheme,” J. Opt. Soc. Am. B 31(11), 2549–2557 (2014).
    [Crossref]
  21. K. L. Vodopyanov, “Optical generation of narrow-band terahertz packets in periodically-inverted electro-optic crystals: conversion efficiency and optimal laser pulse format,” Opt. Express 14(6), 2263–2276 (2006).
    [Crossref]
  22. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
    [Crossref]
  23. S.-C. Zhong, Z.-H. Zhai, J. Li, L.-G. Zhu, J. Li, K. Mend, Q. Liu, L.-H. Du, J.-H. Zhao, and Z.-R. Li, “Optimization of terahertz generation from linbo$_3$3 under intense laser excitation with the effect of three-photon absorption,” Opt. Express 23(24), 31313–31323 (2015).
    [Crossref]
  24. S. Hunsche, S. Feng, H. G. Winful, A. Leitenstorfer, M. C. Nuss, and E. P. Ippen, “Spatiotemporal focusing of single-cycle light pulses,” J. Opt. Soc. Am. A 16(8), 2025–2028 (1999).
    [Crossref]
  25. S. Feng, H. G. Winful, and R. W. Hellwarth, “Gouy shift and temporal reshaping of focused single-cycle electromagnetic pulses,” Opt. Lett. 23(5), 385–387 (1998).
    [Crossref]
  26. K. Ravi, B. K. Ofori-Okai, K. A. Nelson, and F. X. Kärtner, “Analysis of terahertz generation by beamlet superposition,” (2018). https://arxiv.org/abs/1810.09118v2 .
  27. K. Ravi, W. R. Huang, S. Carbajo, X. Wu, and F. Kärtner, “Limitations to thz generation by optical rectification using tilted pulse fronts,” Opt. Express 22(17), 20239–20251 (2014).
    [Crossref]

2019 (2)

2018 (1)

D.-F. Zhang, A. Fallahi, M. Hemmer, X.-J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (steam),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref]

2017 (1)

2016 (4)

B. K. Ofori-Okai, P. Sivarajah, W. R. Huang, and K. A. Nelson, “Thz generation using a reflective stair-step echelon,” Opt. Express 24(5), 5057–5068 (2016).
[Crossref]

A. Sharma, Z. Tibai, and J. Hebling, “Intense tera-hertz laser driven proton acceleration in plasmas,” Phys. Plasmas 23(6), 063111 (2016).
[Crossref]

D. Huo, Z. J. Choong, Y. Shi, J. Hedley, and Y. Zhao, “Diamond micro-milling of lithium niobate for sensing applications,” J. Micromech. Microeng. 26(9), 095005 (2016).
[Crossref]

J. A. Fülöp, G. Polónyi, B. Monoszlai, G. Andriukaitis, T. Balciunas, A. Pugzlys, G. Arthur, A. Baltuska, and J. Hebling, “Highly efficient scalable monolithic semiconductor terahertz pulse source,” Optica 3(10), 1075–1078 (2016).
[Crossref]

2015 (2)

2014 (6)

2013 (1)

2012 (1)

Z. Ollmann, J. Hebling, and G. Almási, “Design of a contact grating setup for mj-energy thz pulse generation by optical rectification,” Appl. Phys. B: Lasers Opt. 108(4), 821–826 (2012).
[Crossref]

2010 (1)

2008 (1)

L. Pálfalvi, J. A. Fülöp, G. Almási, and J. Hebling, “Novel setups for extremely high power single-cycle terahertz pulse generation by optical rectification,” Appl. Phys. Lett. 92(17), 171107 (2008).
[Crossref]

2006 (1)

2002 (1)

1999 (1)

1998 (1)

1996 (1)

J. Hebling, “Derivation of the pulse front tilt caused by angular dispersion,” Opt. Quantum Electron. 28(12), 1759–1763 (1996).
[Crossref]

1995 (1)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref]

Agranat, M. B.

Almási, G.

P. S. Nugraha, G. Krizsán, C. Lombosi, L. Pálfalvi, G. Tóth, G. Almási, J. A. Fülöp, and J. Hebling, “Demonstration of a tilted-pulse-front pumped plane-parallel slab terahertz source,” Opt. Lett. 44(4), 1023–1026 (2019).
[Crossref]

G. Tóth, L. Pálfalvi, J. A. Fülöp, G. Krizsán, N. H. Matlis, G. Almási, and J. Hebling, “Numerical investigation of imaging-free terahertz generation setup using segmented tilted-pulse-front excitation,” Opt. Express 27(5), 7762–7775 (2019).
[Crossref]

L. Pálfalvi, G. Tóth, L. Tokodi, Z. Márton, J. A. Fülöp, G. Almási, and J. Hebling, “Numerical investigation of a scalable setup for efficient terahertz generation using a segmented tilted-pulse-front excitation,” Opt. Express 25(24), 29560–29573 (2017).
[Crossref]

Z. Ollmann, J. Hebling, and G. Almási, “Design of a contact grating setup for mj-energy thz pulse generation by optical rectification,” Appl. Phys. B: Lasers Opt. 108(4), 821–826 (2012).
[Crossref]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
[Crossref]

L. Pálfalvi, J. A. Fülöp, G. Almási, and J. Hebling, “Novel setups for extremely high power single-cycle terahertz pulse generation by optical rectification,” Appl. Phys. Lett. 92(17), 171107 (2008).
[Crossref]

J. Hebling, G. Almási, I. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large-area thz-pulse generation,” Opt. Express 10(21), 1161–1166 (2002).
[Crossref]

Andriukaitis, G.

Arthur, G.

Ashitkov, S. I.

Bakunov, M. I.

Balciunas, T.

Baltuska, A.

Bodrov, B.

Calendron, A.-L.

D.-F. Zhang, A. Fallahi, M. Hemmer, X.-J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (steam),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref]

Cankaya, H.

D.-F. Zhang, A. Fallahi, M. Hemmer, X.-J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (steam),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref]

Carbajo, S.

Choong, Z. J.

D. Huo, Z. J. Choong, Y. Shi, J. Hedley, and Y. Zhao, “Diamond micro-milling of lithium niobate for sensing applications,” J. Micromech. Microeng. 26(9), 095005 (2016).
[Crossref]

Dörner, R.

Du, L.-H.

Fakhari, M.

D.-F. Zhang, A. Fallahi, M. Hemmer, X.-J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (steam),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref]

Fallahi, A.

D.-F. Zhang, A. Fallahi, M. Hemmer, X.-J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (steam),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref]

E. A. Nanni, K.-H. H. W. R. Huang, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
[Crossref]

Feit, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref]

Feng, S.

Fortov, V. E.

Fülöp, J. A.

P. S. Nugraha, G. Krizsán, C. Lombosi, L. Pálfalvi, G. Tóth, G. Almási, J. A. Fülöp, and J. Hebling, “Demonstration of a tilted-pulse-front pumped plane-parallel slab terahertz source,” Opt. Lett. 44(4), 1023–1026 (2019).
[Crossref]

G. Tóth, L. Pálfalvi, J. A. Fülöp, G. Krizsán, N. H. Matlis, G. Almási, and J. Hebling, “Numerical investigation of imaging-free terahertz generation setup using segmented tilted-pulse-front excitation,” Opt. Express 27(5), 7762–7775 (2019).
[Crossref]

L. Pálfalvi, G. Tóth, L. Tokodi, Z. Márton, J. A. Fülöp, G. Almási, and J. Hebling, “Numerical investigation of a scalable setup for efficient terahertz generation using a segmented tilted-pulse-front excitation,” Opt. Express 25(24), 29560–29573 (2017).
[Crossref]

J. A. Fülöp, G. Polónyi, B. Monoszlai, G. Andriukaitis, T. Balciunas, A. Pugzlys, G. Arthur, A. Baltuska, and J. Hebling, “Highly efficient scalable monolithic semiconductor terahertz pulse source,” Optica 3(10), 1075–1078 (2016).
[Crossref]

J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of thz pulses with 0.4 mj energy,” Opt. Express 22(17), 20155–20163 (2014).
[Crossref]

L. Pálfalvi, J. A. Fülöp, G. Tóth, and J. Hebling, “Evanescent-wave proton postaccelerator driven by intense thz pulse,” Phys. Rev. Spec. Top.--Accel. Beams 17(3), 031301 (2014).
[Crossref]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
[Crossref]

L. Pálfalvi, J. A. Fülöp, G. Almási, and J. Hebling, “Novel setups for extremely high power single-cycle terahertz pulse generation by optical rectification,” Appl. Phys. Lett. 92(17), 171107 (2008).
[Crossref]

Hauri, C. P.

Hebling, J.

P. S. Nugraha, G. Krizsán, C. Lombosi, L. Pálfalvi, G. Tóth, G. Almási, J. A. Fülöp, and J. Hebling, “Demonstration of a tilted-pulse-front pumped plane-parallel slab terahertz source,” Opt. Lett. 44(4), 1023–1026 (2019).
[Crossref]

G. Tóth, L. Pálfalvi, J. A. Fülöp, G. Krizsán, N. H. Matlis, G. Almási, and J. Hebling, “Numerical investigation of imaging-free terahertz generation setup using segmented tilted-pulse-front excitation,” Opt. Express 27(5), 7762–7775 (2019).
[Crossref]

L. Pálfalvi, G. Tóth, L. Tokodi, Z. Márton, J. A. Fülöp, G. Almási, and J. Hebling, “Numerical investigation of a scalable setup for efficient terahertz generation using a segmented tilted-pulse-front excitation,” Opt. Express 25(24), 29560–29573 (2017).
[Crossref]

J. A. Fülöp, G. Polónyi, B. Monoszlai, G. Andriukaitis, T. Balciunas, A. Pugzlys, G. Arthur, A. Baltuska, and J. Hebling, “Highly efficient scalable monolithic semiconductor terahertz pulse source,” Optica 3(10), 1075–1078 (2016).
[Crossref]

A. Sharma, Z. Tibai, and J. Hebling, “Intense tera-hertz laser driven proton acceleration in plasmas,” Phys. Plasmas 23(6), 063111 (2016).
[Crossref]

L. Pálfalvi, J. A. Fülöp, G. Tóth, and J. Hebling, “Evanescent-wave proton postaccelerator driven by intense thz pulse,” Phys. Rev. Spec. Top.--Accel. Beams 17(3), 031301 (2014).
[Crossref]

J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of thz pulses with 0.4 mj energy,” Opt. Express 22(17), 20155–20163 (2014).
[Crossref]

Z. Ollmann, J. Hebling, and G. Almási, “Design of a contact grating setup for mj-energy thz pulse generation by optical rectification,” Appl. Phys. B: Lasers Opt. 108(4), 821–826 (2012).
[Crossref]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
[Crossref]

L. Pálfalvi, J. A. Fülöp, G. Almási, and J. Hebling, “Novel setups for extremely high power single-cycle terahertz pulse generation by optical rectification,” Appl. Phys. Lett. 92(17), 171107 (2008).
[Crossref]

J. Hebling, G. Almási, I. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large-area thz-pulse generation,” Opt. Express 10(21), 1161–1166 (2002).
[Crossref]

J. Hebling, “Derivation of the pulse front tilt caused by angular dispersion,” Opt. Quantum Electron. 28(12), 1759–1763 (1996).
[Crossref]

Hedley, J.

D. Huo, Z. J. Choong, Y. Shi, J. Hedley, and Y. Zhao, “Diamond micro-milling of lithium niobate for sensing applications,” J. Micromech. Microeng. 26(9), 095005 (2016).
[Crossref]

Hellwarth, R. W.

Hemmer, M.

D.-F. Zhang, A. Fallahi, M. Hemmer, X.-J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (steam),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref]

Hua, Y.

D.-F. Zhang, A. Fallahi, M. Hemmer, X.-J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (steam),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref]

Huang, W. R.

Hunsche, S.

Huo, D.

D. Huo, Z. J. Choong, Y. Shi, J. Hedley, and Y. Zhao, “Diamond micro-milling of lithium niobate for sensing applications,” J. Micromech. Microeng. 26(9), 095005 (2016).
[Crossref]

Ippen, E. P.

Jahnke, T.

Karsch, S.

Kärtner, F.

Kärtner, F. X.

D.-F. Zhang, A. Fallahi, M. Hemmer, X.-J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (steam),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref]

E. A. Nanni, K.-H. H. W. R. Huang, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
[Crossref]

K. Ravi, B. K. Ofori-Okai, K. A. Nelson, and F. X. Kärtner, “Analysis of terahertz generation by beamlet superposition,” (2018). https://arxiv.org/abs/1810.09118v2 .

Klingebiel, S.

Kozma, I.

Krausz, F.

Krizsán, G.

Kuhl, J.

Kunitski, M.

Leitenstorfer, A.

Li, J.

Li, Z.-R.

Liu, Q.

Lombosi, C.

Márton, Z.

Maruyama, M.

Matlis, N. H.

G. Tóth, L. Pálfalvi, J. A. Fülöp, G. Krizsán, N. H. Matlis, G. Almási, and J. Hebling, “Numerical investigation of imaging-free terahertz generation setup using segmented tilted-pulse-front excitation,” Opt. Express 27(5), 7762–7775 (2019).
[Crossref]

D.-F. Zhang, A. Fallahi, M. Hemmer, X.-J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (steam),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref]

Mend, K.

Miller, R. J. D.

E. A. Nanni, K.-H. H. W. R. Huang, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
[Crossref]

Monoszlai, B.

Moriena, G.

E. A. Nanni, K.-H. H. W. R. Huang, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
[Crossref]

Nagashima, K.

Nanni, E. A.

E. A. Nanni, K.-H. H. W. R. Huang, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
[Crossref]

Nelson, K. A.

B. K. Ofori-Okai, P. Sivarajah, W. R. Huang, and K. A. Nelson, “Thz generation using a reflective stair-step echelon,” Opt. Express 24(5), 5057–5068 (2016).
[Crossref]

K. Ravi, B. K. Ofori-Okai, K. A. Nelson, and F. X. Kärtner, “Analysis of terahertz generation by beamlet superposition,” (2018). https://arxiv.org/abs/1810.09118v2 .

Nugraha, P. S.

Nuss, M. C.

Ochi, Y.

Ofori-Okai, B. K.

B. K. Ofori-Okai, P. Sivarajah, W. R. Huang, and K. A. Nelson, “Thz generation using a reflective stair-step echelon,” Opt. Express 24(5), 5057–5068 (2016).
[Crossref]

K. Ravi, B. K. Ofori-Okai, K. A. Nelson, and F. X. Kärtner, “Analysis of terahertz generation by beamlet superposition,” (2018). https://arxiv.org/abs/1810.09118v2 .

Ollmann, Z.

J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of thz pulses with 0.4 mj energy,” Opt. Express 22(17), 20155–20163 (2014).
[Crossref]

Z. Ollmann, J. Hebling, and G. Almási, “Design of a contact grating setup for mj-energy thz pulse generation by optical rectification,” Appl. Phys. B: Lasers Opt. 108(4), 821–826 (2012).
[Crossref]

Ovchinnikov, A. V.

Pálfalvi, L.

G. Tóth, L. Pálfalvi, J. A. Fülöp, G. Krizsán, N. H. Matlis, G. Almási, and J. Hebling, “Numerical investigation of imaging-free terahertz generation setup using segmented tilted-pulse-front excitation,” Opt. Express 27(5), 7762–7775 (2019).
[Crossref]

P. S. Nugraha, G. Krizsán, C. Lombosi, L. Pálfalvi, G. Tóth, G. Almási, J. A. Fülöp, and J. Hebling, “Demonstration of a tilted-pulse-front pumped plane-parallel slab terahertz source,” Opt. Lett. 44(4), 1023–1026 (2019).
[Crossref]

L. Pálfalvi, G. Tóth, L. Tokodi, Z. Márton, J. A. Fülöp, G. Almási, and J. Hebling, “Numerical investigation of a scalable setup for efficient terahertz generation using a segmented tilted-pulse-front excitation,” Opt. Express 25(24), 29560–29573 (2017).
[Crossref]

J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of thz pulses with 0.4 mj energy,” Opt. Express 22(17), 20155–20163 (2014).
[Crossref]

L. Pálfalvi, J. A. Fülöp, G. Tóth, and J. Hebling, “Evanescent-wave proton postaccelerator driven by intense thz pulse,” Phys. Rev. Spec. Top.--Accel. Beams 17(3), 031301 (2014).
[Crossref]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
[Crossref]

L. Pálfalvi, J. A. Fülöp, G. Almási, and J. Hebling, “Novel setups for extremely high power single-cycle terahertz pulse generation by optical rectification,” Appl. Phys. Lett. 92(17), 171107 (2008).
[Crossref]

Perry, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref]

Polónyi, G.

Pugzlys, A.

Ravi, K.

E. A. Nanni, K.-H. H. W. R. Huang, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
[Crossref]

K. Ravi, W. R. Huang, S. Carbajo, X. Wu, and F. Kärtner, “Limitations to thz generation by optical rectification using tilted pulse fronts,” Opt. Express 22(17), 20239–20251 (2014).
[Crossref]

K. Ravi, B. K. Ofori-Okai, K. A. Nelson, and F. X. Kärtner, “Analysis of terahertz generation by beamlet superposition,” (2018). https://arxiv.org/abs/1810.09118v2 .

Richter, M.

Roskos, H. G.

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref]

Schmidt-Böcking, H.

Schöffler, M.

Sharma, A.

A. Sharma, Z. Tibai, and J. Hebling, “Intense tera-hertz laser driven proton acceleration in plasmas,” Phys. Plasmas 23(6), 063111 (2016).
[Crossref]

Shi, Y.

D. Huo, Z. J. Choong, Y. Shi, J. Hedley, and Y. Zhao, “Diamond micro-milling of lithium niobate for sensing applications,” J. Micromech. Microeng. 26(9), 095005 (2016).
[Crossref]

Shore, B. W.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref]

Sivarajah, P.

Skrobol, C.

Stuart, B. C.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref]

Thomson, M. D.

Tibai, Z.

A. Sharma, Z. Tibai, and J. Hebling, “Intense tera-hertz laser driven proton acceleration in plasmas,” Phys. Plasmas 23(6), 063111 (2016).
[Crossref]

Tokodi, L.

Tóth, G.

Tsubouchi, M.

Vicario, C.

Vodopyanov, K. L.

Vredenborg, A.

W. R. Huang, K.-H. H.

E. A. Nanni, K.-H. H. W. R. Huang, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
[Crossref]

Winful, H. G.

Wu, J.

Wu, X.

Wu, X.-J.

D.-F. Zhang, A. Fallahi, M. Hemmer, X.-J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (steam),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref]

Yoshida, F.

Zapata, L. E.

D.-F. Zhang, A. Fallahi, M. Hemmer, X.-J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (steam),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref]

Zhai, Z.-H.

Zhang, D.-F.

D.-F. Zhang, A. Fallahi, M. Hemmer, X.-J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (steam),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref]

Zhao, J.-H.

Zhao, Y.

D. Huo, Z. J. Choong, Y. Shi, J. Hedley, and Y. Zhao, “Diamond micro-milling of lithium niobate for sensing applications,” J. Micromech. Microeng. 26(9), 095005 (2016).
[Crossref]

Zhong, S.-C.

Zhu, L.-G.

Appl. Phys. B: Lasers Opt. (1)

Z. Ollmann, J. Hebling, and G. Almási, “Design of a contact grating setup for mj-energy thz pulse generation by optical rectification,” Appl. Phys. B: Lasers Opt. 108(4), 821–826 (2012).
[Crossref]

Appl. Phys. Lett. (1)

L. Pálfalvi, J. A. Fülöp, G. Almási, and J. Hebling, “Novel setups for extremely high power single-cycle terahertz pulse generation by optical rectification,” Appl. Phys. Lett. 92(17), 171107 (2008).
[Crossref]

J. Micromech. Microeng. (1)

D. Huo, Z. J. Choong, Y. Shi, J. Hedley, and Y. Zhao, “Diamond micro-milling of lithium niobate for sensing applications,” J. Micromech. Microeng. 26(9), 095005 (2016).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

E. A. Nanni, K.-H. H. W. R. Huang, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
[Crossref]

Nat. Photonics (1)

D.-F. Zhang, A. Fallahi, M. Hemmer, X.-J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (steam),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref]

Opt. Express (10)

J. Hebling, G. Almási, I. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large-area thz-pulse generation,” Opt. Express 10(21), 1161–1166 (2002).
[Crossref]

K. L. Vodopyanov, “Optical generation of narrow-band terahertz packets in periodically-inverted electro-optic crystals: conversion efficiency and optimal laser pulse format,” Opt. Express 14(6), 2263–2276 (2006).
[Crossref]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
[Crossref]

M. Kunitski, M. Richter, M. D. Thomson, A. Vredenborg, J. Wu, T. Jahnke, M. Schöffler, H. Schmidt-Böcking, H. G. Roskos, and R. Dörner, “Optimization of single-cycle terahertz generation in linbo3 for sub-50 femtosecond pump pulses,” Opt. Express 21(6), 6826–6836 (2013).
[Crossref]

J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of thz pulses with 0.4 mj energy,” Opt. Express 22(17), 20155–20163 (2014).
[Crossref]

K. Ravi, W. R. Huang, S. Carbajo, X. Wu, and F. Kärtner, “Limitations to thz generation by optical rectification using tilted pulse fronts,” Opt. Express 22(17), 20239–20251 (2014).
[Crossref]

S.-C. Zhong, Z.-H. Zhai, J. Li, L.-G. Zhu, J. Li, K. Mend, Q. Liu, L.-H. Du, J.-H. Zhao, and Z.-R. Li, “Optimization of terahertz generation from linbo$_3$3 under intense laser excitation with the effect of three-photon absorption,” Opt. Express 23(24), 31313–31323 (2015).
[Crossref]

B. K. Ofori-Okai, P. Sivarajah, W. R. Huang, and K. A. Nelson, “Thz generation using a reflective stair-step echelon,” Opt. Express 24(5), 5057–5068 (2016).
[Crossref]

L. Pálfalvi, G. Tóth, L. Tokodi, Z. Márton, J. A. Fülöp, G. Almási, and J. Hebling, “Numerical investigation of a scalable setup for efficient terahertz generation using a segmented tilted-pulse-front excitation,” Opt. Express 25(24), 29560–29573 (2017).
[Crossref]

G. Tóth, L. Pálfalvi, J. A. Fülöp, G. Krizsán, N. H. Matlis, G. Almási, and J. Hebling, “Numerical investigation of imaging-free terahertz generation setup using segmented tilted-pulse-front excitation,” Opt. Express 27(5), 7762–7775 (2019).
[Crossref]

Opt. Lett. (4)

Opt. Quantum Electron. (1)

J. Hebling, “Derivation of the pulse front tilt caused by angular dispersion,” Opt. Quantum Electron. 28(12), 1759–1763 (1996).
[Crossref]

Optica (1)

Phys. Plasmas (1)

A. Sharma, Z. Tibai, and J. Hebling, “Intense tera-hertz laser driven proton acceleration in plasmas,” Phys. Plasmas 23(6), 063111 (2016).
[Crossref]

Phys. Rev. Lett. (1)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref]

Phys. Rev. Spec. Top.--Accel. Beams (1)

L. Pálfalvi, J. A. Fülöp, G. Tóth, and J. Hebling, “Evanescent-wave proton postaccelerator driven by intense thz pulse,” Phys. Rev. Spec. Top.--Accel. Beams 17(3), 031301 (2014).
[Crossref]

Other (1)

K. Ravi, B. K. Ofori-Okai, K. A. Nelson, and F. X. Kärtner, “Analysis of terahertz generation by beamlet superposition,” (2018). https://arxiv.org/abs/1810.09118v2 .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. A schematic figure of the reflective nonlinear slab (RNLS) THz source. The red color concerns the pump.
Fig. 2.
Fig. 2. (a)Diffraction efficiency and grating period versus the diffraction order for 800 and 1030 nm wavelengths.(b) The wavelength dependence of the diffraction efficiency for the $\mathrm {m}=20$ diffraction order and blazing angle of $\gamma /2=31.7^\circ$ (black line) and $32.0^\circ$ (green line), respectively. For reference the spectrum of a 200 fs FL pump pulse is also shown.
Fig. 3.
Fig. 3. Optical-to THz conversion efficiency as a function of the pump pulse length and the crystal length for 800 (a) and 1030 nm (b) pump wavelengths.
Fig. 4.
Fig. 4. THz pulseforms (a,c) and the corresponding spectra (b,d) for 2 (a,b) and 4 mm (c,d) crystal lengths.
Fig. 5.
Fig. 5. THz pulseshapes (a) and the corresponding spectra (b) for several FL pump pulse lengts supposing 4 mm crystal length.
Fig. 6.
Fig. 6. Terahertz pulse shapes directly after exiting the RNLS (black) and after focusing (red) supposing 4 mm crystal length, 1 ps FL pump pulse length, 7 cm beam diameter, 5 cm focal length. The pulse energies of the pump and the THz are 870 and 10.8 mJ, respectively.
Fig. 7.
Fig. 7. Schematic of a double structure RNLS consisting of a rough and a fine structure.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

v p , g r cos ( γ ) = v T H z , p h ,
sin ( β m ) = m λ d n p
z E T H z ( Ω , z ) = i Ω d e f f E 0 2 τ 0 4 π ln ( 2 ) c n T H z , p h ( ω ) exp [ ( τ 0 2 + Δ τ ( z ) 2 ) Ω 2 16 ln ( 2 ) ] × exp [ i Ω c ( n T H z , p h ( Ω ) n p , g r cos ( γ ) ) z ] α T H z ( Ω ) 2 E T H z ( Ω , z ) ,
z = z p cos ( γ ) .
Δ τ ( z ) = λ 0 c z L / 2 cos ( γ ) ( n p , g r 2 n p tan 2 ( γ ) λ 0 2 d 2 n p d λ 2 ) Δ λ ,
F l u e n c e T H z = ϵ 0 c 2 2 π 0 | E T H z ( Ω , L ) 2 n T H z , p h n T H z , p h + 1 | 2 d Ω .
F l u e n c e p = π 2 ϵ 0 n p 2 E 0 2 τ 0 2 ln ( 2 )
η = F l u e n c e T H z F l u e n c e p η D ,
I 0 = I 0 100 f s τ 0 ,