Abstract

In photonics and emerging fields of quantum and topological materials, increasing demands are placed upon the state and control of electromagnetic fields. Dielectric multilayer materials may be designed and optimized to possess extremely sharp spectral and angular photonic resonances allowing for the creation of fields orders of magnitude larger than the exciting field. With enhancements of $10^{4}$ and higher, the extreme nature of these resonances places high constraints on the statistical properties of the physical and optical characteristics of the materials. To what extent the spectral and angular shifts occur as a result of fluctuations in the refractive indices and morphologies of the involved low-loss subdomains have not been considered previously. Here, we present how parameter variations such as those caused by fluctuations in deposition rate, yielding bias, random and compensated errors, may affect the resonance properties of low-loss all-dielectric stacks.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978).
    [Crossref]
  2. W. Ng, P. Yeh, P. C. Chen, and A. Yariv, “Optical surface waves in periodic layered medium grown by liquid phase epitaxy,” Appl. Phys. Lett. 32(6), 370–371 (1978).
    [Crossref]
  3. P. Yeh, A. Yariv, and C-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67(4), 423–438 (1977).
    [Crossref]
  4. A. Yariv and P. Yeh, “Electromagnetic propagation in periodic stratified media. II. Birefringence, phase matching, and x-ray lasers,” J. Opt. Soc. Am. 67(4), 438–447 (1977).
    [Crossref]
  5. N. Ashby and S. C. Miller, “Interference theory of reflection from multilayered media,” J. Opt. Soc. Am. 67(4), 448–453 (1977).
    [Crossref]
  6. E. R. Mendieta and P. Halevi, “Electromagnetic surface modes of a dielectric superlattice: the supercell method,” J. Opt. Soc. Am. B 14(2), 370–381 (1997).
    [Crossref]
  7. W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74(13), 1800–1802 (1999).
    [Crossref]
  8. K. Mehrany, S. Khorasani, and B. Rashidian, “Novel optical devices based on surface wave excitation at conducting interfaces,” Semicond. Sci. Technol. 18(6), 582–588 (2003).
    [Crossref]
  9. J. Martorell, D. W. L. Sprung, and G. V. Morozov, “Surface TE waves on 1D photonic crystals,” J. Opt. A: Pure Appl. Opt. 8(8), 630–638 (2006).
    [Crossref]
  10. F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi, “Probing losses of dielectric multilayers by means of Bloch surface waves,” Opt. Lett. 38(5), 616–618 (2013).
    [Crossref]
  11. V. Koju and W. M. Robertson, “Excitation of Bloch-like surface waves in quasi-crystals and aperiodic dielectric multilayers,” Opt. Lett. 41(13), 2915 (2016).
    [Crossref]
  12. R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8(1), 14330 (2017).
    [Crossref]
  13. R. Dubey, E. Barakat, M. Hayrinen, M. Roussey, S. K. Honkanen, M Kuittinen, and H. P. Herzig, “Experimental investigation of the propagation properties of bloch surface waves on dielectric multilayer platform,” J. Eur. Opt. Soc.-Rapid Publ. 13(1), 5 (2017).
    [Crossref]
  14. R. C. Nesnidal and T. G. Walker, “Multilayer dielectric structure for enhancement of evanescent waves,” Appl. Opt. 35(13), 2226–2229 (1996).
    [Crossref]
  15. L. Gao, F. Lemarchand, and M. Lequime, “Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering,” Opt. Express 20(14), 15734–15751 (2012).
    [Crossref]
  16. R. Sainidou, J. Renger, T. V. Teperik, M-U. Gonzalez, R. Quidant, and F. J. Garcia de Abajo, “Extraordinary All-Dielectric Light Enhancement over Large Volumes,” Nano Lett. 10(11), 4450–4455 (2010).
    [Crossref]
  17. C. Ndiaye, F. Lemarchand, M. Zerrad, D. Ausserré, and C. Amra, “Optimal design for 100% absorption and maximum field enhancement in thin-film multilayers at resonances under total reflection,” Appl. Opt. 50(9), C382–C387 (2011).
    [Crossref]
  18. C. Amra, C. Ndiaye, M. Zerrad, and F. Lemarchand, “Optimal Design for Field Enhancement in optical coatings,” Proc. SPIE 8168, 816808 (2011).
    [Crossref]
  19. A. L. Lereu, M. Zerrad, C. Ndiaye, F. Lemarchand, and C. Amra, “Scattering losses in multidielectric structures designed for giant optical field enhancement,” Appl. Opt. 53(4), A412–A416 (2014).
    [Crossref]
  20. R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104(4-6), 234–240 (1994).
    [Crossref]
  21. G. Labeyrie, A. Landragin, J. Von Zanthier, R. Kaiser, N. Vansteenkiste, C. Westbrook, and A. Aspect, “Detailed study of a high-finesse planar waveguide for evanescent wave atomic mirrors,” Quantum Semiclassical Opt. 8(3), 603–627 (1996).
    [Crossref]
  22. P. C. Ke, X. S. Gan, J. Szajman, S. Schilders, and M. Gu, “Optimizing the strength of an evanescent wave generated from a prism coated with a double-layer thin-film stack,” Bioimaging 5(1), 1–8 (1997).
  23. M. D. Perry, R. D. Boyd, J. A. Britten, D. Decker, B. W. Shore, C. Shannon, and E. Shults, “High-efficiency multilayer dielectric diffraction gratings,” Opt. Lett. 20(8), 940–942 (1995).
    [Crossref]
  24. J. K. Chua and V. M. Murukeshan, “Resonant amplification of frustrated evanescent waves by single dielectric coating,” Opt. Commun. 283(1), 169–175 (2010).
    [Crossref]
  25. E. Descrovi, T. Sfez, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H-P. Herzig, “Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals,” Opt. Express 16(8), 5453–5464 (2008).
    [Crossref]
  26. C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, P. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103(13), 131102 (2013).
    [Crossref]
  27. A. L. Lereu, M. Zerrad, M. Petit, F. de Fornel, and C. Amra, “Multi-dielectric stacks as a platform for giant optical field,” Proc. SPIE 9162, 916219 (2014).
    [Crossref]
  28. A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators, A 159(1), 24–32 (2010).
    [Crossref]
  29. A. Sinibaldi, N. Danz, E. Descrovic, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
    [Crossref]
  30. W. YuHang, Z. Zheng, S. XiaoGang, B. YuSheng, and L. JianSheng, “Hybrid plasmon waveguide leveraging Bloch surface polaritons for sub-wavelength confinement,” Sci. China: Technol. Sci. 56(3), 567–572 (2013).
    [Crossref]
  31. Z. Sekkat, S. Hayashi, D. V. Nesterenko, A. Rahmouni, S. Refki, H. Ishitobi, Y. Inouye, and S. Kawata, “Plasmonic coupled modes in metal-dielectric multilayer structures: Fano resonance and giant field enhancement,” Opt. Express 24(18), 20080–20088 (2016).
    [Crossref]
  32. R. H. Ritchie, “Plasma Losses by Fast Electrons in Thin Films,” Phys. Rev. 106(5), 874–881 (1957).
    [Crossref]
  33. A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Probing large area surface plasmon interference in thin metal films using photon scanning tunneling microscopy,” Ultramicroscopy 100(3-4), 429–436 (2004).
    [Crossref]
  34. A. Passian, A. L. Lereu, A. Wig, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Imaging standing surface plasmons by photon tunneling,” Phys. Rev. B 71(16), 165418 (2005).
    [Crossref]
  35. E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science 311(5758), 189–193 (2006).
    [Crossref]
  36. A. Archambault, T. V. Teperik, F. Marquier, and J. J. Greffet, “Surface plasmon Fourier optics,” Phys. Rev. B 79(19), 195414 (2009).
    [Crossref]
  37. E. Kretschmann, “The determination of the optical constants of metals by excitation of surface plasmons,” Z. Phys. A: Hadrons Nucl. 241(4), 313–324 (1971).
    [Crossref]
  38. W. A. Challener, J. D. Edwards, R. W. McGowan, J. Skorjanec, and Z. Yang, “A multilayer grating-based evanescent wave sensing technique,” Sens. Actuators, B 71(1-2), 42–46 (2000).
    [Crossref]
  39. K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
    [Crossref]
  40. F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A Fluorescent One-Dimensional Photonic Crystal for Label-Free Biosensing Based on Bloch Surface Waves,” Sensors 13(2), 2011–2022 (2013).
    [Crossref]
  41. A. Sinibaldi, R. Rizzo, G. Figliozzzi, E. Descrovic, N. Danz, P. Munzert, A. Anopchenko, and F. Michelotti, “A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals,” Opt. Express 21(20), 23331 (2013).
    [Crossref]
  42. A. L. Lereu, M. Zerrad, A. Passian, and C. Amra, “Surface plasmons and Bloch surface waves: towards optimized ultra-sensitive optical sensors,” Appl. Phys. Lett. 111(1), 011107 (2017).
    [Crossref]
  43. F. Michelotti, R. Rizzo, A. Sinibaldi, P. Munzert, C. Wachter, and N. Danz, “Design rules for combined label-free and fluorescence Bloch surface wave biosensors,” Opt. Lett. 42(14), 2798 (2017).
    [Crossref]
  44. A. Occhicone, A. Sinibaldi, F. Sonntag, P. Munzert, N. Danz, and F. Michelotti, “A novel technique based on Bloch surface waves sustained by one-dimensional photonic crystals to probe mass transport in a microfluidic channel,” Sens. Actuators, B 247, 532–539 (2017).
    [Crossref]
  45. P. Munzert, N. Danz, A. Sinibaldi, and F. Michelotti, “Multilayer coatings for Bloch surface wave optical biosensors,” Surf. Coat. Technol. 314, 79–84 (2017).
    [Crossref]
  46. A. Sinibaldia, C. Sampaoli, N. Danz, P. Munzert, L. Sibilio, F. Sonntag, A. Occhicone, E. Falvo, E. Tremante, P. Giacomini, and F. Michelotti, “Detection of soluble ERBB2 in breast cancer cell lysates using a combined label-free fluorescence platform based on Bloch surface waves,” Biosens. Bioelectron. 92, 125–130 (2017).
    [Crossref]
  47. Y. Liu, J. Chen, M. Du, X. Wang, X. Ji, and Z. He, “The preparation of dual-functional hybrid nanoflower and its application in the ultrasensitive detection of disease-related biomarker,” Biosens. Bioelectron. 92, 68–73 (2017).
    [Crossref]
  48. M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one dimensional photonic crystal,” Appl. Phys. Lett. 99(4), 043302 (2011).
    [Crossref]
  49. M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: Coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100(6), 063305 (2012).
    [Crossref]
  50. S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-Enhanced Raman Scattering in Purely Dielectric Structures via Bloch Surface Waves,” J. Phys. Chem. C 117(13), 6821–6825 (2013).
    [Crossref]
  51. R. Badugu, K. Nowaczyk, E. Descrovi, and J. R. Lakowicz, “Radiative decay engineering 6: Fluorescence on one-dimensional photonic crystals,” Anal. Biochem. 442(1), 83–96 (2013).
    [Crossref]
  52. E. Descrovi, D. Morrone, A. Angelini, F. Frascella, S. Ricciardi, P. Rivolo, N. De Leo, L. Boarino, P. Munzert, F. Michelotti, and F. Giorgis, “Fluorescence imaging assisted by surface modes on dielectric multilayers,” Eur. Phys. J. D 68(3), 53 (2014).
    [Crossref]
  53. K. Ray, R. Badugu, and J. R. Lakowicz, “Bloch surface wave-coupled emission from quantum dots by ensemble and single molecule spectroscopy,” RSC Adv. 5(67), 54403–54411 (2015).
    [Crossref]
  54. R. Wang, Y. Wang, D. Zhang, G. Si, L. Zhu, L. Du, S. Kou, R. Badugu, M. Rosenfeld, J. Lin, P. Wang, H. Ming, X. Yuan, and J. R. Lakowicz, “Diffraction-Free Bloch Surface Waves,” ACS Nano 11(6), 5383–5390 (2017).
    [Crossref]
  55. C. Amra, M. Zerrad, F. Lemarchand, A. L. Lereu, A. Passian, A. Zapien, and M. Lequime, “Energy density engineering via zero admittance domains in all-dielectric stratified materials,” Phys. Rev. A 97(2), 023819 (2018).
    [Crossref]
  56. A. Siabi-Garjan and R. Hassanzadeh, “A computational approach for engineering optical properties of multilayer thin films: Particle swarm optimization applied to Bruggeman homogenization formalism,” Eur. Phys. J. Plus 133(10), 419 (2018).
    [Crossref]
  57. M. Zerrad, A. L. Lereu, C. N’diaye, F. Lemarchand, and C. Amra, “Bandwidths limitations of giant optical field enhancements,” Opt. Express 25(13), 14883 (2017).
    [Crossref]
  58. B. Badoil, F. Lemarchand, M. Cathelinaud, and M. Lequime, “Manufacturing of an absorbing filter controlled with a broadband optical monitoring,” Opt. Express 16(16), 12008–12017 (2008).
    [Crossref]
  59. M. Candille, “Détermination du Critre D’arrêt Pour le Maximtre Monochromatique, Systme de Contrôle Optique de Couches Minces Multidilectriques,” Opt. Acta 26(12), 1477–1486 (1979).
    [Crossref]
  60. B. Badoil, F. Lemarchand, M. Cathelinaud, and M. Lequime, “An Error Compensation Strategy for Broadband Optical Monitoring,” in Optical Interference Coatings (Optical Society of America, 2007), p. WC5.
  61. B. Badoil, F. Lemarchand, M. Cathelinaud, and M. Lequime, “Interest of broadband optical monitoring for thin-film filter manufacturing,” Appl. Opt. 46(20), 4294–4303 (2007).
    [Crossref]
  62. H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 2001).
  63. B. T. Sullivan and J. A. Dobrowolski, “Deposition error compensation for optical multilayer coatings. I. Theoretical description,” Appl. Opt. 31(19), 3821 (1992).
    [Crossref]
  64. B. T. Sullivan and J. A. Dobrowolski, “Deposition error compensation for optical multilayer coatings. II. Experimental results-sputtering system,” Appl. Opt. 32(13), 2351 (1993).
    [Crossref]
  65. A. Zöller, M. Boos, R. Goetzelmann, H. Hagedorn, and W. Klug, “Substantial progress in optical monitoring by intermittent measurement technique,” Proc. SPIE 5963, 59630D (2005).
    [Crossref]

2018 (2)

C. Amra, M. Zerrad, F. Lemarchand, A. L. Lereu, A. Passian, A. Zapien, and M. Lequime, “Energy density engineering via zero admittance domains in all-dielectric stratified materials,” Phys. Rev. A 97(2), 023819 (2018).
[Crossref]

A. Siabi-Garjan and R. Hassanzadeh, “A computational approach for engineering optical properties of multilayer thin films: Particle swarm optimization applied to Bruggeman homogenization formalism,” Eur. Phys. J. Plus 133(10), 419 (2018).
[Crossref]

2017 (10)

M. Zerrad, A. L. Lereu, C. N’diaye, F. Lemarchand, and C. Amra, “Bandwidths limitations of giant optical field enhancements,” Opt. Express 25(13), 14883 (2017).
[Crossref]

A. L. Lereu, M. Zerrad, A. Passian, and C. Amra, “Surface plasmons and Bloch surface waves: towards optimized ultra-sensitive optical sensors,” Appl. Phys. Lett. 111(1), 011107 (2017).
[Crossref]

F. Michelotti, R. Rizzo, A. Sinibaldi, P. Munzert, C. Wachter, and N. Danz, “Design rules for combined label-free and fluorescence Bloch surface wave biosensors,” Opt. Lett. 42(14), 2798 (2017).
[Crossref]

A. Occhicone, A. Sinibaldi, F. Sonntag, P. Munzert, N. Danz, and F. Michelotti, “A novel technique based on Bloch surface waves sustained by one-dimensional photonic crystals to probe mass transport in a microfluidic channel,” Sens. Actuators, B 247, 532–539 (2017).
[Crossref]

P. Munzert, N. Danz, A. Sinibaldi, and F. Michelotti, “Multilayer coatings for Bloch surface wave optical biosensors,” Surf. Coat. Technol. 314, 79–84 (2017).
[Crossref]

A. Sinibaldia, C. Sampaoli, N. Danz, P. Munzert, L. Sibilio, F. Sonntag, A. Occhicone, E. Falvo, E. Tremante, P. Giacomini, and F. Michelotti, “Detection of soluble ERBB2 in breast cancer cell lysates using a combined label-free fluorescence platform based on Bloch surface waves,” Biosens. Bioelectron. 92, 125–130 (2017).
[Crossref]

Y. Liu, J. Chen, M. Du, X. Wang, X. Ji, and Z. He, “The preparation of dual-functional hybrid nanoflower and its application in the ultrasensitive detection of disease-related biomarker,” Biosens. Bioelectron. 92, 68–73 (2017).
[Crossref]

R. Wang, Y. Wang, D. Zhang, G. Si, L. Zhu, L. Du, S. Kou, R. Badugu, M. Rosenfeld, J. Lin, P. Wang, H. Ming, X. Yuan, and J. R. Lakowicz, “Diffraction-Free Bloch Surface Waves,” ACS Nano 11(6), 5383–5390 (2017).
[Crossref]

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8(1), 14330 (2017).
[Crossref]

R. Dubey, E. Barakat, M. Hayrinen, M. Roussey, S. K. Honkanen, M Kuittinen, and H. P. Herzig, “Experimental investigation of the propagation properties of bloch surface waves on dielectric multilayer platform,” J. Eur. Opt. Soc.-Rapid Publ. 13(1), 5 (2017).
[Crossref]

2016 (2)

2015 (1)

K. Ray, R. Badugu, and J. R. Lakowicz, “Bloch surface wave-coupled emission from quantum dots by ensemble and single molecule spectroscopy,” RSC Adv. 5(67), 54403–54411 (2015).
[Crossref]

2014 (3)

E. Descrovi, D. Morrone, A. Angelini, F. Frascella, S. Ricciardi, P. Rivolo, N. De Leo, L. Boarino, P. Munzert, F. Michelotti, and F. Giorgis, “Fluorescence imaging assisted by surface modes on dielectric multilayers,” Eur. Phys. J. D 68(3), 53 (2014).
[Crossref]

A. L. Lereu, M. Zerrad, M. Petit, F. de Fornel, and C. Amra, “Multi-dielectric stacks as a platform for giant optical field,” Proc. SPIE 9162, 916219 (2014).
[Crossref]

A. L. Lereu, M. Zerrad, C. Ndiaye, F. Lemarchand, and C. Amra, “Scattering losses in multidielectric structures designed for giant optical field enhancement,” Appl. Opt. 53(4), A412–A416 (2014).
[Crossref]

2013 (8)

C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, P. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103(13), 131102 (2013).
[Crossref]

W. YuHang, Z. Zheng, S. XiaoGang, B. YuSheng, and L. JianSheng, “Hybrid plasmon waveguide leveraging Bloch surface polaritons for sub-wavelength confinement,” Sci. China: Technol. Sci. 56(3), 567–572 (2013).
[Crossref]

F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi, “Probing losses of dielectric multilayers by means of Bloch surface waves,” Opt. Lett. 38(5), 616–618 (2013).
[Crossref]

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref]

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A Fluorescent One-Dimensional Photonic Crystal for Label-Free Biosensing Based on Bloch Surface Waves,” Sensors 13(2), 2011–2022 (2013).
[Crossref]

A. Sinibaldi, R. Rizzo, G. Figliozzzi, E. Descrovic, N. Danz, P. Munzert, A. Anopchenko, and F. Michelotti, “A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals,” Opt. Express 21(20), 23331 (2013).
[Crossref]

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-Enhanced Raman Scattering in Purely Dielectric Structures via Bloch Surface Waves,” J. Phys. Chem. C 117(13), 6821–6825 (2013).
[Crossref]

R. Badugu, K. Nowaczyk, E. Descrovi, and J. R. Lakowicz, “Radiative decay engineering 6: Fluorescence on one-dimensional photonic crystals,” Anal. Biochem. 442(1), 83–96 (2013).
[Crossref]

2012 (3)

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: Coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100(6), 063305 (2012).
[Crossref]

L. Gao, F. Lemarchand, and M. Lequime, “Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering,” Opt. Express 20(14), 15734–15751 (2012).
[Crossref]

A. Sinibaldi, N. Danz, E. Descrovic, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

2011 (3)

C. Ndiaye, F. Lemarchand, M. Zerrad, D. Ausserré, and C. Amra, “Optimal design for 100% absorption and maximum field enhancement in thin-film multilayers at resonances under total reflection,” Appl. Opt. 50(9), C382–C387 (2011).
[Crossref]

C. Amra, C. Ndiaye, M. Zerrad, and F. Lemarchand, “Optimal Design for Field Enhancement in optical coatings,” Proc. SPIE 8168, 816808 (2011).
[Crossref]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one dimensional photonic crystal,” Appl. Phys. Lett. 99(4), 043302 (2011).
[Crossref]

2010 (3)

R. Sainidou, J. Renger, T. V. Teperik, M-U. Gonzalez, R. Quidant, and F. J. Garcia de Abajo, “Extraordinary All-Dielectric Light Enhancement over Large Volumes,” Nano Lett. 10(11), 4450–4455 (2010).
[Crossref]

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators, A 159(1), 24–32 (2010).
[Crossref]

J. K. Chua and V. M. Murukeshan, “Resonant amplification of frustrated evanescent waves by single dielectric coating,” Opt. Commun. 283(1), 169–175 (2010).
[Crossref]

2009 (1)

A. Archambault, T. V. Teperik, F. Marquier, and J. J. Greffet, “Surface plasmon Fourier optics,” Phys. Rev. B 79(19), 195414 (2009).
[Crossref]

2008 (2)

2007 (1)

2006 (2)

E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science 311(5758), 189–193 (2006).
[Crossref]

J. Martorell, D. W. L. Sprung, and G. V. Morozov, “Surface TE waves on 1D photonic crystals,” J. Opt. A: Pure Appl. Opt. 8(8), 630–638 (2006).
[Crossref]

2005 (2)

A. Passian, A. L. Lereu, A. Wig, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Imaging standing surface plasmons by photon tunneling,” Phys. Rev. B 71(16), 165418 (2005).
[Crossref]

A. Zöller, M. Boos, R. Goetzelmann, H. Hagedorn, and W. Klug, “Substantial progress in optical monitoring by intermittent measurement technique,” Proc. SPIE 5963, 59630D (2005).
[Crossref]

2004 (1)

A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Probing large area surface plasmon interference in thin metal films using photon scanning tunneling microscopy,” Ultramicroscopy 100(3-4), 429–436 (2004).
[Crossref]

2003 (1)

K. Mehrany, S. Khorasani, and B. Rashidian, “Novel optical devices based on surface wave excitation at conducting interfaces,” Semicond. Sci. Technol. 18(6), 582–588 (2003).
[Crossref]

2000 (1)

W. A. Challener, J. D. Edwards, R. W. McGowan, J. Skorjanec, and Z. Yang, “A multilayer grating-based evanescent wave sensing technique,” Sens. Actuators, B 71(1-2), 42–46 (2000).
[Crossref]

1999 (1)

W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74(13), 1800–1802 (1999).
[Crossref]

1997 (2)

E. R. Mendieta and P. Halevi, “Electromagnetic surface modes of a dielectric superlattice: the supercell method,” J. Opt. Soc. Am. B 14(2), 370–381 (1997).
[Crossref]

P. C. Ke, X. S. Gan, J. Szajman, S. Schilders, and M. Gu, “Optimizing the strength of an evanescent wave generated from a prism coated with a double-layer thin-film stack,” Bioimaging 5(1), 1–8 (1997).

1996 (2)

G. Labeyrie, A. Landragin, J. Von Zanthier, R. Kaiser, N. Vansteenkiste, C. Westbrook, and A. Aspect, “Detailed study of a high-finesse planar waveguide for evanescent wave atomic mirrors,” Quantum Semiclassical Opt. 8(3), 603–627 (1996).
[Crossref]

R. C. Nesnidal and T. G. Walker, “Multilayer dielectric structure for enhancement of evanescent waves,” Appl. Opt. 35(13), 2226–2229 (1996).
[Crossref]

1995 (1)

1994 (1)

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104(4-6), 234–240 (1994).
[Crossref]

1993 (1)

1992 (1)

1979 (1)

M. Candille, “Détermination du Critre D’arrêt Pour le Maximtre Monochromatique, Systme de Contrôle Optique de Couches Minces Multidilectriques,” Opt. Acta 26(12), 1477–1486 (1979).
[Crossref]

1978 (2)

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978).
[Crossref]

W. Ng, P. Yeh, P. C. Chen, and A. Yariv, “Optical surface waves in periodic layered medium grown by liquid phase epitaxy,” Appl. Phys. Lett. 32(6), 370–371 (1978).
[Crossref]

1977 (3)

1971 (1)

E. Kretschmann, “The determination of the optical constants of metals by excitation of surface plasmons,” Z. Phys. A: Hadrons Nucl. 241(4), 313–324 (1971).
[Crossref]

1957 (1)

R. H. Ritchie, “Plasma Losses by Fast Electrons in Thin Films,” Phys. Rev. 106(5), 874–881 (1957).
[Crossref]

Abdulhalim, I.

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators, A 159(1), 24–32 (2010).
[Crossref]

Alvaro, M.

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A Fluorescent One-Dimensional Photonic Crystal for Label-Free Biosensing Based on Bloch Surface Waves,” Sensors 13(2), 2011–2022 (2013).
[Crossref]

Amra, C.

C. Amra, M. Zerrad, F. Lemarchand, A. L. Lereu, A. Passian, A. Zapien, and M. Lequime, “Energy density engineering via zero admittance domains in all-dielectric stratified materials,” Phys. Rev. A 97(2), 023819 (2018).
[Crossref]

A. L. Lereu, M. Zerrad, A. Passian, and C. Amra, “Surface plasmons and Bloch surface waves: towards optimized ultra-sensitive optical sensors,” Appl. Phys. Lett. 111(1), 011107 (2017).
[Crossref]

M. Zerrad, A. L. Lereu, C. N’diaye, F. Lemarchand, and C. Amra, “Bandwidths limitations of giant optical field enhancements,” Opt. Express 25(13), 14883 (2017).
[Crossref]

A. L. Lereu, M. Zerrad, C. Ndiaye, F. Lemarchand, and C. Amra, “Scattering losses in multidielectric structures designed for giant optical field enhancement,” Appl. Opt. 53(4), A412–A416 (2014).
[Crossref]

A. L. Lereu, M. Zerrad, M. Petit, F. de Fornel, and C. Amra, “Multi-dielectric stacks as a platform for giant optical field,” Proc. SPIE 9162, 916219 (2014).
[Crossref]

C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, P. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103(13), 131102 (2013).
[Crossref]

C. Amra, C. Ndiaye, M. Zerrad, and F. Lemarchand, “Optimal Design for Field Enhancement in optical coatings,” Proc. SPIE 8168, 816808 (2011).
[Crossref]

C. Ndiaye, F. Lemarchand, M. Zerrad, D. Ausserré, and C. Amra, “Optimal design for 100% absorption and maximum field enhancement in thin-film multilayers at resonances under total reflection,” Appl. Opt. 50(9), C382–C387 (2011).
[Crossref]

Angelini, A.

E. Descrovi, D. Morrone, A. Angelini, F. Frascella, S. Ricciardi, P. Rivolo, N. De Leo, L. Boarino, P. Munzert, F. Michelotti, and F. Giorgis, “Fluorescence imaging assisted by surface modes on dielectric multilayers,” Eur. Phys. J. D 68(3), 53 (2014).
[Crossref]

Anopchenko, A.

Archambault, A.

A. Archambault, T. V. Teperik, F. Marquier, and J. J. Greffet, “Surface plasmon Fourier optics,” Phys. Rev. B 79(19), 195414 (2009).
[Crossref]

Ashby, N.

Aspect, A.

G. Labeyrie, A. Landragin, J. Von Zanthier, R. Kaiser, N. Vansteenkiste, C. Westbrook, and A. Aspect, “Detailed study of a high-finesse planar waveguide for evanescent wave atomic mirrors,” Quantum Semiclassical Opt. 8(3), 603–627 (1996).
[Crossref]

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104(4-6), 234–240 (1994).
[Crossref]

Ausserré, D.

Badoil, B.

Badugu, R.

R. Wang, Y. Wang, D. Zhang, G. Si, L. Zhu, L. Du, S. Kou, R. Badugu, M. Rosenfeld, J. Lin, P. Wang, H. Ming, X. Yuan, and J. R. Lakowicz, “Diffraction-Free Bloch Surface Waves,” ACS Nano 11(6), 5383–5390 (2017).
[Crossref]

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8(1), 14330 (2017).
[Crossref]

K. Ray, R. Badugu, and J. R. Lakowicz, “Bloch surface wave-coupled emission from quantum dots by ensemble and single molecule spectroscopy,” RSC Adv. 5(67), 54403–54411 (2015).
[Crossref]

R. Badugu, K. Nowaczyk, E. Descrovi, and J. R. Lakowicz, “Radiative decay engineering 6: Fluorescence on one-dimensional photonic crystals,” Anal. Biochem. 442(1), 83–96 (2013).
[Crossref]

Bajoni, D.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-Enhanced Raman Scattering in Purely Dielectric Structures via Bloch Surface Waves,” J. Phys. Chem. C 117(13), 6821–6825 (2013).
[Crossref]

Ballarini, M.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref]

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: Coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100(6), 063305 (2012).
[Crossref]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one dimensional photonic crystal,” Appl. Phys. Lett. 99(4), 043302 (2011).
[Crossref]

Barakat, E.

R. Dubey, E. Barakat, M. Hayrinen, M. Roussey, S. K. Honkanen, M Kuittinen, and H. P. Herzig, “Experimental investigation of the propagation properties of bloch surface waves on dielectric multilayer platform,” J. Eur. Opt. Soc.-Rapid Publ. 13(1), 5 (2017).
[Crossref]

Boarino, L.

E. Descrovi, D. Morrone, A. Angelini, F. Frascella, S. Ricciardi, P. Rivolo, N. De Leo, L. Boarino, P. Munzert, F. Michelotti, and F. Giorgis, “Fluorescence imaging assisted by surface modes on dielectric multilayers,” Eur. Phys. J. D 68(3), 53 (2014).
[Crossref]

Boos, M.

A. Zöller, M. Boos, R. Goetzelmann, H. Hagedorn, and W. Klug, “Substantial progress in optical monitoring by intermittent measurement technique,” Proc. SPIE 5963, 59630D (2005).
[Crossref]

Boyd, R. D.

Britten, J. A.

Bussolino, F.

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A Fluorescent One-Dimensional Photonic Crystal for Label-Free Biosensing Based on Bloch Surface Waves,” Sensors 13(2), 2011–2022 (2013).
[Crossref]

Candille, M.

M. Candille, “Détermination du Critre D’arrêt Pour le Maximtre Monochromatique, Systme de Contrôle Optique de Couches Minces Multidilectriques,” Opt. Acta 26(12), 1477–1486 (1979).
[Crossref]

Cathelinaud, M.

Challener, W. A.

W. A. Challener, J. D. Edwards, R. W. McGowan, J. Skorjanec, and Z. Yang, “A multilayer grating-based evanescent wave sensing technique,” Sens. Actuators, B 71(1-2), 42–46 (2000).
[Crossref]

Chen, J.

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8(1), 14330 (2017).
[Crossref]

Y. Liu, J. Chen, M. Du, X. Wang, X. Ji, and Z. He, “The preparation of dual-functional hybrid nanoflower and its application in the ultrasensitive detection of disease-related biomarker,” Biosens. Bioelectron. 92, 68–73 (2017).
[Crossref]

Chen, P. C.

W. Ng, P. Yeh, P. C. Chen, and A. Yariv, “Optical surface waves in periodic layered medium grown by liquid phase epitaxy,” Appl. Phys. Lett. 32(6), 370–371 (1978).
[Crossref]

Cho, A. Y.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978).
[Crossref]

Chua, J. K.

J. K. Chua and V. M. Murukeshan, “Resonant amplification of frustrated evanescent waves by single dielectric coating,” Opt. Commun. 283(1), 169–175 (2010).
[Crossref]

Dacarro, G.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-Enhanced Raman Scattering in Purely Dielectric Structures via Bloch Surface Waves,” J. Phys. Chem. C 117(13), 6821–6825 (2013).
[Crossref]

Danz, N.

A. Occhicone, A. Sinibaldi, F. Sonntag, P. Munzert, N. Danz, and F. Michelotti, “A novel technique based on Bloch surface waves sustained by one-dimensional photonic crystals to probe mass transport in a microfluidic channel,” Sens. Actuators, B 247, 532–539 (2017).
[Crossref]

P. Munzert, N. Danz, A. Sinibaldi, and F. Michelotti, “Multilayer coatings for Bloch surface wave optical biosensors,” Surf. Coat. Technol. 314, 79–84 (2017).
[Crossref]

A. Sinibaldia, C. Sampaoli, N. Danz, P. Munzert, L. Sibilio, F. Sonntag, A. Occhicone, E. Falvo, E. Tremante, P. Giacomini, and F. Michelotti, “Detection of soluble ERBB2 in breast cancer cell lysates using a combined label-free fluorescence platform based on Bloch surface waves,” Biosens. Bioelectron. 92, 125–130 (2017).
[Crossref]

F. Michelotti, R. Rizzo, A. Sinibaldi, P. Munzert, C. Wachter, and N. Danz, “Design rules for combined label-free and fluorescence Bloch surface wave biosensors,” Opt. Lett. 42(14), 2798 (2017).
[Crossref]

A. Sinibaldi, R. Rizzo, G. Figliozzzi, E. Descrovic, N. Danz, P. Munzert, A. Anopchenko, and F. Michelotti, “A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals,” Opt. Express 21(20), 23331 (2013).
[Crossref]

F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi, “Probing losses of dielectric multilayers by means of Bloch surface waves,” Opt. Lett. 38(5), 616–618 (2013).
[Crossref]

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A Fluorescent One-Dimensional Photonic Crystal for Label-Free Biosensing Based on Bloch Surface Waves,” Sensors 13(2), 2011–2022 (2013).
[Crossref]

A. Sinibaldi, N. Danz, E. Descrovic, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

de Fornel, F.

A. L. Lereu, M. Zerrad, M. Petit, F. de Fornel, and C. Amra, “Multi-dielectric stacks as a platform for giant optical field,” Proc. SPIE 9162, 916219 (2014).
[Crossref]

De Leo, N.

E. Descrovi, D. Morrone, A. Angelini, F. Frascella, S. Ricciardi, P. Rivolo, N. De Leo, L. Boarino, P. Munzert, F. Michelotti, and F. Giorgis, “Fluorescence imaging assisted by surface modes on dielectric multilayers,” Eur. Phys. J. D 68(3), 53 (2014).
[Crossref]

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: Coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100(6), 063305 (2012).
[Crossref]

Decker, D.

Delfan, A.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-Enhanced Raman Scattering in Purely Dielectric Structures via Bloch Surface Waves,” J. Phys. Chem. C 117(13), 6821–6825 (2013).
[Crossref]

Descrovi, E.

E. Descrovi, D. Morrone, A. Angelini, F. Frascella, S. Ricciardi, P. Rivolo, N. De Leo, L. Boarino, P. Munzert, F. Michelotti, and F. Giorgis, “Fluorescence imaging assisted by surface modes on dielectric multilayers,” Eur. Phys. J. D 68(3), 53 (2014).
[Crossref]

R. Badugu, K. Nowaczyk, E. Descrovi, and J. R. Lakowicz, “Radiative decay engineering 6: Fluorescence on one-dimensional photonic crystals,” Anal. Biochem. 442(1), 83–96 (2013).
[Crossref]

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A Fluorescent One-Dimensional Photonic Crystal for Label-Free Biosensing Based on Bloch Surface Waves,” Sensors 13(2), 2011–2022 (2013).
[Crossref]

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref]

F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi, “Probing losses of dielectric multilayers by means of Bloch surface waves,” Opt. Lett. 38(5), 616–618 (2013).
[Crossref]

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: Coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100(6), 063305 (2012).
[Crossref]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one dimensional photonic crystal,” Appl. Phys. Lett. 99(4), 043302 (2011).
[Crossref]

E. Descrovi, T. Sfez, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H-P. Herzig, “Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals,” Opt. Express 16(8), 5453–5464 (2008).
[Crossref]

Descrovic, E.

A. Sinibaldi, R. Rizzo, G. Figliozzzi, E. Descrovic, N. Danz, P. Munzert, A. Anopchenko, and F. Michelotti, “A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals,” Opt. Express 21(20), 23331 (2013).
[Crossref]

A. Sinibaldi, N. Danz, E. Descrovic, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

Digregorio, G.

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one dimensional photonic crystal,” Appl. Phys. Lett. 99(4), 043302 (2011).
[Crossref]

Dobrowolski, J. A.

Dominici, L.

A. Sinibaldi, N. Danz, E. Descrovic, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

E. Descrovi, T. Sfez, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H-P. Herzig, “Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals,” Opt. Express 16(8), 5453–5464 (2008).
[Crossref]

Dostalek, J.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref]

Du, L.

R. Wang, Y. Wang, D. Zhang, G. Si, L. Zhu, L. Du, S. Kou, R. Badugu, M. Rosenfeld, J. Lin, P. Wang, H. Ming, X. Yuan, and J. R. Lakowicz, “Diffraction-Free Bloch Surface Waves,” ACS Nano 11(6), 5383–5390 (2017).
[Crossref]

Du, M.

Y. Liu, J. Chen, M. Du, X. Wang, X. Ji, and Z. He, “The preparation of dual-functional hybrid nanoflower and its application in the ultrasensitive detection of disease-related biomarker,” Biosens. Bioelectron. 92, 68–73 (2017).
[Crossref]

Dubey, R.

R. Dubey, E. Barakat, M. Hayrinen, M. Roussey, S. K. Honkanen, M Kuittinen, and H. P. Herzig, “Experimental investigation of the propagation properties of bloch surface waves on dielectric multilayer platform,” J. Eur. Opt. Soc.-Rapid Publ. 13(1), 5 (2017).
[Crossref]

Dumas, P.

C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, P. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103(13), 131102 (2013).
[Crossref]

Edwards, J. D.

W. A. Challener, J. D. Edwards, R. W. McGowan, J. Skorjanec, and Z. Yang, “A multilayer grating-based evanescent wave sensing technique,” Sens. Actuators, B 71(1-2), 42–46 (2000).
[Crossref]

Enrico, E.

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: Coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100(6), 063305 (2012).
[Crossref]

Evans, P. G.

A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Probing large area surface plasmon interference in thin metal films using photon scanning tunneling microscopy,” Ultramicroscopy 100(3-4), 429–436 (2004).
[Crossref]

Falvo, E.

A. Sinibaldia, C. Sampaoli, N. Danz, P. Munzert, L. Sibilio, F. Sonntag, A. Occhicone, E. Falvo, E. Tremante, P. Giacomini, and F. Michelotti, “Detection of soluble ERBB2 in breast cancer cell lysates using a combined label-free fluorescence platform based on Bloch surface waves,” Biosens. Bioelectron. 92, 125–130 (2017).
[Crossref]

Ferrell, T. L.

A. Passian, A. L. Lereu, A. Wig, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Imaging standing surface plasmons by photon tunneling,” Phys. Rev. B 71(16), 165418 (2005).
[Crossref]

A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Probing large area surface plasmon interference in thin metal films using photon scanning tunneling microscopy,” Ultramicroscopy 100(3-4), 429–436 (2004).
[Crossref]

Figliozzzi, G.

Frascella, F.

E. Descrovi, D. Morrone, A. Angelini, F. Frascella, S. Ricciardi, P. Rivolo, N. De Leo, L. Boarino, P. Munzert, F. Michelotti, and F. Giorgis, “Fluorescence imaging assisted by surface modes on dielectric multilayers,” Eur. Phys. J. D 68(3), 53 (2014).
[Crossref]

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A Fluorescent One-Dimensional Photonic Crystal for Label-Free Biosensing Based on Bloch Surface Waves,” Sensors 13(2), 2011–2022 (2013).
[Crossref]

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: Coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100(6), 063305 (2012).
[Crossref]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one dimensional photonic crystal,” Appl. Phys. Lett. 99(4), 043302 (2011).
[Crossref]

Galli, M.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-Enhanced Raman Scattering in Purely Dielectric Structures via Bloch Surface Waves,” J. Phys. Chem. C 117(13), 6821–6825 (2013).
[Crossref]

Gan, X. S.

P. C. Ke, X. S. Gan, J. Szajman, S. Schilders, and M. Gu, “Optimizing the strength of an evanescent wave generated from a prism coated with a double-layer thin-film stack,” Bioimaging 5(1), 1–8 (1997).

Gao, L.

Garcia de Abajo, F. J.

R. Sainidou, J. Renger, T. V. Teperik, M-U. Gonzalez, R. Quidant, and F. J. Garcia de Abajo, “Extraordinary All-Dielectric Light Enhancement over Large Volumes,” Nano Lett. 10(11), 4450–4455 (2010).
[Crossref]

Giacomini, P.

A. Sinibaldia, C. Sampaoli, N. Danz, P. Munzert, L. Sibilio, F. Sonntag, A. Occhicone, E. Falvo, E. Tremante, P. Giacomini, and F. Michelotti, “Detection of soluble ERBB2 in breast cancer cell lysates using a combined label-free fluorescence platform based on Bloch surface waves,” Biosens. Bioelectron. 92, 125–130 (2017).
[Crossref]

Giorgis, F.

E. Descrovi, D. Morrone, A. Angelini, F. Frascella, S. Ricciardi, P. Rivolo, N. De Leo, L. Boarino, P. Munzert, F. Michelotti, and F. Giorgis, “Fluorescence imaging assisted by surface modes on dielectric multilayers,” Eur. Phys. J. D 68(3), 53 (2014).
[Crossref]

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A Fluorescent One-Dimensional Photonic Crystal for Label-Free Biosensing Based on Bloch Surface Waves,” Sensors 13(2), 2011–2022 (2013).
[Crossref]

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref]

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: Coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100(6), 063305 (2012).
[Crossref]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one dimensional photonic crystal,” Appl. Phys. Lett. 99(4), 043302 (2011).
[Crossref]

E. Descrovi, T. Sfez, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H-P. Herzig, “Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals,” Opt. Express 16(8), 5453–5464 (2008).
[Crossref]

Goetzelmann, R.

A. Zöller, M. Boos, R. Goetzelmann, H. Hagedorn, and W. Klug, “Substantial progress in optical monitoring by intermittent measurement technique,” Proc. SPIE 5963, 59630D (2005).
[Crossref]

Gonzalez, M-U.

R. Sainidou, J. Renger, T. V. Teperik, M-U. Gonzalez, R. Quidant, and F. J. Garcia de Abajo, “Extraordinary All-Dielectric Light Enhancement over Large Volumes,” Nano Lett. 10(11), 4450–4455 (2010).
[Crossref]

Greffet, J. J.

A. Archambault, T. V. Teperik, F. Marquier, and J. J. Greffet, “Surface plasmon Fourier optics,” Phys. Rev. B 79(19), 195414 (2009).
[Crossref]

Gu, M.

P. C. Ke, X. S. Gan, J. Szajman, S. Schilders, and M. Gu, “Optimizing the strength of an evanescent wave generated from a prism coated with a double-layer thin-film stack,” Bioimaging 5(1), 1–8 (1997).

Guizzetti, G.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-Enhanced Raman Scattering in Purely Dielectric Structures via Bloch Surface Waves,” J. Phys. Chem. C 117(13), 6821–6825 (2013).
[Crossref]

Hagedorn, H.

A. Zöller, M. Boos, R. Goetzelmann, H. Hagedorn, and W. Klug, “Substantial progress in optical monitoring by intermittent measurement technique,” Proc. SPIE 5963, 59630D (2005).
[Crossref]

Halevi, P.

Hassanzadeh, R.

A. Siabi-Garjan and R. Hassanzadeh, “A computational approach for engineering optical properties of multilayer thin films: Particle swarm optimization applied to Bruggeman homogenization formalism,” Eur. Phys. J. Plus 133(10), 419 (2018).
[Crossref]

Hayashi, S.

Hayrinen, M.

R. Dubey, E. Barakat, M. Hayrinen, M. Roussey, S. K. Honkanen, M Kuittinen, and H. P. Herzig, “Experimental investigation of the propagation properties of bloch surface waves on dielectric multilayer platform,” J. Eur. Opt. Soc.-Rapid Publ. 13(1), 5 (2017).
[Crossref]

He, Z.

Y. Liu, J. Chen, M. Du, X. Wang, X. Ji, and Z. He, “The preparation of dual-functional hybrid nanoflower and its application in the ultrasensitive detection of disease-related biomarker,” Biosens. Bioelectron. 92, 68–73 (2017).
[Crossref]

Herzig, H. P.

R. Dubey, E. Barakat, M. Hayrinen, M. Roussey, S. K. Honkanen, M Kuittinen, and H. P. Herzig, “Experimental investigation of the propagation properties of bloch surface waves on dielectric multilayer platform,” J. Eur. Opt. Soc.-Rapid Publ. 13(1), 5 (2017).
[Crossref]

Herzig, H-P.

Hong, C-S.

Honkanen, S. K.

R. Dubey, E. Barakat, M. Hayrinen, M. Roussey, S. K. Honkanen, M Kuittinen, and H. P. Herzig, “Experimental investigation of the propagation properties of bloch surface waves on dielectric multilayer platform,” J. Eur. Opt. Soc.-Rapid Publ. 13(1), 5 (2017).
[Crossref]

Inouye, Y.

Ishitobi, H.

Ji, X.

Y. Liu, J. Chen, M. Du, X. Wang, X. Ji, and Z. He, “The preparation of dual-functional hybrid nanoflower and its application in the ultrasensitive detection of disease-related biomarker,” Biosens. Bioelectron. 92, 68–73 (2017).
[Crossref]

JianSheng, L.

W. YuHang, Z. Zheng, S. XiaoGang, B. YuSheng, and L. JianSheng, “Hybrid plasmon waveguide leveraging Bloch surface polaritons for sub-wavelength confinement,” Sci. China: Technol. Sci. 56(3), 567–572 (2013).
[Crossref]

Jonas, U.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref]

Kaiser, R.

G. Labeyrie, A. Landragin, J. Von Zanthier, R. Kaiser, N. Vansteenkiste, C. Westbrook, and A. Aspect, “Detailed study of a high-finesse planar waveguide for evanescent wave atomic mirrors,” Quantum Semiclassical Opt. 8(3), 603–627 (1996).
[Crossref]

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104(4-6), 234–240 (1994).
[Crossref]

Kawata, S.

Ke, P. C.

P. C. Ke, X. S. Gan, J. Szajman, S. Schilders, and M. Gu, “Optimizing the strength of an evanescent wave generated from a prism coated with a double-layer thin-film stack,” Bioimaging 5(1), 1–8 (1997).

Khorasani, S.

K. Mehrany, S. Khorasani, and B. Rashidian, “Novel optical devices based on surface wave excitation at conducting interfaces,” Semicond. Sci. Technol. 18(6), 582–588 (2003).
[Crossref]

Klug, W.

A. Zöller, M. Boos, R. Goetzelmann, H. Hagedorn, and W. Klug, “Substantial progress in optical monitoring by intermittent measurement technique,” Proc. SPIE 5963, 59630D (2005).
[Crossref]

Knoll, W.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref]

Koju, V.

Kou, S.

R. Wang, Y. Wang, D. Zhang, G. Si, L. Zhu, L. Du, S. Kou, R. Badugu, M. Rosenfeld, J. Lin, P. Wang, H. Ming, X. Yuan, and J. R. Lakowicz, “Diffraction-Free Bloch Surface Waves,” ACS Nano 11(6), 5383–5390 (2017).
[Crossref]

Kretschmann, E.

E. Kretschmann, “The determination of the optical constants of metals by excitation of surface plasmons,” Z. Phys. A: Hadrons Nucl. 241(4), 313–324 (1971).
[Crossref]

Kuittinen, M

R. Dubey, E. Barakat, M. Hayrinen, M. Roussey, S. K. Honkanen, M Kuittinen, and H. P. Herzig, “Experimental investigation of the propagation properties of bloch surface waves on dielectric multilayer platform,” J. Eur. Opt. Soc.-Rapid Publ. 13(1), 5 (2017).
[Crossref]

Labeyrie, G.

G. Labeyrie, A. Landragin, J. Von Zanthier, R. Kaiser, N. Vansteenkiste, C. Westbrook, and A. Aspect, “Detailed study of a high-finesse planar waveguide for evanescent wave atomic mirrors,” Quantum Semiclassical Opt. 8(3), 603–627 (1996).
[Crossref]

Lakowicz, J. R.

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8(1), 14330 (2017).
[Crossref]

R. Wang, Y. Wang, D. Zhang, G. Si, L. Zhu, L. Du, S. Kou, R. Badugu, M. Rosenfeld, J. Lin, P. Wang, H. Ming, X. Yuan, and J. R. Lakowicz, “Diffraction-Free Bloch Surface Waves,” ACS Nano 11(6), 5383–5390 (2017).
[Crossref]

K. Ray, R. Badugu, and J. R. Lakowicz, “Bloch surface wave-coupled emission from quantum dots by ensemble and single molecule spectroscopy,” RSC Adv. 5(67), 54403–54411 (2015).
[Crossref]

R. Badugu, K. Nowaczyk, E. Descrovi, and J. R. Lakowicz, “Radiative decay engineering 6: Fluorescence on one-dimensional photonic crystals,” Anal. Biochem. 442(1), 83–96 (2013).
[Crossref]

Landragin, A.

G. Labeyrie, A. Landragin, J. Von Zanthier, R. Kaiser, N. Vansteenkiste, C. Westbrook, and A. Aspect, “Detailed study of a high-finesse planar waveguide for evanescent wave atomic mirrors,” Quantum Semiclassical Opt. 8(3), 603–627 (1996).
[Crossref]

Leipold, D.

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104(4-6), 234–240 (1994).
[Crossref]

Lemarchand, F.

C. Amra, M. Zerrad, F. Lemarchand, A. L. Lereu, A. Passian, A. Zapien, and M. Lequime, “Energy density engineering via zero admittance domains in all-dielectric stratified materials,” Phys. Rev. A 97(2), 023819 (2018).
[Crossref]

M. Zerrad, A. L. Lereu, C. N’diaye, F. Lemarchand, and C. Amra, “Bandwidths limitations of giant optical field enhancements,” Opt. Express 25(13), 14883 (2017).
[Crossref]

A. L. Lereu, M. Zerrad, C. Ndiaye, F. Lemarchand, and C. Amra, “Scattering losses in multidielectric structures designed for giant optical field enhancement,” Appl. Opt. 53(4), A412–A416 (2014).
[Crossref]

C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, P. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103(13), 131102 (2013).
[Crossref]

L. Gao, F. Lemarchand, and M. Lequime, “Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering,” Opt. Express 20(14), 15734–15751 (2012).
[Crossref]

C. Ndiaye, F. Lemarchand, M. Zerrad, D. Ausserré, and C. Amra, “Optimal design for 100% absorption and maximum field enhancement in thin-film multilayers at resonances under total reflection,” Appl. Opt. 50(9), C382–C387 (2011).
[Crossref]

C. Amra, C. Ndiaye, M. Zerrad, and F. Lemarchand, “Optimal Design for Field Enhancement in optical coatings,” Proc. SPIE 8168, 816808 (2011).
[Crossref]

B. Badoil, F. Lemarchand, M. Cathelinaud, and M. Lequime, “Manufacturing of an absorbing filter controlled with a broadband optical monitoring,” Opt. Express 16(16), 12008–12017 (2008).
[Crossref]

B. Badoil, F. Lemarchand, M. Cathelinaud, and M. Lequime, “Interest of broadband optical monitoring for thin-film filter manufacturing,” Appl. Opt. 46(20), 4294–4303 (2007).
[Crossref]

B. Badoil, F. Lemarchand, M. Cathelinaud, and M. Lequime, “An Error Compensation Strategy for Broadband Optical Monitoring,” in Optical Interference Coatings (Optical Society of America, 2007), p. WC5.

Lequime, M.

C. Amra, M. Zerrad, F. Lemarchand, A. L. Lereu, A. Passian, A. Zapien, and M. Lequime, “Energy density engineering via zero admittance domains in all-dielectric stratified materials,” Phys. Rev. A 97(2), 023819 (2018).
[Crossref]

L. Gao, F. Lemarchand, and M. Lequime, “Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering,” Opt. Express 20(14), 15734–15751 (2012).
[Crossref]

B. Badoil, F. Lemarchand, M. Cathelinaud, and M. Lequime, “Manufacturing of an absorbing filter controlled with a broadband optical monitoring,” Opt. Express 16(16), 12008–12017 (2008).
[Crossref]

B. Badoil, F. Lemarchand, M. Cathelinaud, and M. Lequime, “Interest of broadband optical monitoring for thin-film filter manufacturing,” Appl. Opt. 46(20), 4294–4303 (2007).
[Crossref]

B. Badoil, F. Lemarchand, M. Cathelinaud, and M. Lequime, “An Error Compensation Strategy for Broadband Optical Monitoring,” in Optical Interference Coatings (Optical Society of America, 2007), p. WC5.

Lereu, A. L.

C. Amra, M. Zerrad, F. Lemarchand, A. L. Lereu, A. Passian, A. Zapien, and M. Lequime, “Energy density engineering via zero admittance domains in all-dielectric stratified materials,” Phys. Rev. A 97(2), 023819 (2018).
[Crossref]

A. L. Lereu, M. Zerrad, A. Passian, and C. Amra, “Surface plasmons and Bloch surface waves: towards optimized ultra-sensitive optical sensors,” Appl. Phys. Lett. 111(1), 011107 (2017).
[Crossref]

M. Zerrad, A. L. Lereu, C. N’diaye, F. Lemarchand, and C. Amra, “Bandwidths limitations of giant optical field enhancements,” Opt. Express 25(13), 14883 (2017).
[Crossref]

A. L. Lereu, M. Zerrad, C. Ndiaye, F. Lemarchand, and C. Amra, “Scattering losses in multidielectric structures designed for giant optical field enhancement,” Appl. Opt. 53(4), A412–A416 (2014).
[Crossref]

A. L. Lereu, M. Zerrad, M. Petit, F. de Fornel, and C. Amra, “Multi-dielectric stacks as a platform for giant optical field,” Proc. SPIE 9162, 916219 (2014).
[Crossref]

C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, P. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103(13), 131102 (2013).
[Crossref]

A. Passian, A. L. Lereu, A. Wig, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Imaging standing surface plasmons by photon tunneling,” Phys. Rev. B 71(16), 165418 (2005).
[Crossref]

A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Probing large area surface plasmon interference in thin metal films using photon scanning tunneling microscopy,” Ultramicroscopy 100(3-4), 429–436 (2004).
[Crossref]

Lévy, Y.

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104(4-6), 234–240 (1994).
[Crossref]

Lin, J.

R. Wang, Y. Wang, D. Zhang, G. Si, L. Zhu, L. Du, S. Kou, R. Badugu, M. Rosenfeld, J. Lin, P. Wang, H. Ming, X. Yuan, and J. R. Lakowicz, “Diffraction-Free Bloch Surface Waves,” ACS Nano 11(6), 5383–5390 (2017).
[Crossref]

Liscidini, M.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-Enhanced Raman Scattering in Purely Dielectric Structures via Bloch Surface Waves,” J. Phys. Chem. C 117(13), 6821–6825 (2013).
[Crossref]

Liu, Y.

Y. Liu, J. Chen, M. Du, X. Wang, X. Ji, and Z. He, “The preparation of dual-functional hybrid nanoflower and its application in the ultrasensitive detection of disease-related biomarker,” Biosens. Bioelectron. 92, 68–73 (2017).
[Crossref]

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 2001).

Maiti, S.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-Enhanced Raman Scattering in Purely Dielectric Structures via Bloch Surface Waves,” J. Phys. Chem. C 117(13), 6821–6825 (2013).
[Crossref]

Mandracci, P.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref]

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: Coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100(6), 063305 (2012).
[Crossref]

Marquier, F.

A. Archambault, T. V. Teperik, F. Marquier, and J. J. Greffet, “Surface plasmon Fourier optics,” Phys. Rev. B 79(19), 195414 (2009).
[Crossref]

Martorell, J.

J. Martorell, D. W. L. Sprung, and G. V. Morozov, “Surface TE waves on 1D photonic crystals,” J. Opt. A: Pure Appl. Opt. 8(8), 630–638 (2006).
[Crossref]

Mateescu, A.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref]

May, M. S.

W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74(13), 1800–1802 (1999).
[Crossref]

McGowan, R. W.

W. A. Challener, J. D. Edwards, R. W. McGowan, J. Skorjanec, and Z. Yang, “A multilayer grating-based evanescent wave sensing technique,” Sens. Actuators, B 71(1-2), 42–46 (2000).
[Crossref]

Mehrany, K.

K. Mehrany, S. Khorasani, and B. Rashidian, “Novel optical devices based on surface wave excitation at conducting interfaces,” Semicond. Sci. Technol. 18(6), 582–588 (2003).
[Crossref]

Mendieta, E. R.

Meriaudeau, F.

A. Passian, A. L. Lereu, A. Wig, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Imaging standing surface plasmons by photon tunneling,” Phys. Rev. B 71(16), 165418 (2005).
[Crossref]

A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Probing large area surface plasmon interference in thin metal films using photon scanning tunneling microscopy,” Ultramicroscopy 100(3-4), 429–436 (2004).
[Crossref]

Michelotti, F.

A. Sinibaldia, C. Sampaoli, N. Danz, P. Munzert, L. Sibilio, F. Sonntag, A. Occhicone, E. Falvo, E. Tremante, P. Giacomini, and F. Michelotti, “Detection of soluble ERBB2 in breast cancer cell lysates using a combined label-free fluorescence platform based on Bloch surface waves,” Biosens. Bioelectron. 92, 125–130 (2017).
[Crossref]

A. Occhicone, A. Sinibaldi, F. Sonntag, P. Munzert, N. Danz, and F. Michelotti, “A novel technique based on Bloch surface waves sustained by one-dimensional photonic crystals to probe mass transport in a microfluidic channel,” Sens. Actuators, B 247, 532–539 (2017).
[Crossref]

P. Munzert, N. Danz, A. Sinibaldi, and F. Michelotti, “Multilayer coatings for Bloch surface wave optical biosensors,” Surf. Coat. Technol. 314, 79–84 (2017).
[Crossref]

F. Michelotti, R. Rizzo, A. Sinibaldi, P. Munzert, C. Wachter, and N. Danz, “Design rules for combined label-free and fluorescence Bloch surface wave biosensors,” Opt. Lett. 42(14), 2798 (2017).
[Crossref]

E. Descrovi, D. Morrone, A. Angelini, F. Frascella, S. Ricciardi, P. Rivolo, N. De Leo, L. Boarino, P. Munzert, F. Michelotti, and F. Giorgis, “Fluorescence imaging assisted by surface modes on dielectric multilayers,” Eur. Phys. J. D 68(3), 53 (2014).
[Crossref]

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A Fluorescent One-Dimensional Photonic Crystal for Label-Free Biosensing Based on Bloch Surface Waves,” Sensors 13(2), 2011–2022 (2013).
[Crossref]

A. Sinibaldi, R. Rizzo, G. Figliozzzi, E. Descrovic, N. Danz, P. Munzert, A. Anopchenko, and F. Michelotti, “A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals,” Opt. Express 21(20), 23331 (2013).
[Crossref]

F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi, “Probing losses of dielectric multilayers by means of Bloch surface waves,” Opt. Lett. 38(5), 616–618 (2013).
[Crossref]

A. Sinibaldi, N. Danz, E. Descrovic, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: Coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100(6), 063305 (2012).
[Crossref]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one dimensional photonic crystal,” Appl. Phys. Lett. 99(4), 043302 (2011).
[Crossref]

E. Descrovi, T. Sfez, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H-P. Herzig, “Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals,” Opt. Express 16(8), 5453–5464 (2008).
[Crossref]

Miller, S. C.

Ming, H.

R. Wang, Y. Wang, D. Zhang, G. Si, L. Zhu, L. Du, S. Kou, R. Badugu, M. Rosenfeld, J. Lin, P. Wang, H. Ming, X. Yuan, and J. R. Lakowicz, “Diffraction-Free Bloch Surface Waves,” ACS Nano 11(6), 5383–5390 (2017).
[Crossref]

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8(1), 14330 (2017).
[Crossref]

Mlynek, J.

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104(4-6), 234–240 (1994).
[Crossref]

Moi, V.

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A Fluorescent One-Dimensional Photonic Crystal for Label-Free Biosensing Based on Bloch Surface Waves,” Sensors 13(2), 2011–2022 (2013).
[Crossref]

Morozov, G. V.

J. Martorell, D. W. L. Sprung, and G. V. Morozov, “Surface TE waves on 1D photonic crystals,” J. Opt. A: Pure Appl. Opt. 8(8), 630–638 (2006).
[Crossref]

Morrone, D.

E. Descrovi, D. Morrone, A. Angelini, F. Frascella, S. Ricciardi, P. Rivolo, N. De Leo, L. Boarino, P. Munzert, F. Michelotti, and F. Giorgis, “Fluorescence imaging assisted by surface modes on dielectric multilayers,” Eur. Phys. J. D 68(3), 53 (2014).
[Crossref]

Munzert, P.

A. Occhicone, A. Sinibaldi, F. Sonntag, P. Munzert, N. Danz, and F. Michelotti, “A novel technique based on Bloch surface waves sustained by one-dimensional photonic crystals to probe mass transport in a microfluidic channel,” Sens. Actuators, B 247, 532–539 (2017).
[Crossref]

P. Munzert, N. Danz, A. Sinibaldi, and F. Michelotti, “Multilayer coatings for Bloch surface wave optical biosensors,” Surf. Coat. Technol. 314, 79–84 (2017).
[Crossref]

A. Sinibaldia, C. Sampaoli, N. Danz, P. Munzert, L. Sibilio, F. Sonntag, A. Occhicone, E. Falvo, E. Tremante, P. Giacomini, and F. Michelotti, “Detection of soluble ERBB2 in breast cancer cell lysates using a combined label-free fluorescence platform based on Bloch surface waves,” Biosens. Bioelectron. 92, 125–130 (2017).
[Crossref]

F. Michelotti, R. Rizzo, A. Sinibaldi, P. Munzert, C. Wachter, and N. Danz, “Design rules for combined label-free and fluorescence Bloch surface wave biosensors,” Opt. Lett. 42(14), 2798 (2017).
[Crossref]

E. Descrovi, D. Morrone, A. Angelini, F. Frascella, S. Ricciardi, P. Rivolo, N. De Leo, L. Boarino, P. Munzert, F. Michelotti, and F. Giorgis, “Fluorescence imaging assisted by surface modes on dielectric multilayers,” Eur. Phys. J. D 68(3), 53 (2014).
[Crossref]

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A Fluorescent One-Dimensional Photonic Crystal for Label-Free Biosensing Based on Bloch Surface Waves,” Sensors 13(2), 2011–2022 (2013).
[Crossref]

F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi, “Probing losses of dielectric multilayers by means of Bloch surface waves,” Opt. Lett. 38(5), 616–618 (2013).
[Crossref]

A. Sinibaldi, R. Rizzo, G. Figliozzzi, E. Descrovic, N. Danz, P. Munzert, A. Anopchenko, and F. Michelotti, “A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals,” Opt. Express 21(20), 23331 (2013).
[Crossref]

A. Sinibaldi, N. Danz, E. Descrovic, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

Murukeshan, V. M.

J. K. Chua and V. M. Murukeshan, “Resonant amplification of frustrated evanescent waves by single dielectric coating,” Opt. Commun. 283(1), 169–175 (2010).
[Crossref]

Musi, V.

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one dimensional photonic crystal,” Appl. Phys. Lett. 99(4), 043302 (2011).
[Crossref]

Mysore, S.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-Enhanced Raman Scattering in Purely Dielectric Structures via Bloch Surface Waves,” J. Phys. Chem. C 117(13), 6821–6825 (2013).
[Crossref]

N’diaye, C.

Nakagawa, W.

Napione, L.

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A Fluorescent One-Dimensional Photonic Crystal for Label-Free Biosensing Based on Bloch Surface Waves,” Sensors 13(2), 2011–2022 (2013).
[Crossref]

Ndiaye, C.

A. L. Lereu, M. Zerrad, C. Ndiaye, F. Lemarchand, and C. Amra, “Scattering losses in multidielectric structures designed for giant optical field enhancement,” Appl. Opt. 53(4), A412–A416 (2014).
[Crossref]

C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, P. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103(13), 131102 (2013).
[Crossref]

C. Amra, C. Ndiaye, M. Zerrad, and F. Lemarchand, “Optimal Design for Field Enhancement in optical coatings,” Proc. SPIE 8168, 816808 (2011).
[Crossref]

C. Ndiaye, F. Lemarchand, M. Zerrad, D. Ausserré, and C. Amra, “Optimal design for 100% absorption and maximum field enhancement in thin-film multilayers at resonances under total reflection,” Appl. Opt. 50(9), C382–C387 (2011).
[Crossref]

Nesnidal, R. C.

Nesterenko, D. V.

Ng, W.

W. Ng, P. Yeh, P. C. Chen, and A. Yariv, “Optical surface waves in periodic layered medium grown by liquid phase epitaxy,” Appl. Phys. Lett. 32(6), 370–371 (1978).
[Crossref]

Nowaczyk, K.

R. Badugu, K. Nowaczyk, E. Descrovi, and J. R. Lakowicz, “Radiative decay engineering 6: Fluorescence on one-dimensional photonic crystals,” Anal. Biochem. 442(1), 83–96 (2013).
[Crossref]

Occhicone, A.

A. Sinibaldia, C. Sampaoli, N. Danz, P. Munzert, L. Sibilio, F. Sonntag, A. Occhicone, E. Falvo, E. Tremante, P. Giacomini, and F. Michelotti, “Detection of soluble ERBB2 in breast cancer cell lysates using a combined label-free fluorescence platform based on Bloch surface waves,” Biosens. Bioelectron. 92, 125–130 (2017).
[Crossref]

A. Occhicone, A. Sinibaldi, F. Sonntag, P. Munzert, N. Danz, and F. Michelotti, “A novel technique based on Bloch surface waves sustained by one-dimensional photonic crystals to probe mass transport in a microfluidic channel,” Sens. Actuators, B 247, 532–539 (2017).
[Crossref]

Ozbay, E.

E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science 311(5758), 189–193 (2006).
[Crossref]

Paeder, V.

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one dimensional photonic crystal,” Appl. Phys. Lett. 99(4), 043302 (2011).
[Crossref]

Passian, A.

C. Amra, M. Zerrad, F. Lemarchand, A. L. Lereu, A. Passian, A. Zapien, and M. Lequime, “Energy density engineering via zero admittance domains in all-dielectric stratified materials,” Phys. Rev. A 97(2), 023819 (2018).
[Crossref]

A. L. Lereu, M. Zerrad, A. Passian, and C. Amra, “Surface plasmons and Bloch surface waves: towards optimized ultra-sensitive optical sensors,” Appl. Phys. Lett. 111(1), 011107 (2017).
[Crossref]

A. Passian, A. L. Lereu, A. Wig, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Imaging standing surface plasmons by photon tunneling,” Phys. Rev. B 71(16), 165418 (2005).
[Crossref]

A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Probing large area surface plasmon interference in thin metal films using photon scanning tunneling microscopy,” Ultramicroscopy 100(3-4), 429–436 (2004).
[Crossref]

Patrini, M.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-Enhanced Raman Scattering in Purely Dielectric Structures via Bloch Surface Waves,” J. Phys. Chem. C 117(13), 6821–6825 (2013).
[Crossref]

Perry, M. D.

Petit, M.

A. L. Lereu, M. Zerrad, M. Petit, F. de Fornel, and C. Amra, “Multi-dielectric stacks as a platform for giant optical field,” Proc. SPIE 9162, 916219 (2014).
[Crossref]

Pirotta, S.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-Enhanced Raman Scattering in Purely Dielectric Structures via Bloch Surface Waves,” J. Phys. Chem. C 117(13), 6821–6825 (2013).
[Crossref]

Quidant, R.

R. Sainidou, J. Renger, T. V. Teperik, M-U. Gonzalez, R. Quidant, and F. J. Garcia de Abajo, “Extraordinary All-Dielectric Light Enhancement over Large Volumes,” Nano Lett. 10(11), 4450–4455 (2010).
[Crossref]

Rahmouni, A.

Rashidian, B.

K. Mehrany, S. Khorasani, and B. Rashidian, “Novel optical devices based on surface wave excitation at conducting interfaces,” Semicond. Sci. Technol. 18(6), 582–588 (2003).
[Crossref]

Ray, K.

K. Ray, R. Badugu, and J. R. Lakowicz, “Bloch surface wave-coupled emission from quantum dots by ensemble and single molecule spectroscopy,” RSC Adv. 5(67), 54403–54411 (2015).
[Crossref]

Refki, S.

Renger, J.

R. Sainidou, J. Renger, T. V. Teperik, M-U. Gonzalez, R. Quidant, and F. J. Garcia de Abajo, “Extraordinary All-Dielectric Light Enhancement over Large Volumes,” Nano Lett. 10(11), 4450–4455 (2010).
[Crossref]

Ricciardi, S.

E. Descrovi, D. Morrone, A. Angelini, F. Frascella, S. Ricciardi, P. Rivolo, N. De Leo, L. Boarino, P. Munzert, F. Michelotti, and F. Giorgis, “Fluorescence imaging assisted by surface modes on dielectric multilayers,” Eur. Phys. J. D 68(3), 53 (2014).
[Crossref]

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A Fluorescent One-Dimensional Photonic Crystal for Label-Free Biosensing Based on Bloch Surface Waves,” Sensors 13(2), 2011–2022 (2013).
[Crossref]

Ritchie, R. H.

R. H. Ritchie, “Plasma Losses by Fast Electrons in Thin Films,” Phys. Rev. 106(5), 874–881 (1957).
[Crossref]

Rivolo, P.

E. Descrovi, D. Morrone, A. Angelini, F. Frascella, S. Ricciardi, P. Rivolo, N. De Leo, L. Boarino, P. Munzert, F. Michelotti, and F. Giorgis, “Fluorescence imaging assisted by surface modes on dielectric multilayers,” Eur. Phys. J. D 68(3), 53 (2014).
[Crossref]

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A Fluorescent One-Dimensional Photonic Crystal for Label-Free Biosensing Based on Bloch Surface Waves,” Sensors 13(2), 2011–2022 (2013).
[Crossref]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one dimensional photonic crystal,” Appl. Phys. Lett. 99(4), 043302 (2011).
[Crossref]

Rizzo, R.

Robertson, W. M.

V. Koju and W. M. Robertson, “Excitation of Bloch-like surface waves in quasi-crystals and aperiodic dielectric multilayers,” Opt. Lett. 41(13), 2915 (2016).
[Crossref]

W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74(13), 1800–1802 (1999).
[Crossref]

Roche, R.

C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, P. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103(13), 131102 (2013).
[Crossref]

Rosenfeld, M.

R. Wang, Y. Wang, D. Zhang, G. Si, L. Zhu, L. Du, S. Kou, R. Badugu, M. Rosenfeld, J. Lin, P. Wang, H. Ming, X. Yuan, and J. R. Lakowicz, “Diffraction-Free Bloch Surface Waves,” ACS Nano 11(6), 5383–5390 (2017).
[Crossref]

Roussey, M.

R. Dubey, E. Barakat, M. Hayrinen, M. Roussey, S. K. Honkanen, M Kuittinen, and H. P. Herzig, “Experimental investigation of the propagation properties of bloch surface waves on dielectric multilayer platform,” J. Eur. Opt. Soc.-Rapid Publ. 13(1), 5 (2017).
[Crossref]

Sainidou, R.

R. Sainidou, J. Renger, T. V. Teperik, M-U. Gonzalez, R. Quidant, and F. J. Garcia de Abajo, “Extraordinary All-Dielectric Light Enhancement over Large Volumes,” Nano Lett. 10(11), 4450–4455 (2010).
[Crossref]

Sampaoli, C.

A. Sinibaldia, C. Sampaoli, N. Danz, P. Munzert, L. Sibilio, F. Sonntag, A. Occhicone, E. Falvo, E. Tremante, P. Giacomini, and F. Michelotti, “Detection of soluble ERBB2 in breast cancer cell lysates using a combined label-free fluorescence platform based on Bloch surface waves,” Biosens. Bioelectron. 92, 125–130 (2017).
[Crossref]

Schilders, S.

P. C. Ke, X. S. Gan, J. Szajman, S. Schilders, and M. Gu, “Optimizing the strength of an evanescent wave generated from a prism coated with a double-layer thin-film stack,” Bioimaging 5(1), 1–8 (1997).

Schulz, U.

A. Sinibaldi, N. Danz, E. Descrovic, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

Seifert, W.

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104(4-6), 234–240 (1994).
[Crossref]

Sekkat, Z.

Sfez, T.

Shalabney, A.

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators, A 159(1), 24–32 (2010).
[Crossref]

Shannon, C.

Shore, B. W.

Shults, E.

Si, G.

R. Wang, Y. Wang, D. Zhang, G. Si, L. Zhu, L. Du, S. Kou, R. Badugu, M. Rosenfeld, J. Lin, P. Wang, H. Ming, X. Yuan, and J. R. Lakowicz, “Diffraction-Free Bloch Surface Waves,” ACS Nano 11(6), 5383–5390 (2017).
[Crossref]

Siabi-Garjan, A.

A. Siabi-Garjan and R. Hassanzadeh, “A computational approach for engineering optical properties of multilayer thin films: Particle swarm optimization applied to Bruggeman homogenization formalism,” Eur. Phys. J. Plus 133(10), 419 (2018).
[Crossref]

Sibilio, L.

A. Sinibaldia, C. Sampaoli, N. Danz, P. Munzert, L. Sibilio, F. Sonntag, A. Occhicone, E. Falvo, E. Tremante, P. Giacomini, and F. Michelotti, “Detection of soluble ERBB2 in breast cancer cell lysates using a combined label-free fluorescence platform based on Bloch surface waves,” Biosens. Bioelectron. 92, 125–130 (2017).
[Crossref]

Sinibaldi, A.

P. Munzert, N. Danz, A. Sinibaldi, and F. Michelotti, “Multilayer coatings for Bloch surface wave optical biosensors,” Surf. Coat. Technol. 314, 79–84 (2017).
[Crossref]

A. Occhicone, A. Sinibaldi, F. Sonntag, P. Munzert, N. Danz, and F. Michelotti, “A novel technique based on Bloch surface waves sustained by one-dimensional photonic crystals to probe mass transport in a microfluidic channel,” Sens. Actuators, B 247, 532–539 (2017).
[Crossref]

F. Michelotti, R. Rizzo, A. Sinibaldi, P. Munzert, C. Wachter, and N. Danz, “Design rules for combined label-free and fluorescence Bloch surface wave biosensors,” Opt. Lett. 42(14), 2798 (2017).
[Crossref]

A. Sinibaldi, R. Rizzo, G. Figliozzzi, E. Descrovic, N. Danz, P. Munzert, A. Anopchenko, and F. Michelotti, “A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals,” Opt. Express 21(20), 23331 (2013).
[Crossref]

F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi, “Probing losses of dielectric multilayers by means of Bloch surface waves,” Opt. Lett. 38(5), 616–618 (2013).
[Crossref]

A. Sinibaldi, N. Danz, E. Descrovic, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

Sinibaldia, A.

A. Sinibaldia, C. Sampaoli, N. Danz, P. Munzert, L. Sibilio, F. Sonntag, A. Occhicone, E. Falvo, E. Tremante, P. Giacomini, and F. Michelotti, “Detection of soluble ERBB2 in breast cancer cell lysates using a combined label-free fluorescence platform based on Bloch surface waves,” Biosens. Bioelectron. 92, 125–130 (2017).
[Crossref]

Sipe, J. E.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-Enhanced Raman Scattering in Purely Dielectric Structures via Bloch Surface Waves,” J. Phys. Chem. C 117(13), 6821–6825 (2013).
[Crossref]

Skorjanec, J.

W. A. Challener, J. D. Edwards, R. W. McGowan, J. Skorjanec, and Z. Yang, “A multilayer grating-based evanescent wave sensing technique,” Sens. Actuators, B 71(1-2), 42–46 (2000).
[Crossref]

Sonntag, F.

A. Occhicone, A. Sinibaldi, F. Sonntag, P. Munzert, N. Danz, and F. Michelotti, “A novel technique based on Bloch surface waves sustained by one-dimensional photonic crystals to probe mass transport in a microfluidic channel,” Sens. Actuators, B 247, 532–539 (2017).
[Crossref]

A. Sinibaldia, C. Sampaoli, N. Danz, P. Munzert, L. Sibilio, F. Sonntag, A. Occhicone, E. Falvo, E. Tremante, P. Giacomini, and F. Michelotti, “Detection of soluble ERBB2 in breast cancer cell lysates using a combined label-free fluorescence platform based on Bloch surface waves,” Biosens. Bioelectron. 92, 125–130 (2017).
[Crossref]

A. Sinibaldi, N. Danz, E. Descrovic, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

Sprung, D. W. L.

J. Martorell, D. W. L. Sprung, and G. V. Morozov, “Surface TE waves on 1D photonic crystals,” J. Opt. A: Pure Appl. Opt. 8(8), 630–638 (2006).
[Crossref]

Sullivan, B. T.

Szajman, J.

P. C. Ke, X. S. Gan, J. Szajman, S. Schilders, and M. Gu, “Optimizing the strength of an evanescent wave generated from a prism coated with a double-layer thin-film stack,” Bioimaging 5(1), 1–8 (1997).

Teperik, T. V.

R. Sainidou, J. Renger, T. V. Teperik, M-U. Gonzalez, R. Quidant, and F. J. Garcia de Abajo, “Extraordinary All-Dielectric Light Enhancement over Large Volumes,” Nano Lett. 10(11), 4450–4455 (2010).
[Crossref]

A. Archambault, T. V. Teperik, F. Marquier, and J. J. Greffet, “Surface plasmon Fourier optics,” Phys. Rev. B 79(19), 195414 (2009).
[Crossref]

Thundat, T.

A. Passian, A. L. Lereu, A. Wig, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Imaging standing surface plasmons by photon tunneling,” Phys. Rev. B 71(16), 165418 (2005).
[Crossref]

A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Probing large area surface plasmon interference in thin metal films using photon scanning tunneling microscopy,” Ultramicroscopy 100(3-4), 429–436 (2004).
[Crossref]

Toma, K.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref]

Toma, M.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref]

Tremante, E.

A. Sinibaldia, C. Sampaoli, N. Danz, P. Munzert, L. Sibilio, F. Sonntag, A. Occhicone, E. Falvo, E. Tremante, P. Giacomini, and F. Michelotti, “Detection of soluble ERBB2 in breast cancer cell lysates using a combined label-free fluorescence platform based on Bloch surface waves,” Biosens. Bioelectron. 92, 125–130 (2017).
[Crossref]

Vansteenkiste, N.

G. Labeyrie, A. Landragin, J. Von Zanthier, R. Kaiser, N. Vansteenkiste, C. Westbrook, and A. Aspect, “Detailed study of a high-finesse planar waveguide for evanescent wave atomic mirrors,” Quantum Semiclassical Opt. 8(3), 603–627 (1996).
[Crossref]

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104(4-6), 234–240 (1994).
[Crossref]

Von Zanthier, J.

G. Labeyrie, A. Landragin, J. Von Zanthier, R. Kaiser, N. Vansteenkiste, C. Westbrook, and A. Aspect, “Detailed study of a high-finesse planar waveguide for evanescent wave atomic mirrors,” Quantum Semiclassical Opt. 8(3), 603–627 (1996).
[Crossref]

Wachter, C.

Walker, G. C.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-Enhanced Raman Scattering in Purely Dielectric Structures via Bloch Surface Waves,” J. Phys. Chem. C 117(13), 6821–6825 (2013).
[Crossref]

Walker, T. G.

Wang, P.

R. Wang, Y. Wang, D. Zhang, G. Si, L. Zhu, L. Du, S. Kou, R. Badugu, M. Rosenfeld, J. Lin, P. Wang, H. Ming, X. Yuan, and J. R. Lakowicz, “Diffraction-Free Bloch Surface Waves,” ACS Nano 11(6), 5383–5390 (2017).
[Crossref]

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8(1), 14330 (2017).
[Crossref]

Wang, R.

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8(1), 14330 (2017).
[Crossref]

R. Wang, Y. Wang, D. Zhang, G. Si, L. Zhu, L. Du, S. Kou, R. Badugu, M. Rosenfeld, J. Lin, P. Wang, H. Ming, X. Yuan, and J. R. Lakowicz, “Diffraction-Free Bloch Surface Waves,” ACS Nano 11(6), 5383–5390 (2017).
[Crossref]

Wang, X.

Y. Liu, J. Chen, M. Du, X. Wang, X. Ji, and Z. He, “The preparation of dual-functional hybrid nanoflower and its application in the ultrasensitive detection of disease-related biomarker,” Biosens. Bioelectron. 92, 68–73 (2017).
[Crossref]

Wang, Y.

R. Wang, Y. Wang, D. Zhang, G. Si, L. Zhu, L. Du, S. Kou, R. Badugu, M. Rosenfeld, J. Lin, P. Wang, H. Ming, X. Yuan, and J. R. Lakowicz, “Diffraction-Free Bloch Surface Waves,” ACS Nano 11(6), 5383–5390 (2017).
[Crossref]

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8(1), 14330 (2017).
[Crossref]

Wen, X.

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8(1), 14330 (2017).
[Crossref]

Westbrook, C.

G. Labeyrie, A. Landragin, J. Von Zanthier, R. Kaiser, N. Vansteenkiste, C. Westbrook, and A. Aspect, “Detailed study of a high-finesse planar waveguide for evanescent wave atomic mirrors,” Quantum Semiclassical Opt. 8(3), 603–627 (1996).
[Crossref]

Wig, A.

A. Passian, A. L. Lereu, A. Wig, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Imaging standing surface plasmons by photon tunneling,” Phys. Rev. B 71(16), 165418 (2005).
[Crossref]

A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Probing large area surface plasmon interference in thin metal films using photon scanning tunneling microscopy,” Ultramicroscopy 100(3-4), 429–436 (2004).
[Crossref]

Xia, H.

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8(1), 14330 (2017).
[Crossref]

XiaoGang, S.

W. YuHang, Z. Zheng, S. XiaoGang, B. YuSheng, and L. JianSheng, “Hybrid plasmon waveguide leveraging Bloch surface polaritons for sub-wavelength confinement,” Sci. China: Technol. Sci. 56(3), 567–572 (2013).
[Crossref]

Xu, X. G.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-Enhanced Raman Scattering in Purely Dielectric Structures via Bloch Surface Waves,” J. Phys. Chem. C 117(13), 6821–6825 (2013).
[Crossref]

Yang, E.

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8(1), 14330 (2017).
[Crossref]

Yang, Z.

W. A. Challener, J. D. Edwards, R. W. McGowan, J. Skorjanec, and Z. Yang, “A multilayer grating-based evanescent wave sensing technique,” Sens. Actuators, B 71(1-2), 42–46 (2000).
[Crossref]

Yariv, A.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978).
[Crossref]

W. Ng, P. Yeh, P. C. Chen, and A. Yariv, “Optical surface waves in periodic layered medium grown by liquid phase epitaxy,” Appl. Phys. Lett. 32(6), 370–371 (1978).
[Crossref]

P. Yeh, A. Yariv, and C-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67(4), 423–438 (1977).
[Crossref]

A. Yariv and P. Yeh, “Electromagnetic propagation in periodic stratified media. II. Birefringence, phase matching, and x-ray lasers,” J. Opt. Soc. Am. 67(4), 438–447 (1977).
[Crossref]

Yeh, P.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978).
[Crossref]

W. Ng, P. Yeh, P. C. Chen, and A. Yariv, “Optical surface waves in periodic layered medium grown by liquid phase epitaxy,” Appl. Phys. Lett. 32(6), 370–371 (1978).
[Crossref]

A. Yariv and P. Yeh, “Electromagnetic propagation in periodic stratified media. II. Birefringence, phase matching, and x-ray lasers,” J. Opt. Soc. Am. 67(4), 438–447 (1977).
[Crossref]

P. Yeh, A. Yariv, and C-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67(4), 423–438 (1977).
[Crossref]

Yuan, X.

R. Wang, Y. Wang, D. Zhang, G. Si, L. Zhu, L. Du, S. Kou, R. Badugu, M. Rosenfeld, J. Lin, P. Wang, H. Ming, X. Yuan, and J. R. Lakowicz, “Diffraction-Free Bloch Surface Waves,” ACS Nano 11(6), 5383–5390 (2017).
[Crossref]

YuHang, W.

W. YuHang, Z. Zheng, S. XiaoGang, B. YuSheng, and L. JianSheng, “Hybrid plasmon waveguide leveraging Bloch surface polaritons for sub-wavelength confinement,” Sci. China: Technol. Sci. 56(3), 567–572 (2013).
[Crossref]

YuSheng, B.

W. YuHang, Z. Zheng, S. XiaoGang, B. YuSheng, and L. JianSheng, “Hybrid plasmon waveguide leveraging Bloch surface polaritons for sub-wavelength confinement,” Sci. China: Technol. Sci. 56(3), 567–572 (2013).
[Crossref]

Zang, T.

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8(1), 14330 (2017).
[Crossref]

Zapien, A.

C. Amra, M. Zerrad, F. Lemarchand, A. L. Lereu, A. Passian, A. Zapien, and M. Lequime, “Energy density engineering via zero admittance domains in all-dielectric stratified materials,” Phys. Rev. A 97(2), 023819 (2018).
[Crossref]

Zerrad, M.

C. Amra, M. Zerrad, F. Lemarchand, A. L. Lereu, A. Passian, A. Zapien, and M. Lequime, “Energy density engineering via zero admittance domains in all-dielectric stratified materials,” Phys. Rev. A 97(2), 023819 (2018).
[Crossref]

A. L. Lereu, M. Zerrad, A. Passian, and C. Amra, “Surface plasmons and Bloch surface waves: towards optimized ultra-sensitive optical sensors,” Appl. Phys. Lett. 111(1), 011107 (2017).
[Crossref]

M. Zerrad, A. L. Lereu, C. N’diaye, F. Lemarchand, and C. Amra, “Bandwidths limitations of giant optical field enhancements,” Opt. Express 25(13), 14883 (2017).
[Crossref]

A. L. Lereu, M. Zerrad, C. Ndiaye, F. Lemarchand, and C. Amra, “Scattering losses in multidielectric structures designed for giant optical field enhancement,” Appl. Opt. 53(4), A412–A416 (2014).
[Crossref]

A. L. Lereu, M. Zerrad, M. Petit, F. de Fornel, and C. Amra, “Multi-dielectric stacks as a platform for giant optical field,” Proc. SPIE 9162, 916219 (2014).
[Crossref]

C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, P. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103(13), 131102 (2013).
[Crossref]

C. Amra, C. Ndiaye, M. Zerrad, and F. Lemarchand, “Optimal Design for Field Enhancement in optical coatings,” Proc. SPIE 8168, 816808 (2011).
[Crossref]

C. Ndiaye, F. Lemarchand, M. Zerrad, D. Ausserré, and C. Amra, “Optimal design for 100% absorption and maximum field enhancement in thin-film multilayers at resonances under total reflection,” Appl. Opt. 50(9), C382–C387 (2011).
[Crossref]

Zhang, D.

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8(1), 14330 (2017).
[Crossref]

R. Wang, Y. Wang, D. Zhang, G. Si, L. Zhu, L. Du, S. Kou, R. Badugu, M. Rosenfeld, J. Lin, P. Wang, H. Ming, X. Yuan, and J. R. Lakowicz, “Diffraction-Free Bloch Surface Waves,” ACS Nano 11(6), 5383–5390 (2017).
[Crossref]

Zheng, Z.

W. YuHang, Z. Zheng, S. XiaoGang, B. YuSheng, and L. JianSheng, “Hybrid plasmon waveguide leveraging Bloch surface polaritons for sub-wavelength confinement,” Sci. China: Technol. Sci. 56(3), 567–572 (2013).
[Crossref]

Zhu, L.

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8(1), 14330 (2017).
[Crossref]

R. Wang, Y. Wang, D. Zhang, G. Si, L. Zhu, L. Du, S. Kou, R. Badugu, M. Rosenfeld, J. Lin, P. Wang, H. Ming, X. Yuan, and J. R. Lakowicz, “Diffraction-Free Bloch Surface Waves,” ACS Nano 11(6), 5383–5390 (2017).
[Crossref]

Zöller, A.

A. Zöller, M. Boos, R. Goetzelmann, H. Hagedorn, and W. Klug, “Substantial progress in optical monitoring by intermittent measurement technique,” Proc. SPIE 5963, 59630D (2005).
[Crossref]

Zou, G.

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8(1), 14330 (2017).
[Crossref]

ACS Nano (1)

R. Wang, Y. Wang, D. Zhang, G. Si, L. Zhu, L. Du, S. Kou, R. Badugu, M. Rosenfeld, J. Lin, P. Wang, H. Ming, X. Yuan, and J. R. Lakowicz, “Diffraction-Free Bloch Surface Waves,” ACS Nano 11(6), 5383–5390 (2017).
[Crossref]

Anal. Biochem. (1)

R. Badugu, K. Nowaczyk, E. Descrovi, and J. R. Lakowicz, “Radiative decay engineering 6: Fluorescence on one-dimensional photonic crystals,” Anal. Biochem. 442(1), 83–96 (2013).
[Crossref]

Appl. Opt. (6)

Appl. Phys. Lett. (7)

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978).
[Crossref]

W. Ng, P. Yeh, P. C. Chen, and A. Yariv, “Optical surface waves in periodic layered medium grown by liquid phase epitaxy,” Appl. Phys. Lett. 32(6), 370–371 (1978).
[Crossref]

W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74(13), 1800–1802 (1999).
[Crossref]

C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, P. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103(13), 131102 (2013).
[Crossref]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one dimensional photonic crystal,” Appl. Phys. Lett. 99(4), 043302 (2011).
[Crossref]

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: Coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100(6), 063305 (2012).
[Crossref]

A. L. Lereu, M. Zerrad, A. Passian, and C. Amra, “Surface plasmons and Bloch surface waves: towards optimized ultra-sensitive optical sensors,” Appl. Phys. Lett. 111(1), 011107 (2017).
[Crossref]

Bioimaging (1)

P. C. Ke, X. S. Gan, J. Szajman, S. Schilders, and M. Gu, “Optimizing the strength of an evanescent wave generated from a prism coated with a double-layer thin-film stack,” Bioimaging 5(1), 1–8 (1997).

Biosens. Bioelectron. (3)

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref]

A. Sinibaldia, C. Sampaoli, N. Danz, P. Munzert, L. Sibilio, F. Sonntag, A. Occhicone, E. Falvo, E. Tremante, P. Giacomini, and F. Michelotti, “Detection of soluble ERBB2 in breast cancer cell lysates using a combined label-free fluorescence platform based on Bloch surface waves,” Biosens. Bioelectron. 92, 125–130 (2017).
[Crossref]

Y. Liu, J. Chen, M. Du, X. Wang, X. Ji, and Z. He, “The preparation of dual-functional hybrid nanoflower and its application in the ultrasensitive detection of disease-related biomarker,” Biosens. Bioelectron. 92, 68–73 (2017).
[Crossref]

Eur. Phys. J. D (1)

E. Descrovi, D. Morrone, A. Angelini, F. Frascella, S. Ricciardi, P. Rivolo, N. De Leo, L. Boarino, P. Munzert, F. Michelotti, and F. Giorgis, “Fluorescence imaging assisted by surface modes on dielectric multilayers,” Eur. Phys. J. D 68(3), 53 (2014).
[Crossref]

Eur. Phys. J. Plus (1)

A. Siabi-Garjan and R. Hassanzadeh, “A computational approach for engineering optical properties of multilayer thin films: Particle swarm optimization applied to Bruggeman homogenization formalism,” Eur. Phys. J. Plus 133(10), 419 (2018).
[Crossref]

J. Eur. Opt. Soc.-Rapid Publ. (1)

R. Dubey, E. Barakat, M. Hayrinen, M. Roussey, S. K. Honkanen, M Kuittinen, and H. P. Herzig, “Experimental investigation of the propagation properties of bloch surface waves on dielectric multilayer platform,” J. Eur. Opt. Soc.-Rapid Publ. 13(1), 5 (2017).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

J. Martorell, D. W. L. Sprung, and G. V. Morozov, “Surface TE waves on 1D photonic crystals,” J. Opt. A: Pure Appl. Opt. 8(8), 630–638 (2006).
[Crossref]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-Enhanced Raman Scattering in Purely Dielectric Structures via Bloch Surface Waves,” J. Phys. Chem. C 117(13), 6821–6825 (2013).
[Crossref]

Nano Lett. (1)

R. Sainidou, J. Renger, T. V. Teperik, M-U. Gonzalez, R. Quidant, and F. J. Garcia de Abajo, “Extraordinary All-Dielectric Light Enhancement over Large Volumes,” Nano Lett. 10(11), 4450–4455 (2010).
[Crossref]

Nat. Commun. (1)

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8(1), 14330 (2017).
[Crossref]

Opt. Acta (1)

M. Candille, “Détermination du Critre D’arrêt Pour le Maximtre Monochromatique, Systme de Contrôle Optique de Couches Minces Multidilectriques,” Opt. Acta 26(12), 1477–1486 (1979).
[Crossref]

Opt. Commun. (2)

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104(4-6), 234–240 (1994).
[Crossref]

J. K. Chua and V. M. Murukeshan, “Resonant amplification of frustrated evanescent waves by single dielectric coating,” Opt. Commun. 283(1), 169–175 (2010).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Phys. Rev. (1)

R. H. Ritchie, “Plasma Losses by Fast Electrons in Thin Films,” Phys. Rev. 106(5), 874–881 (1957).
[Crossref]

Phys. Rev. A (1)

C. Amra, M. Zerrad, F. Lemarchand, A. L. Lereu, A. Passian, A. Zapien, and M. Lequime, “Energy density engineering via zero admittance domains in all-dielectric stratified materials,” Phys. Rev. A 97(2), 023819 (2018).
[Crossref]

Phys. Rev. B (2)

A. Passian, A. L. Lereu, A. Wig, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Imaging standing surface plasmons by photon tunneling,” Phys. Rev. B 71(16), 165418 (2005).
[Crossref]

A. Archambault, T. V. Teperik, F. Marquier, and J. J. Greffet, “Surface plasmon Fourier optics,” Phys. Rev. B 79(19), 195414 (2009).
[Crossref]

Proc. SPIE (3)

A. L. Lereu, M. Zerrad, M. Petit, F. de Fornel, and C. Amra, “Multi-dielectric stacks as a platform for giant optical field,” Proc. SPIE 9162, 916219 (2014).
[Crossref]

C. Amra, C. Ndiaye, M. Zerrad, and F. Lemarchand, “Optimal Design for Field Enhancement in optical coatings,” Proc. SPIE 8168, 816808 (2011).
[Crossref]

A. Zöller, M. Boos, R. Goetzelmann, H. Hagedorn, and W. Klug, “Substantial progress in optical monitoring by intermittent measurement technique,” Proc. SPIE 5963, 59630D (2005).
[Crossref]

Quantum Semiclassical Opt. (1)

G. Labeyrie, A. Landragin, J. Von Zanthier, R. Kaiser, N. Vansteenkiste, C. Westbrook, and A. Aspect, “Detailed study of a high-finesse planar waveguide for evanescent wave atomic mirrors,” Quantum Semiclassical Opt. 8(3), 603–627 (1996).
[Crossref]

RSC Adv. (1)

K. Ray, R. Badugu, and J. R. Lakowicz, “Bloch surface wave-coupled emission from quantum dots by ensemble and single molecule spectroscopy,” RSC Adv. 5(67), 54403–54411 (2015).
[Crossref]

Sci. China: Technol. Sci. (1)

W. YuHang, Z. Zheng, S. XiaoGang, B. YuSheng, and L. JianSheng, “Hybrid plasmon waveguide leveraging Bloch surface polaritons for sub-wavelength confinement,” Sci. China: Technol. Sci. 56(3), 567–572 (2013).
[Crossref]

Science (1)

E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science 311(5758), 189–193 (2006).
[Crossref]

Semicond. Sci. Technol. (1)

K. Mehrany, S. Khorasani, and B. Rashidian, “Novel optical devices based on surface wave excitation at conducting interfaces,” Semicond. Sci. Technol. 18(6), 582–588 (2003).
[Crossref]

Sens. Actuators, A (1)

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators, A 159(1), 24–32 (2010).
[Crossref]

Sens. Actuators, B (3)

A. Sinibaldi, N. Danz, E. Descrovic, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

A. Occhicone, A. Sinibaldi, F. Sonntag, P. Munzert, N. Danz, and F. Michelotti, “A novel technique based on Bloch surface waves sustained by one-dimensional photonic crystals to probe mass transport in a microfluidic channel,” Sens. Actuators, B 247, 532–539 (2017).
[Crossref]

W. A. Challener, J. D. Edwards, R. W. McGowan, J. Skorjanec, and Z. Yang, “A multilayer grating-based evanescent wave sensing technique,” Sens. Actuators, B 71(1-2), 42–46 (2000).
[Crossref]

Sensors (1)

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A Fluorescent One-Dimensional Photonic Crystal for Label-Free Biosensing Based on Bloch Surface Waves,” Sensors 13(2), 2011–2022 (2013).
[Crossref]

Surf. Coat. Technol. (1)

P. Munzert, N. Danz, A. Sinibaldi, and F. Michelotti, “Multilayer coatings for Bloch surface wave optical biosensors,” Surf. Coat. Technol. 314, 79–84 (2017).
[Crossref]

Ultramicroscopy (1)

A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Probing large area surface plasmon interference in thin metal films using photon scanning tunneling microscopy,” Ultramicroscopy 100(3-4), 429–436 (2004).
[Crossref]

Z. Phys. A: Hadrons Nucl. (1)

E. Kretschmann, “The determination of the optical constants of metals by excitation of surface plasmons,” Z. Phys. A: Hadrons Nucl. 241(4), 313–324 (1971).
[Crossref]

Other (2)

H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 2001).

B. Badoil, F. Lemarchand, M. Cathelinaud, and M. Lequime, “An Error Compensation Strategy for Broadband Optical Monitoring,” in Optical Interference Coatings (Optical Society of America, 2007), p. WC5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Maximum of absorption as a function of angular divergence $\Delta \theta$ (a) and spectral bandwidth $\Delta \lambda$ (b). Dielectric multilayers have been optimized for sustaining field enhancement factor $\mathcal {F}$ of 10$^{5}$ (red), 10$^{4}$ (grey) and 10$^{3}$ (blue). The hatched regions mark the experimental regions currently not achievable, for more details refer to [57]. (c) Scheme of a resonant dielectric multilayer under total internal reflection illumination with the absorbing and adaptative layers and the Bragg mirror. (d) Example of realization of a resonant DM on a prism.
Fig. 2.
Fig. 2. Dispersion relation mappings as a function of the last layer thickness $e_N$ ($\pm$ 0.5nm) and the incident angle ($\pm$ 0.2$^{\circ }$) in (a) and as a function of the wavelength ($\pm$ 3nm) and the incident angle in (b). The reflectance varies linearly in the considered ranges of thicknesses, angles and wavelengths. This shows the tunability of the resonant dielectric multilayer and that one can either tune the incident angle or the excitation wavelength.
Fig. 3.
Fig. 3. Effect of a bias on the refractive indices $n$ applied on every layers constituting the resonant DM. Numerical estimations of absorption (a) and field distribution through the stack at the frequencies $\sigma _{res}$=($\lambda _{res}$, $\theta _{res}$) (b) and $\sigma _1$=($\lambda _{res}$, $\theta _1$) (c). The maximum of absorption (red cross in (d)) and the associated $\theta _1$ (blue cross in (d)) are extracted for each biased structure. The field enhancements at the free interface for both $\sigma _{res}$ (red cross) and $\sigma _1$ (black symbol) are given in (e) as a function of indices error $\delta n$ induced by a bias $b_n$ applied to every layers.
Fig. 4.
Fig. 4. Effect of biases $b_e$ inducing thickness error $\delta e$ on the deposited thicknesses $e$ over the maximum of absorption (a) and the associated angle $\theta _1$ (b), and the field enhancement at the free interface for both $\sigma _{res}$ (c) and $\sigma _1$ (d). The red symbols are for $\delta e$ applied on every layers of the stack, the blue cross for $\delta e$ on the last absorbing layer, the grey cross for $\delta e$ on the adaptative layer and the black cross on all the layers constituting the matching mirror.
Fig. 5.
Fig. 5. Numerical absorption of the first six (over 50) random selections of structures when imposing random errors over the thickness of every layers. The applied errors $\delta e$ are 0.1% in (a), 0.5% in (b), 1% in (c), 2% in (d) and 3% in (e).
Fig. 6.
Fig. 6. Histograms over 50 random selections of structures, of the maximum of absorption (first column), the new resonant angle $\theta _1$ (second column) and the field enhancement at the free interface $\mathcal {F}_{Interface}$ (third column) for both spatial frequencies $\sigma _1$=($\lambda _{res}$, $\theta _1$) (red) and $\sigma _{res}$=($\lambda _{res}$, $\theta _{res}$) (grey). (a-c$)\delta e$=0.1%, (d-f) $\delta e$=0.5%, (g-i) $\delta e$=1%, (j-l) $\delta e$=2%, (m-o) $\delta e$=3%.
Fig. 7.
Fig. 7. Histograms over 50 random selections with different last layer thicknesses. The maximum of absorption is given in the first column, the new resonant angle $\theta _1$ in the second column and the field enhancement at the free interface $\mathcal {F}_{Interface}$ in the third column for both spatial frequencies $\sigma _1$=($\lambda _{res}$, $\theta _1$) (red) and $\sigma _{res}$=($\lambda _{res}$, $\theta _{res}$) (grey). (a-c$)\delta e$=1% and (d-f) $\delta e$=5%.
Fig. 8.
Fig. 8. Histograms over 50 random selections of structures resulting from an imposed bias linked to a $\delta e_{bias}$ of $\pm$1% with a random error $\delta e_{rand}$ of 0.1% (first column) and 0.5% (second column).
Fig. 9.
Fig. 9. (a-c) sum up the effect of compensated errors when using an in-situ optical control during deposition. The maximum of absorption stays above 99.9% (red cross in (c)) when adjusting the incident angle between 3.5 to 1.7 mrad (a). The field distribution through the 30 multidielectric stacks in (b) and through the optimized structure (blue symbol in (c)) are very similar with a drop between 96.7% and 97.9% of the field enhancement at the free interface (c). (d-f) illustrate compensated errors with a 10 $\times$ noisier in-situ optical control during deposition. The maximum of absorption is kept above 99.2% within an angular range from 10 to 3 mrad. The field distribution in (e) is fairly well conserved with a decrease of the field enhancement at the free interface between 89.5 up to 96.8% with respect to the optimized structure (blue symbol in (e)). Note the blue symbols in each graphs are the values for the optimized structure.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n i ( λ r e s ) e i cos θ i = λ r e s / 4 ,
n i ( λ r e s ) ( e i + b e ) cos θ i = λ 1 / 4 , if n i ( λ r e s ) b e cos θ i = ( λ 1 λ r e s ) / 4 ,
σ r e s = 2 π n S sin ( θ r e s ) / λ r e s ,