Abstract

Multimode fibres have recently been employed as high-resolution ultra-thin endoscopes, capable of imaging biological structures deep inside tissue in vivo. Here, we extend this technique to label-free non-linear microscopy with chemical contrast using coherent anti-Stokes Raman scattering (CARS) through a multimode fibre endoscope, which opens up new avenues for instant and in-situ diagnosis of potentially malignant tissue. We use a commercial 125 µm diameter, 0.29 NA GRIN fibre, and wavefront shaping on an SLM is used to create foci that are scanned behind the fibre facet across the sample. The chemical selectivity is demonstrated by imaging 2 µm polystyrene and 2.5 µm PMMA beads with per pixel integration time as low as 1 ms for epi-detection.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Wavelength dependent characterization of a multimode fibre endoscope

Tomáš Pikálek, Johanna Trägårdh, Stephen Simpson, and Tomáš Čižmár
Opt. Express 27(20) 28239-28253 (2019)

Portable, miniaturized, fibre delivered, multimodal CARS exoscope

Brett Smith, Majid Naji, Sangeeta Murugkar, Emilio Alarcon, Craig Brideau, Peter Stys, and Hanan Anis
Opt. Express 21(14) 17161-17175 (2013)

Advances in engineering of high contrast CARS imaging endoscopes

Pascal Deladurantaye, Alex Paquet, Claude Paré, Huimin Zheng, Michel Doucet, David Gay, Michel Poirier, Jean-François Cormier, Ozzy Mermut, Brian C. Wilson, and Eric J. Seibel
Opt. Express 22(21) 25053-25064 (2014)

References

  • View by:
  • |
  • |
  • |

  1. C. Krafft, M. Schmitt, I. Schie, D. Cialla-May, C. Matthaeus, T. Bocklitz, and J. Popp, “Label-free molecular imaging of biological cells and tissues by linear and non-linear raman spectroscopic approaches,” Angew. Chem., Int. Ed. 56(16), 4392–4430 (2017).
    [Crossref]
  2. C. Krafft, I. Schie, T. Meyer, M. Schmitt, and J. Popp, “Developments in spontaneous and coherent raman scattering microscopic imaging for biomedical applications,” Chem. Soc. Rev. 45(7), 1819–1849 (2016).
    [Crossref]
  3. A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent raman endoscope,” Light: Sci. Appl. 7(1), 10 (2018).
    [Crossref]
  4. A. Lukic, S. Dochow, H. Bae, G. Matz, I. Latka, B. Messerschmidt, M. Schmitt, and J. Popp, “Endoscopic fiber probe for nonlinear spectroscopic imaging,” Optica 4(5), 496–501 (2017).
    [Crossref]
  5. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
    [Crossref]
  6. S. Rotter and S. Gigan, “Light fields in complex media: Mesoscopic scattering meets wave control,” Rev. Mod. Phys. 89(1), 015005 (2017).
    [Crossref]
  7. T. Čižmár and K. Dholakia, “Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,” Opt. Express 19(20), 18871–18884 (2011).
    [Crossref]
  8. I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. S. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
    [Crossref]
  9. T. Nemoto, R. Kawakami, T. Hibi, K. Iijima, and K. Otomo, “Two-photon excitation fluorescence microscopy and its application in functional connectomics,” Microscopy 64(1), 9–15 (2015).
    [Crossref]
  10. S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čízmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light: Sci. Appl. 7(1), 92 (2018).
    [Crossref]
  11. S. A. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Čižmár, and N. J. Emptage, “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light: Sci. Appl. 7(1), 1–6 (2018).
    [Crossref]
  12. M. Plöschner, V. Kollárová, Z. Dostál, J. Nylk, T. Barton-Owen, D. E. K. Ferrier, R. Chmelík, K. Dholakia, and T. Čižmár, “Multimode fibre: Light-sheet microscopy at the tip of a needle,” Sci. Rep. 5(1), 18050 (2015).
    [Crossref]
  13. E. E. Morales-Delgado, D. Psaltis, and C. Moser, “Two-photon imaging through a multimode fiber,” Opt. Express 23(25), 32158–32170 (2015).
    [Crossref]
  14. S. Sivankutty, E. R. Andresen, R. Cossart, G. Bouwmans, S. Monneret, and H. Rigneault, “Ultra-thin rigid endoscope: two-photon imaging through a graded-index multi-mode fiber,” Opt. Express 24(2), 825–841 (2016).
    [Crossref]
  15. E. Kakkava, M. Romito, D. B. Conkey, D. Loterie, K. M. Stankovic, C. Moser, and D. Psaltis, “Selective femtosecond laser ablation via two-photon fluorescence imaging through a multimode fiber,” Biomed. Opt. Express 10(2), 423–433 (2019).
    [Crossref]
  16. F. Lu, S. Basu, V. Igras, M. P. Hoang, M. Ji, D. Fu, G. Holtom, V. A. Neel, C. W. Freudiger, D. Fisher, and X. S. Xie, “Label-free dna imaging in vivo with stimulated raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 112(37), 11624–11629 (2015).
    [Crossref]
  17. I. Gusachenko, M. Chen, and K. Dholakia, “Raman imaging through a single multimode fibre,” Opt. Express 25(12), 13782–13798 (2017).
    [Crossref]
  18. S. Deng, D. Loterie, G. Konstantinou, D. Psaltis, and C. Moser, “Raman imaging through multimode sapphire fiber,” Opt. Express 27(2), 1090–1098 (2019).
    [Crossref]
  19. I. I. Patel, C. Steuwe, S. Reichelt, and S. Mahajan, “Coherent anti-stokes raman scattering for labelfree biomedical imaging,” J. Opt. 15(9), 094006 (2013).
    [Crossref]
  20. H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, “Coherent anti-stokes raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89(1), 581–591 (2005).
    [Crossref]
  21. M. Welte, “As the fat flies: The dynamic lipid droplets of drosophila embryos,” Biochim. Biophys. Acta 1851(9), 1156–1185 (2015).
    [Crossref]
  22. C. D. Napoli, I. Pope, F. Masia, W. Langbein, P. Watson, and P. Borri, “Quantitative spatiotemporal chemical profiling of individual lipid droplets by hyperspectral cars microscopy in living human adipose-derived stem cells,” Anal. Chem. 88(7), 3677–3685 (2016).
    [Crossref]
  23. C. L. Evans, E. O. Potma, M. Puorishaag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-stokes raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 102(46), 16807–16812 (2005).
    [Crossref]
  24. B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated raman scattering,” Science 330(6009), 1368–1370 (2010).
    [Crossref]
  25. D. Débarre, N. Olivier, and E. Beaurepaire, “Signal epidetection in third-harmonic generation microscopy of turbid media,” Opt. Express 15(14), 8913–8924 (2007).
    [Crossref]
  26. T. Pikálek, J. Trägårdh, S. Simpson, and T. Čižmár, “Wavelength dependent characterization of a multimode fibre endoscope,” Opt. Express 27(20), 28239–28253 (2019).
    [Crossref]
  27. M. Johns, C. A. Giller, D. C. German, and H. Liu, “Determination of reduced scattering coefficient of biological tissue from a needle-like probe,” Opt. Express 13(13), 4828–4842 (2005).
    [Crossref]
  28. G. Thalhammer, R. W. Bowman, G. D. Love, M. J. Padgett, and M. Ritsch-Marte, “Speeding up liquid crystal slms using overdrive with phase change reduction,” Opt. Express 21(2), 1779–1797 (2013).
    [Crossref]
  29. T. A. Bartlett, W. C. McDonald, and J. N. Hall, “Adapting Texas Instruments DLP technology to demonstrate a phase spatial light modulator,” Proc. SPIE XI, 27 (2019).
    [Crossref]
  30. T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthaus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tunnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding multimodal microscopy by high spectral resolution coherent anti-stokes raman scattering imaging for clinical disease diagnostics,” Anal. Chem. 85(14), 6703–6715 (2013).
    [Crossref]
  31. D. E. Boonzajer-Flaes, J. Stopka, S. Turtaev, J. F. de Boer, T. Tyc, and T. Cižmár, “Robustness of Light-Transport Processes to Bending Deformations in Graded-Index Multimode Waveguides,” Phys. Rev. Lett. 120(23), 233901 (2018).
    [Crossref]

2019 (4)

2018 (5)

D. E. Boonzajer-Flaes, J. Stopka, S. Turtaev, J. F. de Boer, T. Tyc, and T. Cižmár, “Robustness of Light-Transport Processes to Bending Deformations in Graded-Index Multimode Waveguides,” Phys. Rev. Lett. 120(23), 233901 (2018).
[Crossref]

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čízmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light: Sci. Appl. 7(1), 92 (2018).
[Crossref]

S. A. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Čižmár, and N. J. Emptage, “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light: Sci. Appl. 7(1), 1–6 (2018).
[Crossref]

A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent raman endoscope,” Light: Sci. Appl. 7(1), 10 (2018).
[Crossref]

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. S. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

2017 (4)

S. Rotter and S. Gigan, “Light fields in complex media: Mesoscopic scattering meets wave control,” Rev. Mod. Phys. 89(1), 015005 (2017).
[Crossref]

A. Lukic, S. Dochow, H. Bae, G. Matz, I. Latka, B. Messerschmidt, M. Schmitt, and J. Popp, “Endoscopic fiber probe for nonlinear spectroscopic imaging,” Optica 4(5), 496–501 (2017).
[Crossref]

C. Krafft, M. Schmitt, I. Schie, D. Cialla-May, C. Matthaeus, T. Bocklitz, and J. Popp, “Label-free molecular imaging of biological cells and tissues by linear and non-linear raman spectroscopic approaches,” Angew. Chem., Int. Ed. 56(16), 4392–4430 (2017).
[Crossref]

I. Gusachenko, M. Chen, and K. Dholakia, “Raman imaging through a single multimode fibre,” Opt. Express 25(12), 13782–13798 (2017).
[Crossref]

2016 (3)

S. Sivankutty, E. R. Andresen, R. Cossart, G. Bouwmans, S. Monneret, and H. Rigneault, “Ultra-thin rigid endoscope: two-photon imaging through a graded-index multi-mode fiber,” Opt. Express 24(2), 825–841 (2016).
[Crossref]

C. Krafft, I. Schie, T. Meyer, M. Schmitt, and J. Popp, “Developments in spontaneous and coherent raman scattering microscopic imaging for biomedical applications,” Chem. Soc. Rev. 45(7), 1819–1849 (2016).
[Crossref]

C. D. Napoli, I. Pope, F. Masia, W. Langbein, P. Watson, and P. Borri, “Quantitative spatiotemporal chemical profiling of individual lipid droplets by hyperspectral cars microscopy in living human adipose-derived stem cells,” Anal. Chem. 88(7), 3677–3685 (2016).
[Crossref]

2015 (5)

M. Welte, “As the fat flies: The dynamic lipid droplets of drosophila embryos,” Biochim. Biophys. Acta 1851(9), 1156–1185 (2015).
[Crossref]

T. Nemoto, R. Kawakami, T. Hibi, K. Iijima, and K. Otomo, “Two-photon excitation fluorescence microscopy and its application in functional connectomics,” Microscopy 64(1), 9–15 (2015).
[Crossref]

F. Lu, S. Basu, V. Igras, M. P. Hoang, M. Ji, D. Fu, G. Holtom, V. A. Neel, C. W. Freudiger, D. Fisher, and X. S. Xie, “Label-free dna imaging in vivo with stimulated raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 112(37), 11624–11629 (2015).
[Crossref]

M. Plöschner, V. Kollárová, Z. Dostál, J. Nylk, T. Barton-Owen, D. E. K. Ferrier, R. Chmelík, K. Dholakia, and T. Čižmár, “Multimode fibre: Light-sheet microscopy at the tip of a needle,” Sci. Rep. 5(1), 18050 (2015).
[Crossref]

E. E. Morales-Delgado, D. Psaltis, and C. Moser, “Two-photon imaging through a multimode fiber,” Opt. Express 23(25), 32158–32170 (2015).
[Crossref]

2013 (3)

G. Thalhammer, R. W. Bowman, G. D. Love, M. J. Padgett, and M. Ritsch-Marte, “Speeding up liquid crystal slms using overdrive with phase change reduction,” Opt. Express 21(2), 1779–1797 (2013).
[Crossref]

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthaus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tunnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding multimodal microscopy by high spectral resolution coherent anti-stokes raman scattering imaging for clinical disease diagnostics,” Anal. Chem. 85(14), 6703–6715 (2013).
[Crossref]

I. I. Patel, C. Steuwe, S. Reichelt, and S. Mahajan, “Coherent anti-stokes raman scattering for labelfree biomedical imaging,” J. Opt. 15(9), 094006 (2013).
[Crossref]

2011 (1)

2010 (1)

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref]

2007 (2)

2005 (3)

M. Johns, C. A. Giller, D. C. German, and H. Liu, “Determination of reduced scattering coefficient of biological tissue from a needle-like probe,” Opt. Express 13(13), 4828–4842 (2005).
[Crossref]

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, “Coherent anti-stokes raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89(1), 581–591 (2005).
[Crossref]

C. L. Evans, E. O. Potma, M. Puorishaag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-stokes raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 102(46), 16807–16812 (2005).
[Crossref]

Altwegg-Boussac, T.

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čízmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light: Sci. Appl. 7(1), 92 (2018).
[Crossref]

Andresen, E. R.

A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent raman endoscope,” Light: Sci. Appl. 7(1), 10 (2018).
[Crossref]

S. Sivankutty, E. R. Andresen, R. Cossart, G. Bouwmans, S. Monneret, and H. Rigneault, “Ultra-thin rigid endoscope: two-photon imaging through a graded-index multi-mode fiber,” Opt. Express 24(2), 825–841 (2016).
[Crossref]

Bae, H.

Bartlett, T. A.

T. A. Bartlett, W. C. McDonald, and J. N. Hall, “Adapting Texas Instruments DLP technology to demonstrate a phase spatial light modulator,” Proc. SPIE XI, 27 (2019).
[Crossref]

Barton-Owen, T.

M. Plöschner, V. Kollárová, Z. Dostál, J. Nylk, T. Barton-Owen, D. E. K. Ferrier, R. Chmelík, K. Dholakia, and T. Čižmár, “Multimode fibre: Light-sheet microscopy at the tip of a needle,” Sci. Rep. 5(1), 18050 (2015).
[Crossref]

Basu, S.

F. Lu, S. Basu, V. Igras, M. P. Hoang, M. Ji, D. Fu, G. Holtom, V. A. Neel, C. W. Freudiger, D. Fisher, and X. S. Xie, “Label-free dna imaging in vivo with stimulated raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 112(37), 11624–11629 (2015).
[Crossref]

Baumgartl, M.

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthaus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tunnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding multimodal microscopy by high spectral resolution coherent anti-stokes raman scattering imaging for clinical disease diagnostics,” Anal. Chem. 85(14), 6703–6715 (2013).
[Crossref]

Beaurepaire, E.

Bocklitz, T.

C. Krafft, M. Schmitt, I. Schie, D. Cialla-May, C. Matthaeus, T. Bocklitz, and J. Popp, “Label-free molecular imaging of biological cells and tissues by linear and non-linear raman spectroscopic approaches,” Angew. Chem., Int. Ed. 56(16), 4392–4430 (2017).
[Crossref]

Boonzajer-Flaes, D. E.

D. E. Boonzajer-Flaes, J. Stopka, S. Turtaev, J. F. de Boer, T. Tyc, and T. Cižmár, “Robustness of Light-Transport Processes to Bending Deformations in Graded-Index Multimode Waveguides,” Phys. Rev. Lett. 120(23), 233901 (2018).
[Crossref]

Booth, M. J.

S. A. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Čižmár, and N. J. Emptage, “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light: Sci. Appl. 7(1), 1–6 (2018).
[Crossref]

Borri, P.

C. D. Napoli, I. Pope, F. Masia, W. Langbein, P. Watson, and P. Borri, “Quantitative spatiotemporal chemical profiling of individual lipid droplets by hyperspectral cars microscopy in living human adipose-derived stem cells,” Anal. Chem. 88(7), 3677–3685 (2016).
[Crossref]

Bouwmans, G.

Bowman, R. W.

Brehm, B. R.

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthaus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tunnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding multimodal microscopy by high spectral resolution coherent anti-stokes raman scattering imaging for clinical disease diagnostics,” Anal. Chem. 85(14), 6703–6715 (2013).
[Crossref]

Chemnitz, M.

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthaus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tunnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding multimodal microscopy by high spectral resolution coherent anti-stokes raman scattering imaging for clinical disease diagnostics,” Anal. Chem. 85(14), 6703–6715 (2013).
[Crossref]

Chen, M.

Chen, X.

A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent raman endoscope,” Light: Sci. Appl. 7(1), 10 (2018).
[Crossref]

Cheng, J.-X.

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, “Coherent anti-stokes raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89(1), 581–591 (2005).
[Crossref]

Chmelík, R.

M. Plöschner, V. Kollárová, Z. Dostál, J. Nylk, T. Barton-Owen, D. E. K. Ferrier, R. Chmelík, K. Dholakia, and T. Čižmár, “Multimode fibre: Light-sheet microscopy at the tip of a needle,” Sci. Rep. 5(1), 18050 (2015).
[Crossref]

Cialla-May, D.

C. Krafft, M. Schmitt, I. Schie, D. Cialla-May, C. Matthaeus, T. Bocklitz, and J. Popp, “Label-free molecular imaging of biological cells and tissues by linear and non-linear raman spectroscopic approaches,” Angew. Chem., Int. Ed. 56(16), 4392–4430 (2017).
[Crossref]

Cižmár, T.

T. Pikálek, J. Trägårdh, S. Simpson, and T. Čižmár, “Wavelength dependent characterization of a multimode fibre endoscope,” Opt. Express 27(20), 28239–28253 (2019).
[Crossref]

S. A. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Čižmár, and N. J. Emptage, “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light: Sci. Appl. 7(1), 1–6 (2018).
[Crossref]

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. S. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

D. E. Boonzajer-Flaes, J. Stopka, S. Turtaev, J. F. de Boer, T. Tyc, and T. Cižmár, “Robustness of Light-Transport Processes to Bending Deformations in Graded-Index Multimode Waveguides,” Phys. Rev. Lett. 120(23), 233901 (2018).
[Crossref]

M. Plöschner, V. Kollárová, Z. Dostál, J. Nylk, T. Barton-Owen, D. E. K. Ferrier, R. Chmelík, K. Dholakia, and T. Čižmár, “Multimode fibre: Light-sheet microscopy at the tip of a needle,” Sci. Rep. 5(1), 18050 (2015).
[Crossref]

T. Čižmár and K. Dholakia, “Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,” Opt. Express 19(20), 18871–18884 (2011).
[Crossref]

Cízmár, T.

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čízmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light: Sci. Appl. 7(1), 92 (2018).
[Crossref]

Conkey, D. B.

Cossart, R.

Côté, D.

C. L. Evans, E. O. Potma, M. Puorishaag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-stokes raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 102(46), 16807–16812 (2005).
[Crossref]

Cuschieri, A.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. S. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

de Boer, J. F.

D. E. Boonzajer-Flaes, J. Stopka, S. Turtaev, J. F. de Boer, T. Tyc, and T. Cižmár, “Robustness of Light-Transport Processes to Bending Deformations in Graded-Index Multimode Waveguides,” Phys. Rev. Lett. 120(23), 233901 (2018).
[Crossref]

Débarre, D.

Deng, S.

Dholakia, K.

Dietzek, B.

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthaus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tunnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding multimodal microscopy by high spectral resolution coherent anti-stokes raman scattering imaging for clinical disease diagnostics,” Anal. Chem. 85(14), 6703–6715 (2013).
[Crossref]

Dochow, S.

Dostál, Z.

M. Plöschner, V. Kollárová, Z. Dostál, J. Nylk, T. Barton-Owen, D. E. K. Ferrier, R. Chmelík, K. Dholakia, and T. Čižmár, “Multimode fibre: Light-sheet microscopy at the tip of a needle,” Sci. Rep. 5(1), 18050 (2015).
[Crossref]

Emptage, N. J.

S. A. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Čižmár, and N. J. Emptage, “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light: Sci. Appl. 7(1), 1–6 (2018).
[Crossref]

Evans, C. L.

C. L. Evans, E. O. Potma, M. Puorishaag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-stokes raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 102(46), 16807–16812 (2005).
[Crossref]

Fabert, M.

A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent raman endoscope,” Light: Sci. Appl. 7(1), 10 (2018).
[Crossref]

Ferrier, D. E. K.

M. Plöschner, V. Kollárová, Z. Dostál, J. Nylk, T. Barton-Owen, D. E. K. Ferrier, R. Chmelík, K. Dholakia, and T. Čižmár, “Multimode fibre: Light-sheet microscopy at the tip of a needle,” Sci. Rep. 5(1), 18050 (2015).
[Crossref]

Fisher, D.

F. Lu, S. Basu, V. Igras, M. P. Hoang, M. Ji, D. Fu, G. Holtom, V. A. Neel, C. W. Freudiger, D. Fisher, and X. S. Xie, “Label-free dna imaging in vivo with stimulated raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 112(37), 11624–11629 (2015).
[Crossref]

Freudiger, C. W.

F. Lu, S. Basu, V. Igras, M. P. Hoang, M. Ji, D. Fu, G. Holtom, V. A. Neel, C. W. Freudiger, D. Fisher, and X. S. Xie, “Label-free dna imaging in vivo with stimulated raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 112(37), 11624–11629 (2015).
[Crossref]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref]

Fu, D.

F. Lu, S. Basu, V. Igras, M. P. Hoang, M. Ji, D. Fu, G. Holtom, V. A. Neel, C. W. Freudiger, D. Fisher, and X. S. Xie, “Label-free dna imaging in vivo with stimulated raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 112(37), 11624–11629 (2015).
[Crossref]

Fu, Y.

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, “Coherent anti-stokes raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89(1), 581–591 (2005).
[Crossref]

German, D. C.

Gigan, S.

S. Rotter and S. Gigan, “Light fields in complex media: Mesoscopic scattering meets wave control,” Rev. Mod. Phys. 89(1), 015005 (2017).
[Crossref]

Giller, C. A.

Gottschall, T.

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthaus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tunnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding multimodal microscopy by high spectral resolution coherent anti-stokes raman scattering imaging for clinical disease diagnostics,” Anal. Chem. 85(14), 6703–6715 (2013).
[Crossref]

Gusachenko, I.

Hall, J. N.

T. A. Bartlett, W. C. McDonald, and J. N. Hall, “Adapting Texas Instruments DLP technology to demonstrate a phase spatial light modulator,” Proc. SPIE XI, 27 (2019).
[Crossref]

Hibi, T.

T. Nemoto, R. Kawakami, T. Hibi, K. Iijima, and K. Otomo, “Two-photon excitation fluorescence microscopy and its application in functional connectomics,” Microscopy 64(1), 9–15 (2015).
[Crossref]

Hoang, M. P.

F. Lu, S. Basu, V. Igras, M. P. Hoang, M. Ji, D. Fu, G. Holtom, V. A. Neel, C. W. Freudiger, D. Fisher, and X. S. Xie, “Label-free dna imaging in vivo with stimulated raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 112(37), 11624–11629 (2015).
[Crossref]

Holtom, G.

F. Lu, S. Basu, V. Igras, M. P. Hoang, M. Ji, D. Fu, G. Holtom, V. A. Neel, C. W. Freudiger, D. Fisher, and X. S. Xie, “Label-free dna imaging in vivo with stimulated raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 112(37), 11624–11629 (2015).
[Crossref]

Holtom, G. R.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref]

Igras, V.

F. Lu, S. Basu, V. Igras, M. P. Hoang, M. Ji, D. Fu, G. Holtom, V. A. Neel, C. W. Freudiger, D. Fisher, and X. S. Xie, “Label-free dna imaging in vivo with stimulated raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 112(37), 11624–11629 (2015).
[Crossref]

Iijima, K.

T. Nemoto, R. Kawakami, T. Hibi, K. Iijima, and K. Otomo, “Two-photon excitation fluorescence microscopy and its application in functional connectomics,” Microscopy 64(1), 9–15 (2015).
[Crossref]

Ji, M.

F. Lu, S. Basu, V. Igras, M. P. Hoang, M. Ji, D. Fu, G. Holtom, V. A. Neel, C. W. Freudiger, D. Fisher, and X. S. Xie, “Label-free dna imaging in vivo with stimulated raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 112(37), 11624–11629 (2015).
[Crossref]

Jiang, X.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. S. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

Johns, M.

Joly, N.

A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent raman endoscope,” Light: Sci. Appl. 7(1), 10 (2018).
[Crossref]

Kakkava, E.

Kawakami, R.

T. Nemoto, R. Kawakami, T. Hibi, K. Iijima, and K. Otomo, “Two-photon excitation fluorescence microscopy and its application in functional connectomics,” Microscopy 64(1), 9–15 (2015).
[Crossref]

Kollárová, V.

M. Plöschner, V. Kollárová, Z. Dostál, J. Nylk, T. Barton-Owen, D. E. K. Ferrier, R. Chmelík, K. Dholakia, and T. Čižmár, “Multimode fibre: Light-sheet microscopy at the tip of a needle,” Sci. Rep. 5(1), 18050 (2015).
[Crossref]

Konstantinou, G.

Koren, V.

S. A. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Čižmár, and N. J. Emptage, “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light: Sci. Appl. 7(1), 1–6 (2018).
[Crossref]

Krafft, C.

C. Krafft, M. Schmitt, I. Schie, D. Cialla-May, C. Matthaeus, T. Bocklitz, and J. Popp, “Label-free molecular imaging of biological cells and tissues by linear and non-linear raman spectroscopic approaches,” Angew. Chem., Int. Ed. 56(16), 4392–4430 (2017).
[Crossref]

C. Krafft, I. Schie, T. Meyer, M. Schmitt, and J. Popp, “Developments in spontaneous and coherent raman scattering microscopic imaging for biomedical applications,” Chem. Soc. Rev. 45(7), 1819–1849 (2016).
[Crossref]

Kudlinski, A.

A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent raman endoscope,” Light: Sci. Appl. 7(1), 10 (2018).
[Crossref]

Langbein, W.

C. D. Napoli, I. Pope, F. Masia, W. Langbein, P. Watson, and P. Borri, “Quantitative spatiotemporal chemical profiling of individual lipid droplets by hyperspectral cars microscopy in living human adipose-derived stem cells,” Anal. Chem. 88(7), 3677–3685 (2016).
[Crossref]

Latka, I.

Leite, I. T.

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čízmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light: Sci. Appl. 7(1), 92 (2018).
[Crossref]

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. S. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

Limpert, J.

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthaus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tunnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding multimodal microscopy by high spectral resolution coherent anti-stokes raman scattering imaging for clinical disease diagnostics,” Anal. Chem. 85(14), 6703–6715 (2013).
[Crossref]

Lin, C. P.

C. L. Evans, E. O. Potma, M. Puorishaag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-stokes raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 102(46), 16807–16812 (2005).
[Crossref]

Liu, H.

Lombardini, A.

A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent raman endoscope,” Light: Sci. Appl. 7(1), 10 (2018).
[Crossref]

Loterie, D.

Louradour, F.

A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent raman endoscope,” Light: Sci. Appl. 7(1), 10 (2018).
[Crossref]

Love, G. D.

Lu, F.

F. Lu, S. Basu, V. Igras, M. P. Hoang, M. Ji, D. Fu, G. Holtom, V. A. Neel, C. W. Freudiger, D. Fisher, and X. S. Xie, “Label-free dna imaging in vivo with stimulated raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 112(37), 11624–11629 (2015).
[Crossref]

Lukic, A.

Mahajan, S.

I. I. Patel, C. Steuwe, S. Reichelt, and S. Mahajan, “Coherent anti-stokes raman scattering for labelfree biomedical imaging,” J. Opt. 15(9), 094006 (2013).
[Crossref]

Masia, F.

C. D. Napoli, I. Pope, F. Masia, W. Langbein, P. Watson, and P. Borri, “Quantitative spatiotemporal chemical profiling of individual lipid droplets by hyperspectral cars microscopy in living human adipose-derived stem cells,” Anal. Chem. 88(7), 3677–3685 (2016).
[Crossref]

Matthaeus, C.

C. Krafft, M. Schmitt, I. Schie, D. Cialla-May, C. Matthaeus, T. Bocklitz, and J. Popp, “Label-free molecular imaging of biological cells and tissues by linear and non-linear raman spectroscopic approaches,” Angew. Chem., Int. Ed. 56(16), 4392–4430 (2017).
[Crossref]

Matthaus, C.

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthaus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tunnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding multimodal microscopy by high spectral resolution coherent anti-stokes raman scattering imaging for clinical disease diagnostics,” Anal. Chem. 85(14), 6703–6715 (2013).
[Crossref]

Matz, G.

McDonald, W. C.

T. A. Bartlett, W. C. McDonald, and J. N. Hall, “Adapting Texas Instruments DLP technology to demonstrate a phase spatial light modulator,” Proc. SPIE XI, 27 (2019).
[Crossref]

Messerschmidt, B.

Meyer, T.

C. Krafft, I. Schie, T. Meyer, M. Schmitt, and J. Popp, “Developments in spontaneous and coherent raman scattering microscopic imaging for biomedical applications,” Chem. Soc. Rev. 45(7), 1819–1849 (2016).
[Crossref]

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthaus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tunnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding multimodal microscopy by high spectral resolution coherent anti-stokes raman scattering imaging for clinical disease diagnostics,” Anal. Chem. 85(14), 6703–6715 (2013).
[Crossref]

Monneret, S.

Morales-Delgado, E. E.

Moser, C.

Mosk, A. P.

Mytskaniuk, V.

A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent raman endoscope,” Light: Sci. Appl. 7(1), 10 (2018).
[Crossref]

Napoli, C. D.

C. D. Napoli, I. Pope, F. Masia, W. Langbein, P. Watson, and P. Borri, “Quantitative spatiotemporal chemical profiling of individual lipid droplets by hyperspectral cars microscopy in living human adipose-derived stem cells,” Anal. Chem. 88(7), 3677–3685 (2016).
[Crossref]

Neel, V. A.

F. Lu, S. Basu, V. Igras, M. P. Hoang, M. Ji, D. Fu, G. Holtom, V. A. Neel, C. W. Freudiger, D. Fisher, and X. S. Xie, “Label-free dna imaging in vivo with stimulated raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 112(37), 11624–11629 (2015).
[Crossref]

Nemoto, T.

T. Nemoto, R. Kawakami, T. Hibi, K. Iijima, and K. Otomo, “Two-photon excitation fluorescence microscopy and its application in functional connectomics,” Microscopy 64(1), 9–15 (2015).
[Crossref]

Nylk, J.

M. Plöschner, V. Kollárová, Z. Dostál, J. Nylk, T. Barton-Owen, D. E. K. Ferrier, R. Chmelík, K. Dholakia, and T. Čižmár, “Multimode fibre: Light-sheet microscopy at the tip of a needle,” Sci. Rep. 5(1), 18050 (2015).
[Crossref]

Olivier, N.

Otomo, K.

T. Nemoto, R. Kawakami, T. Hibi, K. Iijima, and K. Otomo, “Two-photon excitation fluorescence microscopy and its application in functional connectomics,” Microscopy 64(1), 9–15 (2015).
[Crossref]

Padamsey, Z.

S. A. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Čižmár, and N. J. Emptage, “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light: Sci. Appl. 7(1), 1–6 (2018).
[Crossref]

Padgett, M. J.

Pakan, J. M. P.

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čízmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light: Sci. Appl. 7(1), 92 (2018).
[Crossref]

Pascher, T.

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthaus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tunnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding multimodal microscopy by high spectral resolution coherent anti-stokes raman scattering imaging for clinical disease diagnostics,” Anal. Chem. 85(14), 6703–6715 (2013).
[Crossref]

Patel, I. I.

I. I. Patel, C. Steuwe, S. Reichelt, and S. Mahajan, “Coherent anti-stokes raman scattering for labelfree biomedical imaging,” J. Opt. 15(9), 094006 (2013).
[Crossref]

Pikálek, T.

Plöschner, M.

S. A. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Čižmár, and N. J. Emptage, “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light: Sci. Appl. 7(1), 1–6 (2018).
[Crossref]

M. Plöschner, V. Kollárová, Z. Dostál, J. Nylk, T. Barton-Owen, D. E. K. Ferrier, R. Chmelík, K. Dholakia, and T. Čižmár, “Multimode fibre: Light-sheet microscopy at the tip of a needle,” Sci. Rep. 5(1), 18050 (2015).
[Crossref]

Pope, I.

C. D. Napoli, I. Pope, F. Masia, W. Langbein, P. Watson, and P. Borri, “Quantitative spatiotemporal chemical profiling of individual lipid droplets by hyperspectral cars microscopy in living human adipose-derived stem cells,” Anal. Chem. 88(7), 3677–3685 (2016).
[Crossref]

Popp, J.

C. Krafft, M. Schmitt, I. Schie, D. Cialla-May, C. Matthaeus, T. Bocklitz, and J. Popp, “Label-free molecular imaging of biological cells and tissues by linear and non-linear raman spectroscopic approaches,” Angew. Chem., Int. Ed. 56(16), 4392–4430 (2017).
[Crossref]

A. Lukic, S. Dochow, H. Bae, G. Matz, I. Latka, B. Messerschmidt, M. Schmitt, and J. Popp, “Endoscopic fiber probe for nonlinear spectroscopic imaging,” Optica 4(5), 496–501 (2017).
[Crossref]

C. Krafft, I. Schie, T. Meyer, M. Schmitt, and J. Popp, “Developments in spontaneous and coherent raman scattering microscopic imaging for biomedical applications,” Chem. Soc. Rev. 45(7), 1819–1849 (2016).
[Crossref]

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthaus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tunnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding multimodal microscopy by high spectral resolution coherent anti-stokes raman scattering imaging for clinical disease diagnostics,” Anal. Chem. 85(14), 6703–6715 (2013).
[Crossref]

Potma, E. O.

C. L. Evans, E. O. Potma, M. Puorishaag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-stokes raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 102(46), 16807–16812 (2005).
[Crossref]

Psaltis, D.

Puorishaag, M.

C. L. Evans, E. O. Potma, M. Puorishaag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-stokes raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 102(46), 16807–16812 (2005).
[Crossref]

Reichelt, S.

I. I. Patel, C. Steuwe, S. Reichelt, and S. Mahajan, “Coherent anti-stokes raman scattering for labelfree biomedical imaging,” J. Opt. 15(9), 094006 (2013).
[Crossref]

Reichman, J.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref]

Rigneault, H.

A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent raman endoscope,” Light: Sci. Appl. 7(1), 10 (2018).
[Crossref]

S. Sivankutty, E. R. Andresen, R. Cossart, G. Bouwmans, S. Monneret, and H. Rigneault, “Ultra-thin rigid endoscope: two-photon imaging through a graded-index multi-mode fiber,” Opt. Express 24(2), 825–841 (2016).
[Crossref]

Ritsch-Marte, M.

Rochefort, N. L.

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čízmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light: Sci. Appl. 7(1), 92 (2018).
[Crossref]

Romeike, B. F. M.

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthaus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tunnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding multimodal microscopy by high spectral resolution coherent anti-stokes raman scattering imaging for clinical disease diagnostics,” Anal. Chem. 85(14), 6703–6715 (2013).
[Crossref]

Romito, M.

Rotter, S.

S. Rotter and S. Gigan, “Light fields in complex media: Mesoscopic scattering meets wave control,” Rev. Mod. Phys. 89(1), 015005 (2017).
[Crossref]

Russell, P. S. J.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. S. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

Saar, B. G.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref]

Schie, I.

C. Krafft, M. Schmitt, I. Schie, D. Cialla-May, C. Matthaeus, T. Bocklitz, and J. Popp, “Label-free molecular imaging of biological cells and tissues by linear and non-linear raman spectroscopic approaches,” Angew. Chem., Int. Ed. 56(16), 4392–4430 (2017).
[Crossref]

C. Krafft, I. Schie, T. Meyer, M. Schmitt, and J. Popp, “Developments in spontaneous and coherent raman scattering microscopic imaging for biomedical applications,” Chem. Soc. Rev. 45(7), 1819–1849 (2016).
[Crossref]

Schmitt, M.

C. Krafft, M. Schmitt, I. Schie, D. Cialla-May, C. Matthaeus, T. Bocklitz, and J. Popp, “Label-free molecular imaging of biological cells and tissues by linear and non-linear raman spectroscopic approaches,” Angew. Chem., Int. Ed. 56(16), 4392–4430 (2017).
[Crossref]

A. Lukic, S. Dochow, H. Bae, G. Matz, I. Latka, B. Messerschmidt, M. Schmitt, and J. Popp, “Endoscopic fiber probe for nonlinear spectroscopic imaging,” Optica 4(5), 496–501 (2017).
[Crossref]

C. Krafft, I. Schie, T. Meyer, M. Schmitt, and J. Popp, “Developments in spontaneous and coherent raman scattering microscopic imaging for biomedical applications,” Chem. Soc. Rev. 45(7), 1819–1849 (2016).
[Crossref]

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthaus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tunnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding multimodal microscopy by high spectral resolution coherent anti-stokes raman scattering imaging for clinical disease diagnostics,” Anal. Chem. 85(14), 6703–6715 (2013).
[Crossref]

Shi, R.

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, “Coherent anti-stokes raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89(1), 581–591 (2005).
[Crossref]

Šiler, M.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. S. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

Simpson, S.

Sivankutty, S.

A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent raman endoscope,” Light: Sci. Appl. 7(1), 10 (2018).
[Crossref]

S. Sivankutty, E. R. Andresen, R. Cossart, G. Bouwmans, S. Monneret, and H. Rigneault, “Ultra-thin rigid endoscope: two-photon imaging through a graded-index multi-mode fiber,” Opt. Express 24(2), 825–841 (2016).
[Crossref]

Stankovic, K. M.

Stanley, C. M.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref]

Steuwe, C.

I. I. Patel, C. Steuwe, S. Reichelt, and S. Mahajan, “Coherent anti-stokes raman scattering for labelfree biomedical imaging,” J. Opt. 15(9), 094006 (2013).
[Crossref]

Stopka, J.

D. E. Boonzajer-Flaes, J. Stopka, S. Turtaev, J. F. de Boer, T. Tyc, and T. Cižmár, “Robustness of Light-Transport Processes to Bending Deformations in Graded-Index Multimode Waveguides,” Phys. Rev. Lett. 120(23), 233901 (2018).
[Crossref]

Thalhammer, G.

Trägårdh, J.

Tunnermann, A.

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthaus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tunnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding multimodal microscopy by high spectral resolution coherent anti-stokes raman scattering imaging for clinical disease diagnostics,” Anal. Chem. 85(14), 6703–6715 (2013).
[Crossref]

Turcotte, R.

S. A. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Čižmár, and N. J. Emptage, “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light: Sci. Appl. 7(1), 1–6 (2018).
[Crossref]

Turtaev, S.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. S. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čízmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light: Sci. Appl. 7(1), 92 (2018).
[Crossref]

D. E. Boonzajer-Flaes, J. Stopka, S. Turtaev, J. F. de Boer, T. Tyc, and T. Cižmár, “Robustness of Light-Transport Processes to Bending Deformations in Graded-Index Multimode Waveguides,” Phys. Rev. Lett. 120(23), 233901 (2018).
[Crossref]

Tyc, T.

D. E. Boonzajer-Flaes, J. Stopka, S. Turtaev, J. F. de Boer, T. Tyc, and T. Cižmár, “Robustness of Light-Transport Processes to Bending Deformations in Graded-Index Multimode Waveguides,” Phys. Rev. Lett. 120(23), 233901 (2018).
[Crossref]

Vasquez-Lopez, S. A.

S. A. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Čižmár, and N. J. Emptage, “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light: Sci. Appl. 7(1), 1–6 (2018).
[Crossref]

Vellekoop, I. M.

Wang, H.

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, “Coherent anti-stokes raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89(1), 581–591 (2005).
[Crossref]

Watson, P.

C. D. Napoli, I. Pope, F. Masia, W. Langbein, P. Watson, and P. Borri, “Quantitative spatiotemporal chemical profiling of individual lipid droplets by hyperspectral cars microscopy in living human adipose-derived stem cells,” Anal. Chem. 88(7), 3677–3685 (2016).
[Crossref]

Welte, M.

M. Welte, “As the fat flies: The dynamic lipid droplets of drosophila embryos,” Biochim. Biophys. Acta 1851(9), 1156–1185 (2015).
[Crossref]

Wenger, J.

A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent raman endoscope,” Light: Sci. Appl. 7(1), 10 (2018).
[Crossref]

Xie, X. S.

F. Lu, S. Basu, V. Igras, M. P. Hoang, M. Ji, D. Fu, G. Holtom, V. A. Neel, C. W. Freudiger, D. Fisher, and X. S. Xie, “Label-free dna imaging in vivo with stimulated raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 112(37), 11624–11629 (2015).
[Crossref]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref]

C. L. Evans, E. O. Potma, M. Puorishaag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-stokes raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 102(46), 16807–16812 (2005).
[Crossref]

Zickmund, P.

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, “Coherent anti-stokes raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89(1), 581–591 (2005).
[Crossref]

Anal. Chem. (2)

C. D. Napoli, I. Pope, F. Masia, W. Langbein, P. Watson, and P. Borri, “Quantitative spatiotemporal chemical profiling of individual lipid droplets by hyperspectral cars microscopy in living human adipose-derived stem cells,” Anal. Chem. 88(7), 3677–3685 (2016).
[Crossref]

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthaus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tunnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding multimodal microscopy by high spectral resolution coherent anti-stokes raman scattering imaging for clinical disease diagnostics,” Anal. Chem. 85(14), 6703–6715 (2013).
[Crossref]

Angew. Chem., Int. Ed. (1)

C. Krafft, M. Schmitt, I. Schie, D. Cialla-May, C. Matthaeus, T. Bocklitz, and J. Popp, “Label-free molecular imaging of biological cells and tissues by linear and non-linear raman spectroscopic approaches,” Angew. Chem., Int. Ed. 56(16), 4392–4430 (2017).
[Crossref]

Biochim. Biophys. Acta (1)

M. Welte, “As the fat flies: The dynamic lipid droplets of drosophila embryos,” Biochim. Biophys. Acta 1851(9), 1156–1185 (2015).
[Crossref]

Biomed. Opt. Express (1)

Biophys. J. (1)

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, “Coherent anti-stokes raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89(1), 581–591 (2005).
[Crossref]

Chem. Soc. Rev. (1)

C. Krafft, I. Schie, T. Meyer, M. Schmitt, and J. Popp, “Developments in spontaneous and coherent raman scattering microscopic imaging for biomedical applications,” Chem. Soc. Rev. 45(7), 1819–1849 (2016).
[Crossref]

J. Opt. (1)

I. I. Patel, C. Steuwe, S. Reichelt, and S. Mahajan, “Coherent anti-stokes raman scattering for labelfree biomedical imaging,” J. Opt. 15(9), 094006 (2013).
[Crossref]

Light: Sci. Appl. (3)

A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent raman endoscope,” Light: Sci. Appl. 7(1), 10 (2018).
[Crossref]

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čízmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light: Sci. Appl. 7(1), 92 (2018).
[Crossref]

S. A. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Čižmár, and N. J. Emptage, “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light: Sci. Appl. 7(1), 1–6 (2018).
[Crossref]

Microscopy (1)

T. Nemoto, R. Kawakami, T. Hibi, K. Iijima, and K. Otomo, “Two-photon excitation fluorescence microscopy and its application in functional connectomics,” Microscopy 64(1), 9–15 (2015).
[Crossref]

Nat. Photonics (1)

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. S. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

Opt. Express (9)

S. Deng, D. Loterie, G. Konstantinou, D. Psaltis, and C. Moser, “Raman imaging through multimode sapphire fiber,” Opt. Express 27(2), 1090–1098 (2019).
[Crossref]

T. Pikálek, J. Trägårdh, S. Simpson, and T. Čižmár, “Wavelength dependent characterization of a multimode fibre endoscope,” Opt. Express 27(20), 28239–28253 (2019).
[Crossref]

T. Čižmár and K. Dholakia, “Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,” Opt. Express 19(20), 18871–18884 (2011).
[Crossref]

G. Thalhammer, R. W. Bowman, G. D. Love, M. J. Padgett, and M. Ritsch-Marte, “Speeding up liquid crystal slms using overdrive with phase change reduction,” Opt. Express 21(2), 1779–1797 (2013).
[Crossref]

E. E. Morales-Delgado, D. Psaltis, and C. Moser, “Two-photon imaging through a multimode fiber,” Opt. Express 23(25), 32158–32170 (2015).
[Crossref]

S. Sivankutty, E. R. Andresen, R. Cossart, G. Bouwmans, S. Monneret, and H. Rigneault, “Ultra-thin rigid endoscope: two-photon imaging through a graded-index multi-mode fiber,” Opt. Express 24(2), 825–841 (2016).
[Crossref]

M. Johns, C. A. Giller, D. C. German, and H. Liu, “Determination of reduced scattering coefficient of biological tissue from a needle-like probe,” Opt. Express 13(13), 4828–4842 (2005).
[Crossref]

D. Débarre, N. Olivier, and E. Beaurepaire, “Signal epidetection in third-harmonic generation microscopy of turbid media,” Opt. Express 15(14), 8913–8924 (2007).
[Crossref]

I. Gusachenko, M. Chen, and K. Dholakia, “Raman imaging through a single multimode fibre,” Opt. Express 25(12), 13782–13798 (2017).
[Crossref]

Opt. Lett. (1)

Optica (1)

Phys. Rev. Lett. (1)

D. E. Boonzajer-Flaes, J. Stopka, S. Turtaev, J. F. de Boer, T. Tyc, and T. Cižmár, “Robustness of Light-Transport Processes to Bending Deformations in Graded-Index Multimode Waveguides,” Phys. Rev. Lett. 120(23), 233901 (2018).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (2)

C. L. Evans, E. O. Potma, M. Puorishaag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-stokes raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 102(46), 16807–16812 (2005).
[Crossref]

F. Lu, S. Basu, V. Igras, M. P. Hoang, M. Ji, D. Fu, G. Holtom, V. A. Neel, C. W. Freudiger, D. Fisher, and X. S. Xie, “Label-free dna imaging in vivo with stimulated raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 112(37), 11624–11629 (2015).
[Crossref]

Proc. SPIE (1)

T. A. Bartlett, W. C. McDonald, and J. N. Hall, “Adapting Texas Instruments DLP technology to demonstrate a phase spatial light modulator,” Proc. SPIE XI, 27 (2019).
[Crossref]

Rev. Mod. Phys. (1)

S. Rotter and S. Gigan, “Light fields in complex media: Mesoscopic scattering meets wave control,” Rev. Mod. Phys. 89(1), 015005 (2017).
[Crossref]

Sci. Rep. (1)

M. Plöschner, V. Kollárová, Z. Dostál, J. Nylk, T. Barton-Owen, D. E. K. Ferrier, R. Chmelík, K. Dholakia, and T. Čižmár, “Multimode fibre: Light-sheet microscopy at the tip of a needle,” Sci. Rep. 5(1), 18050 (2015).
[Crossref]

Science (1)

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Schematic of the setup for performing CARS imaging through the multimode fibre. DM = Dichroic mirror, MD = D-shaped mirror, L = lens, PBS = polarizing beam splitter, BS = beam splitter, MM fibre = multimode fibre, LC SLM = spatial light modulator, HWP = half wave plate, PD = photo detector, CAM = Camera, POL = polarizer, F = filter. The calibration module, indicated by a dashed box, can be removed after the calibration step to allow imaging of thick non-transparent samples [10]. The inset shows the method for controlling two polarizations and generating a reference beam on the same single SLM. The top row shows the patterns applied to the SLM and the bottom row shows the image of the Fourier plane of lens L3, where the beams corresponding to the different patterns are separated using MD1, MD2 and an iris.
Fig. 2.
Fig. 2. CARS images of (a) 2.5 µm diameter PMMA and (b) 2 µm diameter PS beads detected in transmission. The frequency difference in cm−1 between the Stokes beam and the pump beam is indicated in each image. (c): The intensity of the CARS signal in (a) (brown crosses, solid line) and (b) (red crosses, dashed line) as a function of frequency difference between Stokes and pump beam. The lines are a guide to the eye. The images in (a) and (b) are a subset of the data presented in (c). Scalebars are 5 µm.
Fig. 3.
Fig. 3. (a-c): CARS images from a sample with 2 µm diameter PS beads. (a): bright-field image of the sample area. (b, c): CARS signal detected in (b) transmission and (c) epi-detection at a Raman resonance of 3060 cm−1. Integration time = 10 ms. Scalebar in (b) is 5 µm. The inset graph in (c) shows the intensity of the signal in (c) along the dashed line. (d-g): CARS images from a sample with both 2.5 µm diameter PMMA beads and 2 µm diameter PS beads, detected in epi-detection at Raman resonance of (e) 2946 cm−1 and (f) 3064 cm−1, respectively. (g): overlay of (e) and (f), where green represent the image at 3064 cm−1 and magenta the image at 2946 cm−1. (d): overlay of the full field of view. Scalebars in (d), (f) are 10 µm.
Fig. 4.
Fig. 4. CARS signal from 2 µm, and 7 µm diameter PS beads, detected in epi-detection using (a) 2 ms and (b) 1 ms integration time at a frequency shift of 3056 cm−1. The noise visible in (b) is mainly due to the SLM. (c,d): The intensity of the signal in (a,b) along the dashed line shown in (a). Interference effects due to the coherent signal and excitation distort the shape of the 7 µm beads. The scalebar is 10 µm.

Metrics