Abstract

Optical scatterfield imaging microscopy technique which has the capability of controlling scattered fields in the imaging mode is useful for quantitative nanoscale dimensional metrology that yields precise characterization of nanoscale features for semiconductor device manufacturing process control. To increase the sensitivity in the metrology using this method, it is required to optimize illumination and collection optics that enhance scatterfield signals from the nanoscale targets. Partial coherence of the optical imaging system is used not only for enhancing image quality in the traditional microscopy or lithography but also for increasing the sensitivity of the scatterfield imaging microscopy. This paper presents an empirical investigation of the effect of partial coherence on measurement sensitivity using a deep ultraviolet scatterfield imaging microscope platform that uses a 193 nm excimer laser as a source and a conjugate back focal plane as a unit for controlling partial coherence. Dimensional measurement sensitivity is assessed through analyzing scatterfield images measured at the edge area of periodic multiline structures with nominal linewidths ranging 44–80 nm on a Molybdenum Silicide (MoSi) photomask. Intensities scattered from the targets under the illuminations with various partial coherence factors and two orthogonal polarizations are assessed with respect to sensitivity coefficient. The optimization of partial coherence factor for the target dimension is discussed through the sensitivity coefficient maps.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Scatterfield microscopy for extending the limits of image-based optical metrology

Richard M. Silver, Bryan M. Barnes, Ravikiran Attota, Jay Jun, Michael Stocker, Egon Marx, and Heather J. Patrick
Appl. Opt. 46(20) 4248-4257 (2007)

Fourier domain optical tool normalization for quantitative parametric image reconstruction

Jing Qin, Richard M. Silver, Bryan M. Barnes, Hui Zhou, and Francois Goasmat
Appl. Opt. 52(26) 6512-6522 (2013)

References

  • View by:
  • |
  • |
  • |

  1. T. N. Theis and H.-P. Wong, “The End of Moore’s Law: A New Beginning for Information Technology,” Comput. Sci. Eng. 19(2), 41–50 (2017).
    [Crossref]
  2. J. M. Shalf and R. Leland, “Computing beyond Moore’s Law,” Computer 48(12), 14–23 (2015).
    [Crossref]
  3. I. L. Markov, “Limits on fundamental limits to computation,” Nature 512(7513), 147–154 (2014).
    [Crossref]
  4. M. Asano, R. Yoshikawa, T. Hirano, H. Abe, K. Matsuki, H. Tsuda, M. Komori, T. Ojima, H. Yonemitsu, and A. Kawamoto, “Metrology and inspection required for next generation lithography,” Jpn. J. Appl. Phys. 56(6S1), 06GA01 (2017).
    [Crossref]
  5. L. Sun, T. Kohyama, K. Takeda, H. Nozawa, Y. Asakawa, T. Kagalwala, G. Lobb, F. Mont, X. Dai, S. Pal, W. Wang, J. Kye, and F. Goodwin, “High throughput and dense sampling metrology for process control,” Proc. SPIE 10145, 101452D (2017).
    [Crossref]
  6. N. G. Orji, M. Badaroglu, B. M. Barnes, C. Beitia, B. D. Bunday, U. Celano, R. J. Kline, M. Neisser, Y. Obeng, and A. E. Vladar, “Metrology for the next generation of semiconductor devices,” Nat. Electron. 1(10), 532–547 (2018).
    [Crossref]
  7. B. Bodermann, E. Buhr, Z. Li, and H. Bosse, “Quantitative Optical Microscopy at the Nanoscale: New Developments and Comparisons,” in Optical Imaging Metrology: Advanced Technologies, W. Osten and N. Reingand, eds. (Wiley-VCH, 2012).
  8. X. Colonna de Lega, “Model-Based Optical Metrology,” in Optical Imaging Metrology: Advanced Technologies, W. Osten and N. Reingand, eds. (Wiley-VCH, 2012).
  9. A. C. Diebold, A. Antonelli, and N. Keller, “Perspective: Optical measurement of feature dimensions and shapes by scatterometry,” APL Mater. 6(5), 058201 (2018).
    [Crossref]
  10. C. J. Raymond, “Multiparameter grating metrology using optical scatterometry,” J. Vac. Sci. Technol., B 15(2), 361–368 (1997).
    [Crossref]
  11. N. Kumar, P. Petrik, G. K. P. Ramanandan, O. El Gawhary, S. Roy, S. F. Pereira, W. M. J. Coene, and H. P. Urbach, “Reconstruction of sub-wavelength features and nano-positioning of gratings using coherent Fourier scatterometry,” Opt. Express 22(20), 24678–24688 (2014).
    [Crossref]
  12. P. Vagos, J. Hu, Z. Liu, and S. Rabello, “Uncertainty and sensitivity analysis and its applications in OCD measurements,” Proc. SPIE 7272, 72721N (2009).
    [Crossref]
  13. A. Cheng, H. Lee, D. Choi, S. Jeon, J. Lee, S. J. Lee, Z. Liu, J. Lee, E. Peled, E. Amit, Y. Lamhot, A. Svizher, D. Klein, A. Marchelli, R. Volkovich, T. Yaziv, S. Han, M. Hong, S. Kim, J. Lee, D. Lee, E. Oh, A. Choi, and D.-H. Lee, “Spectral tunability for accuracy, robustness, and resilience,” Proc. SPIE 10585, 105850S (2018).
    [Crossref]
  14. M. T. Stocker, B. M. Barnes, M. Sohn, E. Stanfield, and R. M. Silver, “Development of large aperture projection scatterometry for catalyst loading evaluation in proton exchange membrane fuel cells,” J. Power Sources 364, 130–137 (2017).
    [Crossref]
  15. R. Silver, T. Germer, R. Attota, B. M. Barnes, B. Bunday, J. Allgair, E. Marx, and J. Jun, “Fundamental limits of optical critical dimension metrology: a simulation study,” Proc. SPIE 6518, 65180U (2007).
    [Crossref]
  16. R. M. Silver, B. M. Barnes, R. Attota, J. Jun, M. Stocker, E. Marx, and H. J. Patrick, “Scatterfield microscopy for extending the limits of image-based optical metrology,” Appl. Opt. 46(20), 4248–4257 (2007).
    [Crossref]
  17. B. M. Barnes, R. Attota, R. Quintanilha, Y.-J. Sohn, and R. M. Silver, “Characterizing a scatterfield optical platform for semiconductor metrology,” Meas. Sci. Technol. 22(2), 024003 (2011).
    [Crossref]
  18. B. M. Barnes, R. Quinthanilha, Y.-J. Sohn, H. Zhou, and R. M. Silver, “Optical illumination optimization for patterned defect inspection,” Proc. SPIE 7971, 79710D (2011).
    [Crossref]
  19. J. Qin, R. M. Silver, B. M. Barnes, H. Zhou, and F. Goasmat, “Fourier domain optical tool normalization for quantitative parametric image reconstruction,” Appl. Opt. 52(26), 6512–6522 (2013).
    [Crossref]
  20. J. Qin, R. M. Silver, B. M. Barnes, H. Zhou, R. G. Dixson, and M.-A. Henn, “Deep subwavelength nanometric image reconstruction using Fourier domain optical normalization,” Light: Sci. Appl. 5(2), e16038 (2016).
    [Crossref]
  21. M. Y. Sohn, D. R. Lee, B. M. Barnes, R. Dixson, R. M. Silver, and S.-S. Choi, “Dimensional measurement sensitivity analysis for a MoSi photomask using DUV reflection scatterfield imaging microscopy,” Proc. SPIE 10451, 1045112 (2017).
    [Crossref]
  22. H. H. H. and T and G. Paget, “The concept of partial coherence in optics,” Proc. R. Soc. London, Ser. A 208(1093), 263–277 (1951).
    [Crossref]
  23. G. Gbur and T. Visser, “Chapter 5 – The Structure of Partially Coherent Fields,” in Progress in Optics: Volume 55, E. Wolf, ed. (Elsevier, 2010).
  24. E. Wolf, “New theory of partial coherence in the space–frequency domain. Part I: spectra and cross spectra of steady-state sources,” J. Opt. Soc. Am. 72(3), 343–351 (1982).
    [Crossref]
  25. H. H. Horace and M. N. Francis, “On the diffraction theory of optical images,” Proc. R. Soc. London, Ser. A 217(1130), 408–432 (1953).
    [Crossref]
  26. S. M. Shakeri, L. J. van Vliet, and S. Stallinga, “Impact of partial coherence on the apparent optical transfer function derived from the response to amplitude edges,” Appl. Opt. 56(12), 3518–3530 (2017).
    [Crossref]
  27. B. W. Smith, “The saga of sigma: influences of illumination throughout optical generations,” Proc. SPIE 9052, 905204 (2014).
    [Crossref]
  28. M. Singh, H. Lajunen, J. Tervo, and J. Turunen, “Imaging with partially coherent light: elementary-field approach,” Opt. Express 23(22), 28132–28140 (2015).
    [Crossref]
  29. X. Ma and G. Arce, “Binary mask optimization for inverse lithography with partially coherent illumination,” J. Opt. Soc. Am. A 25(12), 2960–2970 (2008).
    [Crossref]
  30. P. S. Considine, “Effects of Coherence on Imaging Systems*,” J. Opt. Soc. Am. 56(8), 1001–1009 (1966).
    [Crossref]
  31. E. C. Kintner and R. M. Sillitto, “Edge-ringing in Partially Coherent Imaging,” Opt. Acta 24(5), 591–605 (1977).
    [Crossref]
  32. M. Y. Sohn, B. M. Barnes, and R. M. Silver, “Design of angle-resolved illumination optics using nonimaging bi-telecentricity for 193 nm scatterfield microscopy,” Optik 156, 635–645 (2018).
    [Crossref]
  33. D. M. Nguyen, D. L. Lee, and J. Rho, “Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths,” Sci. Rep. 7(1), 2611 (2017).
    [Crossref]
  34. B. N. Taylor and C. E. Kuyatt, “Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results,” NIST Technical Note 1297 (1994).
  35. I. Farrance and R. Frenkel, “Uncertainty of Measurement: A Review of the Rules for Calculating Uncertainty Components through Functional Relationships,” Clin. Biochem. Rev. 33(2), 49–75 (2012).

2018 (4)

N. G. Orji, M. Badaroglu, B. M. Barnes, C. Beitia, B. D. Bunday, U. Celano, R. J. Kline, M. Neisser, Y. Obeng, and A. E. Vladar, “Metrology for the next generation of semiconductor devices,” Nat. Electron. 1(10), 532–547 (2018).
[Crossref]

A. C. Diebold, A. Antonelli, and N. Keller, “Perspective: Optical measurement of feature dimensions and shapes by scatterometry,” APL Mater. 6(5), 058201 (2018).
[Crossref]

A. Cheng, H. Lee, D. Choi, S. Jeon, J. Lee, S. J. Lee, Z. Liu, J. Lee, E. Peled, E. Amit, Y. Lamhot, A. Svizher, D. Klein, A. Marchelli, R. Volkovich, T. Yaziv, S. Han, M. Hong, S. Kim, J. Lee, D. Lee, E. Oh, A. Choi, and D.-H. Lee, “Spectral tunability for accuracy, robustness, and resilience,” Proc. SPIE 10585, 105850S (2018).
[Crossref]

M. Y. Sohn, B. M. Barnes, and R. M. Silver, “Design of angle-resolved illumination optics using nonimaging bi-telecentricity for 193 nm scatterfield microscopy,” Optik 156, 635–645 (2018).
[Crossref]

2017 (7)

D. M. Nguyen, D. L. Lee, and J. Rho, “Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths,” Sci. Rep. 7(1), 2611 (2017).
[Crossref]

S. M. Shakeri, L. J. van Vliet, and S. Stallinga, “Impact of partial coherence on the apparent optical transfer function derived from the response to amplitude edges,” Appl. Opt. 56(12), 3518–3530 (2017).
[Crossref]

M. T. Stocker, B. M. Barnes, M. Sohn, E. Stanfield, and R. M. Silver, “Development of large aperture projection scatterometry for catalyst loading evaluation in proton exchange membrane fuel cells,” J. Power Sources 364, 130–137 (2017).
[Crossref]

T. N. Theis and H.-P. Wong, “The End of Moore’s Law: A New Beginning for Information Technology,” Comput. Sci. Eng. 19(2), 41–50 (2017).
[Crossref]

M. Asano, R. Yoshikawa, T. Hirano, H. Abe, K. Matsuki, H. Tsuda, M. Komori, T. Ojima, H. Yonemitsu, and A. Kawamoto, “Metrology and inspection required for next generation lithography,” Jpn. J. Appl. Phys. 56(6S1), 06GA01 (2017).
[Crossref]

L. Sun, T. Kohyama, K. Takeda, H. Nozawa, Y. Asakawa, T. Kagalwala, G. Lobb, F. Mont, X. Dai, S. Pal, W. Wang, J. Kye, and F. Goodwin, “High throughput and dense sampling metrology for process control,” Proc. SPIE 10145, 101452D (2017).
[Crossref]

M. Y. Sohn, D. R. Lee, B. M. Barnes, R. Dixson, R. M. Silver, and S.-S. Choi, “Dimensional measurement sensitivity analysis for a MoSi photomask using DUV reflection scatterfield imaging microscopy,” Proc. SPIE 10451, 1045112 (2017).
[Crossref]

2016 (1)

J. Qin, R. M. Silver, B. M. Barnes, H. Zhou, R. G. Dixson, and M.-A. Henn, “Deep subwavelength nanometric image reconstruction using Fourier domain optical normalization,” Light: Sci. Appl. 5(2), e16038 (2016).
[Crossref]

2015 (2)

2014 (3)

N. Kumar, P. Petrik, G. K. P. Ramanandan, O. El Gawhary, S. Roy, S. F. Pereira, W. M. J. Coene, and H. P. Urbach, “Reconstruction of sub-wavelength features and nano-positioning of gratings using coherent Fourier scatterometry,” Opt. Express 22(20), 24678–24688 (2014).
[Crossref]

I. L. Markov, “Limits on fundamental limits to computation,” Nature 512(7513), 147–154 (2014).
[Crossref]

B. W. Smith, “The saga of sigma: influences of illumination throughout optical generations,” Proc. SPIE 9052, 905204 (2014).
[Crossref]

2013 (1)

2012 (1)

I. Farrance and R. Frenkel, “Uncertainty of Measurement: A Review of the Rules for Calculating Uncertainty Components through Functional Relationships,” Clin. Biochem. Rev. 33(2), 49–75 (2012).

2011 (2)

B. M. Barnes, R. Attota, R. Quintanilha, Y.-J. Sohn, and R. M. Silver, “Characterizing a scatterfield optical platform for semiconductor metrology,” Meas. Sci. Technol. 22(2), 024003 (2011).
[Crossref]

B. M. Barnes, R. Quinthanilha, Y.-J. Sohn, H. Zhou, and R. M. Silver, “Optical illumination optimization for patterned defect inspection,” Proc. SPIE 7971, 79710D (2011).
[Crossref]

2009 (1)

P. Vagos, J. Hu, Z. Liu, and S. Rabello, “Uncertainty and sensitivity analysis and its applications in OCD measurements,” Proc. SPIE 7272, 72721N (2009).
[Crossref]

2008 (1)

2007 (2)

R. M. Silver, B. M. Barnes, R. Attota, J. Jun, M. Stocker, E. Marx, and H. J. Patrick, “Scatterfield microscopy for extending the limits of image-based optical metrology,” Appl. Opt. 46(20), 4248–4257 (2007).
[Crossref]

R. Silver, T. Germer, R. Attota, B. M. Barnes, B. Bunday, J. Allgair, E. Marx, and J. Jun, “Fundamental limits of optical critical dimension metrology: a simulation study,” Proc. SPIE 6518, 65180U (2007).
[Crossref]

1997 (1)

C. J. Raymond, “Multiparameter grating metrology using optical scatterometry,” J. Vac. Sci. Technol., B 15(2), 361–368 (1997).
[Crossref]

1982 (1)

1977 (1)

E. C. Kintner and R. M. Sillitto, “Edge-ringing in Partially Coherent Imaging,” Opt. Acta 24(5), 591–605 (1977).
[Crossref]

1966 (1)

1953 (1)

H. H. Horace and M. N. Francis, “On the diffraction theory of optical images,” Proc. R. Soc. London, Ser. A 217(1130), 408–432 (1953).
[Crossref]

1951 (1)

H. H. H. and T and G. Paget, “The concept of partial coherence in optics,” Proc. R. Soc. London, Ser. A 208(1093), 263–277 (1951).
[Crossref]

Abe, H.

M. Asano, R. Yoshikawa, T. Hirano, H. Abe, K. Matsuki, H. Tsuda, M. Komori, T. Ojima, H. Yonemitsu, and A. Kawamoto, “Metrology and inspection required for next generation lithography,” Jpn. J. Appl. Phys. 56(6S1), 06GA01 (2017).
[Crossref]

Allgair, J.

R. Silver, T. Germer, R. Attota, B. M. Barnes, B. Bunday, J. Allgair, E. Marx, and J. Jun, “Fundamental limits of optical critical dimension metrology: a simulation study,” Proc. SPIE 6518, 65180U (2007).
[Crossref]

Amit, E.

A. Cheng, H. Lee, D. Choi, S. Jeon, J. Lee, S. J. Lee, Z. Liu, J. Lee, E. Peled, E. Amit, Y. Lamhot, A. Svizher, D. Klein, A. Marchelli, R. Volkovich, T. Yaziv, S. Han, M. Hong, S. Kim, J. Lee, D. Lee, E. Oh, A. Choi, and D.-H. Lee, “Spectral tunability for accuracy, robustness, and resilience,” Proc. SPIE 10585, 105850S (2018).
[Crossref]

and T, H. H. H.

H. H. H. and T and G. Paget, “The concept of partial coherence in optics,” Proc. R. Soc. London, Ser. A 208(1093), 263–277 (1951).
[Crossref]

Antonelli, A.

A. C. Diebold, A. Antonelli, and N. Keller, “Perspective: Optical measurement of feature dimensions and shapes by scatterometry,” APL Mater. 6(5), 058201 (2018).
[Crossref]

Arce, G.

Asakawa, Y.

L. Sun, T. Kohyama, K. Takeda, H. Nozawa, Y. Asakawa, T. Kagalwala, G. Lobb, F. Mont, X. Dai, S. Pal, W. Wang, J. Kye, and F. Goodwin, “High throughput and dense sampling metrology for process control,” Proc. SPIE 10145, 101452D (2017).
[Crossref]

Asano, M.

M. Asano, R. Yoshikawa, T. Hirano, H. Abe, K. Matsuki, H. Tsuda, M. Komori, T. Ojima, H. Yonemitsu, and A. Kawamoto, “Metrology and inspection required for next generation lithography,” Jpn. J. Appl. Phys. 56(6S1), 06GA01 (2017).
[Crossref]

Attota, R.

B. M. Barnes, R. Attota, R. Quintanilha, Y.-J. Sohn, and R. M. Silver, “Characterizing a scatterfield optical platform for semiconductor metrology,” Meas. Sci. Technol. 22(2), 024003 (2011).
[Crossref]

R. Silver, T. Germer, R. Attota, B. M. Barnes, B. Bunday, J. Allgair, E. Marx, and J. Jun, “Fundamental limits of optical critical dimension metrology: a simulation study,” Proc. SPIE 6518, 65180U (2007).
[Crossref]

R. M. Silver, B. M. Barnes, R. Attota, J. Jun, M. Stocker, E. Marx, and H. J. Patrick, “Scatterfield microscopy for extending the limits of image-based optical metrology,” Appl. Opt. 46(20), 4248–4257 (2007).
[Crossref]

Badaroglu, M.

N. G. Orji, M. Badaroglu, B. M. Barnes, C. Beitia, B. D. Bunday, U. Celano, R. J. Kline, M. Neisser, Y. Obeng, and A. E. Vladar, “Metrology for the next generation of semiconductor devices,” Nat. Electron. 1(10), 532–547 (2018).
[Crossref]

Barnes, B. M.

N. G. Orji, M. Badaroglu, B. M. Barnes, C. Beitia, B. D. Bunday, U. Celano, R. J. Kline, M. Neisser, Y. Obeng, and A. E. Vladar, “Metrology for the next generation of semiconductor devices,” Nat. Electron. 1(10), 532–547 (2018).
[Crossref]

M. Y. Sohn, B. M. Barnes, and R. M. Silver, “Design of angle-resolved illumination optics using nonimaging bi-telecentricity for 193 nm scatterfield microscopy,” Optik 156, 635–645 (2018).
[Crossref]

M. T. Stocker, B. M. Barnes, M. Sohn, E. Stanfield, and R. M. Silver, “Development of large aperture projection scatterometry for catalyst loading evaluation in proton exchange membrane fuel cells,” J. Power Sources 364, 130–137 (2017).
[Crossref]

M. Y. Sohn, D. R. Lee, B. M. Barnes, R. Dixson, R. M. Silver, and S.-S. Choi, “Dimensional measurement sensitivity analysis for a MoSi photomask using DUV reflection scatterfield imaging microscopy,” Proc. SPIE 10451, 1045112 (2017).
[Crossref]

J. Qin, R. M. Silver, B. M. Barnes, H. Zhou, R. G. Dixson, and M.-A. Henn, “Deep subwavelength nanometric image reconstruction using Fourier domain optical normalization,” Light: Sci. Appl. 5(2), e16038 (2016).
[Crossref]

J. Qin, R. M. Silver, B. M. Barnes, H. Zhou, and F. Goasmat, “Fourier domain optical tool normalization for quantitative parametric image reconstruction,” Appl. Opt. 52(26), 6512–6522 (2013).
[Crossref]

B. M. Barnes, R. Attota, R. Quintanilha, Y.-J. Sohn, and R. M. Silver, “Characterizing a scatterfield optical platform for semiconductor metrology,” Meas. Sci. Technol. 22(2), 024003 (2011).
[Crossref]

B. M. Barnes, R. Quinthanilha, Y.-J. Sohn, H. Zhou, and R. M. Silver, “Optical illumination optimization for patterned defect inspection,” Proc. SPIE 7971, 79710D (2011).
[Crossref]

R. Silver, T. Germer, R. Attota, B. M. Barnes, B. Bunday, J. Allgair, E. Marx, and J. Jun, “Fundamental limits of optical critical dimension metrology: a simulation study,” Proc. SPIE 6518, 65180U (2007).
[Crossref]

R. M. Silver, B. M. Barnes, R. Attota, J. Jun, M. Stocker, E. Marx, and H. J. Patrick, “Scatterfield microscopy for extending the limits of image-based optical metrology,” Appl. Opt. 46(20), 4248–4257 (2007).
[Crossref]

Beitia, C.

N. G. Orji, M. Badaroglu, B. M. Barnes, C. Beitia, B. D. Bunday, U. Celano, R. J. Kline, M. Neisser, Y. Obeng, and A. E. Vladar, “Metrology for the next generation of semiconductor devices,” Nat. Electron. 1(10), 532–547 (2018).
[Crossref]

Bodermann, B.

B. Bodermann, E. Buhr, Z. Li, and H. Bosse, “Quantitative Optical Microscopy at the Nanoscale: New Developments and Comparisons,” in Optical Imaging Metrology: Advanced Technologies, W. Osten and N. Reingand, eds. (Wiley-VCH, 2012).

Bosse, H.

B. Bodermann, E. Buhr, Z. Li, and H. Bosse, “Quantitative Optical Microscopy at the Nanoscale: New Developments and Comparisons,” in Optical Imaging Metrology: Advanced Technologies, W. Osten and N. Reingand, eds. (Wiley-VCH, 2012).

Buhr, E.

B. Bodermann, E. Buhr, Z. Li, and H. Bosse, “Quantitative Optical Microscopy at the Nanoscale: New Developments and Comparisons,” in Optical Imaging Metrology: Advanced Technologies, W. Osten and N. Reingand, eds. (Wiley-VCH, 2012).

Bunday, B.

R. Silver, T. Germer, R. Attota, B. M. Barnes, B. Bunday, J. Allgair, E. Marx, and J. Jun, “Fundamental limits of optical critical dimension metrology: a simulation study,” Proc. SPIE 6518, 65180U (2007).
[Crossref]

Bunday, B. D.

N. G. Orji, M. Badaroglu, B. M. Barnes, C. Beitia, B. D. Bunday, U. Celano, R. J. Kline, M. Neisser, Y. Obeng, and A. E. Vladar, “Metrology for the next generation of semiconductor devices,” Nat. Electron. 1(10), 532–547 (2018).
[Crossref]

Celano, U.

N. G. Orji, M. Badaroglu, B. M. Barnes, C. Beitia, B. D. Bunday, U. Celano, R. J. Kline, M. Neisser, Y. Obeng, and A. E. Vladar, “Metrology for the next generation of semiconductor devices,” Nat. Electron. 1(10), 532–547 (2018).
[Crossref]

Cheng, A.

A. Cheng, H. Lee, D. Choi, S. Jeon, J. Lee, S. J. Lee, Z. Liu, J. Lee, E. Peled, E. Amit, Y. Lamhot, A. Svizher, D. Klein, A. Marchelli, R. Volkovich, T. Yaziv, S. Han, M. Hong, S. Kim, J. Lee, D. Lee, E. Oh, A. Choi, and D.-H. Lee, “Spectral tunability for accuracy, robustness, and resilience,” Proc. SPIE 10585, 105850S (2018).
[Crossref]

Choi, A.

A. Cheng, H. Lee, D. Choi, S. Jeon, J. Lee, S. J. Lee, Z. Liu, J. Lee, E. Peled, E. Amit, Y. Lamhot, A. Svizher, D. Klein, A. Marchelli, R. Volkovich, T. Yaziv, S. Han, M. Hong, S. Kim, J. Lee, D. Lee, E. Oh, A. Choi, and D.-H. Lee, “Spectral tunability for accuracy, robustness, and resilience,” Proc. SPIE 10585, 105850S (2018).
[Crossref]

Choi, D.

A. Cheng, H. Lee, D. Choi, S. Jeon, J. Lee, S. J. Lee, Z. Liu, J. Lee, E. Peled, E. Amit, Y. Lamhot, A. Svizher, D. Klein, A. Marchelli, R. Volkovich, T. Yaziv, S. Han, M. Hong, S. Kim, J. Lee, D. Lee, E. Oh, A. Choi, and D.-H. Lee, “Spectral tunability for accuracy, robustness, and resilience,” Proc. SPIE 10585, 105850S (2018).
[Crossref]

Choi, S.-S.

M. Y. Sohn, D. R. Lee, B. M. Barnes, R. Dixson, R. M. Silver, and S.-S. Choi, “Dimensional measurement sensitivity analysis for a MoSi photomask using DUV reflection scatterfield imaging microscopy,” Proc. SPIE 10451, 1045112 (2017).
[Crossref]

Coene, W. M. J.

Colonna de Lega, X.

X. Colonna de Lega, “Model-Based Optical Metrology,” in Optical Imaging Metrology: Advanced Technologies, W. Osten and N. Reingand, eds. (Wiley-VCH, 2012).

Considine, P. S.

Dai, X.

L. Sun, T. Kohyama, K. Takeda, H. Nozawa, Y. Asakawa, T. Kagalwala, G. Lobb, F. Mont, X. Dai, S. Pal, W. Wang, J. Kye, and F. Goodwin, “High throughput and dense sampling metrology for process control,” Proc. SPIE 10145, 101452D (2017).
[Crossref]

Diebold, A. C.

A. C. Diebold, A. Antonelli, and N. Keller, “Perspective: Optical measurement of feature dimensions and shapes by scatterometry,” APL Mater. 6(5), 058201 (2018).
[Crossref]

Dixson, R.

M. Y. Sohn, D. R. Lee, B. M. Barnes, R. Dixson, R. M. Silver, and S.-S. Choi, “Dimensional measurement sensitivity analysis for a MoSi photomask using DUV reflection scatterfield imaging microscopy,” Proc. SPIE 10451, 1045112 (2017).
[Crossref]

Dixson, R. G.

J. Qin, R. M. Silver, B. M. Barnes, H. Zhou, R. G. Dixson, and M.-A. Henn, “Deep subwavelength nanometric image reconstruction using Fourier domain optical normalization,” Light: Sci. Appl. 5(2), e16038 (2016).
[Crossref]

El Gawhary, O.

Farrance, I.

I. Farrance and R. Frenkel, “Uncertainty of Measurement: A Review of the Rules for Calculating Uncertainty Components through Functional Relationships,” Clin. Biochem. Rev. 33(2), 49–75 (2012).

Francis, M. N.

H. H. Horace and M. N. Francis, “On the diffraction theory of optical images,” Proc. R. Soc. London, Ser. A 217(1130), 408–432 (1953).
[Crossref]

Frenkel, R.

I. Farrance and R. Frenkel, “Uncertainty of Measurement: A Review of the Rules for Calculating Uncertainty Components through Functional Relationships,” Clin. Biochem. Rev. 33(2), 49–75 (2012).

Gbur, G.

G. Gbur and T. Visser, “Chapter 5 – The Structure of Partially Coherent Fields,” in Progress in Optics: Volume 55, E. Wolf, ed. (Elsevier, 2010).

Germer, T.

R. Silver, T. Germer, R. Attota, B. M. Barnes, B. Bunday, J. Allgair, E. Marx, and J. Jun, “Fundamental limits of optical critical dimension metrology: a simulation study,” Proc. SPIE 6518, 65180U (2007).
[Crossref]

Goasmat, F.

Goodwin, F.

L. Sun, T. Kohyama, K. Takeda, H. Nozawa, Y. Asakawa, T. Kagalwala, G. Lobb, F. Mont, X. Dai, S. Pal, W. Wang, J. Kye, and F. Goodwin, “High throughput and dense sampling metrology for process control,” Proc. SPIE 10145, 101452D (2017).
[Crossref]

Han, S.

A. Cheng, H. Lee, D. Choi, S. Jeon, J. Lee, S. J. Lee, Z. Liu, J. Lee, E. Peled, E. Amit, Y. Lamhot, A. Svizher, D. Klein, A. Marchelli, R. Volkovich, T. Yaziv, S. Han, M. Hong, S. Kim, J. Lee, D. Lee, E. Oh, A. Choi, and D.-H. Lee, “Spectral tunability for accuracy, robustness, and resilience,” Proc. SPIE 10585, 105850S (2018).
[Crossref]

Henn, M.-A.

J. Qin, R. M. Silver, B. M. Barnes, H. Zhou, R. G. Dixson, and M.-A. Henn, “Deep subwavelength nanometric image reconstruction using Fourier domain optical normalization,” Light: Sci. Appl. 5(2), e16038 (2016).
[Crossref]

Hirano, T.

M. Asano, R. Yoshikawa, T. Hirano, H. Abe, K. Matsuki, H. Tsuda, M. Komori, T. Ojima, H. Yonemitsu, and A. Kawamoto, “Metrology and inspection required for next generation lithography,” Jpn. J. Appl. Phys. 56(6S1), 06GA01 (2017).
[Crossref]

Hong, M.

A. Cheng, H. Lee, D. Choi, S. Jeon, J. Lee, S. J. Lee, Z. Liu, J. Lee, E. Peled, E. Amit, Y. Lamhot, A. Svizher, D. Klein, A. Marchelli, R. Volkovich, T. Yaziv, S. Han, M. Hong, S. Kim, J. Lee, D. Lee, E. Oh, A. Choi, and D.-H. Lee, “Spectral tunability for accuracy, robustness, and resilience,” Proc. SPIE 10585, 105850S (2018).
[Crossref]

Horace, H. H.

H. H. Horace and M. N. Francis, “On the diffraction theory of optical images,” Proc. R. Soc. London, Ser. A 217(1130), 408–432 (1953).
[Crossref]

Hu, J.

P. Vagos, J. Hu, Z. Liu, and S. Rabello, “Uncertainty and sensitivity analysis and its applications in OCD measurements,” Proc. SPIE 7272, 72721N (2009).
[Crossref]

Jeon, S.

A. Cheng, H. Lee, D. Choi, S. Jeon, J. Lee, S. J. Lee, Z. Liu, J. Lee, E. Peled, E. Amit, Y. Lamhot, A. Svizher, D. Klein, A. Marchelli, R. Volkovich, T. Yaziv, S. Han, M. Hong, S. Kim, J. Lee, D. Lee, E. Oh, A. Choi, and D.-H. Lee, “Spectral tunability for accuracy, robustness, and resilience,” Proc. SPIE 10585, 105850S (2018).
[Crossref]

Jun, J.

R. M. Silver, B. M. Barnes, R. Attota, J. Jun, M. Stocker, E. Marx, and H. J. Patrick, “Scatterfield microscopy for extending the limits of image-based optical metrology,” Appl. Opt. 46(20), 4248–4257 (2007).
[Crossref]

R. Silver, T. Germer, R. Attota, B. M. Barnes, B. Bunday, J. Allgair, E. Marx, and J. Jun, “Fundamental limits of optical critical dimension metrology: a simulation study,” Proc. SPIE 6518, 65180U (2007).
[Crossref]

Kagalwala, T.

L. Sun, T. Kohyama, K. Takeda, H. Nozawa, Y. Asakawa, T. Kagalwala, G. Lobb, F. Mont, X. Dai, S. Pal, W. Wang, J. Kye, and F. Goodwin, “High throughput and dense sampling metrology for process control,” Proc. SPIE 10145, 101452D (2017).
[Crossref]

Kawamoto, A.

M. Asano, R. Yoshikawa, T. Hirano, H. Abe, K. Matsuki, H. Tsuda, M. Komori, T. Ojima, H. Yonemitsu, and A. Kawamoto, “Metrology and inspection required for next generation lithography,” Jpn. J. Appl. Phys. 56(6S1), 06GA01 (2017).
[Crossref]

Keller, N.

A. C. Diebold, A. Antonelli, and N. Keller, “Perspective: Optical measurement of feature dimensions and shapes by scatterometry,” APL Mater. 6(5), 058201 (2018).
[Crossref]

Kim, S.

A. Cheng, H. Lee, D. Choi, S. Jeon, J. Lee, S. J. Lee, Z. Liu, J. Lee, E. Peled, E. Amit, Y. Lamhot, A. Svizher, D. Klein, A. Marchelli, R. Volkovich, T. Yaziv, S. Han, M. Hong, S. Kim, J. Lee, D. Lee, E. Oh, A. Choi, and D.-H. Lee, “Spectral tunability for accuracy, robustness, and resilience,” Proc. SPIE 10585, 105850S (2018).
[Crossref]

Kintner, E. C.

E. C. Kintner and R. M. Sillitto, “Edge-ringing in Partially Coherent Imaging,” Opt. Acta 24(5), 591–605 (1977).
[Crossref]

Klein, D.

A. Cheng, H. Lee, D. Choi, S. Jeon, J. Lee, S. J. Lee, Z. Liu, J. Lee, E. Peled, E. Amit, Y. Lamhot, A. Svizher, D. Klein, A. Marchelli, R. Volkovich, T. Yaziv, S. Han, M. Hong, S. Kim, J. Lee, D. Lee, E. Oh, A. Choi, and D.-H. Lee, “Spectral tunability for accuracy, robustness, and resilience,” Proc. SPIE 10585, 105850S (2018).
[Crossref]

Kline, R. J.

N. G. Orji, M. Badaroglu, B. M. Barnes, C. Beitia, B. D. Bunday, U. Celano, R. J. Kline, M. Neisser, Y. Obeng, and A. E. Vladar, “Metrology for the next generation of semiconductor devices,” Nat. Electron. 1(10), 532–547 (2018).
[Crossref]

Kohyama, T.

L. Sun, T. Kohyama, K. Takeda, H. Nozawa, Y. Asakawa, T. Kagalwala, G. Lobb, F. Mont, X. Dai, S. Pal, W. Wang, J. Kye, and F. Goodwin, “High throughput and dense sampling metrology for process control,” Proc. SPIE 10145, 101452D (2017).
[Crossref]

Komori, M.

M. Asano, R. Yoshikawa, T. Hirano, H. Abe, K. Matsuki, H. Tsuda, M. Komori, T. Ojima, H. Yonemitsu, and A. Kawamoto, “Metrology and inspection required for next generation lithography,” Jpn. J. Appl. Phys. 56(6S1), 06GA01 (2017).
[Crossref]

Kumar, N.

Kuyatt, C. E.

B. N. Taylor and C. E. Kuyatt, “Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results,” NIST Technical Note 1297 (1994).

Kye, J.

L. Sun, T. Kohyama, K. Takeda, H. Nozawa, Y. Asakawa, T. Kagalwala, G. Lobb, F. Mont, X. Dai, S. Pal, W. Wang, J. Kye, and F. Goodwin, “High throughput and dense sampling metrology for process control,” Proc. SPIE 10145, 101452D (2017).
[Crossref]

Lajunen, H.

Lamhot, Y.

A. Cheng, H. Lee, D. Choi, S. Jeon, J. Lee, S. J. Lee, Z. Liu, J. Lee, E. Peled, E. Amit, Y. Lamhot, A. Svizher, D. Klein, A. Marchelli, R. Volkovich, T. Yaziv, S. Han, M. Hong, S. Kim, J. Lee, D. Lee, E. Oh, A. Choi, and D.-H. Lee, “Spectral tunability for accuracy, robustness, and resilience,” Proc. SPIE 10585, 105850S (2018).
[Crossref]

Lee, D.

A. Cheng, H. Lee, D. Choi, S. Jeon, J. Lee, S. J. Lee, Z. Liu, J. Lee, E. Peled, E. Amit, Y. Lamhot, A. Svizher, D. Klein, A. Marchelli, R. Volkovich, T. Yaziv, S. Han, M. Hong, S. Kim, J. Lee, D. Lee, E. Oh, A. Choi, and D.-H. Lee, “Spectral tunability for accuracy, robustness, and resilience,” Proc. SPIE 10585, 105850S (2018).
[Crossref]

Lee, D. L.

D. M. Nguyen, D. L. Lee, and J. Rho, “Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths,” Sci. Rep. 7(1), 2611 (2017).
[Crossref]

Lee, D. R.

M. Y. Sohn, D. R. Lee, B. M. Barnes, R. Dixson, R. M. Silver, and S.-S. Choi, “Dimensional measurement sensitivity analysis for a MoSi photomask using DUV reflection scatterfield imaging microscopy,” Proc. SPIE 10451, 1045112 (2017).
[Crossref]

Lee, D.-H.

A. Cheng, H. Lee, D. Choi, S. Jeon, J. Lee, S. J. Lee, Z. Liu, J. Lee, E. Peled, E. Amit, Y. Lamhot, A. Svizher, D. Klein, A. Marchelli, R. Volkovich, T. Yaziv, S. Han, M. Hong, S. Kim, J. Lee, D. Lee, E. Oh, A. Choi, and D.-H. Lee, “Spectral tunability for accuracy, robustness, and resilience,” Proc. SPIE 10585, 105850S (2018).
[Crossref]

Lee, H.

A. Cheng, H. Lee, D. Choi, S. Jeon, J. Lee, S. J. Lee, Z. Liu, J. Lee, E. Peled, E. Amit, Y. Lamhot, A. Svizher, D. Klein, A. Marchelli, R. Volkovich, T. Yaziv, S. Han, M. Hong, S. Kim, J. Lee, D. Lee, E. Oh, A. Choi, and D.-H. Lee, “Spectral tunability for accuracy, robustness, and resilience,” Proc. SPIE 10585, 105850S (2018).
[Crossref]

Lee, J.

A. Cheng, H. Lee, D. Choi, S. Jeon, J. Lee, S. J. Lee, Z. Liu, J. Lee, E. Peled, E. Amit, Y. Lamhot, A. Svizher, D. Klein, A. Marchelli, R. Volkovich, T. Yaziv, S. Han, M. Hong, S. Kim, J. Lee, D. Lee, E. Oh, A. Choi, and D.-H. Lee, “Spectral tunability for accuracy, robustness, and resilience,” Proc. SPIE 10585, 105850S (2018).
[Crossref]

A. Cheng, H. Lee, D. Choi, S. Jeon, J. Lee, S. J. Lee, Z. Liu, J. Lee, E. Peled, E. Amit, Y. Lamhot, A. Svizher, D. Klein, A. Marchelli, R. Volkovich, T. Yaziv, S. Han, M. Hong, S. Kim, J. Lee, D. Lee, E. Oh, A. Choi, and D.-H. Lee, “Spectral tunability for accuracy, robustness, and resilience,” Proc. SPIE 10585, 105850S (2018).
[Crossref]

A. Cheng, H. Lee, D. Choi, S. Jeon, J. Lee, S. J. Lee, Z. Liu, J. Lee, E. Peled, E. Amit, Y. Lamhot, A. Svizher, D. Klein, A. Marchelli, R. Volkovich, T. Yaziv, S. Han, M. Hong, S. Kim, J. Lee, D. Lee, E. Oh, A. Choi, and D.-H. Lee, “Spectral tunability for accuracy, robustness, and resilience,” Proc. SPIE 10585, 105850S (2018).
[Crossref]

Lee, S. J.

A. Cheng, H. Lee, D. Choi, S. Jeon, J. Lee, S. J. Lee, Z. Liu, J. Lee, E. Peled, E. Amit, Y. Lamhot, A. Svizher, D. Klein, A. Marchelli, R. Volkovich, T. Yaziv, S. Han, M. Hong, S. Kim, J. Lee, D. Lee, E. Oh, A. Choi, and D.-H. Lee, “Spectral tunability for accuracy, robustness, and resilience,” Proc. SPIE 10585, 105850S (2018).
[Crossref]

Leland, R.

J. M. Shalf and R. Leland, “Computing beyond Moore’s Law,” Computer 48(12), 14–23 (2015).
[Crossref]

Li, Z.

B. Bodermann, E. Buhr, Z. Li, and H. Bosse, “Quantitative Optical Microscopy at the Nanoscale: New Developments and Comparisons,” in Optical Imaging Metrology: Advanced Technologies, W. Osten and N. Reingand, eds. (Wiley-VCH, 2012).

Liu, Z.

A. Cheng, H. Lee, D. Choi, S. Jeon, J. Lee, S. J. Lee, Z. Liu, J. Lee, E. Peled, E. Amit, Y. Lamhot, A. Svizher, D. Klein, A. Marchelli, R. Volkovich, T. Yaziv, S. Han, M. Hong, S. Kim, J. Lee, D. Lee, E. Oh, A. Choi, and D.-H. Lee, “Spectral tunability for accuracy, robustness, and resilience,” Proc. SPIE 10585, 105850S (2018).
[Crossref]

P. Vagos, J. Hu, Z. Liu, and S. Rabello, “Uncertainty and sensitivity analysis and its applications in OCD measurements,” Proc. SPIE 7272, 72721N (2009).
[Crossref]

Lobb, G.

L. Sun, T. Kohyama, K. Takeda, H. Nozawa, Y. Asakawa, T. Kagalwala, G. Lobb, F. Mont, X. Dai, S. Pal, W. Wang, J. Kye, and F. Goodwin, “High throughput and dense sampling metrology for process control,” Proc. SPIE 10145, 101452D (2017).
[Crossref]

Ma, X.

Marchelli, A.

A. Cheng, H. Lee, D. Choi, S. Jeon, J. Lee, S. J. Lee, Z. Liu, J. Lee, E. Peled, E. Amit, Y. Lamhot, A. Svizher, D. Klein, A. Marchelli, R. Volkovich, T. Yaziv, S. Han, M. Hong, S. Kim, J. Lee, D. Lee, E. Oh, A. Choi, and D.-H. Lee, “Spectral tunability for accuracy, robustness, and resilience,” Proc. SPIE 10585, 105850S (2018).
[Crossref]

Markov, I. L.

I. L. Markov, “Limits on fundamental limits to computation,” Nature 512(7513), 147–154 (2014).
[Crossref]

Marx, E.

R. M. Silver, B. M. Barnes, R. Attota, J. Jun, M. Stocker, E. Marx, and H. J. Patrick, “Scatterfield microscopy for extending the limits of image-based optical metrology,” Appl. Opt. 46(20), 4248–4257 (2007).
[Crossref]

R. Silver, T. Germer, R. Attota, B. M. Barnes, B. Bunday, J. Allgair, E. Marx, and J. Jun, “Fundamental limits of optical critical dimension metrology: a simulation study,” Proc. SPIE 6518, 65180U (2007).
[Crossref]

Matsuki, K.

M. Asano, R. Yoshikawa, T. Hirano, H. Abe, K. Matsuki, H. Tsuda, M. Komori, T. Ojima, H. Yonemitsu, and A. Kawamoto, “Metrology and inspection required for next generation lithography,” Jpn. J. Appl. Phys. 56(6S1), 06GA01 (2017).
[Crossref]

Mont, F.

L. Sun, T. Kohyama, K. Takeda, H. Nozawa, Y. Asakawa, T. Kagalwala, G. Lobb, F. Mont, X. Dai, S. Pal, W. Wang, J. Kye, and F. Goodwin, “High throughput and dense sampling metrology for process control,” Proc. SPIE 10145, 101452D (2017).
[Crossref]

Neisser, M.

N. G. Orji, M. Badaroglu, B. M. Barnes, C. Beitia, B. D. Bunday, U. Celano, R. J. Kline, M. Neisser, Y. Obeng, and A. E. Vladar, “Metrology for the next generation of semiconductor devices,” Nat. Electron. 1(10), 532–547 (2018).
[Crossref]

Nguyen, D. M.

D. M. Nguyen, D. L. Lee, and J. Rho, “Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths,” Sci. Rep. 7(1), 2611 (2017).
[Crossref]

Nozawa, H.

L. Sun, T. Kohyama, K. Takeda, H. Nozawa, Y. Asakawa, T. Kagalwala, G. Lobb, F. Mont, X. Dai, S. Pal, W. Wang, J. Kye, and F. Goodwin, “High throughput and dense sampling metrology for process control,” Proc. SPIE 10145, 101452D (2017).
[Crossref]

Obeng, Y.

N. G. Orji, M. Badaroglu, B. M. Barnes, C. Beitia, B. D. Bunday, U. Celano, R. J. Kline, M. Neisser, Y. Obeng, and A. E. Vladar, “Metrology for the next generation of semiconductor devices,” Nat. Electron. 1(10), 532–547 (2018).
[Crossref]

Oh, E.

A. Cheng, H. Lee, D. Choi, S. Jeon, J. Lee, S. J. Lee, Z. Liu, J. Lee, E. Peled, E. Amit, Y. Lamhot, A. Svizher, D. Klein, A. Marchelli, R. Volkovich, T. Yaziv, S. Han, M. Hong, S. Kim, J. Lee, D. Lee, E. Oh, A. Choi, and D.-H. Lee, “Spectral tunability for accuracy, robustness, and resilience,” Proc. SPIE 10585, 105850S (2018).
[Crossref]

Ojima, T.

M. Asano, R. Yoshikawa, T. Hirano, H. Abe, K. Matsuki, H. Tsuda, M. Komori, T. Ojima, H. Yonemitsu, and A. Kawamoto, “Metrology and inspection required for next generation lithography,” Jpn. J. Appl. Phys. 56(6S1), 06GA01 (2017).
[Crossref]

Orji, N. G.

N. G. Orji, M. Badaroglu, B. M. Barnes, C. Beitia, B. D. Bunday, U. Celano, R. J. Kline, M. Neisser, Y. Obeng, and A. E. Vladar, “Metrology for the next generation of semiconductor devices,” Nat. Electron. 1(10), 532–547 (2018).
[Crossref]

Paget, G.

H. H. H. and T and G. Paget, “The concept of partial coherence in optics,” Proc. R. Soc. London, Ser. A 208(1093), 263–277 (1951).
[Crossref]

Pal, S.

L. Sun, T. Kohyama, K. Takeda, H. Nozawa, Y. Asakawa, T. Kagalwala, G. Lobb, F. Mont, X. Dai, S. Pal, W. Wang, J. Kye, and F. Goodwin, “High throughput and dense sampling metrology for process control,” Proc. SPIE 10145, 101452D (2017).
[Crossref]

Patrick, H. J.

Peled, E.

A. Cheng, H. Lee, D. Choi, S. Jeon, J. Lee, S. J. Lee, Z. Liu, J. Lee, E. Peled, E. Amit, Y. Lamhot, A. Svizher, D. Klein, A. Marchelli, R. Volkovich, T. Yaziv, S. Han, M. Hong, S. Kim, J. Lee, D. Lee, E. Oh, A. Choi, and D.-H. Lee, “Spectral tunability for accuracy, robustness, and resilience,” Proc. SPIE 10585, 105850S (2018).
[Crossref]

Pereira, S. F.

Petrik, P.

Qin, J.

J. Qin, R. M. Silver, B. M. Barnes, H. Zhou, R. G. Dixson, and M.-A. Henn, “Deep subwavelength nanometric image reconstruction using Fourier domain optical normalization,” Light: Sci. Appl. 5(2), e16038 (2016).
[Crossref]

J. Qin, R. M. Silver, B. M. Barnes, H. Zhou, and F. Goasmat, “Fourier domain optical tool normalization for quantitative parametric image reconstruction,” Appl. Opt. 52(26), 6512–6522 (2013).
[Crossref]

Quintanilha, R.

B. M. Barnes, R. Attota, R. Quintanilha, Y.-J. Sohn, and R. M. Silver, “Characterizing a scatterfield optical platform for semiconductor metrology,” Meas. Sci. Technol. 22(2), 024003 (2011).
[Crossref]

Quinthanilha, R.

B. M. Barnes, R. Quinthanilha, Y.-J. Sohn, H. Zhou, and R. M. Silver, “Optical illumination optimization for patterned defect inspection,” Proc. SPIE 7971, 79710D (2011).
[Crossref]

Rabello, S.

P. Vagos, J. Hu, Z. Liu, and S. Rabello, “Uncertainty and sensitivity analysis and its applications in OCD measurements,” Proc. SPIE 7272, 72721N (2009).
[Crossref]

Ramanandan, G. K. P.

Raymond, C. J.

C. J. Raymond, “Multiparameter grating metrology using optical scatterometry,” J. Vac. Sci. Technol., B 15(2), 361–368 (1997).
[Crossref]

Rho, J.

D. M. Nguyen, D. L. Lee, and J. Rho, “Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths,” Sci. Rep. 7(1), 2611 (2017).
[Crossref]

Roy, S.

Shakeri, S. M.

Shalf, J. M.

J. M. Shalf and R. Leland, “Computing beyond Moore’s Law,” Computer 48(12), 14–23 (2015).
[Crossref]

Sillitto, R. M.

E. C. Kintner and R. M. Sillitto, “Edge-ringing in Partially Coherent Imaging,” Opt. Acta 24(5), 591–605 (1977).
[Crossref]

Silver, R.

R. Silver, T. Germer, R. Attota, B. M. Barnes, B. Bunday, J. Allgair, E. Marx, and J. Jun, “Fundamental limits of optical critical dimension metrology: a simulation study,” Proc. SPIE 6518, 65180U (2007).
[Crossref]

Silver, R. M.

M. Y. Sohn, B. M. Barnes, and R. M. Silver, “Design of angle-resolved illumination optics using nonimaging bi-telecentricity for 193 nm scatterfield microscopy,” Optik 156, 635–645 (2018).
[Crossref]

M. T. Stocker, B. M. Barnes, M. Sohn, E. Stanfield, and R. M. Silver, “Development of large aperture projection scatterometry for catalyst loading evaluation in proton exchange membrane fuel cells,” J. Power Sources 364, 130–137 (2017).
[Crossref]

M. Y. Sohn, D. R. Lee, B. M. Barnes, R. Dixson, R. M. Silver, and S.-S. Choi, “Dimensional measurement sensitivity analysis for a MoSi photomask using DUV reflection scatterfield imaging microscopy,” Proc. SPIE 10451, 1045112 (2017).
[Crossref]

J. Qin, R. M. Silver, B. M. Barnes, H. Zhou, R. G. Dixson, and M.-A. Henn, “Deep subwavelength nanometric image reconstruction using Fourier domain optical normalization,” Light: Sci. Appl. 5(2), e16038 (2016).
[Crossref]

J. Qin, R. M. Silver, B. M. Barnes, H. Zhou, and F. Goasmat, “Fourier domain optical tool normalization for quantitative parametric image reconstruction,” Appl. Opt. 52(26), 6512–6522 (2013).
[Crossref]

B. M. Barnes, R. Attota, R. Quintanilha, Y.-J. Sohn, and R. M. Silver, “Characterizing a scatterfield optical platform for semiconductor metrology,” Meas. Sci. Technol. 22(2), 024003 (2011).
[Crossref]

B. M. Barnes, R. Quinthanilha, Y.-J. Sohn, H. Zhou, and R. M. Silver, “Optical illumination optimization for patterned defect inspection,” Proc. SPIE 7971, 79710D (2011).
[Crossref]

R. M. Silver, B. M. Barnes, R. Attota, J. Jun, M. Stocker, E. Marx, and H. J. Patrick, “Scatterfield microscopy for extending the limits of image-based optical metrology,” Appl. Opt. 46(20), 4248–4257 (2007).
[Crossref]

Singh, M.

Smith, B. W.

B. W. Smith, “The saga of sigma: influences of illumination throughout optical generations,” Proc. SPIE 9052, 905204 (2014).
[Crossref]

Sohn, M.

M. T. Stocker, B. M. Barnes, M. Sohn, E. Stanfield, and R. M. Silver, “Development of large aperture projection scatterometry for catalyst loading evaluation in proton exchange membrane fuel cells,” J. Power Sources 364, 130–137 (2017).
[Crossref]

Sohn, M. Y.

M. Y. Sohn, B. M. Barnes, and R. M. Silver, “Design of angle-resolved illumination optics using nonimaging bi-telecentricity for 193 nm scatterfield microscopy,” Optik 156, 635–645 (2018).
[Crossref]

M. Y. Sohn, D. R. Lee, B. M. Barnes, R. Dixson, R. M. Silver, and S.-S. Choi, “Dimensional measurement sensitivity analysis for a MoSi photomask using DUV reflection scatterfield imaging microscopy,” Proc. SPIE 10451, 1045112 (2017).
[Crossref]

Sohn, Y.-J.

B. M. Barnes, R. Quinthanilha, Y.-J. Sohn, H. Zhou, and R. M. Silver, “Optical illumination optimization for patterned defect inspection,” Proc. SPIE 7971, 79710D (2011).
[Crossref]

B. M. Barnes, R. Attota, R. Quintanilha, Y.-J. Sohn, and R. M. Silver, “Characterizing a scatterfield optical platform for semiconductor metrology,” Meas. Sci. Technol. 22(2), 024003 (2011).
[Crossref]

Stallinga, S.

Stanfield, E.

M. T. Stocker, B. M. Barnes, M. Sohn, E. Stanfield, and R. M. Silver, “Development of large aperture projection scatterometry for catalyst loading evaluation in proton exchange membrane fuel cells,” J. Power Sources 364, 130–137 (2017).
[Crossref]

Stocker, M.

Stocker, M. T.

M. T. Stocker, B. M. Barnes, M. Sohn, E. Stanfield, and R. M. Silver, “Development of large aperture projection scatterometry for catalyst loading evaluation in proton exchange membrane fuel cells,” J. Power Sources 364, 130–137 (2017).
[Crossref]

Sun, L.

L. Sun, T. Kohyama, K. Takeda, H. Nozawa, Y. Asakawa, T. Kagalwala, G. Lobb, F. Mont, X. Dai, S. Pal, W. Wang, J. Kye, and F. Goodwin, “High throughput and dense sampling metrology for process control,” Proc. SPIE 10145, 101452D (2017).
[Crossref]

Svizher, A.

A. Cheng, H. Lee, D. Choi, S. Jeon, J. Lee, S. J. Lee, Z. Liu, J. Lee, E. Peled, E. Amit, Y. Lamhot, A. Svizher, D. Klein, A. Marchelli, R. Volkovich, T. Yaziv, S. Han, M. Hong, S. Kim, J. Lee, D. Lee, E. Oh, A. Choi, and D.-H. Lee, “Spectral tunability for accuracy, robustness, and resilience,” Proc. SPIE 10585, 105850S (2018).
[Crossref]

Takeda, K.

L. Sun, T. Kohyama, K. Takeda, H. Nozawa, Y. Asakawa, T. Kagalwala, G. Lobb, F. Mont, X. Dai, S. Pal, W. Wang, J. Kye, and F. Goodwin, “High throughput and dense sampling metrology for process control,” Proc. SPIE 10145, 101452D (2017).
[Crossref]

Taylor, B. N.

B. N. Taylor and C. E. Kuyatt, “Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results,” NIST Technical Note 1297 (1994).

Tervo, J.

Theis, T. N.

T. N. Theis and H.-P. Wong, “The End of Moore’s Law: A New Beginning for Information Technology,” Comput. Sci. Eng. 19(2), 41–50 (2017).
[Crossref]

Tsuda, H.

M. Asano, R. Yoshikawa, T. Hirano, H. Abe, K. Matsuki, H. Tsuda, M. Komori, T. Ojima, H. Yonemitsu, and A. Kawamoto, “Metrology and inspection required for next generation lithography,” Jpn. J. Appl. Phys. 56(6S1), 06GA01 (2017).
[Crossref]

Turunen, J.

Urbach, H. P.

Vagos, P.

P. Vagos, J. Hu, Z. Liu, and S. Rabello, “Uncertainty and sensitivity analysis and its applications in OCD measurements,” Proc. SPIE 7272, 72721N (2009).
[Crossref]

van Vliet, L. J.

Visser, T.

G. Gbur and T. Visser, “Chapter 5 – The Structure of Partially Coherent Fields,” in Progress in Optics: Volume 55, E. Wolf, ed. (Elsevier, 2010).

Vladar, A. E.

N. G. Orji, M. Badaroglu, B. M. Barnes, C. Beitia, B. D. Bunday, U. Celano, R. J. Kline, M. Neisser, Y. Obeng, and A. E. Vladar, “Metrology for the next generation of semiconductor devices,” Nat. Electron. 1(10), 532–547 (2018).
[Crossref]

Volkovich, R.

A. Cheng, H. Lee, D. Choi, S. Jeon, J. Lee, S. J. Lee, Z. Liu, J. Lee, E. Peled, E. Amit, Y. Lamhot, A. Svizher, D. Klein, A. Marchelli, R. Volkovich, T. Yaziv, S. Han, M. Hong, S. Kim, J. Lee, D. Lee, E. Oh, A. Choi, and D.-H. Lee, “Spectral tunability for accuracy, robustness, and resilience,” Proc. SPIE 10585, 105850S (2018).
[Crossref]

Wang, W.

L. Sun, T. Kohyama, K. Takeda, H. Nozawa, Y. Asakawa, T. Kagalwala, G. Lobb, F. Mont, X. Dai, S. Pal, W. Wang, J. Kye, and F. Goodwin, “High throughput and dense sampling metrology for process control,” Proc. SPIE 10145, 101452D (2017).
[Crossref]

Wolf, E.

Wong, H.-P.

T. N. Theis and H.-P. Wong, “The End of Moore’s Law: A New Beginning for Information Technology,” Comput. Sci. Eng. 19(2), 41–50 (2017).
[Crossref]

Yaziv, T.

A. Cheng, H. Lee, D. Choi, S. Jeon, J. Lee, S. J. Lee, Z. Liu, J. Lee, E. Peled, E. Amit, Y. Lamhot, A. Svizher, D. Klein, A. Marchelli, R. Volkovich, T. Yaziv, S. Han, M. Hong, S. Kim, J. Lee, D. Lee, E. Oh, A. Choi, and D.-H. Lee, “Spectral tunability for accuracy, robustness, and resilience,” Proc. SPIE 10585, 105850S (2018).
[Crossref]

Yonemitsu, H.

M. Asano, R. Yoshikawa, T. Hirano, H. Abe, K. Matsuki, H. Tsuda, M. Komori, T. Ojima, H. Yonemitsu, and A. Kawamoto, “Metrology and inspection required for next generation lithography,” Jpn. J. Appl. Phys. 56(6S1), 06GA01 (2017).
[Crossref]

Yoshikawa, R.

M. Asano, R. Yoshikawa, T. Hirano, H. Abe, K. Matsuki, H. Tsuda, M. Komori, T. Ojima, H. Yonemitsu, and A. Kawamoto, “Metrology and inspection required for next generation lithography,” Jpn. J. Appl. Phys. 56(6S1), 06GA01 (2017).
[Crossref]

Zhou, H.

J. Qin, R. M. Silver, B. M. Barnes, H. Zhou, R. G. Dixson, and M.-A. Henn, “Deep subwavelength nanometric image reconstruction using Fourier domain optical normalization,” Light: Sci. Appl. 5(2), e16038 (2016).
[Crossref]

J. Qin, R. M. Silver, B. M. Barnes, H. Zhou, and F. Goasmat, “Fourier domain optical tool normalization for quantitative parametric image reconstruction,” Appl. Opt. 52(26), 6512–6522 (2013).
[Crossref]

B. M. Barnes, R. Quinthanilha, Y.-J. Sohn, H. Zhou, and R. M. Silver, “Optical illumination optimization for patterned defect inspection,” Proc. SPIE 7971, 79710D (2011).
[Crossref]

APL Mater. (1)

A. C. Diebold, A. Antonelli, and N. Keller, “Perspective: Optical measurement of feature dimensions and shapes by scatterometry,” APL Mater. 6(5), 058201 (2018).
[Crossref]

Appl. Opt. (3)

Clin. Biochem. Rev. (1)

I. Farrance and R. Frenkel, “Uncertainty of Measurement: A Review of the Rules for Calculating Uncertainty Components through Functional Relationships,” Clin. Biochem. Rev. 33(2), 49–75 (2012).

Comput. Sci. Eng. (1)

T. N. Theis and H.-P. Wong, “The End of Moore’s Law: A New Beginning for Information Technology,” Comput. Sci. Eng. 19(2), 41–50 (2017).
[Crossref]

Computer (1)

J. M. Shalf and R. Leland, “Computing beyond Moore’s Law,” Computer 48(12), 14–23 (2015).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

J. Power Sources (1)

M. T. Stocker, B. M. Barnes, M. Sohn, E. Stanfield, and R. M. Silver, “Development of large aperture projection scatterometry for catalyst loading evaluation in proton exchange membrane fuel cells,” J. Power Sources 364, 130–137 (2017).
[Crossref]

J. Vac. Sci. Technol., B (1)

C. J. Raymond, “Multiparameter grating metrology using optical scatterometry,” J. Vac. Sci. Technol., B 15(2), 361–368 (1997).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Asano, R. Yoshikawa, T. Hirano, H. Abe, K. Matsuki, H. Tsuda, M. Komori, T. Ojima, H. Yonemitsu, and A. Kawamoto, “Metrology and inspection required for next generation lithography,” Jpn. J. Appl. Phys. 56(6S1), 06GA01 (2017).
[Crossref]

Light: Sci. Appl. (1)

J. Qin, R. M. Silver, B. M. Barnes, H. Zhou, R. G. Dixson, and M.-A. Henn, “Deep subwavelength nanometric image reconstruction using Fourier domain optical normalization,” Light: Sci. Appl. 5(2), e16038 (2016).
[Crossref]

Meas. Sci. Technol. (1)

B. M. Barnes, R. Attota, R. Quintanilha, Y.-J. Sohn, and R. M. Silver, “Characterizing a scatterfield optical platform for semiconductor metrology,” Meas. Sci. Technol. 22(2), 024003 (2011).
[Crossref]

Nat. Electron. (1)

N. G. Orji, M. Badaroglu, B. M. Barnes, C. Beitia, B. D. Bunday, U. Celano, R. J. Kline, M. Neisser, Y. Obeng, and A. E. Vladar, “Metrology for the next generation of semiconductor devices,” Nat. Electron. 1(10), 532–547 (2018).
[Crossref]

Nature (1)

I. L. Markov, “Limits on fundamental limits to computation,” Nature 512(7513), 147–154 (2014).
[Crossref]

Opt. Acta (1)

E. C. Kintner and R. M. Sillitto, “Edge-ringing in Partially Coherent Imaging,” Opt. Acta 24(5), 591–605 (1977).
[Crossref]

Opt. Express (2)

Optik (1)

M. Y. Sohn, B. M. Barnes, and R. M. Silver, “Design of angle-resolved illumination optics using nonimaging bi-telecentricity for 193 nm scatterfield microscopy,” Optik 156, 635–645 (2018).
[Crossref]

Proc. R. Soc. London, Ser. A (2)

H. H. Horace and M. N. Francis, “On the diffraction theory of optical images,” Proc. R. Soc. London, Ser. A 217(1130), 408–432 (1953).
[Crossref]

H. H. H. and T and G. Paget, “The concept of partial coherence in optics,” Proc. R. Soc. London, Ser. A 208(1093), 263–277 (1951).
[Crossref]

Proc. SPIE (7)

B. W. Smith, “The saga of sigma: influences of illumination throughout optical generations,” Proc. SPIE 9052, 905204 (2014).
[Crossref]

P. Vagos, J. Hu, Z. Liu, and S. Rabello, “Uncertainty and sensitivity analysis and its applications in OCD measurements,” Proc. SPIE 7272, 72721N (2009).
[Crossref]

A. Cheng, H. Lee, D. Choi, S. Jeon, J. Lee, S. J. Lee, Z. Liu, J. Lee, E. Peled, E. Amit, Y. Lamhot, A. Svizher, D. Klein, A. Marchelli, R. Volkovich, T. Yaziv, S. Han, M. Hong, S. Kim, J. Lee, D. Lee, E. Oh, A. Choi, and D.-H. Lee, “Spectral tunability for accuracy, robustness, and resilience,” Proc. SPIE 10585, 105850S (2018).
[Crossref]

L. Sun, T. Kohyama, K. Takeda, H. Nozawa, Y. Asakawa, T. Kagalwala, G. Lobb, F. Mont, X. Dai, S. Pal, W. Wang, J. Kye, and F. Goodwin, “High throughput and dense sampling metrology for process control,” Proc. SPIE 10145, 101452D (2017).
[Crossref]

R. Silver, T. Germer, R. Attota, B. M. Barnes, B. Bunday, J. Allgair, E. Marx, and J. Jun, “Fundamental limits of optical critical dimension metrology: a simulation study,” Proc. SPIE 6518, 65180U (2007).
[Crossref]

B. M. Barnes, R. Quinthanilha, Y.-J. Sohn, H. Zhou, and R. M. Silver, “Optical illumination optimization for patterned defect inspection,” Proc. SPIE 7971, 79710D (2011).
[Crossref]

M. Y. Sohn, D. R. Lee, B. M. Barnes, R. Dixson, R. M. Silver, and S.-S. Choi, “Dimensional measurement sensitivity analysis for a MoSi photomask using DUV reflection scatterfield imaging microscopy,” Proc. SPIE 10451, 1045112 (2017).
[Crossref]

Sci. Rep. (1)

D. M. Nguyen, D. L. Lee, and J. Rho, “Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths,” Sci. Rep. 7(1), 2611 (2017).
[Crossref]

Other (4)

B. N. Taylor and C. E. Kuyatt, “Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results,” NIST Technical Note 1297 (1994).

G. Gbur and T. Visser, “Chapter 5 – The Structure of Partially Coherent Fields,” in Progress in Optics: Volume 55, E. Wolf, ed. (Elsevier, 2010).

B. Bodermann, E. Buhr, Z. Li, and H. Bosse, “Quantitative Optical Microscopy at the Nanoscale: New Developments and Comparisons,” in Optical Imaging Metrology: Advanced Technologies, W. Osten and N. Reingand, eds. (Wiley-VCH, 2012).

X. Colonna de Lega, “Model-Based Optical Metrology,” in Optical Imaging Metrology: Advanced Technologies, W. Osten and N. Reingand, eds. (Wiley-VCH, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematic of the edge-scattered intensity profiles for partial coherence factor variations with respect to two kinds of targets: (a) a simple step, showing edge response with overshooting and ringing as a function of partial coherent factor (b) multilines with three different linewidths, showing varied intensity level for two degrees of partial coherence factor.
Fig. 2.
Fig. 2. Scatterfield imaging microscopy platform; (a) optical design scheme: S - source, CL - condenser lens, L - relay lens, CBFP - conjugated back focal plane, FS - field stop, BS - beam splitter, TL - tube lens, OL - objective lens, (b) photography of microscopy platform, (c) a catadioptric objective lens and 6-axis sample stage with a navigation microscope located next to the OL.
Fig. 3.
Fig. 3. CBFP apertures to control the partial coherence factor and the corresponding illumination NAs: (a) rotating wheel with rectangle apertures with various sizes, (b) relationship of partial coherence factor to aperture width.
Fig. 4.
Fig. 4. Ray tracing diagrams for varied partial coherence factors that are controlled by the rectangular aperture at the CBFP.
Fig. 5.
Fig. 5. MoSi photomask target. (a) close out shape of MoSi multiline patterns: upper square- multilines and lower square trenches in the area 100 µm x 100 µm, (b) SEM picture with schematic of vertical structure.
Fig. 6.
Fig. 6. Polarization effect on the intensity profiles scattered at the edge of MoSi multiline targets: (a), (d) - polarization directions relative to the lines, (b), (e) - scatterfield images for two orthogonal polarization, (c), (f) - normalized intensity profiles for partial coherence factors.
Fig. 7.
Fig. 7. Scatterfield intensity distributions at the edges of multiline targets for (a) x polarization and (b) y polarization. Nominal linewidth (half period) ranges 44–80 nm for 6 partial coherence factors, where NI, LW, σx are normalized intensity, linewidth, and partial coherence factor in x axis, respectively.
Fig. 8.
Fig. 8. Normalized scatterfield intensities for the partial coherence factor σx with respect to (a) x polarization and (b) y polarization. Curves for 6 partial coherence factors are fitted using averaged data with standard deviations obtained through repeated measurements.
Fig. 9.
Fig. 9. Sensitivity coefficient map for (a) x polarization and (b) y polarization.

Metrics