Abstract

We present an optical parametric chirped pulse amplifier (OPCPA) delivering 10.5 mJ pulses with durations down to 220 fs, at 100 Hz repetition rate, centered at 1550 nm. The system is pumped by a picosecond Nd:YAG amplifier at 1064 nm based on quasi-continuous-wave diode pumping and seeded by a femtosecond mode-locked Er fiber laser at 1550 nm. This choice of wavelengths enables the use of well-established technology and optical components for both pump and signal beams, resulting in a straightforward and robust system design and the ability for further power scaling to be used in high-energy laser-produced plasma experiments.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-power optical parametric chirped-pulse amplifier system with a 1.55??m signal and a 1.064??m pump

J. V. Rudd, R. J. Law, T. S. Luk, and S. M. Cameron
Opt. Lett. 30(15) 1974-1976 (2005)

Combined Yb/Nd driver for optical parametric chirped pulse amplifiers

Kirilas Michailovas, Andrius Baltuska, Audrius Pugzlys, Valerijus Smilgevicius, Andrejus Michailovas, Audrius Zaukevicius, Rokas Danilevicius, Saulius Frankinas, and Nerijus Rusteika
Opt. Express 24(19) 22261-22271 (2016)

High-repetition-rate optical parametric chirped-pulse amplifier producing 1-μJ, sub-100-fs pulses in the mid-infrared

C. Erny, C. Heese, M. Haag, L. Gallmann, and U. Keller
Opt. Express 17(3) 1340-1345 (2009)

References

  • View by:
  • |
  • |
  • |

  1. I. Fomenkov, D. Brandt, A. Ershov, A. Schafgans, Y. Tao, G. Vaschenko, S. Rokitski, M. Kats, M. Vargas, M. Purvis, R. Rafac, B. La Fontaine, S. De Dea, A. LaForge, J. Stewart, S. Chang, M. Graham, D. Riggs, T. Taylor, M. Abraham, and D. Brown, “Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling,” Adv. Opt. Technol. 6(3-4), 173–186 (2017).
    [Crossref]
  2. X. Wang, S. Zhang, X. Cheng, E. Zhu, W. Hang, and B. Huang, “Ion kinetic energy distributions in laser-induced plasma,” Spectrochim. Acta, Part B 99, 101–114 (2014).
    [Crossref]
  3. E. Gamaly, “The physics of ultra-short laser interaction with solids at non-relativistic intensities,” Phys. Rep. 508(4-5), 91–243 (2011).
    [Crossref]
  4. M. M. Basko, M. S. Krivokorytov, A. Yu Vinokhodov, Y. V. Sidelnikov, V. M. Krivtsun, V. V. Medvedev, D. A. Kim, V. O. Kompanets, A. A. Lash, and K. N. Koshelev, “Fragmentation dynamics of liquid–metal droplets under ultra-short laser pulses,” Laser Phys. Lett. 14(3), 036001 (2017).
    [Crossref]
  5. L. Torrisi, “Ion charge state distributions in plasma produced by pulsed laser irradiations,” Radiat. Eff. Defects Solids 159(4), 249–258 (2004).
    [Crossref]
  6. L. Torrisi, F. Caridi, A. Picciotto, and A. Borrielli, “Energy distribution of particles ejected by laser-generated aluminium plasma,” Nucl. Instrum. Methods Phys. Res., Sect. B 252(2), 183–189 (2006).
    [Crossref]
  7. L. Torrisi, F. Caridi, D. Margarone, and A. Borrielli, “Characterization of laser-generated silicon plasma,” Appl. Surf. Sci. 254(7), 2090–2095 (2008).
    [Crossref]
  8. F. Caridi, L. Torrisi, D. Margarone, A. Picciotto, A. M. Mezzasalma, and S. Gammino, “Energy distributions of particles ejected from laser-generated pulsed plasmas,” Czech. J. Phys. 56(S2), B449–B456 (2006).
    [Crossref]
  9. D. Kurilovich, A. L. Klein, F. Torretti, A. Lassise, R. Hoekstra, W. Ubachs, H. Gelderblom, and O. O. Versolato, “Plasma Propulsion of a Metallic Microdroplet and its Deformation upon Laser Impact,” Phys. Rev. Appl. 6(1), 014018 (2016).
    [Crossref]
  10. D. Kurilovich, T. d. F. Pinto, F. Torretti, R. Schupp, J. Scheers, A. S. Stodolna, H. Gelderblom, K. S. Eikema, S. Witte, W. Ubachs, R. Hoekstra, and O. O. Versolato, “Expansion Dynamics after Laser-Induced Cavitation in Liquid Tin Microdroplets,” Phys. Rev. Appl. 10(5), 054005 (2018).
    [Crossref]
  11. A. S. Stodolna, T. de Faria Pinto, F. Ali, A. Bayerle, D. Kurilovich, J. Mathijssen, R. Hoekstra, O. O. Versolato, K. S. E. Eikema, and S. Witte, “Controlling ion kinetic energy distributions in laser produced plasma sources by means of a picosecond pulse pair,” J. Appl. Phys. 124(5), 053303 (2018).
    [Crossref]
  12. A. Bayerle, M. J. Deuzeman, S. van der Heijden, D. Kurilovich, T. d. F. Pinto, A. Stodolna, S. Witte, K. S. E. Eikema, W. Ubachs, R. Hoekstra, and O. O. Versolato, “Sn ion energy distributions of ns- and ps-laser produced plasmas,” Plasma Sources Sci. Technol. 27(4), 045001 (2018).
    [Crossref]
  13. S. Witte, R. T. Zinkstok, W. Hogervorst, and K. S. E. Eikema, “Generation of few-cycle terawatt light pulses using optical parametric chirped pulse amplification,” Opt. Express 13(13), 4903 (2005).
    [Crossref]
  14. S. Witte, R. T. Zinkstok, A. L. Wolf, W. Hogervorst, W. Ubachs, and K. S. E. Eikema, “A source of 2 terawatt, 2.7 cycle laser pulses based on noncollinear optical parametric chirped pulse amplification,” Opt. Express 14(18), 8168–8177 (2006).
    [Crossref]
  15. S. Witte, R. T. Zinkstok, W. Hogervorst, and K. S. E. Eikema, “Numerical simulations for performance optimization of a few-cycle terawatt NOPCPA system,” Appl. Phys. B: Lasers Opt. 87(4), 677–684 (2007).
    [Crossref]
  16. F. Tavella, A. Marcinkevicius, and F. Krausz, “90 mJ parametric chirped pulse amplification of 10 fs pulses,” Opt. Express 14(26), 12822–12827 (2006).
    [Crossref]
  17. M. Schultze, T. Binhammer, A. Steinmann, G. Palmer, M. Emons, and U. Morgner, “Few-cycle OPCPA system at 143 kHz with more than 1 $\mu$μJ of pulse energy,” Opt. Express 18(3), 2836–2841 (2010).
    [Crossref]
  18. S. Prinz, M. Haefner, C. Y. Teisset, R. Bessing, K. Michel, Y. Lee, X. T. Geng, S. Kim, D. E. Kim, T. Metzger, and M. Schultze, “CEP-stable, sub-6 fs, 300-kHz OPCPA system with more than 15 W of average power,” Opt. Express 23(2), 1388–1394 (2015).
    [Crossref]
  19. R. Budriunas, T. Stanislauskas, J. Adamonis, A. Aleknaviçius, G. Veitas, D. Gadonas, S. Balickas, A. Michailovas, and A. Varanaviçius, “53 W average power CEP-stabilized OPCPA system delivering 5.5 TW few cycle pulses at 1 kHz repetition rate,” Opt. Express 25(5), 5797–5806 (2017).
    [Crossref]
  20. B. W. Mayer, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “Sub-four-cycle laser pulses directly from a high-repetition-rate optical parametric chirped-pulse amplifier at 3.4 $\mu$μm.,” Opt. Lett. 38(21), 4265–4268 (2013).
    [Crossref]
  21. G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, “90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,” Opt. Lett. 36(15), 2755 (2011).
    [Crossref]
  22. O. Chalus, P. K. Bates, M. Smolarski, and J. Biegert, “Mid-IR short-pulse OPCPA with micro-Joule energy at 100kHz,” Opt. Express 17(5), 3587 (2009).
    [Crossref]
  23. C. Erny, C. Heese, M. Haag, L. Gallmann, and U. Keller, “High-repetition-rate optical parametric chirped-pulse amplifier producing 1-$\mu$μJ, sub-100-fs pulses in the mid-infrared,” Opt. Express 17(3), 1340 (2009).
    [Crossref]
  24. C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “Ultrabroadband, highly flexible amplifier for ultrashort midinfrared laser pulses based on aperiodically poled Mg:LiNbO3,” Opt. Lett. 35(14), 2340 (2010).
    [Crossref]
  25. C. Heese, C. R. Phillips, B. W. Mayer, L. Gallmann, M. M. Fejer, and U. Keller, “75 MW few-cycle mid-infrared pulses from a collinear apodized APPLN-based OPCPA,” Opt. Express 20(24), 26888 (2012).
    [Crossref]
  26. D. Kraemer, R. Hua, M. L. Cowan, K. Franjic, and R. J. D. Miller, “Ultrafast noncollinear optical parametric chirped pulse amplification in KTiOAsO4,” Opt. Lett. 31(7), 981 (2006).
    [Crossref]
  27. D. Kraemer, M. L. Cowan, R. Hua, K. Franjic, and R. J. Dwayne Miller, “High-power femtosecond infrared laser source based on noncollinear optical parametric chirped pulse amplification,” J. Opt. Soc. Am. B 24(4), 813 (2007).
    [Crossref]
  28. D. Brida, G. Cirmi, C. Manzoni, S. Bonora, P. Villoresi, S. D. Silvestri, and G. Cerullo, “Sub-two-cycle light pulses at 1.6 µm from an optical parametric amplifier,” Opt. Lett. 33(7), 741–743 (2008).
    [Crossref]
  29. D. Brida, G. Krauss, A. Sell, and A. Leitenstorfer, “Ultrabroadband Er:fiber lasers: Ultrabroadband Er:fiber lasers,” Laser Photonics Rev. 8(3), 409–428 (2014).
    [Crossref]
  30. J. Morgenweg and K. S. E. Eikema, “A 1.8 mJ, picosecond Nd:YVO4 bounce amplifier pump front-end system for high-accuracy XUV-frequency comb spectroscopy,” Laser Phys. Lett. 9(11), 781–785 (2012).
    [Crossref]
  31. D. W. E. Noom, S. Witte, J. Morgenweg, R. K. Altmann, and K. S. E. Eikema, “High-energy, high-repetition-rate picosecond pulses from a quasi-CW diode-pumped Nd:YAG system,” Opt. Lett. 38(16), 3021 (2013).
    [Crossref]
  32. L. Sun, L. Zhang, H. J. Yu, L. Guo, J. L. Ma, J. Zhang, W. Hou, X. C. Lin, and J. M. Li, “880 nm LD pumped passive mode-locked TEM00 Nd:YVO4 laser based on SESAM,” Laser Phys. Lett. 7(10), 711–714 (2010).
    [Crossref]
  33. J. Morgenweg, Ramsey-comb spectroscopy (PhD Thesis, Vrije Universiteit Amsterdam, 2014).
  34. Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd:YAG rods,” Opt. Quantum Electron. 28(1), 57–69 (1996).
    [Crossref]
  35. J. Sherman, “Thermal compensation of a cw-pumped Nd:YAG laser,” Appl. Opt. 37(33), 7789 (1998).
    [Crossref]
  36. S. Witte and K. S. E. Eikema, “Ultrafast Optical Parametric Chirped-Pulse Amplification,” IEEE J. Sel. Top. Quantum Electron. 18(1), 296–307 (2012).
    [Crossref]

2018 (3)

D. Kurilovich, T. d. F. Pinto, F. Torretti, R. Schupp, J. Scheers, A. S. Stodolna, H. Gelderblom, K. S. Eikema, S. Witte, W. Ubachs, R. Hoekstra, and O. O. Versolato, “Expansion Dynamics after Laser-Induced Cavitation in Liquid Tin Microdroplets,” Phys. Rev. Appl. 10(5), 054005 (2018).
[Crossref]

A. S. Stodolna, T. de Faria Pinto, F. Ali, A. Bayerle, D. Kurilovich, J. Mathijssen, R. Hoekstra, O. O. Versolato, K. S. E. Eikema, and S. Witte, “Controlling ion kinetic energy distributions in laser produced plasma sources by means of a picosecond pulse pair,” J. Appl. Phys. 124(5), 053303 (2018).
[Crossref]

A. Bayerle, M. J. Deuzeman, S. van der Heijden, D. Kurilovich, T. d. F. Pinto, A. Stodolna, S. Witte, K. S. E. Eikema, W. Ubachs, R. Hoekstra, and O. O. Versolato, “Sn ion energy distributions of ns- and ps-laser produced plasmas,” Plasma Sources Sci. Technol. 27(4), 045001 (2018).
[Crossref]

2017 (3)

I. Fomenkov, D. Brandt, A. Ershov, A. Schafgans, Y. Tao, G. Vaschenko, S. Rokitski, M. Kats, M. Vargas, M. Purvis, R. Rafac, B. La Fontaine, S. De Dea, A. LaForge, J. Stewart, S. Chang, M. Graham, D. Riggs, T. Taylor, M. Abraham, and D. Brown, “Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling,” Adv. Opt. Technol. 6(3-4), 173–186 (2017).
[Crossref]

M. M. Basko, M. S. Krivokorytov, A. Yu Vinokhodov, Y. V. Sidelnikov, V. M. Krivtsun, V. V. Medvedev, D. A. Kim, V. O. Kompanets, A. A. Lash, and K. N. Koshelev, “Fragmentation dynamics of liquid–metal droplets under ultra-short laser pulses,” Laser Phys. Lett. 14(3), 036001 (2017).
[Crossref]

R. Budriunas, T. Stanislauskas, J. Adamonis, A. Aleknaviçius, G. Veitas, D. Gadonas, S. Balickas, A. Michailovas, and A. Varanaviçius, “53 W average power CEP-stabilized OPCPA system delivering 5.5 TW few cycle pulses at 1 kHz repetition rate,” Opt. Express 25(5), 5797–5806 (2017).
[Crossref]

2016 (1)

D. Kurilovich, A. L. Klein, F. Torretti, A. Lassise, R. Hoekstra, W. Ubachs, H. Gelderblom, and O. O. Versolato, “Plasma Propulsion of a Metallic Microdroplet and its Deformation upon Laser Impact,” Phys. Rev. Appl. 6(1), 014018 (2016).
[Crossref]

2015 (1)

2014 (2)

X. Wang, S. Zhang, X. Cheng, E. Zhu, W. Hang, and B. Huang, “Ion kinetic energy distributions in laser-induced plasma,” Spectrochim. Acta, Part B 99, 101–114 (2014).
[Crossref]

D. Brida, G. Krauss, A. Sell, and A. Leitenstorfer, “Ultrabroadband Er:fiber lasers: Ultrabroadband Er:fiber lasers,” Laser Photonics Rev. 8(3), 409–428 (2014).
[Crossref]

2013 (2)

2012 (3)

C. Heese, C. R. Phillips, B. W. Mayer, L. Gallmann, M. M. Fejer, and U. Keller, “75 MW few-cycle mid-infrared pulses from a collinear apodized APPLN-based OPCPA,” Opt. Express 20(24), 26888 (2012).
[Crossref]

S. Witte and K. S. E. Eikema, “Ultrafast Optical Parametric Chirped-Pulse Amplification,” IEEE J. Sel. Top. Quantum Electron. 18(1), 296–307 (2012).
[Crossref]

J. Morgenweg and K. S. E. Eikema, “A 1.8 mJ, picosecond Nd:YVO4 bounce amplifier pump front-end system for high-accuracy XUV-frequency comb spectroscopy,” Laser Phys. Lett. 9(11), 781–785 (2012).
[Crossref]

2011 (2)

2010 (3)

2009 (2)

2008 (2)

D. Brida, G. Cirmi, C. Manzoni, S. Bonora, P. Villoresi, S. D. Silvestri, and G. Cerullo, “Sub-two-cycle light pulses at 1.6 µm from an optical parametric amplifier,” Opt. Lett. 33(7), 741–743 (2008).
[Crossref]

L. Torrisi, F. Caridi, D. Margarone, and A. Borrielli, “Characterization of laser-generated silicon plasma,” Appl. Surf. Sci. 254(7), 2090–2095 (2008).
[Crossref]

2007 (2)

S. Witte, R. T. Zinkstok, W. Hogervorst, and K. S. E. Eikema, “Numerical simulations for performance optimization of a few-cycle terawatt NOPCPA system,” Appl. Phys. B: Lasers Opt. 87(4), 677–684 (2007).
[Crossref]

D. Kraemer, M. L. Cowan, R. Hua, K. Franjic, and R. J. Dwayne Miller, “High-power femtosecond infrared laser source based on noncollinear optical parametric chirped pulse amplification,” J. Opt. Soc. Am. B 24(4), 813 (2007).
[Crossref]

2006 (5)

2005 (1)

2004 (1)

L. Torrisi, “Ion charge state distributions in plasma produced by pulsed laser irradiations,” Radiat. Eff. Defects Solids 159(4), 249–258 (2004).
[Crossref]

1998 (1)

1996 (1)

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd:YAG rods,” Opt. Quantum Electron. 28(1), 57–69 (1996).
[Crossref]

Abraham, M.

I. Fomenkov, D. Brandt, A. Ershov, A. Schafgans, Y. Tao, G. Vaschenko, S. Rokitski, M. Kats, M. Vargas, M. Purvis, R. Rafac, B. La Fontaine, S. De Dea, A. LaForge, J. Stewart, S. Chang, M. Graham, D. Riggs, T. Taylor, M. Abraham, and D. Brown, “Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling,” Adv. Opt. Technol. 6(3-4), 173–186 (2017).
[Crossref]

Adamonis, J.

Aleknaviçius, A.

Ali, F.

A. S. Stodolna, T. de Faria Pinto, F. Ali, A. Bayerle, D. Kurilovich, J. Mathijssen, R. Hoekstra, O. O. Versolato, K. S. E. Eikema, and S. Witte, “Controlling ion kinetic energy distributions in laser produced plasma sources by means of a picosecond pulse pair,” J. Appl. Phys. 124(5), 053303 (2018).
[Crossref]

Ališauskas, S.

Altmann, R. K.

Andriukaitis, G.

Balciunas, T.

Balickas, S.

Baltuška, A.

Basko, M. M.

M. M. Basko, M. S. Krivokorytov, A. Yu Vinokhodov, Y. V. Sidelnikov, V. M. Krivtsun, V. V. Medvedev, D. A. Kim, V. O. Kompanets, A. A. Lash, and K. N. Koshelev, “Fragmentation dynamics of liquid–metal droplets under ultra-short laser pulses,” Laser Phys. Lett. 14(3), 036001 (2017).
[Crossref]

Bates, P. K.

Bayerle, A.

A. S. Stodolna, T. de Faria Pinto, F. Ali, A. Bayerle, D. Kurilovich, J. Mathijssen, R. Hoekstra, O. O. Versolato, K. S. E. Eikema, and S. Witte, “Controlling ion kinetic energy distributions in laser produced plasma sources by means of a picosecond pulse pair,” J. Appl. Phys. 124(5), 053303 (2018).
[Crossref]

A. Bayerle, M. J. Deuzeman, S. van der Heijden, D. Kurilovich, T. d. F. Pinto, A. Stodolna, S. Witte, K. S. E. Eikema, W. Ubachs, R. Hoekstra, and O. O. Versolato, “Sn ion energy distributions of ns- and ps-laser produced plasmas,” Plasma Sources Sci. Technol. 27(4), 045001 (2018).
[Crossref]

Bessing, R.

Biegert, J.

Binhammer, T.

Bonora, S.

Borrielli, A.

L. Torrisi, F. Caridi, D. Margarone, and A. Borrielli, “Characterization of laser-generated silicon plasma,” Appl. Surf. Sci. 254(7), 2090–2095 (2008).
[Crossref]

L. Torrisi, F. Caridi, A. Picciotto, and A. Borrielli, “Energy distribution of particles ejected by laser-generated aluminium plasma,” Nucl. Instrum. Methods Phys. Res., Sect. B 252(2), 183–189 (2006).
[Crossref]

Brandt, D.

I. Fomenkov, D. Brandt, A. Ershov, A. Schafgans, Y. Tao, G. Vaschenko, S. Rokitski, M. Kats, M. Vargas, M. Purvis, R. Rafac, B. La Fontaine, S. De Dea, A. LaForge, J. Stewart, S. Chang, M. Graham, D. Riggs, T. Taylor, M. Abraham, and D. Brown, “Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling,” Adv. Opt. Technol. 6(3-4), 173–186 (2017).
[Crossref]

Brida, D.

D. Brida, G. Krauss, A. Sell, and A. Leitenstorfer, “Ultrabroadband Er:fiber lasers: Ultrabroadband Er:fiber lasers,” Laser Photonics Rev. 8(3), 409–428 (2014).
[Crossref]

D. Brida, G. Cirmi, C. Manzoni, S. Bonora, P. Villoresi, S. D. Silvestri, and G. Cerullo, “Sub-two-cycle light pulses at 1.6 µm from an optical parametric amplifier,” Opt. Lett. 33(7), 741–743 (2008).
[Crossref]

Brown, D.

I. Fomenkov, D. Brandt, A. Ershov, A. Schafgans, Y. Tao, G. Vaschenko, S. Rokitski, M. Kats, M. Vargas, M. Purvis, R. Rafac, B. La Fontaine, S. De Dea, A. LaForge, J. Stewart, S. Chang, M. Graham, D. Riggs, T. Taylor, M. Abraham, and D. Brown, “Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling,” Adv. Opt. Technol. 6(3-4), 173–186 (2017).
[Crossref]

Budriunas, R.

Caridi, F.

L. Torrisi, F. Caridi, D. Margarone, and A. Borrielli, “Characterization of laser-generated silicon plasma,” Appl. Surf. Sci. 254(7), 2090–2095 (2008).
[Crossref]

F. Caridi, L. Torrisi, D. Margarone, A. Picciotto, A. M. Mezzasalma, and S. Gammino, “Energy distributions of particles ejected from laser-generated pulsed plasmas,” Czech. J. Phys. 56(S2), B449–B456 (2006).
[Crossref]

L. Torrisi, F. Caridi, A. Picciotto, and A. Borrielli, “Energy distribution of particles ejected by laser-generated aluminium plasma,” Nucl. Instrum. Methods Phys. Res., Sect. B 252(2), 183–189 (2006).
[Crossref]

Cerullo, G.

Chalus, O.

Chang, S.

I. Fomenkov, D. Brandt, A. Ershov, A. Schafgans, Y. Tao, G. Vaschenko, S. Rokitski, M. Kats, M. Vargas, M. Purvis, R. Rafac, B. La Fontaine, S. De Dea, A. LaForge, J. Stewart, S. Chang, M. Graham, D. Riggs, T. Taylor, M. Abraham, and D. Brown, “Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling,” Adv. Opt. Technol. 6(3-4), 173–186 (2017).
[Crossref]

Chen, M.-C.

Cheng, X.

X. Wang, S. Zhang, X. Cheng, E. Zhu, W. Hang, and B. Huang, “Ion kinetic energy distributions in laser-induced plasma,” Spectrochim. Acta, Part B 99, 101–114 (2014).
[Crossref]

Cirmi, G.

Cowan, M. L.

d. F. Pinto, T.

D. Kurilovich, T. d. F. Pinto, F. Torretti, R. Schupp, J. Scheers, A. S. Stodolna, H. Gelderblom, K. S. Eikema, S. Witte, W. Ubachs, R. Hoekstra, and O. O. Versolato, “Expansion Dynamics after Laser-Induced Cavitation in Liquid Tin Microdroplets,” Phys. Rev. Appl. 10(5), 054005 (2018).
[Crossref]

De Dea, S.

I. Fomenkov, D. Brandt, A. Ershov, A. Schafgans, Y. Tao, G. Vaschenko, S. Rokitski, M. Kats, M. Vargas, M. Purvis, R. Rafac, B. La Fontaine, S. De Dea, A. LaForge, J. Stewart, S. Chang, M. Graham, D. Riggs, T. Taylor, M. Abraham, and D. Brown, “Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling,” Adv. Opt. Technol. 6(3-4), 173–186 (2017).
[Crossref]

de Faria Pinto, T.

A. S. Stodolna, T. de Faria Pinto, F. Ali, A. Bayerle, D. Kurilovich, J. Mathijssen, R. Hoekstra, O. O. Versolato, K. S. E. Eikema, and S. Witte, “Controlling ion kinetic energy distributions in laser produced plasma sources by means of a picosecond pulse pair,” J. Appl. Phys. 124(5), 053303 (2018).
[Crossref]

Deuzeman, M. J.

A. Bayerle, M. J. Deuzeman, S. van der Heijden, D. Kurilovich, T. d. F. Pinto, A. Stodolna, S. Witte, K. S. E. Eikema, W. Ubachs, R. Hoekstra, and O. O. Versolato, “Sn ion energy distributions of ns- and ps-laser produced plasmas,” Plasma Sources Sci. Technol. 27(4), 045001 (2018).
[Crossref]

Dong, S.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd:YAG rods,” Opt. Quantum Electron. 28(1), 57–69 (1996).
[Crossref]

Dwayne Miller, R. J.

Eikema, K. S.

D. Kurilovich, T. d. F. Pinto, F. Torretti, R. Schupp, J. Scheers, A. S. Stodolna, H. Gelderblom, K. S. Eikema, S. Witte, W. Ubachs, R. Hoekstra, and O. O. Versolato, “Expansion Dynamics after Laser-Induced Cavitation in Liquid Tin Microdroplets,” Phys. Rev. Appl. 10(5), 054005 (2018).
[Crossref]

Eikema, K. S. E.

A. S. Stodolna, T. de Faria Pinto, F. Ali, A. Bayerle, D. Kurilovich, J. Mathijssen, R. Hoekstra, O. O. Versolato, K. S. E. Eikema, and S. Witte, “Controlling ion kinetic energy distributions in laser produced plasma sources by means of a picosecond pulse pair,” J. Appl. Phys. 124(5), 053303 (2018).
[Crossref]

A. Bayerle, M. J. Deuzeman, S. van der Heijden, D. Kurilovich, T. d. F. Pinto, A. Stodolna, S. Witte, K. S. E. Eikema, W. Ubachs, R. Hoekstra, and O. O. Versolato, “Sn ion energy distributions of ns- and ps-laser produced plasmas,” Plasma Sources Sci. Technol. 27(4), 045001 (2018).
[Crossref]

D. W. E. Noom, S. Witte, J. Morgenweg, R. K. Altmann, and K. S. E. Eikema, “High-energy, high-repetition-rate picosecond pulses from a quasi-CW diode-pumped Nd:YAG system,” Opt. Lett. 38(16), 3021 (2013).
[Crossref]

S. Witte and K. S. E. Eikema, “Ultrafast Optical Parametric Chirped-Pulse Amplification,” IEEE J. Sel. Top. Quantum Electron. 18(1), 296–307 (2012).
[Crossref]

J. Morgenweg and K. S. E. Eikema, “A 1.8 mJ, picosecond Nd:YVO4 bounce amplifier pump front-end system for high-accuracy XUV-frequency comb spectroscopy,” Laser Phys. Lett. 9(11), 781–785 (2012).
[Crossref]

S. Witte, R. T. Zinkstok, W. Hogervorst, and K. S. E. Eikema, “Numerical simulations for performance optimization of a few-cycle terawatt NOPCPA system,” Appl. Phys. B: Lasers Opt. 87(4), 677–684 (2007).
[Crossref]

S. Witte, R. T. Zinkstok, A. L. Wolf, W. Hogervorst, W. Ubachs, and K. S. E. Eikema, “A source of 2 terawatt, 2.7 cycle laser pulses based on noncollinear optical parametric chirped pulse amplification,” Opt. Express 14(18), 8168–8177 (2006).
[Crossref]

S. Witte, R. T. Zinkstok, W. Hogervorst, and K. S. E. Eikema, “Generation of few-cycle terawatt light pulses using optical parametric chirped pulse amplification,” Opt. Express 13(13), 4903 (2005).
[Crossref]

Emons, M.

Erny, C.

Ershov, A.

I. Fomenkov, D. Brandt, A. Ershov, A. Schafgans, Y. Tao, G. Vaschenko, S. Rokitski, M. Kats, M. Vargas, M. Purvis, R. Rafac, B. La Fontaine, S. De Dea, A. LaForge, J. Stewart, S. Chang, M. Graham, D. Riggs, T. Taylor, M. Abraham, and D. Brown, “Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling,” Adv. Opt. Technol. 6(3-4), 173–186 (2017).
[Crossref]

Fejer, M. M.

Fomenkov, I.

I. Fomenkov, D. Brandt, A. Ershov, A. Schafgans, Y. Tao, G. Vaschenko, S. Rokitski, M. Kats, M. Vargas, M. Purvis, R. Rafac, B. La Fontaine, S. De Dea, A. LaForge, J. Stewart, S. Chang, M. Graham, D. Riggs, T. Taylor, M. Abraham, and D. Brown, “Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling,” Adv. Opt. Technol. 6(3-4), 173–186 (2017).
[Crossref]

Franjic, K.

Gadonas, D.

Gallmann, L.

Gamaly, E.

E. Gamaly, “The physics of ultra-short laser interaction with solids at non-relativistic intensities,” Phys. Rep. 508(4-5), 91–243 (2011).
[Crossref]

Gammino, S.

F. Caridi, L. Torrisi, D. Margarone, A. Picciotto, A. M. Mezzasalma, and S. Gammino, “Energy distributions of particles ejected from laser-generated pulsed plasmas,” Czech. J. Phys. 56(S2), B449–B456 (2006).
[Crossref]

Gelderblom, H.

D. Kurilovich, T. d. F. Pinto, F. Torretti, R. Schupp, J. Scheers, A. S. Stodolna, H. Gelderblom, K. S. Eikema, S. Witte, W. Ubachs, R. Hoekstra, and O. O. Versolato, “Expansion Dynamics after Laser-Induced Cavitation in Liquid Tin Microdroplets,” Phys. Rev. Appl. 10(5), 054005 (2018).
[Crossref]

D. Kurilovich, A. L. Klein, F. Torretti, A. Lassise, R. Hoekstra, W. Ubachs, H. Gelderblom, and O. O. Versolato, “Plasma Propulsion of a Metallic Microdroplet and its Deformation upon Laser Impact,” Phys. Rev. Appl. 6(1), 014018 (2016).
[Crossref]

Geng, X. T.

Graham, M.

I. Fomenkov, D. Brandt, A. Ershov, A. Schafgans, Y. Tao, G. Vaschenko, S. Rokitski, M. Kats, M. Vargas, M. Purvis, R. Rafac, B. La Fontaine, S. De Dea, A. LaForge, J. Stewart, S. Chang, M. Graham, D. Riggs, T. Taylor, M. Abraham, and D. Brown, “Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling,” Adv. Opt. Technol. 6(3-4), 173–186 (2017).
[Crossref]

Guo, L.

L. Sun, L. Zhang, H. J. Yu, L. Guo, J. L. Ma, J. Zhang, W. Hou, X. C. Lin, and J. M. Li, “880 nm LD pumped passive mode-locked TEM00 Nd:YVO4 laser based on SESAM,” Laser Phys. Lett. 7(10), 711–714 (2010).
[Crossref]

Haag, M.

Haefner, M.

Hang, W.

X. Wang, S. Zhang, X. Cheng, E. Zhu, W. Hang, and B. Huang, “Ion kinetic energy distributions in laser-induced plasma,” Spectrochim. Acta, Part B 99, 101–114 (2014).
[Crossref]

Heese, C.

Hoekstra, R.

A. Bayerle, M. J. Deuzeman, S. van der Heijden, D. Kurilovich, T. d. F. Pinto, A. Stodolna, S. Witte, K. S. E. Eikema, W. Ubachs, R. Hoekstra, and O. O. Versolato, “Sn ion energy distributions of ns- and ps-laser produced plasmas,” Plasma Sources Sci. Technol. 27(4), 045001 (2018).
[Crossref]

D. Kurilovich, T. d. F. Pinto, F. Torretti, R. Schupp, J. Scheers, A. S. Stodolna, H. Gelderblom, K. S. Eikema, S. Witte, W. Ubachs, R. Hoekstra, and O. O. Versolato, “Expansion Dynamics after Laser-Induced Cavitation in Liquid Tin Microdroplets,” Phys. Rev. Appl. 10(5), 054005 (2018).
[Crossref]

A. S. Stodolna, T. de Faria Pinto, F. Ali, A. Bayerle, D. Kurilovich, J. Mathijssen, R. Hoekstra, O. O. Versolato, K. S. E. Eikema, and S. Witte, “Controlling ion kinetic energy distributions in laser produced plasma sources by means of a picosecond pulse pair,” J. Appl. Phys. 124(5), 053303 (2018).
[Crossref]

D. Kurilovich, A. L. Klein, F. Torretti, A. Lassise, R. Hoekstra, W. Ubachs, H. Gelderblom, and O. O. Versolato, “Plasma Propulsion of a Metallic Microdroplet and its Deformation upon Laser Impact,” Phys. Rev. Appl. 6(1), 014018 (2016).
[Crossref]

Hogervorst, W.

Hou, W.

L. Sun, L. Zhang, H. J. Yu, L. Guo, J. L. Ma, J. Zhang, W. Hou, X. C. Lin, and J. M. Li, “880 nm LD pumped passive mode-locked TEM00 Nd:YVO4 laser based on SESAM,” Laser Phys. Lett. 7(10), 711–714 (2010).
[Crossref]

Hua, R.

Huang, B.

X. Wang, S. Zhang, X. Cheng, E. Zhu, W. Hang, and B. Huang, “Ion kinetic energy distributions in laser-induced plasma,” Spectrochim. Acta, Part B 99, 101–114 (2014).
[Crossref]

Kapteyn, H. C.

Kats, M.

I. Fomenkov, D. Brandt, A. Ershov, A. Schafgans, Y. Tao, G. Vaschenko, S. Rokitski, M. Kats, M. Vargas, M. Purvis, R. Rafac, B. La Fontaine, S. De Dea, A. LaForge, J. Stewart, S. Chang, M. Graham, D. Riggs, T. Taylor, M. Abraham, and D. Brown, “Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling,” Adv. Opt. Technol. 6(3-4), 173–186 (2017).
[Crossref]

Keller, U.

Kim, D. A.

M. M. Basko, M. S. Krivokorytov, A. Yu Vinokhodov, Y. V. Sidelnikov, V. M. Krivtsun, V. V. Medvedev, D. A. Kim, V. O. Kompanets, A. A. Lash, and K. N. Koshelev, “Fragmentation dynamics of liquid–metal droplets under ultra-short laser pulses,” Laser Phys. Lett. 14(3), 036001 (2017).
[Crossref]

Kim, D. E.

Kim, S.

Klein, A. L.

D. Kurilovich, A. L. Klein, F. Torretti, A. Lassise, R. Hoekstra, W. Ubachs, H. Gelderblom, and O. O. Versolato, “Plasma Propulsion of a Metallic Microdroplet and its Deformation upon Laser Impact,” Phys. Rev. Appl. 6(1), 014018 (2016).
[Crossref]

Kompanets, V. O.

M. M. Basko, M. S. Krivokorytov, A. Yu Vinokhodov, Y. V. Sidelnikov, V. M. Krivtsun, V. V. Medvedev, D. A. Kim, V. O. Kompanets, A. A. Lash, and K. N. Koshelev, “Fragmentation dynamics of liquid–metal droplets under ultra-short laser pulses,” Laser Phys. Lett. 14(3), 036001 (2017).
[Crossref]

Koshelev, K. N.

M. M. Basko, M. S. Krivokorytov, A. Yu Vinokhodov, Y. V. Sidelnikov, V. M. Krivtsun, V. V. Medvedev, D. A. Kim, V. O. Kompanets, A. A. Lash, and K. N. Koshelev, “Fragmentation dynamics of liquid–metal droplets under ultra-short laser pulses,” Laser Phys. Lett. 14(3), 036001 (2017).
[Crossref]

Kraemer, D.

Krauss, G.

D. Brida, G. Krauss, A. Sell, and A. Leitenstorfer, “Ultrabroadband Er:fiber lasers: Ultrabroadband Er:fiber lasers,” Laser Photonics Rev. 8(3), 409–428 (2014).
[Crossref]

Krausz, F.

Krivokorytov, M. S.

M. M. Basko, M. S. Krivokorytov, A. Yu Vinokhodov, Y. V. Sidelnikov, V. M. Krivtsun, V. V. Medvedev, D. A. Kim, V. O. Kompanets, A. A. Lash, and K. N. Koshelev, “Fragmentation dynamics of liquid–metal droplets under ultra-short laser pulses,” Laser Phys. Lett. 14(3), 036001 (2017).
[Crossref]

Krivtsun, V. M.

M. M. Basko, M. S. Krivokorytov, A. Yu Vinokhodov, Y. V. Sidelnikov, V. M. Krivtsun, V. V. Medvedev, D. A. Kim, V. O. Kompanets, A. A. Lash, and K. N. Koshelev, “Fragmentation dynamics of liquid–metal droplets under ultra-short laser pulses,” Laser Phys. Lett. 14(3), 036001 (2017).
[Crossref]

Kugler, N.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd:YAG rods,” Opt. Quantum Electron. 28(1), 57–69 (1996).
[Crossref]

Kurilovich, D.

A. Bayerle, M. J. Deuzeman, S. van der Heijden, D. Kurilovich, T. d. F. Pinto, A. Stodolna, S. Witte, K. S. E. Eikema, W. Ubachs, R. Hoekstra, and O. O. Versolato, “Sn ion energy distributions of ns- and ps-laser produced plasmas,” Plasma Sources Sci. Technol. 27(4), 045001 (2018).
[Crossref]

A. S. Stodolna, T. de Faria Pinto, F. Ali, A. Bayerle, D. Kurilovich, J. Mathijssen, R. Hoekstra, O. O. Versolato, K. S. E. Eikema, and S. Witte, “Controlling ion kinetic energy distributions in laser produced plasma sources by means of a picosecond pulse pair,” J. Appl. Phys. 124(5), 053303 (2018).
[Crossref]

D. Kurilovich, T. d. F. Pinto, F. Torretti, R. Schupp, J. Scheers, A. S. Stodolna, H. Gelderblom, K. S. Eikema, S. Witte, W. Ubachs, R. Hoekstra, and O. O. Versolato, “Expansion Dynamics after Laser-Induced Cavitation in Liquid Tin Microdroplets,” Phys. Rev. Appl. 10(5), 054005 (2018).
[Crossref]

D. Kurilovich, A. L. Klein, F. Torretti, A. Lassise, R. Hoekstra, W. Ubachs, H. Gelderblom, and O. O. Versolato, “Plasma Propulsion of a Metallic Microdroplet and its Deformation upon Laser Impact,” Phys. Rev. Appl. 6(1), 014018 (2016).
[Crossref]

La Fontaine, B.

I. Fomenkov, D. Brandt, A. Ershov, A. Schafgans, Y. Tao, G. Vaschenko, S. Rokitski, M. Kats, M. Vargas, M. Purvis, R. Rafac, B. La Fontaine, S. De Dea, A. LaForge, J. Stewart, S. Chang, M. Graham, D. Riggs, T. Taylor, M. Abraham, and D. Brown, “Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling,” Adv. Opt. Technol. 6(3-4), 173–186 (2017).
[Crossref]

LaForge, A.

I. Fomenkov, D. Brandt, A. Ershov, A. Schafgans, Y. Tao, G. Vaschenko, S. Rokitski, M. Kats, M. Vargas, M. Purvis, R. Rafac, B. La Fontaine, S. De Dea, A. LaForge, J. Stewart, S. Chang, M. Graham, D. Riggs, T. Taylor, M. Abraham, and D. Brown, “Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling,” Adv. Opt. Technol. 6(3-4), 173–186 (2017).
[Crossref]

Lash, A. A.

M. M. Basko, M. S. Krivokorytov, A. Yu Vinokhodov, Y. V. Sidelnikov, V. M. Krivtsun, V. V. Medvedev, D. A. Kim, V. O. Kompanets, A. A. Lash, and K. N. Koshelev, “Fragmentation dynamics of liquid–metal droplets under ultra-short laser pulses,” Laser Phys. Lett. 14(3), 036001 (2017).
[Crossref]

Lassise, A.

D. Kurilovich, A. L. Klein, F. Torretti, A. Lassise, R. Hoekstra, W. Ubachs, H. Gelderblom, and O. O. Versolato, “Plasma Propulsion of a Metallic Microdroplet and its Deformation upon Laser Impact,” Phys. Rev. Appl. 6(1), 014018 (2016).
[Crossref]

Lee, Y.

Leitenstorfer, A.

D. Brida, G. Krauss, A. Sell, and A. Leitenstorfer, “Ultrabroadband Er:fiber lasers: Ultrabroadband Er:fiber lasers,” Laser Photonics Rev. 8(3), 409–428 (2014).
[Crossref]

Li, J. M.

L. Sun, L. Zhang, H. J. Yu, L. Guo, J. L. Ma, J. Zhang, W. Hou, X. C. Lin, and J. M. Li, “880 nm LD pumped passive mode-locked TEM00 Nd:YVO4 laser based on SESAM,” Laser Phys. Lett. 7(10), 711–714 (2010).
[Crossref]

Lin, X. C.

L. Sun, L. Zhang, H. J. Yu, L. Guo, J. L. Ma, J. Zhang, W. Hou, X. C. Lin, and J. M. Li, “880 nm LD pumped passive mode-locked TEM00 Nd:YVO4 laser based on SESAM,” Laser Phys. Lett. 7(10), 711–714 (2010).
[Crossref]

Lü, Q.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd:YAG rods,” Opt. Quantum Electron. 28(1), 57–69 (1996).
[Crossref]

Ma, J. L.

L. Sun, L. Zhang, H. J. Yu, L. Guo, J. L. Ma, J. Zhang, W. Hou, X. C. Lin, and J. M. Li, “880 nm LD pumped passive mode-locked TEM00 Nd:YVO4 laser based on SESAM,” Laser Phys. Lett. 7(10), 711–714 (2010).
[Crossref]

Manzoni, C.

Marcinkevicius, A.

Margarone, D.

L. Torrisi, F. Caridi, D. Margarone, and A. Borrielli, “Characterization of laser-generated silicon plasma,” Appl. Surf. Sci. 254(7), 2090–2095 (2008).
[Crossref]

F. Caridi, L. Torrisi, D. Margarone, A. Picciotto, A. M. Mezzasalma, and S. Gammino, “Energy distributions of particles ejected from laser-generated pulsed plasmas,” Czech. J. Phys. 56(S2), B449–B456 (2006).
[Crossref]

Mathijssen, J.

A. S. Stodolna, T. de Faria Pinto, F. Ali, A. Bayerle, D. Kurilovich, J. Mathijssen, R. Hoekstra, O. O. Versolato, K. S. E. Eikema, and S. Witte, “Controlling ion kinetic energy distributions in laser produced plasma sources by means of a picosecond pulse pair,” J. Appl. Phys. 124(5), 053303 (2018).
[Crossref]

Mayer, B. W.

Medvedev, V. V.

M. M. Basko, M. S. Krivokorytov, A. Yu Vinokhodov, Y. V. Sidelnikov, V. M. Krivtsun, V. V. Medvedev, D. A. Kim, V. O. Kompanets, A. A. Lash, and K. N. Koshelev, “Fragmentation dynamics of liquid–metal droplets under ultra-short laser pulses,” Laser Phys. Lett. 14(3), 036001 (2017).
[Crossref]

Metzger, T.

Mezzasalma, A. M.

F. Caridi, L. Torrisi, D. Margarone, A. Picciotto, A. M. Mezzasalma, and S. Gammino, “Energy distributions of particles ejected from laser-generated pulsed plasmas,” Czech. J. Phys. 56(S2), B449–B456 (2006).
[Crossref]

Michailovas, A.

Michel, K.

Miller, R. J. D.

Morgenweg, J.

D. W. E. Noom, S. Witte, J. Morgenweg, R. K. Altmann, and K. S. E. Eikema, “High-energy, high-repetition-rate picosecond pulses from a quasi-CW diode-pumped Nd:YAG system,” Opt. Lett. 38(16), 3021 (2013).
[Crossref]

J. Morgenweg and K. S. E. Eikema, “A 1.8 mJ, picosecond Nd:YVO4 bounce amplifier pump front-end system for high-accuracy XUV-frequency comb spectroscopy,” Laser Phys. Lett. 9(11), 781–785 (2012).
[Crossref]

J. Morgenweg, Ramsey-comb spectroscopy (PhD Thesis, Vrije Universiteit Amsterdam, 2014).

Morgner, U.

Müller, N.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd:YAG rods,” Opt. Quantum Electron. 28(1), 57–69 (1996).
[Crossref]

Murnane, M. M.

Noom, D. W. E.

Palmer, G.

Phillips, C. R.

Picciotto, A.

F. Caridi, L. Torrisi, D. Margarone, A. Picciotto, A. M. Mezzasalma, and S. Gammino, “Energy distributions of particles ejected from laser-generated pulsed plasmas,” Czech. J. Phys. 56(S2), B449–B456 (2006).
[Crossref]

L. Torrisi, F. Caridi, A. Picciotto, and A. Borrielli, “Energy distribution of particles ejected by laser-generated aluminium plasma,” Nucl. Instrum. Methods Phys. Res., Sect. B 252(2), 183–189 (2006).
[Crossref]

Pinto, T. d. F.

A. Bayerle, M. J. Deuzeman, S. van der Heijden, D. Kurilovich, T. d. F. Pinto, A. Stodolna, S. Witte, K. S. E. Eikema, W. Ubachs, R. Hoekstra, and O. O. Versolato, “Sn ion energy distributions of ns- and ps-laser produced plasmas,” Plasma Sources Sci. Technol. 27(4), 045001 (2018).
[Crossref]

Popmintchev, T.

Prinz, S.

Pugžlys, A.

Purvis, M.

I. Fomenkov, D. Brandt, A. Ershov, A. Schafgans, Y. Tao, G. Vaschenko, S. Rokitski, M. Kats, M. Vargas, M. Purvis, R. Rafac, B. La Fontaine, S. De Dea, A. LaForge, J. Stewart, S. Chang, M. Graham, D. Riggs, T. Taylor, M. Abraham, and D. Brown, “Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling,” Adv. Opt. Technol. 6(3-4), 173–186 (2017).
[Crossref]

Rafac, R.

I. Fomenkov, D. Brandt, A. Ershov, A. Schafgans, Y. Tao, G. Vaschenko, S. Rokitski, M. Kats, M. Vargas, M. Purvis, R. Rafac, B. La Fontaine, S. De Dea, A. LaForge, J. Stewart, S. Chang, M. Graham, D. Riggs, T. Taylor, M. Abraham, and D. Brown, “Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling,” Adv. Opt. Technol. 6(3-4), 173–186 (2017).
[Crossref]

Riggs, D.

I. Fomenkov, D. Brandt, A. Ershov, A. Schafgans, Y. Tao, G. Vaschenko, S. Rokitski, M. Kats, M. Vargas, M. Purvis, R. Rafac, B. La Fontaine, S. De Dea, A. LaForge, J. Stewart, S. Chang, M. Graham, D. Riggs, T. Taylor, M. Abraham, and D. Brown, “Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling,” Adv. Opt. Technol. 6(3-4), 173–186 (2017).
[Crossref]

Rokitski, S.

I. Fomenkov, D. Brandt, A. Ershov, A. Schafgans, Y. Tao, G. Vaschenko, S. Rokitski, M. Kats, M. Vargas, M. Purvis, R. Rafac, B. La Fontaine, S. De Dea, A. LaForge, J. Stewart, S. Chang, M. Graham, D. Riggs, T. Taylor, M. Abraham, and D. Brown, “Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling,” Adv. Opt. Technol. 6(3-4), 173–186 (2017).
[Crossref]

Schafgans, A.

I. Fomenkov, D. Brandt, A. Ershov, A. Schafgans, Y. Tao, G. Vaschenko, S. Rokitski, M. Kats, M. Vargas, M. Purvis, R. Rafac, B. La Fontaine, S. De Dea, A. LaForge, J. Stewart, S. Chang, M. Graham, D. Riggs, T. Taylor, M. Abraham, and D. Brown, “Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling,” Adv. Opt. Technol. 6(3-4), 173–186 (2017).
[Crossref]

Scheers, J.

D. Kurilovich, T. d. F. Pinto, F. Torretti, R. Schupp, J. Scheers, A. S. Stodolna, H. Gelderblom, K. S. Eikema, S. Witte, W. Ubachs, R. Hoekstra, and O. O. Versolato, “Expansion Dynamics after Laser-Induced Cavitation in Liquid Tin Microdroplets,” Phys. Rev. Appl. 10(5), 054005 (2018).
[Crossref]

Schultze, M.

Schupp, R.

D. Kurilovich, T. d. F. Pinto, F. Torretti, R. Schupp, J. Scheers, A. S. Stodolna, H. Gelderblom, K. S. Eikema, S. Witte, W. Ubachs, R. Hoekstra, and O. O. Versolato, “Expansion Dynamics after Laser-Induced Cavitation in Liquid Tin Microdroplets,” Phys. Rev. Appl. 10(5), 054005 (2018).
[Crossref]

Sell, A.

D. Brida, G. Krauss, A. Sell, and A. Leitenstorfer, “Ultrabroadband Er:fiber lasers: Ultrabroadband Er:fiber lasers,” Laser Photonics Rev. 8(3), 409–428 (2014).
[Crossref]

Sherman, J.

Sidelnikov, Y. V.

M. M. Basko, M. S. Krivokorytov, A. Yu Vinokhodov, Y. V. Sidelnikov, V. M. Krivtsun, V. V. Medvedev, D. A. Kim, V. O. Kompanets, A. A. Lash, and K. N. Koshelev, “Fragmentation dynamics of liquid–metal droplets under ultra-short laser pulses,” Laser Phys. Lett. 14(3), 036001 (2017).
[Crossref]

Silvestri, S. D.

Smolarski, M.

Stanislauskas, T.

Steinmann, A.

Stewart, J.

I. Fomenkov, D. Brandt, A. Ershov, A. Schafgans, Y. Tao, G. Vaschenko, S. Rokitski, M. Kats, M. Vargas, M. Purvis, R. Rafac, B. La Fontaine, S. De Dea, A. LaForge, J. Stewart, S. Chang, M. Graham, D. Riggs, T. Taylor, M. Abraham, and D. Brown, “Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling,” Adv. Opt. Technol. 6(3-4), 173–186 (2017).
[Crossref]

Stodolna, A.

A. Bayerle, M. J. Deuzeman, S. van der Heijden, D. Kurilovich, T. d. F. Pinto, A. Stodolna, S. Witte, K. S. E. Eikema, W. Ubachs, R. Hoekstra, and O. O. Versolato, “Sn ion energy distributions of ns- and ps-laser produced plasmas,” Plasma Sources Sci. Technol. 27(4), 045001 (2018).
[Crossref]

Stodolna, A. S.

A. S. Stodolna, T. de Faria Pinto, F. Ali, A. Bayerle, D. Kurilovich, J. Mathijssen, R. Hoekstra, O. O. Versolato, K. S. E. Eikema, and S. Witte, “Controlling ion kinetic energy distributions in laser produced plasma sources by means of a picosecond pulse pair,” J. Appl. Phys. 124(5), 053303 (2018).
[Crossref]

D. Kurilovich, T. d. F. Pinto, F. Torretti, R. Schupp, J. Scheers, A. S. Stodolna, H. Gelderblom, K. S. Eikema, S. Witte, W. Ubachs, R. Hoekstra, and O. O. Versolato, “Expansion Dynamics after Laser-Induced Cavitation in Liquid Tin Microdroplets,” Phys. Rev. Appl. 10(5), 054005 (2018).
[Crossref]

Sun, L.

L. Sun, L. Zhang, H. J. Yu, L. Guo, J. L. Ma, J. Zhang, W. Hou, X. C. Lin, and J. M. Li, “880 nm LD pumped passive mode-locked TEM00 Nd:YVO4 laser based on SESAM,” Laser Phys. Lett. 7(10), 711–714 (2010).
[Crossref]

Tao, Y.

I. Fomenkov, D. Brandt, A. Ershov, A. Schafgans, Y. Tao, G. Vaschenko, S. Rokitski, M. Kats, M. Vargas, M. Purvis, R. Rafac, B. La Fontaine, S. De Dea, A. LaForge, J. Stewart, S. Chang, M. Graham, D. Riggs, T. Taylor, M. Abraham, and D. Brown, “Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling,” Adv. Opt. Technol. 6(3-4), 173–186 (2017).
[Crossref]

Tavella, F.

Taylor, T.

I. Fomenkov, D. Brandt, A. Ershov, A. Schafgans, Y. Tao, G. Vaschenko, S. Rokitski, M. Kats, M. Vargas, M. Purvis, R. Rafac, B. La Fontaine, S. De Dea, A. LaForge, J. Stewart, S. Chang, M. Graham, D. Riggs, T. Taylor, M. Abraham, and D. Brown, “Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling,” Adv. Opt. Technol. 6(3-4), 173–186 (2017).
[Crossref]

Teisset, C. Y.

Torretti, F.

D. Kurilovich, T. d. F. Pinto, F. Torretti, R. Schupp, J. Scheers, A. S. Stodolna, H. Gelderblom, K. S. Eikema, S. Witte, W. Ubachs, R. Hoekstra, and O. O. Versolato, “Expansion Dynamics after Laser-Induced Cavitation in Liquid Tin Microdroplets,” Phys. Rev. Appl. 10(5), 054005 (2018).
[Crossref]

D. Kurilovich, A. L. Klein, F. Torretti, A. Lassise, R. Hoekstra, W. Ubachs, H. Gelderblom, and O. O. Versolato, “Plasma Propulsion of a Metallic Microdroplet and its Deformation upon Laser Impact,” Phys. Rev. Appl. 6(1), 014018 (2016).
[Crossref]

Torrisi, L.

L. Torrisi, F. Caridi, D. Margarone, and A. Borrielli, “Characterization of laser-generated silicon plasma,” Appl. Surf. Sci. 254(7), 2090–2095 (2008).
[Crossref]

L. Torrisi, F. Caridi, A. Picciotto, and A. Borrielli, “Energy distribution of particles ejected by laser-generated aluminium plasma,” Nucl. Instrum. Methods Phys. Res., Sect. B 252(2), 183–189 (2006).
[Crossref]

F. Caridi, L. Torrisi, D. Margarone, A. Picciotto, A. M. Mezzasalma, and S. Gammino, “Energy distributions of particles ejected from laser-generated pulsed plasmas,” Czech. J. Phys. 56(S2), B449–B456 (2006).
[Crossref]

L. Torrisi, “Ion charge state distributions in plasma produced by pulsed laser irradiations,” Radiat. Eff. Defects Solids 159(4), 249–258 (2004).
[Crossref]

Ubachs, W.

A. Bayerle, M. J. Deuzeman, S. van der Heijden, D. Kurilovich, T. d. F. Pinto, A. Stodolna, S. Witte, K. S. E. Eikema, W. Ubachs, R. Hoekstra, and O. O. Versolato, “Sn ion energy distributions of ns- and ps-laser produced plasmas,” Plasma Sources Sci. Technol. 27(4), 045001 (2018).
[Crossref]

D. Kurilovich, T. d. F. Pinto, F. Torretti, R. Schupp, J. Scheers, A. S. Stodolna, H. Gelderblom, K. S. Eikema, S. Witte, W. Ubachs, R. Hoekstra, and O. O. Versolato, “Expansion Dynamics after Laser-Induced Cavitation in Liquid Tin Microdroplets,” Phys. Rev. Appl. 10(5), 054005 (2018).
[Crossref]

D. Kurilovich, A. L. Klein, F. Torretti, A. Lassise, R. Hoekstra, W. Ubachs, H. Gelderblom, and O. O. Versolato, “Plasma Propulsion of a Metallic Microdroplet and its Deformation upon Laser Impact,” Phys. Rev. Appl. 6(1), 014018 (2016).
[Crossref]

S. Witte, R. T. Zinkstok, A. L. Wolf, W. Hogervorst, W. Ubachs, and K. S. E. Eikema, “A source of 2 terawatt, 2.7 cycle laser pulses based on noncollinear optical parametric chirped pulse amplification,” Opt. Express 14(18), 8168–8177 (2006).
[Crossref]

van der Heijden, S.

A. Bayerle, M. J. Deuzeman, S. van der Heijden, D. Kurilovich, T. d. F. Pinto, A. Stodolna, S. Witte, K. S. E. Eikema, W. Ubachs, R. Hoekstra, and O. O. Versolato, “Sn ion energy distributions of ns- and ps-laser produced plasmas,” Plasma Sources Sci. Technol. 27(4), 045001 (2018).
[Crossref]

Varanaviçius, A.

Vargas, M.

I. Fomenkov, D. Brandt, A. Ershov, A. Schafgans, Y. Tao, G. Vaschenko, S. Rokitski, M. Kats, M. Vargas, M. Purvis, R. Rafac, B. La Fontaine, S. De Dea, A. LaForge, J. Stewart, S. Chang, M. Graham, D. Riggs, T. Taylor, M. Abraham, and D. Brown, “Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling,” Adv. Opt. Technol. 6(3-4), 173–186 (2017).
[Crossref]

Vaschenko, G.

I. Fomenkov, D. Brandt, A. Ershov, A. Schafgans, Y. Tao, G. Vaschenko, S. Rokitski, M. Kats, M. Vargas, M. Purvis, R. Rafac, B. La Fontaine, S. De Dea, A. LaForge, J. Stewart, S. Chang, M. Graham, D. Riggs, T. Taylor, M. Abraham, and D. Brown, “Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling,” Adv. Opt. Technol. 6(3-4), 173–186 (2017).
[Crossref]

Veitas, G.

Versolato, O. O.

A. S. Stodolna, T. de Faria Pinto, F. Ali, A. Bayerle, D. Kurilovich, J. Mathijssen, R. Hoekstra, O. O. Versolato, K. S. E. Eikema, and S. Witte, “Controlling ion kinetic energy distributions in laser produced plasma sources by means of a picosecond pulse pair,” J. Appl. Phys. 124(5), 053303 (2018).
[Crossref]

D. Kurilovich, T. d. F. Pinto, F. Torretti, R. Schupp, J. Scheers, A. S. Stodolna, H. Gelderblom, K. S. Eikema, S. Witte, W. Ubachs, R. Hoekstra, and O. O. Versolato, “Expansion Dynamics after Laser-Induced Cavitation in Liquid Tin Microdroplets,” Phys. Rev. Appl. 10(5), 054005 (2018).
[Crossref]

A. Bayerle, M. J. Deuzeman, S. van der Heijden, D. Kurilovich, T. d. F. Pinto, A. Stodolna, S. Witte, K. S. E. Eikema, W. Ubachs, R. Hoekstra, and O. O. Versolato, “Sn ion energy distributions of ns- and ps-laser produced plasmas,” Plasma Sources Sci. Technol. 27(4), 045001 (2018).
[Crossref]

D. Kurilovich, A. L. Klein, F. Torretti, A. Lassise, R. Hoekstra, W. Ubachs, H. Gelderblom, and O. O. Versolato, “Plasma Propulsion of a Metallic Microdroplet and its Deformation upon Laser Impact,” Phys. Rev. Appl. 6(1), 014018 (2016).
[Crossref]

Villoresi, P.

Wang, X.

X. Wang, S. Zhang, X. Cheng, E. Zhu, W. Hang, and B. Huang, “Ion kinetic energy distributions in laser-induced plasma,” Spectrochim. Acta, Part B 99, 101–114 (2014).
[Crossref]

Weber, H.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd:YAG rods,” Opt. Quantum Electron. 28(1), 57–69 (1996).
[Crossref]

Witte, S.

A. Bayerle, M. J. Deuzeman, S. van der Heijden, D. Kurilovich, T. d. F. Pinto, A. Stodolna, S. Witte, K. S. E. Eikema, W. Ubachs, R. Hoekstra, and O. O. Versolato, “Sn ion energy distributions of ns- and ps-laser produced plasmas,” Plasma Sources Sci. Technol. 27(4), 045001 (2018).
[Crossref]

A. S. Stodolna, T. de Faria Pinto, F. Ali, A. Bayerle, D. Kurilovich, J. Mathijssen, R. Hoekstra, O. O. Versolato, K. S. E. Eikema, and S. Witte, “Controlling ion kinetic energy distributions in laser produced plasma sources by means of a picosecond pulse pair,” J. Appl. Phys. 124(5), 053303 (2018).
[Crossref]

D. Kurilovich, T. d. F. Pinto, F. Torretti, R. Schupp, J. Scheers, A. S. Stodolna, H. Gelderblom, K. S. Eikema, S. Witte, W. Ubachs, R. Hoekstra, and O. O. Versolato, “Expansion Dynamics after Laser-Induced Cavitation in Liquid Tin Microdroplets,” Phys. Rev. Appl. 10(5), 054005 (2018).
[Crossref]

D. W. E. Noom, S. Witte, J. Morgenweg, R. K. Altmann, and K. S. E. Eikema, “High-energy, high-repetition-rate picosecond pulses from a quasi-CW diode-pumped Nd:YAG system,” Opt. Lett. 38(16), 3021 (2013).
[Crossref]

S. Witte and K. S. E. Eikema, “Ultrafast Optical Parametric Chirped-Pulse Amplification,” IEEE J. Sel. Top. Quantum Electron. 18(1), 296–307 (2012).
[Crossref]

S. Witte, R. T. Zinkstok, W. Hogervorst, and K. S. E. Eikema, “Numerical simulations for performance optimization of a few-cycle terawatt NOPCPA system,” Appl. Phys. B: Lasers Opt. 87(4), 677–684 (2007).
[Crossref]

S. Witte, R. T. Zinkstok, A. L. Wolf, W. Hogervorst, W. Ubachs, and K. S. E. Eikema, “A source of 2 terawatt, 2.7 cycle laser pulses based on noncollinear optical parametric chirped pulse amplification,” Opt. Express 14(18), 8168–8177 (2006).
[Crossref]

S. Witte, R. T. Zinkstok, W. Hogervorst, and K. S. E. Eikema, “Generation of few-cycle terawatt light pulses using optical parametric chirped pulse amplification,” Opt. Express 13(13), 4903 (2005).
[Crossref]

Wittrock, U.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd:YAG rods,” Opt. Quantum Electron. 28(1), 57–69 (1996).
[Crossref]

Wolf, A. L.

Yu, H. J.

L. Sun, L. Zhang, H. J. Yu, L. Guo, J. L. Ma, J. Zhang, W. Hou, X. C. Lin, and J. M. Li, “880 nm LD pumped passive mode-locked TEM00 Nd:YVO4 laser based on SESAM,” Laser Phys. Lett. 7(10), 711–714 (2010).
[Crossref]

Yu Vinokhodov, A.

M. M. Basko, M. S. Krivokorytov, A. Yu Vinokhodov, Y. V. Sidelnikov, V. M. Krivtsun, V. V. Medvedev, D. A. Kim, V. O. Kompanets, A. A. Lash, and K. N. Koshelev, “Fragmentation dynamics of liquid–metal droplets under ultra-short laser pulses,” Laser Phys. Lett. 14(3), 036001 (2017).
[Crossref]

Zhang, J.

L. Sun, L. Zhang, H. J. Yu, L. Guo, J. L. Ma, J. Zhang, W. Hou, X. C. Lin, and J. M. Li, “880 nm LD pumped passive mode-locked TEM00 Nd:YVO4 laser based on SESAM,” Laser Phys. Lett. 7(10), 711–714 (2010).
[Crossref]

Zhang, L.

L. Sun, L. Zhang, H. J. Yu, L. Guo, J. L. Ma, J. Zhang, W. Hou, X. C. Lin, and J. M. Li, “880 nm LD pumped passive mode-locked TEM00 Nd:YVO4 laser based on SESAM,” Laser Phys. Lett. 7(10), 711–714 (2010).
[Crossref]

Zhang, S.

X. Wang, S. Zhang, X. Cheng, E. Zhu, W. Hang, and B. Huang, “Ion kinetic energy distributions in laser-induced plasma,” Spectrochim. Acta, Part B 99, 101–114 (2014).
[Crossref]

Zhu, E.

X. Wang, S. Zhang, X. Cheng, E. Zhu, W. Hang, and B. Huang, “Ion kinetic energy distributions in laser-induced plasma,” Spectrochim. Acta, Part B 99, 101–114 (2014).
[Crossref]

Zinkstok, R. T.

Adv. Opt. Technol. (1)

I. Fomenkov, D. Brandt, A. Ershov, A. Schafgans, Y. Tao, G. Vaschenko, S. Rokitski, M. Kats, M. Vargas, M. Purvis, R. Rafac, B. La Fontaine, S. De Dea, A. LaForge, J. Stewart, S. Chang, M. Graham, D. Riggs, T. Taylor, M. Abraham, and D. Brown, “Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling,” Adv. Opt. Technol. 6(3-4), 173–186 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B: Lasers Opt. (1)

S. Witte, R. T. Zinkstok, W. Hogervorst, and K. S. E. Eikema, “Numerical simulations for performance optimization of a few-cycle terawatt NOPCPA system,” Appl. Phys. B: Lasers Opt. 87(4), 677–684 (2007).
[Crossref]

Appl. Surf. Sci. (1)

L. Torrisi, F. Caridi, D. Margarone, and A. Borrielli, “Characterization of laser-generated silicon plasma,” Appl. Surf. Sci. 254(7), 2090–2095 (2008).
[Crossref]

Czech. J. Phys. (1)

F. Caridi, L. Torrisi, D. Margarone, A. Picciotto, A. M. Mezzasalma, and S. Gammino, “Energy distributions of particles ejected from laser-generated pulsed plasmas,” Czech. J. Phys. 56(S2), B449–B456 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Witte and K. S. E. Eikema, “Ultrafast Optical Parametric Chirped-Pulse Amplification,” IEEE J. Sel. Top. Quantum Electron. 18(1), 296–307 (2012).
[Crossref]

J. Appl. Phys. (1)

A. S. Stodolna, T. de Faria Pinto, F. Ali, A. Bayerle, D. Kurilovich, J. Mathijssen, R. Hoekstra, O. O. Versolato, K. S. E. Eikema, and S. Witte, “Controlling ion kinetic energy distributions in laser produced plasma sources by means of a picosecond pulse pair,” J. Appl. Phys. 124(5), 053303 (2018).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

D. Brida, G. Krauss, A. Sell, and A. Leitenstorfer, “Ultrabroadband Er:fiber lasers: Ultrabroadband Er:fiber lasers,” Laser Photonics Rev. 8(3), 409–428 (2014).
[Crossref]

Laser Phys. Lett. (3)

J. Morgenweg and K. S. E. Eikema, “A 1.8 mJ, picosecond Nd:YVO4 bounce amplifier pump front-end system for high-accuracy XUV-frequency comb spectroscopy,” Laser Phys. Lett. 9(11), 781–785 (2012).
[Crossref]

L. Sun, L. Zhang, H. J. Yu, L. Guo, J. L. Ma, J. Zhang, W. Hou, X. C. Lin, and J. M. Li, “880 nm LD pumped passive mode-locked TEM00 Nd:YVO4 laser based on SESAM,” Laser Phys. Lett. 7(10), 711–714 (2010).
[Crossref]

M. M. Basko, M. S. Krivokorytov, A. Yu Vinokhodov, Y. V. Sidelnikov, V. M. Krivtsun, V. V. Medvedev, D. A. Kim, V. O. Kompanets, A. A. Lash, and K. N. Koshelev, “Fragmentation dynamics of liquid–metal droplets under ultra-short laser pulses,” Laser Phys. Lett. 14(3), 036001 (2017).
[Crossref]

Nucl. Instrum. Methods Phys. Res., Sect. B (1)

L. Torrisi, F. Caridi, A. Picciotto, and A. Borrielli, “Energy distribution of particles ejected by laser-generated aluminium plasma,” Nucl. Instrum. Methods Phys. Res., Sect. B 252(2), 183–189 (2006).
[Crossref]

Opt. Express (9)

F. Tavella, A. Marcinkevicius, and F. Krausz, “90 mJ parametric chirped pulse amplification of 10 fs pulses,” Opt. Express 14(26), 12822–12827 (2006).
[Crossref]

M. Schultze, T. Binhammer, A. Steinmann, G. Palmer, M. Emons, and U. Morgner, “Few-cycle OPCPA system at 143 kHz with more than 1 $\mu$μJ of pulse energy,” Opt. Express 18(3), 2836–2841 (2010).
[Crossref]

S. Prinz, M. Haefner, C. Y. Teisset, R. Bessing, K. Michel, Y. Lee, X. T. Geng, S. Kim, D. E. Kim, T. Metzger, and M. Schultze, “CEP-stable, sub-6 fs, 300-kHz OPCPA system with more than 15 W of average power,” Opt. Express 23(2), 1388–1394 (2015).
[Crossref]

R. Budriunas, T. Stanislauskas, J. Adamonis, A. Aleknaviçius, G. Veitas, D. Gadonas, S. Balickas, A. Michailovas, and A. Varanaviçius, “53 W average power CEP-stabilized OPCPA system delivering 5.5 TW few cycle pulses at 1 kHz repetition rate,” Opt. Express 25(5), 5797–5806 (2017).
[Crossref]

C. Heese, C. R. Phillips, B. W. Mayer, L. Gallmann, M. M. Fejer, and U. Keller, “75 MW few-cycle mid-infrared pulses from a collinear apodized APPLN-based OPCPA,” Opt. Express 20(24), 26888 (2012).
[Crossref]

S. Witte, R. T. Zinkstok, W. Hogervorst, and K. S. E. Eikema, “Generation of few-cycle terawatt light pulses using optical parametric chirped pulse amplification,” Opt. Express 13(13), 4903 (2005).
[Crossref]

S. Witte, R. T. Zinkstok, A. L. Wolf, W. Hogervorst, W. Ubachs, and K. S. E. Eikema, “A source of 2 terawatt, 2.7 cycle laser pulses based on noncollinear optical parametric chirped pulse amplification,” Opt. Express 14(18), 8168–8177 (2006).
[Crossref]

O. Chalus, P. K. Bates, M. Smolarski, and J. Biegert, “Mid-IR short-pulse OPCPA with micro-Joule energy at 100kHz,” Opt. Express 17(5), 3587 (2009).
[Crossref]

C. Erny, C. Heese, M. Haag, L. Gallmann, and U. Keller, “High-repetition-rate optical parametric chirped-pulse amplifier producing 1-$\mu$μJ, sub-100-fs pulses in the mid-infrared,” Opt. Express 17(3), 1340 (2009).
[Crossref]

Opt. Lett. (6)

Opt. Quantum Electron. (1)

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd:YAG rods,” Opt. Quantum Electron. 28(1), 57–69 (1996).
[Crossref]

Phys. Rep. (1)

E. Gamaly, “The physics of ultra-short laser interaction with solids at non-relativistic intensities,” Phys. Rep. 508(4-5), 91–243 (2011).
[Crossref]

Phys. Rev. Appl. (2)

D. Kurilovich, A. L. Klein, F. Torretti, A. Lassise, R. Hoekstra, W. Ubachs, H. Gelderblom, and O. O. Versolato, “Plasma Propulsion of a Metallic Microdroplet and its Deformation upon Laser Impact,” Phys. Rev. Appl. 6(1), 014018 (2016).
[Crossref]

D. Kurilovich, T. d. F. Pinto, F. Torretti, R. Schupp, J. Scheers, A. S. Stodolna, H. Gelderblom, K. S. Eikema, S. Witte, W. Ubachs, R. Hoekstra, and O. O. Versolato, “Expansion Dynamics after Laser-Induced Cavitation in Liquid Tin Microdroplets,” Phys. Rev. Appl. 10(5), 054005 (2018).
[Crossref]

Plasma Sources Sci. Technol. (1)

A. Bayerle, M. J. Deuzeman, S. van der Heijden, D. Kurilovich, T. d. F. Pinto, A. Stodolna, S. Witte, K. S. E. Eikema, W. Ubachs, R. Hoekstra, and O. O. Versolato, “Sn ion energy distributions of ns- and ps-laser produced plasmas,” Plasma Sources Sci. Technol. 27(4), 045001 (2018).
[Crossref]

Radiat. Eff. Defects Solids (1)

L. Torrisi, “Ion charge state distributions in plasma produced by pulsed laser irradiations,” Radiat. Eff. Defects Solids 159(4), 249–258 (2004).
[Crossref]

Spectrochim. Acta, Part B (1)

X. Wang, S. Zhang, X. Cheng, E. Zhu, W. Hang, and B. Huang, “Ion kinetic energy distributions in laser-induced plasma,” Spectrochim. Acta, Part B 99, 101–114 (2014).
[Crossref]

Other (1)

J. Morgenweg, Ramsey-comb spectroscopy (PhD Thesis, Vrije Universiteit Amsterdam, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Schematic of the 1064 nm pump source, consisting of the oscillator and spectral clipping system, the bounce pre-amplifier and the power amplifier units. The final output beam profile is shown on the top right, imaged from the second YAG module to a CCD camera. FR: Faraday rotator; FI: Faraday isolator; PH: 200 $\mu$m pinhole; TFP: Thin-film polarizer; VT: Vacuum tube; $\lambda$/2: Half-wave plate
Fig. 2.
Fig. 2. A detailed schematic of the OPCPA system. The dotted lines are points where the flat-top beam profile of the pump beam is imaged. On the bottom right we show the signal output of the OPCPA, focused by a 50 mm convex lens to a 75 $\mu$m spot ($1/e^2$-diameter). The same acronyms as in Fig. 1 are used.
Fig. 3.
Fig. 3. Spectra at various stages in the OPCPA system. The inset shows the phase-matching curve for KTA with 1064 nm pumping. The shaded areas highlight the phase-matching bandwidths for a 0.15° acceptance angle, centered at 1455 nm (yellow) and 1550 nm (green). $\lambda$: wavelength; $\theta$: phase-matching angle.
Fig. 4.
Fig. 4. Pulse characterization of the OPCPA output at full amplification, using SHG-FROG. Transform limited pulses were calculated from the spectra shown in Fig. 3.

Metrics