Abstract

Optical discrete multi-tone (DMT) is one type of direct-detection optical orthogonal frequency-division multiplexing (DDO-OFDM), and it is more suitable for cost-sensitive access networks and optical interconnections due to its simple structure. In DMT transmitter, inverse fast Fourier transform (IFFT) is an essential function for achieving OFDM modulation, and its input data are constrained to have Hermitian symmetry (HS). To support high-speed DMT signal generation, a fully-parallel implementation of IFFT is preferable. However, the hardware implementation of the conventional complex-valued IFFT (CC-IFFT) requires large area and has high power consumption. Based on the nature of HS, we design and implement a fully-parallel pipelined 128-point radix-2 decimation-in-time Hermitian-symmetric IFFT (HS-IFFT) by using a single field programmable gate array (FPGA) chip. On-chip resource utilization is analyzed for both the proposed HS-IFFT and CC-IFFT. It exhibits that the HS-IFFT can save up to 35% multipliers, 49% registers and 43% look-up tables (LUTs) compared to the CC-IFFT. Also, by using the HS-IFFT and CC-IFFT, two FPGA-based real-time baseband DMT transmitters are implemented and power consumption is estimated. More than 32% of on-chip power is saved by using the HS-IFFT. Moreover, the two DMT transmitters are also experimentally demonstrated in a short-reach directly-modulated laser (DML)-based optical DMT system. The experimental results show that the HS-IFFT-DMT has the same bit error rate (BER) and error vector magnitude (EVM) performances as the CC-IFFT-DMT in both electrical/optical back-to-back cases (EB2B/OB2B) and post 20-km single-mode fiber (SMF) transmission.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Hardware-efficient signal generation of layered/enhanced ACO-OFDM for short-haul fiber-optic links

Qibing Wang, Binhuang Song, Bill Corcoran, David Boland, Chen Zhu, Leimeng Zhuang, and Arthur J. Lowery
Opt. Express 25(12) 13359-13371 (2017)

Experimental demonstration of a cost-effective bit rate variable IM/DD optical OFDM with reduced guard band

Michela Svaluto Moreolo, Josep M. Fàbrega, Fco. Javier Vílchez, Laia Nadal, and Gabriel Junyent
Opt. Express 20(26) B159-B164 (2012)

DC-Biased Optical OFDM for IM/DD Passive Optical Network Systems

M. F. Sanya, L. Djogbe, A. Vianou, and C. Aupetit-Berthelemot
J. Opt. Commun. Netw. 7(4) 205-214 (2015)

References

  • View by:
  • |
  • |
  • |

  1. W. Shieh, Q. Yang, and Y. Ma, “107 Gb/s coherent optical OFDM transmission over 1000-km SSMF fiber using orthogonal band multiplexing,” Opt. Express 16(9), 6378–6386 (2008).
    [Crossref]
  2. N. Kaneda, T. Pfau, H. Zhang, J. Lee, Y. K. Chen, C. J. Youn, Y. H. Kwon, E. S. Num, and S. Chandrasekhar, “Field demonstration of 100-Gb/s real-time coherent optical OFDM detection,” J. Lightwave Technol. 33(7), 1365–1372 (2015).
    [Crossref]
  3. F. Li, Z. Cao, M. Chen, X. Li, J. Yu, S. Shi, Y. Xia, and Y. Chen, “Demonstration of four channel CWDM 560 Gbit/s 128QAM-OFDM for optical inter-connection,” in Proc. OFC 2016, paper W4J.2.
  4. S. You, Y. Wang, W. Liu, Y. Shen, J. Pang, X. Li, and M. Luo, “400-Gb/s Single-sideband direct detection over 7-Core fiber with SSBI cancellation,” IEEE Photonics Technol. Lett. 31(9), 669–672 (2019).
    [Crossref]
  5. D. Nesset, “NG-PON2 technology and standards,” J. Lightwave Technol. 33(5), 1136–1143 (2015).
    [Crossref]
  6. R. Giddings, “Real-time digital signal processing for optical OFDM-based future optical access networks,” J. Lightwave Technol. 32(4), 553–570 (2014).
    [Crossref]
  7. L. Nadal, M. Svaluto Moreolo, J. M. Fabrega, A. Dochhan, H. Griesser, M. Eiselt, and J. P. Elbers, “DMT modulation with adaptive loading for high bit rate transmission over directly detected optical channels,” J. Lightwave Technol. 32(21), 4143–4153 (2014).
    [Crossref]
  8. Y. Benlachtar, P. M. Watts, R. Bouziane, P. Milder, D. Rangaraj, A. Cartolano, R. Koutsoyannis, J. C. Hoe, M. Püschel, M. Glick, and R. I. Killey, “Generation of optical OFDM signals using 21.4 GS/s real time digital signal processing,” Opt. Express 17(20), 17658–17668 (2009).
    [Crossref]
  9. R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Experimental demonstration of record high 19.125Gb/s real-time end-to-end dual-band optical OFDM transmission over 25 km SMF in a simple EML-based IMDD system,” Opt. Express 20(18), 20666–20679 (2012).
    [Crossref]
  10. S.-H. Cho, K. W. Doo, J. H. Lee, J. Lee, S. I. Myong, and S. S. Lee, “Demonstration of a real-time 16 QAM encoded 11.52 Gb/s OFDM transceiver for IM/DD OFDMA-PON systems,” Proc. OECC, 2013, paper WP2-3.
  11. X. Xiao, F. Li, J. Yu, Y. Xia, and Y. Chen, “Real-time demonstration of 100Gbps class dual-carrier DDO-16QAM-DMT transmission with directly modulated laser,” Proc. OFC 2014, paper M2E.6.
  12. M. Chen, J. He, Q. Fan, Z. Dong, and L. Chen, “Experimental demonstration of real-time high-level QAM-encoded direct-detection optical OFDM systems,” J. Lightwave Technol. 33(22), 4632–4639 (2015).
    [Crossref]
  13. Y. Wu, C. He, Q. Zhang, Y. Sun, and T. Wang, “Low-complexity recombined SLM scheme for PAPR reduction in IM/DD optical OFDM systems,” Opt. Express 26(24), 32237–32247 (2018).
    [Crossref]
  14. M. Jaber and D. Massicotte, “A new FFT concept for efficient VLSI implemantation: Part II-parallel pipelined processing,” Proc. IEEE Int. Conf. Digital Signal Processing, pp. 1–6 (2009).
  15. J. Chen, Q. Cao, and S. Shen, “DFT, FFT Algorithm for a complex conjugate-symmetric sequence,” Journal of Electronics and Information Technology 23(2), 197–202 (2001). (in Chinese)
  16. H. F. Chi and Z. H. Lai, “A cost-effective memory-based real-valued FFT and Hermitian symmetric IFFT processor for DMT-based wire-line transmission systems,” Proc. IEEE Int. Symp. Circuits Syst. 6, 6006–6009 (2005).
    [Crossref]
  17. S. A. Salehi, R. Amirfattahi, and K. K. Parhi, “Pipelined architectures for real-valued FFT and Hermitian-symmetric IFFT with real datapaths,” IEEE Trans. Circuits Syst. II 60(8), 507–511 (2013).
    [Crossref]
  18. R. N. Bracewell, The Fourier transform and its applications, Third Edition (McGraw-Hill, 2000), Chap. 11.
  19. R. P. Giddings, X. Q. Jin, and J. M. Tang, “Experimental demonstration of real-time 3Gb/s optical OFDM transceivers,” Opt. Express 17(19), 16654–16665 (2009).
    [Crossref]
  20. Spiral DFT/FFT IP Core Generator, http://www.spiral.net/hardware/dftgen.html .
  21. X. Liu and F. Buchali, “Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM,” Opt. Express 16(26), 21944–21957 (2008).
    [Crossref]

2019 (1)

S. You, Y. Wang, W. Liu, Y. Shen, J. Pang, X. Li, and M. Luo, “400-Gb/s Single-sideband direct detection over 7-Core fiber with SSBI cancellation,” IEEE Photonics Technol. Lett. 31(9), 669–672 (2019).
[Crossref]

2018 (1)

2015 (3)

2014 (2)

R. Giddings, “Real-time digital signal processing for optical OFDM-based future optical access networks,” J. Lightwave Technol. 32(4), 553–570 (2014).
[Crossref]

L. Nadal, M. Svaluto Moreolo, J. M. Fabrega, A. Dochhan, H. Griesser, M. Eiselt, and J. P. Elbers, “DMT modulation with adaptive loading for high bit rate transmission over directly detected optical channels,” J. Lightwave Technol. 32(21), 4143–4153 (2014).
[Crossref]

2013 (1)

S. A. Salehi, R. Amirfattahi, and K. K. Parhi, “Pipelined architectures for real-valued FFT and Hermitian-symmetric IFFT with real datapaths,” IEEE Trans. Circuits Syst. II 60(8), 507–511 (2013).
[Crossref]

2012 (1)

2009 (2)

2008 (2)

2005 (1)

H. F. Chi and Z. H. Lai, “A cost-effective memory-based real-valued FFT and Hermitian symmetric IFFT processor for DMT-based wire-line transmission systems,” Proc. IEEE Int. Symp. Circuits Syst. 6, 6006–6009 (2005).
[Crossref]

2001 (1)

J. Chen, Q. Cao, and S. Shen, “DFT, FFT Algorithm for a complex conjugate-symmetric sequence,” Journal of Electronics and Information Technology 23(2), 197–202 (2001). (in Chinese)

Amirfattahi, R.

S. A. Salehi, R. Amirfattahi, and K. K. Parhi, “Pipelined architectures for real-valued FFT and Hermitian-symmetric IFFT with real datapaths,” IEEE Trans. Circuits Syst. II 60(8), 507–511 (2013).
[Crossref]

Benlachtar, Y.

Bouziane, R.

Bracewell, R. N.

R. N. Bracewell, The Fourier transform and its applications, Third Edition (McGraw-Hill, 2000), Chap. 11.

Buchali, F.

Cao, Q.

J. Chen, Q. Cao, and S. Shen, “DFT, FFT Algorithm for a complex conjugate-symmetric sequence,” Journal of Electronics and Information Technology 23(2), 197–202 (2001). (in Chinese)

Cao, Z.

F. Li, Z. Cao, M. Chen, X. Li, J. Yu, S. Shi, Y. Xia, and Y. Chen, “Demonstration of four channel CWDM 560 Gbit/s 128QAM-OFDM for optical inter-connection,” in Proc. OFC 2016, paper W4J.2.

Cartolano, A.

Chandrasekhar, S.

Chen, J.

J. Chen, Q. Cao, and S. Shen, “DFT, FFT Algorithm for a complex conjugate-symmetric sequence,” Journal of Electronics and Information Technology 23(2), 197–202 (2001). (in Chinese)

Chen, L.

Chen, M.

M. Chen, J. He, Q. Fan, Z. Dong, and L. Chen, “Experimental demonstration of real-time high-level QAM-encoded direct-detection optical OFDM systems,” J. Lightwave Technol. 33(22), 4632–4639 (2015).
[Crossref]

F. Li, Z. Cao, M. Chen, X. Li, J. Yu, S. Shi, Y. Xia, and Y. Chen, “Demonstration of four channel CWDM 560 Gbit/s 128QAM-OFDM for optical inter-connection,” in Proc. OFC 2016, paper W4J.2.

Chen, Y.

F. Li, Z. Cao, M. Chen, X. Li, J. Yu, S. Shi, Y. Xia, and Y. Chen, “Demonstration of four channel CWDM 560 Gbit/s 128QAM-OFDM for optical inter-connection,” in Proc. OFC 2016, paper W4J.2.

X. Xiao, F. Li, J. Yu, Y. Xia, and Y. Chen, “Real-time demonstration of 100Gbps class dual-carrier DDO-16QAM-DMT transmission with directly modulated laser,” Proc. OFC 2014, paper M2E.6.

Chen, Y. K.

Chi, H. F.

H. F. Chi and Z. H. Lai, “A cost-effective memory-based real-valued FFT and Hermitian symmetric IFFT processor for DMT-based wire-line transmission systems,” Proc. IEEE Int. Symp. Circuits Syst. 6, 6006–6009 (2005).
[Crossref]

Cho, S.-H.

S.-H. Cho, K. W. Doo, J. H. Lee, J. Lee, S. I. Myong, and S. S. Lee, “Demonstration of a real-time 16 QAM encoded 11.52 Gb/s OFDM transceiver for IM/DD OFDMA-PON systems,” Proc. OECC, 2013, paper WP2-3.

Dochhan, A.

L. Nadal, M. Svaluto Moreolo, J. M. Fabrega, A. Dochhan, H. Griesser, M. Eiselt, and J. P. Elbers, “DMT modulation with adaptive loading for high bit rate transmission over directly detected optical channels,” J. Lightwave Technol. 32(21), 4143–4153 (2014).
[Crossref]

Dong, Z.

Doo, K. W.

S.-H. Cho, K. W. Doo, J. H. Lee, J. Lee, S. I. Myong, and S. S. Lee, “Demonstration of a real-time 16 QAM encoded 11.52 Gb/s OFDM transceiver for IM/DD OFDMA-PON systems,” Proc. OECC, 2013, paper WP2-3.

Eiselt, M.

L. Nadal, M. Svaluto Moreolo, J. M. Fabrega, A. Dochhan, H. Griesser, M. Eiselt, and J. P. Elbers, “DMT modulation with adaptive loading for high bit rate transmission over directly detected optical channels,” J. Lightwave Technol. 32(21), 4143–4153 (2014).
[Crossref]

Elbers, J. P.

L. Nadal, M. Svaluto Moreolo, J. M. Fabrega, A. Dochhan, H. Griesser, M. Eiselt, and J. P. Elbers, “DMT modulation with adaptive loading for high bit rate transmission over directly detected optical channels,” J. Lightwave Technol. 32(21), 4143–4153 (2014).
[Crossref]

Fabrega, J. M.

L. Nadal, M. Svaluto Moreolo, J. M. Fabrega, A. Dochhan, H. Griesser, M. Eiselt, and J. P. Elbers, “DMT modulation with adaptive loading for high bit rate transmission over directly detected optical channels,” J. Lightwave Technol. 32(21), 4143–4153 (2014).
[Crossref]

Fan, Q.

Giddings, R.

Giddings, R. P.

Glick, M.

Griesser, H.

L. Nadal, M. Svaluto Moreolo, J. M. Fabrega, A. Dochhan, H. Griesser, M. Eiselt, and J. P. Elbers, “DMT modulation with adaptive loading for high bit rate transmission over directly detected optical channels,” J. Lightwave Technol. 32(21), 4143–4153 (2014).
[Crossref]

He, C.

He, J.

Hoe, J. C.

Hugues-Salas, E.

Jaber, M.

M. Jaber and D. Massicotte, “A new FFT concept for efficient VLSI implemantation: Part II-parallel pipelined processing,” Proc. IEEE Int. Conf. Digital Signal Processing, pp. 1–6 (2009).

Jin, X. Q.

Kaneda, N.

Killey, R. I.

Koutsoyannis, R.

Kwon, Y. H.

Lai, Z. H.

H. F. Chi and Z. H. Lai, “A cost-effective memory-based real-valued FFT and Hermitian symmetric IFFT processor for DMT-based wire-line transmission systems,” Proc. IEEE Int. Symp. Circuits Syst. 6, 6006–6009 (2005).
[Crossref]

Lee, J.

N. Kaneda, T. Pfau, H. Zhang, J. Lee, Y. K. Chen, C. J. Youn, Y. H. Kwon, E. S. Num, and S. Chandrasekhar, “Field demonstration of 100-Gb/s real-time coherent optical OFDM detection,” J. Lightwave Technol. 33(7), 1365–1372 (2015).
[Crossref]

S.-H. Cho, K. W. Doo, J. H. Lee, J. Lee, S. I. Myong, and S. S. Lee, “Demonstration of a real-time 16 QAM encoded 11.52 Gb/s OFDM transceiver for IM/DD OFDMA-PON systems,” Proc. OECC, 2013, paper WP2-3.

Lee, J. H.

S.-H. Cho, K. W. Doo, J. H. Lee, J. Lee, S. I. Myong, and S. S. Lee, “Demonstration of a real-time 16 QAM encoded 11.52 Gb/s OFDM transceiver for IM/DD OFDMA-PON systems,” Proc. OECC, 2013, paper WP2-3.

Lee, S. S.

S.-H. Cho, K. W. Doo, J. H. Lee, J. Lee, S. I. Myong, and S. S. Lee, “Demonstration of a real-time 16 QAM encoded 11.52 Gb/s OFDM transceiver for IM/DD OFDMA-PON systems,” Proc. OECC, 2013, paper WP2-3.

Li, F.

X. Xiao, F. Li, J. Yu, Y. Xia, and Y. Chen, “Real-time demonstration of 100Gbps class dual-carrier DDO-16QAM-DMT transmission with directly modulated laser,” Proc. OFC 2014, paper M2E.6.

F. Li, Z. Cao, M. Chen, X. Li, J. Yu, S. Shi, Y. Xia, and Y. Chen, “Demonstration of four channel CWDM 560 Gbit/s 128QAM-OFDM for optical inter-connection,” in Proc. OFC 2016, paper W4J.2.

Li, X.

S. You, Y. Wang, W. Liu, Y. Shen, J. Pang, X. Li, and M. Luo, “400-Gb/s Single-sideband direct detection over 7-Core fiber with SSBI cancellation,” IEEE Photonics Technol. Lett. 31(9), 669–672 (2019).
[Crossref]

F. Li, Z. Cao, M. Chen, X. Li, J. Yu, S. Shi, Y. Xia, and Y. Chen, “Demonstration of four channel CWDM 560 Gbit/s 128QAM-OFDM for optical inter-connection,” in Proc. OFC 2016, paper W4J.2.

Liu, W.

S. You, Y. Wang, W. Liu, Y. Shen, J. Pang, X. Li, and M. Luo, “400-Gb/s Single-sideband direct detection over 7-Core fiber with SSBI cancellation,” IEEE Photonics Technol. Lett. 31(9), 669–672 (2019).
[Crossref]

Liu, X.

Luo, M.

S. You, Y. Wang, W. Liu, Y. Shen, J. Pang, X. Li, and M. Luo, “400-Gb/s Single-sideband direct detection over 7-Core fiber with SSBI cancellation,” IEEE Photonics Technol. Lett. 31(9), 669–672 (2019).
[Crossref]

Ma, Y.

Massicotte, D.

M. Jaber and D. Massicotte, “A new FFT concept for efficient VLSI implemantation: Part II-parallel pipelined processing,” Proc. IEEE Int. Conf. Digital Signal Processing, pp. 1–6 (2009).

Milder, P.

Myong, S. I.

S.-H. Cho, K. W. Doo, J. H. Lee, J. Lee, S. I. Myong, and S. S. Lee, “Demonstration of a real-time 16 QAM encoded 11.52 Gb/s OFDM transceiver for IM/DD OFDMA-PON systems,” Proc. OECC, 2013, paper WP2-3.

Nadal, L.

L. Nadal, M. Svaluto Moreolo, J. M. Fabrega, A. Dochhan, H. Griesser, M. Eiselt, and J. P. Elbers, “DMT modulation with adaptive loading for high bit rate transmission over directly detected optical channels,” J. Lightwave Technol. 32(21), 4143–4153 (2014).
[Crossref]

Nesset, D.

Num, E. S.

Pang, J.

S. You, Y. Wang, W. Liu, Y. Shen, J. Pang, X. Li, and M. Luo, “400-Gb/s Single-sideband direct detection over 7-Core fiber with SSBI cancellation,” IEEE Photonics Technol. Lett. 31(9), 669–672 (2019).
[Crossref]

Parhi, K. K.

S. A. Salehi, R. Amirfattahi, and K. K. Parhi, “Pipelined architectures for real-valued FFT and Hermitian-symmetric IFFT with real datapaths,” IEEE Trans. Circuits Syst. II 60(8), 507–511 (2013).
[Crossref]

Pfau, T.

Püschel, M.

Rangaraj, D.

Salehi, S. A.

S. A. Salehi, R. Amirfattahi, and K. K. Parhi, “Pipelined architectures for real-valued FFT and Hermitian-symmetric IFFT with real datapaths,” IEEE Trans. Circuits Syst. II 60(8), 507–511 (2013).
[Crossref]

Shen, S.

J. Chen, Q. Cao, and S. Shen, “DFT, FFT Algorithm for a complex conjugate-symmetric sequence,” Journal of Electronics and Information Technology 23(2), 197–202 (2001). (in Chinese)

Shen, Y.

S. You, Y. Wang, W. Liu, Y. Shen, J. Pang, X. Li, and M. Luo, “400-Gb/s Single-sideband direct detection over 7-Core fiber with SSBI cancellation,” IEEE Photonics Technol. Lett. 31(9), 669–672 (2019).
[Crossref]

Shi, S.

F. Li, Z. Cao, M. Chen, X. Li, J. Yu, S. Shi, Y. Xia, and Y. Chen, “Demonstration of four channel CWDM 560 Gbit/s 128QAM-OFDM for optical inter-connection,” in Proc. OFC 2016, paper W4J.2.

Shieh, W.

Sun, Y.

Svaluto Moreolo, M.

L. Nadal, M. Svaluto Moreolo, J. M. Fabrega, A. Dochhan, H. Griesser, M. Eiselt, and J. P. Elbers, “DMT modulation with adaptive loading for high bit rate transmission over directly detected optical channels,” J. Lightwave Technol. 32(21), 4143–4153 (2014).
[Crossref]

Tang, J. M.

Wang, T.

Wang, Y.

S. You, Y. Wang, W. Liu, Y. Shen, J. Pang, X. Li, and M. Luo, “400-Gb/s Single-sideband direct detection over 7-Core fiber with SSBI cancellation,” IEEE Photonics Technol. Lett. 31(9), 669–672 (2019).
[Crossref]

Watts, P. M.

Wu, Y.

Xia, Y.

X. Xiao, F. Li, J. Yu, Y. Xia, and Y. Chen, “Real-time demonstration of 100Gbps class dual-carrier DDO-16QAM-DMT transmission with directly modulated laser,” Proc. OFC 2014, paper M2E.6.

F. Li, Z. Cao, M. Chen, X. Li, J. Yu, S. Shi, Y. Xia, and Y. Chen, “Demonstration of four channel CWDM 560 Gbit/s 128QAM-OFDM for optical inter-connection,” in Proc. OFC 2016, paper W4J.2.

Xiao, X.

X. Xiao, F. Li, J. Yu, Y. Xia, and Y. Chen, “Real-time demonstration of 100Gbps class dual-carrier DDO-16QAM-DMT transmission with directly modulated laser,” Proc. OFC 2014, paper M2E.6.

Yang, Q.

You, S.

S. You, Y. Wang, W. Liu, Y. Shen, J. Pang, X. Li, and M. Luo, “400-Gb/s Single-sideband direct detection over 7-Core fiber with SSBI cancellation,” IEEE Photonics Technol. Lett. 31(9), 669–672 (2019).
[Crossref]

Youn, C. J.

Yu, J.

F. Li, Z. Cao, M. Chen, X. Li, J. Yu, S. Shi, Y. Xia, and Y. Chen, “Demonstration of four channel CWDM 560 Gbit/s 128QAM-OFDM for optical inter-connection,” in Proc. OFC 2016, paper W4J.2.

X. Xiao, F. Li, J. Yu, Y. Xia, and Y. Chen, “Real-time demonstration of 100Gbps class dual-carrier DDO-16QAM-DMT transmission with directly modulated laser,” Proc. OFC 2014, paper M2E.6.

Zhang, H.

Zhang, Q.

IEEE Photonics Technol. Lett. (1)

S. You, Y. Wang, W. Liu, Y. Shen, J. Pang, X. Li, and M. Luo, “400-Gb/s Single-sideband direct detection over 7-Core fiber with SSBI cancellation,” IEEE Photonics Technol. Lett. 31(9), 669–672 (2019).
[Crossref]

IEEE Trans. Circuits Syst. II (1)

S. A. Salehi, R. Amirfattahi, and K. K. Parhi, “Pipelined architectures for real-valued FFT and Hermitian-symmetric IFFT with real datapaths,” IEEE Trans. Circuits Syst. II 60(8), 507–511 (2013).
[Crossref]

J. Lightwave Technol. (5)

Journal of Electronics and Information Technology (1)

J. Chen, Q. Cao, and S. Shen, “DFT, FFT Algorithm for a complex conjugate-symmetric sequence,” Journal of Electronics and Information Technology 23(2), 197–202 (2001). (in Chinese)

Opt. Express (6)

Proc. IEEE Int. Symp. Circuits Syst. (1)

H. F. Chi and Z. H. Lai, “A cost-effective memory-based real-valued FFT and Hermitian symmetric IFFT processor for DMT-based wire-line transmission systems,” Proc. IEEE Int. Symp. Circuits Syst. 6, 6006–6009 (2005).
[Crossref]

Other (6)

R. N. Bracewell, The Fourier transform and its applications, Third Edition (McGraw-Hill, 2000), Chap. 11.

S.-H. Cho, K. W. Doo, J. H. Lee, J. Lee, S. I. Myong, and S. S. Lee, “Demonstration of a real-time 16 QAM encoded 11.52 Gb/s OFDM transceiver for IM/DD OFDMA-PON systems,” Proc. OECC, 2013, paper WP2-3.

X. Xiao, F. Li, J. Yu, Y. Xia, and Y. Chen, “Real-time demonstration of 100Gbps class dual-carrier DDO-16QAM-DMT transmission with directly modulated laser,” Proc. OFC 2014, paper M2E.6.

M. Jaber and D. Massicotte, “A new FFT concept for efficient VLSI implemantation: Part II-parallel pipelined processing,” Proc. IEEE Int. Conf. Digital Signal Processing, pp. 1–6 (2009).

Spiral DFT/FFT IP Core Generator, http://www.spiral.net/hardware/dftgen.html .

F. Li, Z. Cao, M. Chen, X. Li, J. Yu, S. Shi, Y. Xia, and Y. Chen, “Demonstration of four channel CWDM 560 Gbit/s 128QAM-OFDM for optical inter-connection,” in Proc. OFC 2016, paper W4J.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Data-flow graph of 16-point radix-2 DIT HS-IFFT.
Fig. 2.
Fig. 2. Modified butterflies: (a,c) CUA and (b,d) CUB
Fig. 3.
Fig. 3. Data-flow graph of the proposed 16-point hardware-efficient DIT HS-IFFT structure.
Fig. 4.
Fig. 4. Required real multipliers and adders versus different IFFT sizes.
Fig. 5.
Fig. 5. DSP flows in the real-time DMT transmitters and OFDM frame structure.
Fig. 6.
Fig. 6. Experimental setup (a) and its photograph (b).
Fig. 7.
Fig. 7. Constellation diagrams: (a-c)/(d-f) EB2B, OB2B and post-20 km SMF for HS/CC-IFFT.
Fig. 8.
Fig. 8. The measured EVM performance over different data-carrying SCs

Tables (5)

Tables Icon

Table 1. Complexity analysis of the proposed N-point HS-IFFT

Tables Icon

Table 2. Complexity analysis of the N-point Radix-2 DIT CC-IFFT

Tables Icon

Table 3. FPGA chip resource usage of the HS-IFFT based DMT transmitter

Tables Icon

Table 4. FPGA chip resource usage of the CC-IFFT based DMT transmitter

Tables Icon

Table 5. Power consumption estimates of the HS-IFFT and CC-IFFT based DMT transmitters

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

x ( n ) = k = 0 N 1 X ( k ) e j 2 π k n N = k = 0 N 1 X ( k ) W N n k
x ( n ) = k = 0 N 1 [ X ( k ) + ( 1 ) n X ( k + N 2 ) ] W N n k
{ x ( 2 n ) = k = 0 N / N 2 2 1 [ X ( k ) + X ( k + N 2 ) ] W N / N 2 2 n k x ( 2 n + 1 ) = k = 0 N / N 2 2 1 [ ( X ( k ) X ( k + N 2 ) ) W N k ] W N / N 2 2 n k
{ X l , 2 m ( k ) = X l 1 , m ( k ) + X l 1 , m ( k + N 2 l ) X l , 2 m + 1 ( k ) = [ X l 1 , m ( k ) X l 1 , m ( k + N 2 l ) ] W N k 2 l 1
X l , 2 m ( N 2 l k ) = X l 1 , m ( N 2 l k ) + X l 1 , m ( N 2 l k + N 2 l ) = X l 1 , m ( N 2 l 1 ( k + N 2 l ) ) + X l 1 , m ( N 2 l 1 k ) = X l 1 , m ( k + N 2 l ) + X l 1 , m ( k ) = X l , 2 m ( k )
X l , 2 m + 1 ( N 2 l k ) = X l , 2 m + 1 ( k )
{ X l , 2 m ( k ) = X l 1 , m ( k ) + X l 1 , m ( N 2 l k ) X l , 2 m + 1 ( k ) = [ X l 1 , m ( k ) X l 1 , m ( N 2 l k ) ] W N k 2 l 1

Metrics