Abstract

In this paper, we designed a single sized Metal-Insulator Pair-Metal hybrid grating for dual-band perfect absorption from 8 μm to 14 μm utilizing both nondispersive insulators and dispersive phonic insulators. The hybrid grating was composed of Al/ZnTe-SiC pair/Al, which incorporated an ultrathin phononic SiC layer between the nondispersive ZnTe dielectric spacer and Al substrate. The physical mechanisms responsible for the dual-band perfect absorption were elucidated by the resonance of fundamental magnetic polaritons (MPs). Dual-band perfect absorption with incident angle insensitive feature was enabled. An equivalent LC circuit model predicting the dual-band resonant absorption peaks wavelengths was proposed and verified. Furthermore, the effects of grating period, strip width, nondispersive dielectric spacer thickness and polar phononic dielectric spacer thickness on the absorption were explored.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-independent dual-band perfect absorber utilizing multiple magnetic resonances

Young Joon Yoo, Young Joo Kim, Pham Van Tuong, Joo Yull Rhee, Ki Won Kim, Won Ho Jang, Y. H. Kim, H. Cheong, and YoungPak Lee
Opt. Express 21(26) 32484-32490 (2013)

Wide-angle, polarization-independent and dual-band infrared perfect absorber based on L-shaped metamaterial

Yang Bai, Li Zhao, Dongquan Ju, Yongyuan Jiang, and Linhua Liu
Opt. Express 23(7) 8670-8680 (2015)

Dual-band tunable perfect metamaterial absorber based on graphene

Fengling Wang, Sha Huang, Ling Li, Weidong Chen, and Zhengwei Xie
Appl. Opt. 57(24) 6916-6922 (2018)

References

  • View by:
  • |
  • |
  • |

  1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  2. J. Schalch, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 61113 (2018).
    [Crossref]
  3. H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Modulated Multiband Terahertz Perfect Absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
    [Crossref]
  4. Y. He, H. Deng, X. Jiao, S. He, J. Gao, and X. Yang, “Infrared perfect absorber based on nanowire metamaterial cavities,” Opt. Lett. 38(7), 1179–1181 (2013).
    [Crossref] [PubMed]
  5. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  6. Z. Zhang, Z. Yu, Y. Liang, and T. Xu, “Dual-band nearly perfect absorber at visible frequencies,” Opt. Mater. Express 8(2), 463–468 (2018).
    [Crossref]
  7. A. Ghobadi, H. Hajian, M. Gokbayrak, S. A. Dereshgi, A. Toprak, B. Butun, and E. Ozbay, “Visible light nearly perfect absorber: an optimum unit cell arrangement for near absolute polarization insensitivity,” Opt. Express 25(22), 27624–27634 (2017).
    [Crossref] [PubMed]
  8. P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
    [Crossref] [PubMed]
  9. A. Huang, X. Zhang, Y. Lou, H. Chen, X. Li, and Y. Wang, “Tailoring thermal radiation with a hybrid metallic–dielectric (Ag/SiO2) filter,” J. Opt. Soc. Am. B 35(2), 251–256 (2018).
    [Crossref]
  10. Z. Wang, Z. M. Zhang, X. Quan, and P. Cheng, “A perfect absorber design using a natural hyperbolic material for harvesting solar energy,” Sol. Energy 159, 329–336 (2018).
    [Crossref]
  11. H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
    [Crossref]
  12. F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 1–4 (2012).
    [Crossref]
  13. A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
    [Crossref] [PubMed]
  14. E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
    [Crossref] [PubMed]
  15. J. Chen, W. Fan, T. Zhang, C. Tang, X. Chen, J. Wu, D. Li, and Y. Yu, “Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing,” Opt. Express 25(4), 3675–3681 (2017).
    [Crossref] [PubMed]
  16. J. Chen, W. Fan, P. Mao, C. Tang, Y. Liu, Y. Yu, and L. Zhang, “Tailoring Plasmon Lifetime in Suspended Nanoantenna Arrays for High-Performance Plasmon Sensing,” Plasmonics 12(3), 529–534 (2017).
    [Crossref]
  17. D. N. Woolf, E. A. Kadlec, D. Bethke, A. D. Grine, J. J. Nogan, J. G. Cederberg, D. Bruce Burckel, T. S. Luk, E. A. Shaner, and J. M. Hensley, “High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter,” Optica 5(2), 213–218 (2018).
    [Crossref]
  18. C. Shemelya, D. Demeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104(20), 201113 (2014).
    [Crossref]
  19. B. Zhao and Z. M. Zhang, “Study of magnetic polaritons in deep gratings for thermal emission control,” J. Quant. Spectrosc. Radiat. Transf. 135, 81–89 (2014).
    [Crossref]
  20. J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 83(16), 165107 (2011).
    [Crossref]
  21. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 10–13 (2010).
    [Crossref]
  22. T. Wang, P. Li, D. N. Chigrin, A. J. Giles, F. J. Bezares, O. J. Glembocki, J. D. Caldwell, and T. Taubner, “Phonon-Polaritonic Bowtie Nanoantennas: Controlling Infrared Thermal Radiation at the Nanoscale,” ACS Photonics 4(7), 1753–1760 (2017).
    [Crossref]
  23. Y. Ren, Q. Chen, H. Qi, and L. Ruan, “Hot Spot Effect of Optical Nanoantenna to Enhance Localized Photothermal Conversion,” ES Energy Environ. 3, 74–79 (2019).
    [Crossref]
  24. Y. Zhao and C. Fu, “Multiband selective absorbers made of 1D periodic Ag/SiO_2/Ag core/shell coaxial cylinders horizontally lying on a planar substrate,” Opt. Express 25(8), A208–A222 (2017).
    [Crossref] [PubMed]
  25. S. Mader and O. J. F. Martin, “Mechanisms of perfect absorption in nano-composite systems,” Opt. Express 26(21), 27089–27100 (2018).
    [Crossref] [PubMed]
  26. D. Liu, L. Wang, Q. Cui, and L. J. Guo, “Planar Metasurfaces Enable High-Efficiency Colored Perovskite Solar Cells,” Adv. Sci. (Weinh.) 5(10), 1800836 (2018).
    [Crossref] [PubMed]
  27. M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013).
    [Crossref] [PubMed]
  28. J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
    [Crossref]
  29. G. Zhen, P. Zhou, X. Luo, J. Xie, and L. Deng, “Modes Coupling Analysis of Surface Plasmon Polaritons Based Resonance Manipulation in Infrared Metamaterial Absorber,” Sci. Rep. 7(1), 46093 (2017).
    [Crossref] [PubMed]
  30. L. P. Wang, S. Basu, and Z. M. Zhang, “Direct Measurement of Thermal Emission From a Fabry–Perot Cavity Resonator,” J. Heat Transfer 134(7), 72701–72709 (2012).
    [Crossref]
  31. S. Shu, Z. Li, and Y. Y. Li, “Triple-layer Fabry-Perot absorber with near-perfect absorption in visible and near-infrared regime,” Opt. Express 21(21), 25307–25315 (2013).
    [Crossref] [PubMed]
  32. B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
    [Crossref] [PubMed]
  33. Q. Pan, J. Hong, G. Zhang, Y. Shuai, and H. Tan, “Graphene plasmonics for surface enhancement near-infrared absorptivity,” Opt. Express 25(14), 16400–16408 (2017).
    [Crossref] [PubMed]
  34. Y. Zheng, Y. Wang, J. Luo, and P. Xu, “Optical Tamm states in photonic structures made of inhomogeneous material,” Opt. Commun. 406, 103–106 (2018).
    [Crossref]
  35. P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J.-L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett. 37(6), 1038–1040 (2012).
    [Crossref] [PubMed]
  36. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [Crossref] [PubMed]
  37. B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I.-C. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19(16), 15221–15228 (2011).
    [Crossref] [PubMed]
  38. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
    [Crossref] [PubMed]
  39. N. Zhang, P. Zhou, D. Cheng, X. Weng, J. Xie, and L. Deng, “Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacing layers,” Opt. Lett. 38(7), 1125–1127 (2013).
    [Crossref] [PubMed]
  40. Y. C. Chang, C. M. Wang, M. N. Abbas, M.-H. Shih, and D. P. Tsai, “T-shaped plasmonic array as a narrow-band thermal emitter or biosensor,” Opt. Express 17(16), 13526–13531 (2009).
    [Crossref] [PubMed]
  41. R. Feng, W. Ding, L. Liu, L. Chen, J. Qiu, and G. Chen, “Dual-band infrared perfect absorber based on asymmetric T-shaped plasmonic array,” Opt. Express 22(S2), A335–A343 (2014).
    [Crossref]
  42. Y. Qu, L. Cai, H. Luo, J. Lu, M. Qiu, and Q. Li, “Tunable dual-band thermal emitter consisting of single-sized phase-changing GST nanodisks,” Opt. Express 26(4), 4279–4287 (2018).
    [Crossref] [PubMed]
  43. L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 2010–2013 (2012).
    [Crossref]
  44. J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-Plasmon-Polaritons-Assisted Enhanced Magnetic Response at Optical Frequencies in Metamaterials,” IEEE Photonics J. 8(1), 1–7 (2016).
    [Crossref]
  45. J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1532 (2016).
    [Crossref]
  46. Y.-B. Chen and F.-C. Chiu, “Trapping mid-infrared rays in a lossy film with the Berreman mode, epsilon near zero mode, and magnetic polaritons,” Opt. Express 21(18), 20771–20785 (2013).
    [Crossref] [PubMed]
  47. J. Li, R. Gan, Q. Guo, H. Liu, J. Xu, and F. Yi, “Tailoring optical responses of infrared plasmonic metamaterial absorbers by optical phonons,” Opt. Express 26(13), 16769–16781 (2018).
    [Crossref] [PubMed]
  48. J. R. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, and J. Guo, “Coupling of Epsilon-Near-Zero Mode to Gap Plasmon Mode for Flat-Top Wideband Perfect Light Absorption,” ACS Photonics 5(3), 776–781 (2018).
    [Crossref]
  49. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–1120 (1983).
    [Crossref] [PubMed]
  50. R. Feng, J. Qiu, L. Liu, W. Ding, and L. Chen, “Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling,” Opt. Express 22(S7Suppl 7), A1713–A1724 (2014).
    [Crossref] [PubMed]
  51. L. Cai, K. Du, Y. Qu, H. Luo, M. Pan, M. Qiu, and Q. Li, “Nonvolatile tunable silicon-carbide-based midinfrared thermal emitter enabled by phase-changing materials,” Opt. Lett. 43(6), 1295–1298 (2018).
    [Crossref] [PubMed]

2019 (1)

Y. Ren, Q. Chen, H. Qi, and L. Ruan, “Hot Spot Effect of Optical Nanoantenna to Enhance Localized Photothermal Conversion,” ES Energy Environ. 3, 74–79 (2019).
[Crossref]

2018 (12)

S. Mader and O. J. F. Martin, “Mechanisms of perfect absorption in nano-composite systems,” Opt. Express 26(21), 27089–27100 (2018).
[Crossref] [PubMed]

D. Liu, L. Wang, Q. Cui, and L. J. Guo, “Planar Metasurfaces Enable High-Efficiency Colored Perovskite Solar Cells,” Adv. Sci. (Weinh.) 5(10), 1800836 (2018).
[Crossref] [PubMed]

Y. Zheng, Y. Wang, J. Luo, and P. Xu, “Optical Tamm states in photonic structures made of inhomogeneous material,” Opt. Commun. 406, 103–106 (2018).
[Crossref]

J. Schalch, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 61113 (2018).
[Crossref]

A. Huang, X. Zhang, Y. Lou, H. Chen, X. Li, and Y. Wang, “Tailoring thermal radiation with a hybrid metallic–dielectric (Ag/SiO2) filter,” J. Opt. Soc. Am. B 35(2), 251–256 (2018).
[Crossref]

Z. Wang, Z. M. Zhang, X. Quan, and P. Cheng, “A perfect absorber design using a natural hyperbolic material for harvesting solar energy,” Sol. Energy 159, 329–336 (2018).
[Crossref]

Z. Zhang, Z. Yu, Y. Liang, and T. Xu, “Dual-band nearly perfect absorber at visible frequencies,” Opt. Mater. Express 8(2), 463–468 (2018).
[Crossref]

D. N. Woolf, E. A. Kadlec, D. Bethke, A. D. Grine, J. J. Nogan, J. G. Cederberg, D. Bruce Burckel, T. S. Luk, E. A. Shaner, and J. M. Hensley, “High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter,” Optica 5(2), 213–218 (2018).
[Crossref]

Y. Qu, L. Cai, H. Luo, J. Lu, M. Qiu, and Q. Li, “Tunable dual-band thermal emitter consisting of single-sized phase-changing GST nanodisks,” Opt. Express 26(4), 4279–4287 (2018).
[Crossref] [PubMed]

J. Li, R. Gan, Q. Guo, H. Liu, J. Xu, and F. Yi, “Tailoring optical responses of infrared plasmonic metamaterial absorbers by optical phonons,” Opt. Express 26(13), 16769–16781 (2018).
[Crossref] [PubMed]

J. R. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, and J. Guo, “Coupling of Epsilon-Near-Zero Mode to Gap Plasmon Mode for Flat-Top Wideband Perfect Light Absorption,” ACS Photonics 5(3), 776–781 (2018).
[Crossref]

L. Cai, K. Du, Y. Qu, H. Luo, M. Pan, M. Qiu, and Q. Li, “Nonvolatile tunable silicon-carbide-based midinfrared thermal emitter enabled by phase-changing materials,” Opt. Lett. 43(6), 1295–1298 (2018).
[Crossref] [PubMed]

2017 (7)

Q. Pan, J. Hong, G. Zhang, Y. Shuai, and H. Tan, “Graphene plasmonics for surface enhancement near-infrared absorptivity,” Opt. Express 25(14), 16400–16408 (2017).
[Crossref] [PubMed]

A. Ghobadi, H. Hajian, M. Gokbayrak, S. A. Dereshgi, A. Toprak, B. Butun, and E. Ozbay, “Visible light nearly perfect absorber: an optimum unit cell arrangement for near absolute polarization insensitivity,” Opt. Express 25(22), 27624–27634 (2017).
[Crossref] [PubMed]

G. Zhen, P. Zhou, X. Luo, J. Xie, and L. Deng, “Modes Coupling Analysis of Surface Plasmon Polaritons Based Resonance Manipulation in Infrared Metamaterial Absorber,” Sci. Rep. 7(1), 46093 (2017).
[Crossref] [PubMed]

Y. Zhao and C. Fu, “Multiband selective absorbers made of 1D periodic Ag/SiO_2/Ag core/shell coaxial cylinders horizontally lying on a planar substrate,” Opt. Express 25(8), A208–A222 (2017).
[Crossref] [PubMed]

J. Chen, W. Fan, T. Zhang, C. Tang, X. Chen, J. Wu, D. Li, and Y. Yu, “Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing,” Opt. Express 25(4), 3675–3681 (2017).
[Crossref] [PubMed]

J. Chen, W. Fan, P. Mao, C. Tang, Y. Liu, Y. Yu, and L. Zhang, “Tailoring Plasmon Lifetime in Suspended Nanoantenna Arrays for High-Performance Plasmon Sensing,” Plasmonics 12(3), 529–534 (2017).
[Crossref]

T. Wang, P. Li, D. N. Chigrin, A. J. Giles, F. J. Bezares, O. J. Glembocki, J. D. Caldwell, and T. Taubner, “Phonon-Polaritonic Bowtie Nanoantennas: Controlling Infrared Thermal Radiation at the Nanoscale,” ACS Photonics 4(7), 1753–1760 (2017).
[Crossref]

2016 (3)

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref] [PubMed]

J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-Plasmon-Polaritons-Assisted Enhanced Magnetic Response at Optical Frequencies in Metamaterials,” IEEE Photonics J. 8(1), 1–7 (2016).
[Crossref]

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1532 (2016).
[Crossref]

2015 (2)

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

2014 (6)

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Modulated Multiband Terahertz Perfect Absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

C. Shemelya, D. Demeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104(20), 201113 (2014).
[Crossref]

B. Zhao and Z. M. Zhang, “Study of magnetic polaritons in deep gratings for thermal emission control,” J. Quant. Spectrosc. Radiat. Transf. 135, 81–89 (2014).
[Crossref]

R. Feng, W. Ding, L. Liu, L. Chen, J. Qiu, and G. Chen, “Dual-band infrared perfect absorber based on asymmetric T-shaped plasmonic array,” Opt. Express 22(S2), A335–A343 (2014).
[Crossref]

R. Feng, J. Qiu, L. Liu, W. Ding, and L. Chen, “Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling,” Opt. Express 22(S7Suppl 7), A1713–A1724 (2014).
[Crossref] [PubMed]

2013 (6)

2012 (5)

L. P. Wang, S. Basu, and Z. M. Zhang, “Direct Measurement of Thermal Emission From a Fabry–Perot Cavity Resonator,” J. Heat Transfer 134(7), 72701–72709 (2012).
[Crossref]

P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J.-L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett. 37(6), 1038–1040 (2012).
[Crossref] [PubMed]

F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 1–4 (2012).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 2010–2013 (2012).
[Crossref]

2011 (3)

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 83(16), 165107 (2011).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I.-C. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19(16), 15221–15228 (2011).
[Crossref] [PubMed]

2010 (2)

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 10–13 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (2)

1983 (1)

Abbas, M. N.

Alexander, R. W.

Anoma, M. A.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Averitt, R. D.

J. Schalch, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 61113 (2018).
[Crossref]

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Modulated Multiband Terahertz Perfect Absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Basu, S.

L. P. Wang, S. Basu, and Z. M. Zhang, “Direct Measurement of Thermal Emission From a Fabry–Perot Cavity Resonator,” J. Heat Transfer 134(7), 72701–72709 (2012).
[Crossref]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Bernardi, M.

M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013).
[Crossref] [PubMed]

Bethke, D.

Bezares, F. J.

T. Wang, P. Li, D. N. Chigrin, A. J. Giles, F. J. Bezares, O. J. Glembocki, J. D. Caldwell, and T. Taubner, “Phonon-Polaritonic Bowtie Nanoantennas: Controlling Infrared Thermal Radiation at the Nanoscale,” ACS Photonics 4(7), 1753–1760 (2017).
[Crossref]

Bingham, C.

C. Shemelya, D. Demeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104(20), 201113 (2014).
[Crossref]

Bouchon, P.

Bruce Burckel, D.

Butun, B.

Cai, L.

Caldwell, J. D.

T. Wang, P. Li, D. N. Chigrin, A. J. Giles, F. J. Bezares, O. J. Glembocki, J. D. Caldwell, and T. Taubner, “Phonon-Polaritonic Bowtie Nanoantennas: Controlling Infrared Thermal Radiation at the Nanoscale,” ACS Photonics 4(7), 1753–1760 (2017).
[Crossref]

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Cao, L.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Modulated Multiband Terahertz Perfect Absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Cederberg, J. G.

Chang, Y. C.

Chen, G.

Chen, H.

Chen, J.

J. Chen, W. Fan, T. Zhang, C. Tang, X. Chen, J. Wu, D. Li, and Y. Yu, “Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing,” Opt. Express 25(4), 3675–3681 (2017).
[Crossref] [PubMed]

J. Chen, W. Fan, P. Mao, C. Tang, Y. Liu, Y. Yu, and L. Zhang, “Tailoring Plasmon Lifetime in Suspended Nanoantenna Arrays for High-Performance Plasmon Sensing,” Plasmonics 12(3), 529–534 (2017).
[Crossref]

J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-Plasmon-Polaritons-Assisted Enhanced Magnetic Response at Optical Frequencies in Metamaterials,” IEEE Photonics J. 8(1), 1–7 (2016).
[Crossref]

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1532 (2016).
[Crossref]

Chen, L.

Chen, Q.

Y. Ren, Q. Chen, H. Qi, and L. Ruan, “Hot Spot Effect of Optical Nanoantenna to Enhance Localized Photothermal Conversion,” ES Energy Environ. 3, 74–79 (2019).
[Crossref]

Chen, S.

Chen, X.

Chen, Y.-B.

Cheng, D.

Cheng, P.

Z. Wang, Z. M. Zhang, X. Quan, and P. Cheng, “A perfect absorber design using a natural hyperbolic material for harvesting solar energy,” Sol. Energy 159, 329–336 (2018).
[Crossref]

Chigrin, D. N.

T. Wang, P. Li, D. N. Chigrin, A. J. Giles, F. J. Bezares, O. J. Glembocki, J. D. Caldwell, and T. Taubner, “Phonon-Polaritonic Bowtie Nanoantennas: Controlling Infrared Thermal Radiation at the Nanoscale,” ACS Photonics 4(7), 1753–1760 (2017).
[Crossref]

Chiu, F.-C.

Cleary, J. W.

J. R. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, and J. Guo, “Coupling of Epsilon-Near-Zero Mode to Gap Plasmon Mode for Flat-Top Wideband Perfect Light Absorption,” ACS Photonics 5(3), 776–781 (2018).
[Crossref]

Cui, Q.

D. Liu, L. Wang, Q. Cui, and L. J. Guo, “Planar Metasurfaces Enable High-Efficiency Colored Perovskite Solar Cells,” Adv. Sci. (Weinh.) 5(10), 1800836 (2018).
[Crossref] [PubMed]

Cui, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Dass, C.

J. R. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, and J. Guo, “Coupling of Epsilon-Near-Zero Mode to Gap Plasmon Mode for Flat-Top Wideband Perfect Light Absorption,” ACS Photonics 5(3), 776–781 (2018).
[Crossref]

Demeo, D.

C. Shemelya, D. Demeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104(20), 201113 (2014).
[Crossref]

Deng, H.

Deng, L.

G. Zhen, P. Zhou, X. Luo, J. Xie, and L. Deng, “Modes Coupling Analysis of Surface Plasmon Polaritons Based Resonance Manipulation in Infrared Metamaterial Absorber,” Sci. Rep. 7(1), 46093 (2017).
[Crossref] [PubMed]

N. Zhang, P. Zhou, D. Cheng, X. Weng, J. Xie, and L. Deng, “Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacing layers,” Opt. Lett. 38(7), 1125–1127 (2013).
[Crossref] [PubMed]

Dereshgi, S. A.

Ding, W.

Du, K.

Duan, G.

J. Schalch, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 61113 (2018).
[Crossref]

Dyachenko, P. N.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref] [PubMed]

Eich, M.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref] [PubMed]

Fan, K.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Modulated Multiband Terahertz Perfect Absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Fan, S.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref] [PubMed]

Fan, W.

J. Chen, W. Fan, P. Mao, C. Tang, Y. Liu, Y. Yu, and L. Zhang, “Tailoring Plasmon Lifetime in Suspended Nanoantenna Arrays for High-Performance Plasmon Sensing,” Plasmonics 12(3), 529–534 (2017).
[Crossref]

J. Chen, W. Fan, T. Zhang, C. Tang, X. Chen, J. Wu, D. Li, and Y. Yu, “Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing,” Opt. Express 25(4), 3675–3681 (2017).
[Crossref] [PubMed]

Fang, N. X.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Feng, R.

Fischbach, S.

F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 1–4 (2012).
[Crossref]

Fu, C.

Fung, K. H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Gan, R.

Gansel, J. K.

F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 1–4 (2012).
[Crossref]

Gao, D.

J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-Plasmon-Polaritons-Assisted Enhanced Magnetic Response at Optical Frequencies in Metamaterials,” IEEE Photonics J. 8(1), 1–7 (2016).
[Crossref]

Gao, J.

Ghobadi, A.

Giannini, V.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Gibson, R.

J. R. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, and J. Guo, “Coupling of Epsilon-Near-Zero Mode to Gap Plasmon Mode for Flat-Top Wideband Perfect Light Absorption,” ACS Photonics 5(3), 776–781 (2018).
[Crossref]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Giles, A. J.

T. Wang, P. Li, D. N. Chigrin, A. J. Giles, F. J. Bezares, O. J. Glembocki, J. D. Caldwell, and T. Taubner, “Phonon-Polaritonic Bowtie Nanoantennas: Controlling Infrared Thermal Radiation at the Nanoscale,” ACS Photonics 4(7), 1753–1760 (2017).
[Crossref]

Glembocki, O. J.

T. Wang, P. Li, D. N. Chigrin, A. J. Giles, F. J. Bezares, O. J. Glembocki, J. D. Caldwell, and T. Taubner, “Phonon-Polaritonic Bowtie Nanoantennas: Controlling Infrared Thermal Radiation at the Nanoscale,” ACS Photonics 4(7), 1753–1760 (2017).
[Crossref]

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Gokbayrak, M.

Goldsmith, J.

J. R. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, and J. Guo, “Coupling of Epsilon-Near-Zero Mode to Gap Plasmon Mode for Flat-Top Wideband Perfect Light Absorption,” ACS Photonics 5(3), 776–781 (2018).
[Crossref]

Grine, A. D.

Grossman, J. C.

M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013).
[Crossref] [PubMed]

Guo, J.

J. R. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, and J. Guo, “Coupling of Epsilon-Near-Zero Mode to Gap Plasmon Mode for Flat-Top Wideband Perfect Light Absorption,” ACS Photonics 5(3), 776–781 (2018).
[Crossref]

Guo, L. J.

D. Liu, L. Wang, Q. Cui, and L. J. Guo, “Planar Metasurfaces Enable High-Efficiency Colored Perovskite Solar Cells,” Adv. Sci. (Weinh.) 5(10), 1800836 (2018).
[Crossref] [PubMed]

Guo, Q.

Haïdar, R.

Hajian, H.

Hao, J.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 83(16), 165107 (2011).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 10–13 (2010).
[Crossref]

Hao, Q.

He, S.

Y. He, H. Deng, X. Jiao, S. He, J. Gao, and X. Yang, “Infrared perfect absorber based on nanowire metamaterial cavities,” Opt. Lett. 38(7), 1179–1181 (2013).
[Crossref] [PubMed]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

He, Y.

Hendrickson, J. R.

J. R. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, and J. Guo, “Coupling of Epsilon-Near-Zero Mode to Gap Plasmon Mode for Flat-Top Wideband Perfect Light Absorption,” ACS Photonics 5(3), 776–781 (2018).
[Crossref]

Hensley, J. M.

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Hong, J.

Huang, A.

Huang, T. J.

Jacob, Z.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref] [PubMed]

Jiao, X.

Jin, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Kadlec, E. A.

Keiser, G. R.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Modulated Multiband Terahertz Perfect Absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Khoo, I.-C.

Kim, W.

J. R. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, and J. Guo, “Coupling of Epsilon-Near-Zero Mode to Gap Plasmon Mode for Flat-Top Wideband Perfect Light Absorption,” ACS Photonics 5(3), 776–781 (2018).
[Crossref]

Kiraly, B.

Koechlin, C.

Krekeler, T.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref] [PubMed]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lang, S.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref] [PubMed]

Latham, N. P.

C. Shemelya, D. Demeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104(20), 201113 (2014).
[Crossref]

Lee, B. J.

Leedy, K.

J. R. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, and J. Guo, “Coupling of Epsilon-Near-Zero Mode to Gap Plasmon Mode for Flat-Top Wideband Perfect Light Absorption,” ACS Photonics 5(3), 776–781 (2018).
[Crossref]

Li, D.

Li, J.

Li, P.

T. Wang, P. Li, D. N. Chigrin, A. J. Giles, F. J. Bezares, O. J. Glembocki, J. D. Caldwell, and T. Taubner, “Phonon-Polaritonic Bowtie Nanoantennas: Controlling Infrared Thermal Radiation at the Nanoscale,” ACS Photonics 4(7), 1753–1760 (2017).
[Crossref]

Li, Q.

Li, X.

Li, Y. Y.

Li, Z.

Liang, Y.

Lindsay, L.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Liu, D.

D. Liu, L. Wang, Q. Cui, and L. J. Guo, “Planar Metasurfaces Enable High-Efficiency Colored Perovskite Solar Cells,” Adv. Sci. (Weinh.) 5(10), 1800836 (2018).
[Crossref] [PubMed]

Liu, H.

Liu, L.

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 10–13 (2010).
[Crossref]

Liu, Y.

J. Chen, W. Fan, P. Mao, C. Tang, Y. Liu, Y. Yu, and L. Zhang, “Tailoring Plasmon Lifetime in Suspended Nanoantenna Arrays for High-Performance Plasmon Sensing,” Plasmonics 12(3), 529–534 (2017).
[Crossref]

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1532 (2016).
[Crossref]

Liu, Z.

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1532 (2016).
[Crossref]

Long, L. L.

Lou, Y.

Lu, J.

Luk, T. S.

Luo, H.

Luo, J.

Y. Zheng, Y. Wang, J. Luo, and P. Xu, “Optical Tamm states in photonic structures made of inhomogeneous material,” Opt. Commun. 406, 103–106 (2018).
[Crossref]

Luo, X.

G. Zhen, P. Zhou, X. Luo, J. Xie, and L. Deng, “Modes Coupling Analysis of Surface Plasmon Polaritons Based Resonance Manipulation in Infrared Metamaterial Absorber,” Sci. Rep. 7(1), 46093 (2017).
[Crossref] [PubMed]

Ma, H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Mader, S.

Maier, S. A.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Mao, P.

J. Chen, W. Fan, P. Mao, C. Tang, Y. Liu, Y. Yu, and L. Zhang, “Tailoring Plasmon Lifetime in Suspended Nanoantenna Arrays for High-Performance Plasmon Sensing,” Plasmonics 12(3), 529–534 (2017).
[Crossref]

J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-Plasmon-Polaritons-Assisted Enhanced Magnetic Response at Optical Frequencies in Metamaterials,” IEEE Photonics J. 8(1), 1–7 (2016).
[Crossref]

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1532 (2016).
[Crossref]

Martin, O. J. F.

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Metcalfe, G. D.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Modulated Multiband Terahertz Perfect Absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Mitchell, A.

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Molesky, S.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref] [PubMed]

Niesler, F. B. P.

F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 1–4 (2012).
[Crossref]

Nogan, J. J.

Ordal, M. A.

Ozbay, E.

Padilla, W.

C. Shemelya, D. Demeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104(20), 201113 (2014).
[Crossref]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 10–13 (2010).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Palummo, M.

M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013).
[Crossref] [PubMed]

Pan, M.

Pan, Q.

Pardo, F.

Pelouard, J.-L.

Peng, C.

J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-Plasmon-Polaritons-Assisted Enhanced Magnetic Response at Optical Frequencies in Metamaterials,” IEEE Photonics J. 8(1), 1–7 (2016).
[Crossref]

Petrov, A. Y.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref] [PubMed]

Phelan, P.

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Prasad Sivan, V.

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Qi, H.

Y. Ren, Q. Chen, H. Qi, and L. Ruan, “Hot Spot Effect of Optical Nanoantenna to Enhance Localized Photothermal Conversion,” ES Energy Environ. 3, 74–79 (2019).
[Crossref]

Qiu, J.

Qiu, M.

L. Cai, K. Du, Y. Qu, H. Luo, M. Pan, M. Qiu, and Q. Li, “Nonvolatile tunable silicon-carbide-based midinfrared thermal emitter enabled by phase-changing materials,” Opt. Lett. 43(6), 1295–1298 (2018).
[Crossref] [PubMed]

Y. Qu, L. Cai, H. Luo, J. Lu, M. Qiu, and Q. Li, “Tunable dual-band thermal emitter consisting of single-sized phase-changing GST nanodisks,” Opt. Express 26(4), 4279–4287 (2018).
[Crossref] [PubMed]

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 83(16), 165107 (2011).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 10–13 (2010).
[Crossref]

Qu, Y.

Quan, X.

Z. Wang, Z. M. Zhang, X. Quan, and P. Cheng, “A perfect absorber design using a natural hyperbolic material for harvesting solar energy,” Sol. Energy 159, 329–336 (2018).
[Crossref]

Raman, A.

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref] [PubMed]

Raman, A. P.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Reinecke, T. L.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Ren, Y.

Y. Ren, Q. Chen, H. Qi, and L. Ruan, “Hot Spot Effect of Optical Nanoantenna to Enhance Localized Photothermal Conversion,” ES Energy Environ. 3, 74–79 (2019).
[Crossref]

Rephaeli, E.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref] [PubMed]

Ritter, M.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref] [PubMed]

Rosengarten, G.

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Ruan, L.

Y. Ren, Q. Chen, H. Qi, and L. Ruan, “Hot Spot Effect of Optical Nanoantenna to Enhance Localized Photothermal Conversion,” ES Energy Environ. 3, 74–79 (2019).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Schalch, J.

J. Schalch, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 61113 (2018).
[Crossref]

Seren, H. R.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Modulated Multiband Terahertz Perfect Absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Shaner, E. A.

Shemelya, C.

C. Shemelya, D. Demeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104(20), 201113 (2014).
[Crossref]

Shih, M.-H.

Shu, S.

Shuai, Y.

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Störmer, M.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref] [PubMed]

Strikwerda, A. C.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Modulated Multiband Terahertz Perfect Absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Tan, H.

Tang, C.

J. Chen, W. Fan, T. Zhang, C. Tang, X. Chen, J. Wu, D. Li, and Y. Yu, “Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing,” Opt. Express 25(4), 3675–3681 (2017).
[Crossref] [PubMed]

J. Chen, W. Fan, P. Mao, C. Tang, Y. Liu, Y. Yu, and L. Zhang, “Tailoring Plasmon Lifetime in Suspended Nanoantenna Arrays for High-Performance Plasmon Sensing,” Plasmonics 12(3), 529–534 (2017).
[Crossref]

J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-Plasmon-Polaritons-Assisted Enhanced Magnetic Response at Optical Frequencies in Metamaterials,” IEEE Photonics J. 8(1), 1–7 (2016).
[Crossref]

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1532 (2016).
[Crossref]

Taubner, T.

T. Wang, P. Li, D. N. Chigrin, A. J. Giles, F. J. Bezares, O. J. Glembocki, J. D. Caldwell, and T. Taubner, “Phonon-Polaritonic Bowtie Nanoantennas: Controlling Infrared Thermal Radiation at the Nanoscale,” ACS Photonics 4(7), 1753–1760 (2017).
[Crossref]

Toprak, A.

Tsai, D. P.

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Vandervelde, T. E.

C. Shemelya, D. Demeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104(20), 201113 (2014).
[Crossref]

Vangala, S.

J. R. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, and J. Guo, “Coupling of Epsilon-Near-Zero Mode to Gap Plasmon Mode for Flat-Top Wideband Perfect Light Absorption,” ACS Photonics 5(3), 776–781 (2018).
[Crossref]

Vurgaftman, I.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Walker, D. E.

J. R. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, and J. Guo, “Coupling of Epsilon-Near-Zero Mode to Gap Plasmon Mode for Flat-Top Wideband Perfect Light Absorption,” ACS Photonics 5(3), 776–781 (2018).
[Crossref]

Wang, C. M.

Wang, H.

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Wang, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 10–13 (2010).
[Crossref]

Wang, L.

D. Liu, L. Wang, Q. Cui, and L. J. Guo, “Planar Metasurfaces Enable High-Efficiency Colored Perovskite Solar Cells,” Adv. Sci. (Weinh.) 5(10), 1800836 (2018).
[Crossref] [PubMed]

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Wang, L. P.

L. P. Wang, S. Basu, and Z. M. Zhang, “Direct Measurement of Thermal Emission From a Fabry–Perot Cavity Resonator,” J. Heat Transfer 134(7), 72701–72709 (2012).
[Crossref]

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 2010–2013 (2012).
[Crossref]

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
[Crossref] [PubMed]

Wang, Q.

J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-Plasmon-Polaritons-Assisted Enhanced Magnetic Response at Optical Frequencies in Metamaterials,” IEEE Photonics J. 8(1), 1–7 (2016).
[Crossref]

Wang, T.

T. Wang, P. Li, D. N. Chigrin, A. J. Giles, F. J. Bezares, O. J. Glembocki, J. D. Caldwell, and T. Taubner, “Phonon-Polaritonic Bowtie Nanoantennas: Controlling Infrared Thermal Radiation at the Nanoscale,” ACS Photonics 4(7), 1753–1760 (2017).
[Crossref]

Wang, Y.

Y. Zheng, Y. Wang, J. Luo, and P. Xu, “Optical Tamm states in photonic structures made of inhomogeneous material,” Opt. Commun. 406, 103–106 (2018).
[Crossref]

A. Huang, X. Zhang, Y. Lou, H. Chen, X. Li, and Y. Wang, “Tailoring thermal radiation with a hybrid metallic–dielectric (Ag/SiO2) filter,” J. Opt. Soc. Am. B 35(2), 251–256 (2018).
[Crossref]

Wang, Z.

Z. Wang, Z. M. Zhang, X. Quan, and P. Cheng, “A perfect absorber design using a natural hyperbolic material for harvesting solar energy,” Sol. Energy 159, 329–336 (2018).
[Crossref]

Ward, C. A.

Wegener, M.

F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 1–4 (2012).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Weng, X.

Woolf, D. N.

Wraback, M.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Modulated Multiband Terahertz Perfect Absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Wu, J.

Wu, X.

C. Shemelya, D. Demeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104(20), 201113 (2014).
[Crossref]

Xie, J.

G. Zhen, P. Zhou, X. Luo, J. Xie, and L. Deng, “Modes Coupling Analysis of Surface Plasmon Polaritons Based Resonance Manipulation in Infrared Metamaterial Absorber,” Sci. Rep. 7(1), 46093 (2017).
[Crossref] [PubMed]

N. Zhang, P. Zhou, D. Cheng, X. Weng, J. Xie, and L. Deng, “Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacing layers,” Opt. Lett. 38(7), 1125–1127 (2013).
[Crossref] [PubMed]

Xu, J.

J. Li, R. Gan, Q. Guo, H. Liu, J. Xu, and F. Yi, “Tailoring optical responses of infrared plasmonic metamaterial absorbers by optical phonons,” Opt. Express 26(13), 16769–16781 (2018).
[Crossref] [PubMed]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Xu, P.

Y. Zheng, Y. Wang, J. Luo, and P. Xu, “Optical Tamm states in photonic structures made of inhomogeneous material,” Opt. Commun. 406, 103–106 (2018).
[Crossref]

Xu, T.

Yang, X.

Yi, F.

Yu, Y.

J. Chen, W. Fan, T. Zhang, C. Tang, X. Chen, J. Wu, D. Li, and Y. Yu, “Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing,” Opt. Express 25(4), 3675–3681 (2017).
[Crossref] [PubMed]

J. Chen, W. Fan, P. Mao, C. Tang, Y. Liu, Y. Yu, and L. Zhang, “Tailoring Plasmon Lifetime in Suspended Nanoantenna Arrays for High-Performance Plasmon Sensing,” Plasmonics 12(3), 529–534 (2017).
[Crossref]

J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-Plasmon-Polaritons-Assisted Enhanced Magnetic Response at Optical Frequencies in Metamaterials,” IEEE Photonics J. 8(1), 1–7 (2016).
[Crossref]

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1532 (2016).
[Crossref]

Yu, Z.

Zhang, B.

Zhang, G.

Zhang, J.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Modulated Multiband Terahertz Perfect Absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Zhang, L.

J. Chen, W. Fan, P. Mao, C. Tang, Y. Liu, Y. Yu, and L. Zhang, “Tailoring Plasmon Lifetime in Suspended Nanoantenna Arrays for High-Performance Plasmon Sensing,” Plasmonics 12(3), 529–534 (2017).
[Crossref]

J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-Plasmon-Polaritons-Assisted Enhanced Magnetic Response at Optical Frequencies in Metamaterials,” IEEE Photonics J. 8(1), 1–7 (2016).
[Crossref]

Zhang, N.

Zhang, T.

J. Chen, W. Fan, T. Zhang, C. Tang, X. Chen, J. Wu, D. Li, and Y. Yu, “Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing,” Opt. Express 25(4), 3675–3681 (2017).
[Crossref] [PubMed]

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1532 (2016).
[Crossref]

Zhang, X.

A. Huang, X. Zhang, Y. Lou, H. Chen, X. Li, and Y. Wang, “Tailoring thermal radiation with a hybrid metallic–dielectric (Ag/SiO2) filter,” J. Opt. Soc. Am. B 35(2), 251–256 (2018).
[Crossref]

J. Schalch, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 61113 (2018).
[Crossref]

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Modulated Multiband Terahertz Perfect Absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Zhang, Z.

Zhang, Z. M.

Z. Wang, Z. M. Zhang, X. Quan, and P. Cheng, “A perfect absorber design using a natural hyperbolic material for harvesting solar energy,” Sol. Energy 159, 329–336 (2018).
[Crossref]

B. Zhao and Z. M. Zhang, “Study of magnetic polaritons in deep gratings for thermal emission control,” J. Quant. Spectrosc. Radiat. Transf. 135, 81–89 (2014).
[Crossref]

L. P. Wang, S. Basu, and Z. M. Zhang, “Direct Measurement of Thermal Emission From a Fabry–Perot Cavity Resonator,” J. Heat Transfer 134(7), 72701–72709 (2012).
[Crossref]

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 2010–2013 (2012).
[Crossref]

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
[Crossref] [PubMed]

Zhao, B.

B. Zhao and Z. M. Zhang, “Study of magnetic polaritons in deep gratings for thermal emission control,” J. Quant. Spectrosc. Radiat. Transf. 135, 81–89 (2014).
[Crossref]

Zhao, X.

J. Schalch, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 61113 (2018).
[Crossref]

Zhao, Y.

Zhen, G.

G. Zhen, P. Zhou, X. Luo, J. Xie, and L. Deng, “Modes Coupling Analysis of Surface Plasmon Polaritons Based Resonance Manipulation in Infrared Metamaterial Absorber,” Sci. Rep. 7(1), 46093 (2017).
[Crossref] [PubMed]

Zheng, Y.

Y. Zheng, Y. Wang, J. Luo, and P. Xu, “Optical Tamm states in photonic structures made of inhomogeneous material,” Opt. Commun. 406, 103–106 (2018).
[Crossref]

Zhou, L.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 83(16), 165107 (2011).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 10–13 (2010).
[Crossref]

Zhou, P.

G. Zhen, P. Zhou, X. Luo, J. Xie, and L. Deng, “Modes Coupling Analysis of Surface Plasmon Polaritons Based Resonance Manipulation in Infrared Metamaterial Absorber,” Sci. Rep. 7(1), 46093 (2017).
[Crossref] [PubMed]

N. Zhang, P. Zhou, D. Cheng, X. Weng, J. Xie, and L. Deng, “Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacing layers,” Opt. Lett. 38(7), 1125–1127 (2013).
[Crossref] [PubMed]

Zhu, L.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

ACS Photonics (2)

T. Wang, P. Li, D. N. Chigrin, A. J. Giles, F. J. Bezares, O. J. Glembocki, J. D. Caldwell, and T. Taubner, “Phonon-Polaritonic Bowtie Nanoantennas: Controlling Infrared Thermal Radiation at the Nanoscale,” ACS Photonics 4(7), 1753–1760 (2017).
[Crossref]

J. R. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, and J. Guo, “Coupling of Epsilon-Near-Zero Mode to Gap Plasmon Mode for Flat-Top Wideband Perfect Light Absorption,” ACS Photonics 5(3), 776–781 (2018).
[Crossref]

Adv. Opt. Mater. (1)

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Modulated Multiband Terahertz Perfect Absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Adv. Sci. (Weinh.) (1)

D. Liu, L. Wang, Q. Cui, and L. J. Guo, “Planar Metasurfaces Enable High-Efficiency Colored Perovskite Solar Cells,” Adv. Sci. (Weinh.) 5(10), 1800836 (2018).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 2010–2013 (2012).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 10–13 (2010).
[Crossref]

J. Schalch, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 61113 (2018).
[Crossref]

F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 1–4 (2012).
[Crossref]

C. Shemelya, D. Demeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104(20), 201113 (2014).
[Crossref]

ES Energy Environ. (1)

Y. Ren, Q. Chen, H. Qi, and L. Ruan, “Hot Spot Effect of Optical Nanoantenna to Enhance Localized Photothermal Conversion,” ES Energy Environ. 3, 74–79 (2019).
[Crossref]

IEEE Photonics J. (1)

J. Chen, C. Tang, P. Mao, C. Peng, D. Gao, Y. Yu, Q. Wang, and L. Zhang, “Surface-Plasmon-Polaritons-Assisted Enhanced Magnetic Response at Optical Frequencies in Metamaterials,” IEEE Photonics J. 8(1), 1–7 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1532 (2016).
[Crossref]

J. Heat Transfer (1)

L. P. Wang, S. Basu, and Z. M. Zhang, “Direct Measurement of Thermal Emission From a Fabry–Perot Cavity Resonator,” J. Heat Transfer 134(7), 72701–72709 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transf. (1)

B. Zhao and Z. M. Zhang, “Study of magnetic polaritons in deep gratings for thermal emission control,” J. Quant. Spectrosc. Radiat. Transf. 135, 81–89 (2014).
[Crossref]

Nano Lett. (4)

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013).
[Crossref] [PubMed]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Nanophotonics (1)

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Nat. Commun. (1)

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref] [PubMed]

Nature (1)

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Opt. Commun. (1)

Y. Zheng, Y. Wang, J. Luo, and P. Xu, “Optical Tamm states in photonic structures made of inhomogeneous material,” Opt. Commun. 406, 103–106 (2018).
[Crossref]

Opt. Express (14)

S. Shu, Z. Li, and Y. Y. Li, “Triple-layer Fabry-Perot absorber with near-perfect absorption in visible and near-infrared regime,” Opt. Express 21(21), 25307–25315 (2013).
[Crossref] [PubMed]

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
[Crossref] [PubMed]

Q. Pan, J. Hong, G. Zhang, Y. Shuai, and H. Tan, “Graphene plasmonics for surface enhancement near-infrared absorptivity,” Opt. Express 25(14), 16400–16408 (2017).
[Crossref] [PubMed]

Y. Zhao and C. Fu, “Multiband selective absorbers made of 1D periodic Ag/SiO_2/Ag core/shell coaxial cylinders horizontally lying on a planar substrate,” Opt. Express 25(8), A208–A222 (2017).
[Crossref] [PubMed]

S. Mader and O. J. F. Martin, “Mechanisms of perfect absorption in nano-composite systems,” Opt. Express 26(21), 27089–27100 (2018).
[Crossref] [PubMed]

J. Chen, W. Fan, T. Zhang, C. Tang, X. Chen, J. Wu, D. Li, and Y. Yu, “Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing,” Opt. Express 25(4), 3675–3681 (2017).
[Crossref] [PubMed]

A. Ghobadi, H. Hajian, M. Gokbayrak, S. A. Dereshgi, A. Toprak, B. Butun, and E. Ozbay, “Visible light nearly perfect absorber: an optimum unit cell arrangement for near absolute polarization insensitivity,” Opt. Express 25(22), 27624–27634 (2017).
[Crossref] [PubMed]

Y. C. Chang, C. M. Wang, M. N. Abbas, M.-H. Shih, and D. P. Tsai, “T-shaped plasmonic array as a narrow-band thermal emitter or biosensor,” Opt. Express 17(16), 13526–13531 (2009).
[Crossref] [PubMed]

R. Feng, W. Ding, L. Liu, L. Chen, J. Qiu, and G. Chen, “Dual-band infrared perfect absorber based on asymmetric T-shaped plasmonic array,” Opt. Express 22(S2), A335–A343 (2014).
[Crossref]

Y. Qu, L. Cai, H. Luo, J. Lu, M. Qiu, and Q. Li, “Tunable dual-band thermal emitter consisting of single-sized phase-changing GST nanodisks,” Opt. Express 26(4), 4279–4287 (2018).
[Crossref] [PubMed]

Y.-B. Chen and F.-C. Chiu, “Trapping mid-infrared rays in a lossy film with the Berreman mode, epsilon near zero mode, and magnetic polaritons,” Opt. Express 21(18), 20771–20785 (2013).
[Crossref] [PubMed]

J. Li, R. Gan, Q. Guo, H. Liu, J. Xu, and F. Yi, “Tailoring optical responses of infrared plasmonic metamaterial absorbers by optical phonons,” Opt. Express 26(13), 16769–16781 (2018).
[Crossref] [PubMed]

R. Feng, J. Qiu, L. Liu, W. Ding, and L. Chen, “Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling,” Opt. Express 22(S7Suppl 7), A1713–A1724 (2014).
[Crossref] [PubMed]

B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I.-C. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19(16), 15221–15228 (2011).
[Crossref] [PubMed]

Opt. Lett. (4)

Opt. Mater. Express (1)

Optica (1)

Phys. Rev. B Condens. Matter Mater. Phys. (1)

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 83(16), 165107 (2011).
[Crossref]

Phys. Rev. Lett. (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Plasmonics (1)

J. Chen, W. Fan, P. Mao, C. Tang, Y. Liu, Y. Yu, and L. Zhang, “Tailoring Plasmon Lifetime in Suspended Nanoantenna Arrays for High-Performance Plasmon Sensing,” Plasmonics 12(3), 529–534 (2017).
[Crossref]

Sci. Rep. (1)

G. Zhen, P. Zhou, X. Luo, J. Xie, and L. Deng, “Modes Coupling Analysis of Surface Plasmon Polaritons Based Resonance Manipulation in Infrared Metamaterial Absorber,” Sci. Rep. 7(1), 46093 (2017).
[Crossref] [PubMed]

Sol. Energy (1)

Z. Wang, Z. M. Zhang, X. Quan, and P. Cheng, “A perfect absorber design using a natural hyperbolic material for harvesting solar energy,” Sol. Energy 159, 329–336 (2018).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of (a) Metal-Insulator-Metal grating and (b) Metal-Insulator Pair-Metal hybrid grating. The geometric parameters are period Λ, Al strip width w, Al strip height h, nondispersive dielectric spacer thickness d, and dispersive dielectric spacer thickness t. The hybrid grating degenerates to a Metal-Insulator-Metal grating when t = 0 μm.
Fig. 2
Fig. 2 Spectral absorptivity for the hybrid grating (red solid line) and the MIM grating (black dashed line) at normal incidence condition.
Fig. 3
Fig. 3 Magnetic field distributions of the MIM grating (left column) and the hybrid grating (right column) at three positions A (λ = 9.835 μm), B (λ = 10.840 μm) and C (λ = 11.525 μm). The black lines sketch the unit cell of the grating structures. The white arrows represent the electric field vectors.
Fig. 4
Fig. 4 Absorptivity contour with varying incident angles for (a) MIM grating and (b) hybrid grating. The dashed horizontal line shows the ENZ wavelength of SiC.
Fig. 5
Fig. 5 Real (red) and imaginary (black) parts of the permittivity of 6H-SiC. The shaded region represents the Reststrahlen band. Symbols represent the role SiC played in the LC circuit model.
Fig. 6
Fig. 6 Schematic of equivalent LC circuit model for (a) MIM grating and (b) - (c) hybrid grating.
Fig. 7
Fig. 7 Absorptivity contours for various geometric parameters: (a) grating period, (b) Al strip width, (c) ZnTe layer thickness and (d) SiC layer thickness at normal incidence using the geometric parameters set in Fig. 1 as the reference case. The white inverted triangles represent the fundamental MPs resonance wavelengths predicted by the LC circuit model.
Fig. 8
Fig. 8 (a) Spectral absorptivity of the 1D hybrid grating and the 2D hybrid grating at TE wave normal incidence condition. (b) Absorptivity contour of the 2D hybrid grating for polarization angle ranging from 0 to 90 degrees. Absorptivity contour of the 2D hybrid grating at (c) TM incidence condition and (d) TE incidence condition with varying incident angles.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε SiC = ε (1+ ω LO 2 ω TO 2 ω LO 2 ω 2 iωγ )
C SiC = c 1 ε SiC w t
L SiC = t c 1 ε 0 ε SiC ω 2
Z hybrid ={ iω( L m + L e ) 1 ω 2 C g ( L m + L e ) + 2( C ZnTe + C SiC ) iω C ZnTe C SiC +iω( L m + L e ) ε SiC >0 iω( L m + L e ) 1 ω 2 C g ( L m + L e ) + 2 iω C ZnTe +iω( L m + L e + L SiC ) ε SiC 0

Metrics