Abstract

The potential for mapping of turbidity in inland and coastal waters using imagery from the PlanetScope (PS) and RapidEye (RE) constellations is evaluated. With >120 PS and 5 RE satellites in orbit these constellations are able to provide metre scale imagery on a daily basis and could significantly enhance high spatial resolution monitoring of turbidity worldwide. The Dark Spectrum Fitting (DSF) atmospheric correction is adapted to the PS and RE imaging systems to retrieve surface reflectances. Due to the large amount of imagery and the limited band sets on these sensors, automated pixel classification is required. This is here performed using a neural network approach, which is able to classify water pixels for clear to moderately turbid waters. Due to the limited band set and sensor performance, some issues remain with classifying extremely turbid waters and cloud shadows based on a spectral approach. Surface reflectance data compares well with in situ measurements from the AERONET-OC network. Turbidity is estimated from the Red, RedEdge (RE only) and NIR bands and is compared with measurements from autonomous stations in the San Francisco Bay area and the coastal waters around the United Kingdom. Good performance is found for Red band derived turbidity from PS data, while the NIR band performance is mediocre, likely due to calibration issues. For RE, all three turbidity products give reasonable results. A high revisit density allows for the mapping of temporal variability in water turbidity using these satellite constellations. Thanks to the RedEdge band on RE, chlorophyll a absorption can be avoided, and perhaps even estimated.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
UV-NIR approach with non-zero water-leaving radiance approximation for atmospheric correction of satellite imagery in inland and coastal zones

Rakesh Kumar Singh, Palanisamy Shanmugam, Xianqiang He, and Thomas Schroeder
Opt. Express 27(16) A1118-A1145 (2019)

Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters

Kevin George Ruddick, Fabrice Ovidio, and Machteld Rijkeboer
Appl. Opt. 39(6) 897-912 (2000)

Atmospheric correction of satellite ocean color imagery using the ultraviolet wavelength for highly turbid waters

Xianqiang He, Yan Bai, Delu Pan, Junwu Tang, and Difeng Wang
Opt. Express 20(18) 20754-20770 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. Booth, R. Miller, B. McKee, and R. Leathers, “Wind-induced bottom sediment resuspension in a microtidal coastal environment,” Cont. Shelf Res. 20, 785–806 (2000).
    [Crossref]
  2. V. Brando, F. Braga, L. Zaggia, C. Giardino, M. Bresciani, E. Matta, D. Bellafiore, C. Ferrarin, F. Maicu, A. Benetazzo, D. Bonaldo, F. Falcieri, A. Coluccelli, A. Russo, and S. Carniel, “High-resolution satellite turbidity and sea surface temperature observations of river plume interactions during a significant flood event,” Ocean. Sci. 11, 909 (2015).
    [Crossref]
  3. R. C. Lathrop, S. R. Carpenter, and L. G. Rudstam, “Water clarity in Lake Mendota since 1900: responses to differing levels of nutrients and herbivory,” Can. J. Fish. Aquatic Sci. 53, 2250–2261 (1996).
    [Crossref]
  4. P. J. Lisi and C. L. Hein, “Eutrophication drives divergent water clarity responses to decadal variation in lake level,” Limnol. Oceanogr. 64, S49–S59 (2019).
    [Crossref]
  5. S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors 8, 4165–4185 (2008).
    [Crossref] [PubMed]
  6. G. Neukermans, K. Ruddick, E. Bernard, D. Ramon, B. Nechad, and P.-Y. Deschamps, “Mapping total suspended matter from geostationary satellites: a feasibility study with SEVIRI in the Southern North Sea,” Opt. Express 17, 14029–14052 (2009).
    [Crossref] [PubMed]
  7. Q. Vanhellemont and K. Ruddick, “Turbid wakes associated with offshore wind turbines observed with Landsat 8,” Remote. Sens. Environ. 145, 105–115 (2014).
    [Crossref]
  8. D. Doxaran, P. Castaing, and S. Lavender, “Monitoring the maximum turbidity zone and detecting fine-scale turbidity features in the Gironde estuary using high spatial resolution satellite sensor (SPOT HRV, Landsat ETM+) data,” Int. J. Remote. Sens. 27, 2303–2321 (2006).
    [Crossref]
  9. A. Ody, D. Doxaran, Q. Vanhellemont, B. Nechad, S. Novoa, G. Many, F. Bourrin, R. Verney, I. Pairaud, and B. Gentili, “Potential of High Spatial and Temporal Ocean Color Satellite Data to Study the Dynamics of Suspended Particles in a Micro-TidalRiver Plume,” Remote. Sens. 8, 245 (2016).
    [Crossref]
  10. C. Kuhn, A. de Matos Valerio, N. Ward, L. Loken, H. O. Sawakuchi, M. Kampel, J. Richey, P. Stadler, J. Crawford, R. Striegl, E. Vermote, N. Pahlevan, and D. Butman, “Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity,” Remote. Sens. Environ. 224, 104–118 (2019).
    [Crossref]
  11. S. Ouillon, P. Douillet, and S. Andréfouët, “Coupling satellite data with in situ measurements and numerical modeling to study fine suspended-sediment transport: a study for the lagoon of New Caledonia,” Coral Reefs 23, 109–122 (2004).
  12. G. Y. El Serafy, M. A. Eleveld, M. Blaas, T. van Kessel, S. G. Aguilar, and H. J. Van der Woerd, “Improving the description of the suspended particulate matter concentrations in the southern North Sea through assimilating remotely sensed data,” Ocean. Sci. J. 46, 179 (2011).
    [Crossref]
  13. X. Yang, Z. Mao, H. Huang, and Q. Zhu, “Using GOCI retrieval data to initialize and validate a sediment transport model for monitoring diurnal variation of SSC in Hangzhou Bay, China,” Water 8, 108 (2016).
    [Crossref]
  14. B. B. Barnes, C. Hu, C. Kovach, and R. N. Silverstein, “Sediment plumes induced by the Port of Miami dredging: Analysis and interpretation using Landsat and MODIS data,” Remote. Sens. Environ. 170, 328–339 (2015).
    [Crossref]
  15. I. Caballero, G. Navarro, and J. Ruiz, “Multi-platform assessment of turbidity plumes during dredging operations in a major estuarine system,” Int. J. Appl. Earth Obs. Geoinformation 68, 31–41 (2018).
    [Crossref]
  16. G. Lacroix, K. Ruddick, Y. Park, N. Gypens, and C. Lancelot, “Validation of the 3D biogeochemical model MIRO&CO with field nutrient and phytoplankton data and MERIS-derived surface chlorophyll a images,” J. Mar. Syst. 64, 66–88 (2007).
    [Crossref]
  17. B. Nechad, K. Ruddick, and G. Neukermans, “Calibration and validation of a generic multisensor algorithm for mapping of turbidity in coastal waters,” in SPIEEurope Remote. Sens., (International Society for Optics and Photonics, 2009), pp.74730H.
  18. R. P. Stumpf and J. R. Pennock, “Calibration of a general optical equation for remote sensing of suspended sediments in a moderately turbid estuary,” J. Geophys. Res. Ocean. 94, 14363–14371 (1989).
    [Crossref]
  19. Q. Vanhellemont and K. Ruddick, “Atmospheric correction of metre-scale optical satellite data for inland and coastal water applications,” Remote. Sens. Environ. 216, 586–597 (2018).
    [Crossref]
  20. Q. Vanhellemont, “Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives,” Remote. Sens. Environ. 225, 175–192 (2019).
    [Crossref]
  21. Q. Vanhellemont and K. Ruddick, “ACOLITE For Sentinel-2: Aquatic Applications of MSI imagery,” in ESA Special Publication SP-740, ESA Living Planet Symposium proceedings, (European Space Agency, 2016).
  22. Team Planet, “Planet application program interface: In space for life on earth,” San Francisco, CA2017, 40 (2017).
  23. B. Aragon, R. Houborg, K. Tu, J. B. Fisher, and M. McCabe, “CubeSats Enable High Spatiotemporal Retrievals of Crop-Water Use for Precision Agriculture,” Remote. Sens. 10, 1867 (2018).
    [Crossref]
  24. S. Cooley, L. Smith, L. Stepan, and J. Mascaro, “Tracking dynamic northern surface water changes with high-frequency planet CubeSat imagery,” Remote. Sens. 9, 1306 (2017).
    [Crossref]
  25. S. W. Cooley, L. C. Smith, J. C. Ryan, L. H. Pitcher, and T. M. Pavelsky, “Arctic-Boreal Lake Dynamics Revealed Using CubeSat Imagery,” Geophys. Res. Lett. 46, 2111–2120 (2019).
    [Crossref]
  26. Planet Ltd., “Planet Imagery Product Specifications,” https://assets.planet.com/docs/combined-imagery-product-spec-final-may-2019.pdf (2019). Accessed: 2019-07-02.
  27. S. Mishra, R. P. Stumpf, and A. Meredith, “Evaluation of RapidEye data for mapping algal blooms in inland waters,” Int. J. Remote. Sens. 40, 2811–2829 (2019).
    [Crossref]
  28. C. M. Isidro, N. McIntyre, A. M. Lechner, and I. Callow, “Quantifying suspended solids in small rivers using satellite data,” Sci. Total. Environ. 634, 1554–1562 (2018).
    [Crossref] [PubMed]
  29. F. J. S. Pereira, C. A. G. Costa, S. Foerster, A. Brosinsky, and J. C. de Araújo, “Estimation of suspended sediment concentration in an intermittent river using multi-temporal high-resolution satellite imagery,” Int. J. Appl. Earth Obs. Geoinformation 79, 153–161 (2019).
    [Crossref]
  30. C. S. Watson, J. S. Kargel, D. Regmi, S. Rupper, J. M. Maurer, and A. Karki, “Shrinkage of Nepal’s Second Largest Lake (Phewa Tal) Due to Watershed Degradation and Increased Sediment Influx,” Remote. Sens. 11, 444 (2019).
    [Crossref]
  31. G. Zibordi, F. Mélin, J.-F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmospheric Ocean. Technol. 26, 1634–1651 (2009).
    [Crossref]
  32. G. Thuillier, M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions,” Sol. Phys. 214, 1–22 (2003).
    [Crossref]
  33. D. Mills, R. Laane, J. Rees, M. R. van der Loeff, J. Suylen, D. Pearce, D. Sivyer, C. Heins, K. Platt, and M. Rawlinson, “Smartbuoy: A marine environmental monitoring buoy with a difference,” in Elsevier Oceanography Series, vol. 69 (Elsevier, 2003), pp. 311–316.
    [Crossref]
  34. G. Neukermans, K. Ruddick, and N. Greenwood, “Diurnal variability of turbidity and light attenuation in the southern North Sea from the SEVIRI geostationary sensor,” Remote. Sens. Environ. 124, 564–580 (2012).
    [Crossref]
  35. Q. Vanhellemont, G. Neukermans, and K. Ruddick, “Synergy between polar-orbiting and geostationary sensors: Remote sensing of the ocean at high spatial and high temporal resolution,” Remote. Sens. Environ. 146, 49–62 (2014).
    [Crossref]
  36. H. R. Gordon, J. W. Brown, and R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 coastal zone color scanner,” Appl. optics 27, 862–871 (1988).
    [Crossref]
  37. F. Chollet, “Keras,” https://keras.io (2015).
  38. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org .

2019 (7)

P. J. Lisi and C. L. Hein, “Eutrophication drives divergent water clarity responses to decadal variation in lake level,” Limnol. Oceanogr. 64, S49–S59 (2019).
[Crossref]

C. Kuhn, A. de Matos Valerio, N. Ward, L. Loken, H. O. Sawakuchi, M. Kampel, J. Richey, P. Stadler, J. Crawford, R. Striegl, E. Vermote, N. Pahlevan, and D. Butman, “Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity,” Remote. Sens. Environ. 224, 104–118 (2019).
[Crossref]

Q. Vanhellemont, “Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives,” Remote. Sens. Environ. 225, 175–192 (2019).
[Crossref]

S. W. Cooley, L. C. Smith, J. C. Ryan, L. H. Pitcher, and T. M. Pavelsky, “Arctic-Boreal Lake Dynamics Revealed Using CubeSat Imagery,” Geophys. Res. Lett. 46, 2111–2120 (2019).
[Crossref]

S. Mishra, R. P. Stumpf, and A. Meredith, “Evaluation of RapidEye data for mapping algal blooms in inland waters,” Int. J. Remote. Sens. 40, 2811–2829 (2019).
[Crossref]

F. J. S. Pereira, C. A. G. Costa, S. Foerster, A. Brosinsky, and J. C. de Araújo, “Estimation of suspended sediment concentration in an intermittent river using multi-temporal high-resolution satellite imagery,” Int. J. Appl. Earth Obs. Geoinformation 79, 153–161 (2019).
[Crossref]

C. S. Watson, J. S. Kargel, D. Regmi, S. Rupper, J. M. Maurer, and A. Karki, “Shrinkage of Nepal’s Second Largest Lake (Phewa Tal) Due to Watershed Degradation and Increased Sediment Influx,” Remote. Sens. 11, 444 (2019).
[Crossref]

2018 (4)

C. M. Isidro, N. McIntyre, A. M. Lechner, and I. Callow, “Quantifying suspended solids in small rivers using satellite data,” Sci. Total. Environ. 634, 1554–1562 (2018).
[Crossref] [PubMed]

B. Aragon, R. Houborg, K. Tu, J. B. Fisher, and M. McCabe, “CubeSats Enable High Spatiotemporal Retrievals of Crop-Water Use for Precision Agriculture,” Remote. Sens. 10, 1867 (2018).
[Crossref]

Q. Vanhellemont and K. Ruddick, “Atmospheric correction of metre-scale optical satellite data for inland and coastal water applications,” Remote. Sens. Environ. 216, 586–597 (2018).
[Crossref]

I. Caballero, G. Navarro, and J. Ruiz, “Multi-platform assessment of turbidity plumes during dredging operations in a major estuarine system,” Int. J. Appl. Earth Obs. Geoinformation 68, 31–41 (2018).
[Crossref]

2017 (1)

S. Cooley, L. Smith, L. Stepan, and J. Mascaro, “Tracking dynamic northern surface water changes with high-frequency planet CubeSat imagery,” Remote. Sens. 9, 1306 (2017).
[Crossref]

2016 (2)

X. Yang, Z. Mao, H. Huang, and Q. Zhu, “Using GOCI retrieval data to initialize and validate a sediment transport model for monitoring diurnal variation of SSC in Hangzhou Bay, China,” Water 8, 108 (2016).
[Crossref]

A. Ody, D. Doxaran, Q. Vanhellemont, B. Nechad, S. Novoa, G. Many, F. Bourrin, R. Verney, I. Pairaud, and B. Gentili, “Potential of High Spatial and Temporal Ocean Color Satellite Data to Study the Dynamics of Suspended Particles in a Micro-TidalRiver Plume,” Remote. Sens. 8, 245 (2016).
[Crossref]

2015 (2)

B. B. Barnes, C. Hu, C. Kovach, and R. N. Silverstein, “Sediment plumes induced by the Port of Miami dredging: Analysis and interpretation using Landsat and MODIS data,” Remote. Sens. Environ. 170, 328–339 (2015).
[Crossref]

V. Brando, F. Braga, L. Zaggia, C. Giardino, M. Bresciani, E. Matta, D. Bellafiore, C. Ferrarin, F. Maicu, A. Benetazzo, D. Bonaldo, F. Falcieri, A. Coluccelli, A. Russo, and S. Carniel, “High-resolution satellite turbidity and sea surface temperature observations of river plume interactions during a significant flood event,” Ocean. Sci. 11, 909 (2015).
[Crossref]

2014 (2)

Q. Vanhellemont and K. Ruddick, “Turbid wakes associated with offshore wind turbines observed with Landsat 8,” Remote. Sens. Environ. 145, 105–115 (2014).
[Crossref]

Q. Vanhellemont, G. Neukermans, and K. Ruddick, “Synergy between polar-orbiting and geostationary sensors: Remote sensing of the ocean at high spatial and high temporal resolution,” Remote. Sens. Environ. 146, 49–62 (2014).
[Crossref]

2012 (1)

G. Neukermans, K. Ruddick, and N. Greenwood, “Diurnal variability of turbidity and light attenuation in the southern North Sea from the SEVIRI geostationary sensor,” Remote. Sens. Environ. 124, 564–580 (2012).
[Crossref]

2011 (1)

G. Y. El Serafy, M. A. Eleveld, M. Blaas, T. van Kessel, S. G. Aguilar, and H. J. Van der Woerd, “Improving the description of the suspended particulate matter concentrations in the southern North Sea through assimilating remotely sensed data,” Ocean. Sci. J. 46, 179 (2011).
[Crossref]

2009 (2)

G. Neukermans, K. Ruddick, E. Bernard, D. Ramon, B. Nechad, and P.-Y. Deschamps, “Mapping total suspended matter from geostationary satellites: a feasibility study with SEVIRI in the Southern North Sea,” Opt. Express 17, 14029–14052 (2009).
[Crossref] [PubMed]

G. Zibordi, F. Mélin, J.-F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmospheric Ocean. Technol. 26, 1634–1651 (2009).
[Crossref]

2008 (1)

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors 8, 4165–4185 (2008).
[Crossref] [PubMed]

2007 (1)

G. Lacroix, K. Ruddick, Y. Park, N. Gypens, and C. Lancelot, “Validation of the 3D biogeochemical model MIRO&CO with field nutrient and phytoplankton data and MERIS-derived surface chlorophyll a images,” J. Mar. Syst. 64, 66–88 (2007).
[Crossref]

2006 (1)

D. Doxaran, P. Castaing, and S. Lavender, “Monitoring the maximum turbidity zone and detecting fine-scale turbidity features in the Gironde estuary using high spatial resolution satellite sensor (SPOT HRV, Landsat ETM+) data,” Int. J. Remote. Sens. 27, 2303–2321 (2006).
[Crossref]

2004 (1)

S. Ouillon, P. Douillet, and S. Andréfouët, “Coupling satellite data with in situ measurements and numerical modeling to study fine suspended-sediment transport: a study for the lagoon of New Caledonia,” Coral Reefs 23, 109–122 (2004).

2003 (1)

G. Thuillier, M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions,” Sol. Phys. 214, 1–22 (2003).
[Crossref]

2000 (1)

J. Booth, R. Miller, B. McKee, and R. Leathers, “Wind-induced bottom sediment resuspension in a microtidal coastal environment,” Cont. Shelf Res. 20, 785–806 (2000).
[Crossref]

1996 (1)

R. C. Lathrop, S. R. Carpenter, and L. G. Rudstam, “Water clarity in Lake Mendota since 1900: responses to differing levels of nutrients and herbivory,” Can. J. Fish. Aquatic Sci. 53, 2250–2261 (1996).
[Crossref]

1989 (1)

R. P. Stumpf and J. R. Pennock, “Calibration of a general optical equation for remote sensing of suspended sediments in a moderately turbid estuary,” J. Geophys. Res. Ocean. 94, 14363–14371 (1989).
[Crossref]

1988 (1)

H. R. Gordon, J. W. Brown, and R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 coastal zone color scanner,” Appl. optics 27, 862–871 (1988).
[Crossref]

Aguilar, S. G.

G. Y. El Serafy, M. A. Eleveld, M. Blaas, T. van Kessel, S. G. Aguilar, and H. J. Van der Woerd, “Improving the description of the suspended particulate matter concentrations in the southern North Sea through assimilating remotely sensed data,” Ocean. Sci. J. 46, 179 (2011).
[Crossref]

Andréfouët, S.

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors 8, 4165–4185 (2008).
[Crossref] [PubMed]

S. Ouillon, P. Douillet, and S. Andréfouët, “Coupling satellite data with in situ measurements and numerical modeling to study fine suspended-sediment transport: a study for the lagoon of New Caledonia,” Coral Reefs 23, 109–122 (2004).

Aragon, B.

B. Aragon, R. Houborg, K. Tu, J. B. Fisher, and M. McCabe, “CubeSats Enable High Spatiotemporal Retrievals of Crop-Water Use for Precision Agriculture,” Remote. Sens. 10, 1867 (2018).
[Crossref]

Barnes, B. B.

B. B. Barnes, C. Hu, C. Kovach, and R. N. Silverstein, “Sediment plumes induced by the Port of Miami dredging: Analysis and interpretation using Landsat and MODIS data,” Remote. Sens. Environ. 170, 328–339 (2015).
[Crossref]

Bellafiore, D.

V. Brando, F. Braga, L. Zaggia, C. Giardino, M. Bresciani, E. Matta, D. Bellafiore, C. Ferrarin, F. Maicu, A. Benetazzo, D. Bonaldo, F. Falcieri, A. Coluccelli, A. Russo, and S. Carniel, “High-resolution satellite turbidity and sea surface temperature observations of river plume interactions during a significant flood event,” Ocean. Sci. 11, 909 (2015).
[Crossref]

Benetazzo, A.

V. Brando, F. Braga, L. Zaggia, C. Giardino, M. Bresciani, E. Matta, D. Bellafiore, C. Ferrarin, F. Maicu, A. Benetazzo, D. Bonaldo, F. Falcieri, A. Coluccelli, A. Russo, and S. Carniel, “High-resolution satellite turbidity and sea surface temperature observations of river plume interactions during a significant flood event,” Ocean. Sci. 11, 909 (2015).
[Crossref]

Bernard, E.

Berthon, J.-F.

G. Zibordi, F. Mélin, J.-F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmospheric Ocean. Technol. 26, 1634–1651 (2009).
[Crossref]

Blaas, M.

G. Y. El Serafy, M. A. Eleveld, M. Blaas, T. van Kessel, S. G. Aguilar, and H. J. Van der Woerd, “Improving the description of the suspended particulate matter concentrations in the southern North Sea through assimilating remotely sensed data,” Ocean. Sci. J. 46, 179 (2011).
[Crossref]

Bonaldo, D.

V. Brando, F. Braga, L. Zaggia, C. Giardino, M. Bresciani, E. Matta, D. Bellafiore, C. Ferrarin, F. Maicu, A. Benetazzo, D. Bonaldo, F. Falcieri, A. Coluccelli, A. Russo, and S. Carniel, “High-resolution satellite turbidity and sea surface temperature observations of river plume interactions during a significant flood event,” Ocean. Sci. 11, 909 (2015).
[Crossref]

Booth, J.

J. Booth, R. Miller, B. McKee, and R. Leathers, “Wind-induced bottom sediment resuspension in a microtidal coastal environment,” Cont. Shelf Res. 20, 785–806 (2000).
[Crossref]

Bourrin, F.

A. Ody, D. Doxaran, Q. Vanhellemont, B. Nechad, S. Novoa, G. Many, F. Bourrin, R. Verney, I. Pairaud, and B. Gentili, “Potential of High Spatial and Temporal Ocean Color Satellite Data to Study the Dynamics of Suspended Particles in a Micro-TidalRiver Plume,” Remote. Sens. 8, 245 (2016).
[Crossref]

Braga, F.

V. Brando, F. Braga, L. Zaggia, C. Giardino, M. Bresciani, E. Matta, D. Bellafiore, C. Ferrarin, F. Maicu, A. Benetazzo, D. Bonaldo, F. Falcieri, A. Coluccelli, A. Russo, and S. Carniel, “High-resolution satellite turbidity and sea surface temperature observations of river plume interactions during a significant flood event,” Ocean. Sci. 11, 909 (2015).
[Crossref]

Brando, V.

V. Brando, F. Braga, L. Zaggia, C. Giardino, M. Bresciani, E. Matta, D. Bellafiore, C. Ferrarin, F. Maicu, A. Benetazzo, D. Bonaldo, F. Falcieri, A. Coluccelli, A. Russo, and S. Carniel, “High-resolution satellite turbidity and sea surface temperature observations of river plume interactions during a significant flood event,” Ocean. Sci. 11, 909 (2015).
[Crossref]

Bresciani, M.

V. Brando, F. Braga, L. Zaggia, C. Giardino, M. Bresciani, E. Matta, D. Bellafiore, C. Ferrarin, F. Maicu, A. Benetazzo, D. Bonaldo, F. Falcieri, A. Coluccelli, A. Russo, and S. Carniel, “High-resolution satellite turbidity and sea surface temperature observations of river plume interactions during a significant flood event,” Ocean. Sci. 11, 909 (2015).
[Crossref]

Brosinsky, A.

F. J. S. Pereira, C. A. G. Costa, S. Foerster, A. Brosinsky, and J. C. de Araújo, “Estimation of suspended sediment concentration in an intermittent river using multi-temporal high-resolution satellite imagery,” Int. J. Appl. Earth Obs. Geoinformation 79, 153–161 (2019).
[Crossref]

Brown, J. W.

H. R. Gordon, J. W. Brown, and R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 coastal zone color scanner,” Appl. optics 27, 862–871 (1988).
[Crossref]

Butman, D.

C. Kuhn, A. de Matos Valerio, N. Ward, L. Loken, H. O. Sawakuchi, M. Kampel, J. Richey, P. Stadler, J. Crawford, R. Striegl, E. Vermote, N. Pahlevan, and D. Butman, “Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity,” Remote. Sens. Environ. 224, 104–118 (2019).
[Crossref]

Caballero, I.

I. Caballero, G. Navarro, and J. Ruiz, “Multi-platform assessment of turbidity plumes during dredging operations in a major estuarine system,” Int. J. Appl. Earth Obs. Geoinformation 68, 31–41 (2018).
[Crossref]

Callow, I.

C. M. Isidro, N. McIntyre, A. M. Lechner, and I. Callow, “Quantifying suspended solids in small rivers using satellite data,” Sci. Total. Environ. 634, 1554–1562 (2018).
[Crossref] [PubMed]

Carniel, S.

V. Brando, F. Braga, L. Zaggia, C. Giardino, M. Bresciani, E. Matta, D. Bellafiore, C. Ferrarin, F. Maicu, A. Benetazzo, D. Bonaldo, F. Falcieri, A. Coluccelli, A. Russo, and S. Carniel, “High-resolution satellite turbidity and sea surface temperature observations of river plume interactions during a significant flood event,” Ocean. Sci. 11, 909 (2015).
[Crossref]

Carpenter, S. R.

R. C. Lathrop, S. R. Carpenter, and L. G. Rudstam, “Water clarity in Lake Mendota since 1900: responses to differing levels of nutrients and herbivory,” Can. J. Fish. Aquatic Sci. 53, 2250–2261 (1996).
[Crossref]

Castaing, P.

D. Doxaran, P. Castaing, and S. Lavender, “Monitoring the maximum turbidity zone and detecting fine-scale turbidity features in the Gironde estuary using high spatial resolution satellite sensor (SPOT HRV, Landsat ETM+) data,” Int. J. Remote. Sens. 27, 2303–2321 (2006).
[Crossref]

Coluccelli, A.

V. Brando, F. Braga, L. Zaggia, C. Giardino, M. Bresciani, E. Matta, D. Bellafiore, C. Ferrarin, F. Maicu, A. Benetazzo, D. Bonaldo, F. Falcieri, A. Coluccelli, A. Russo, and S. Carniel, “High-resolution satellite turbidity and sea surface temperature observations of river plume interactions during a significant flood event,” Ocean. Sci. 11, 909 (2015).
[Crossref]

Cooley, S.

S. Cooley, L. Smith, L. Stepan, and J. Mascaro, “Tracking dynamic northern surface water changes with high-frequency planet CubeSat imagery,” Remote. Sens. 9, 1306 (2017).
[Crossref]

Cooley, S. W.

S. W. Cooley, L. C. Smith, J. C. Ryan, L. H. Pitcher, and T. M. Pavelsky, “Arctic-Boreal Lake Dynamics Revealed Using CubeSat Imagery,” Geophys. Res. Lett. 46, 2111–2120 (2019).
[Crossref]

Costa, C. A. G.

F. J. S. Pereira, C. A. G. Costa, S. Foerster, A. Brosinsky, and J. C. de Araújo, “Estimation of suspended sediment concentration in an intermittent river using multi-temporal high-resolution satellite imagery,” Int. J. Appl. Earth Obs. Geoinformation 79, 153–161 (2019).
[Crossref]

Crawford, J.

C. Kuhn, A. de Matos Valerio, N. Ward, L. Loken, H. O. Sawakuchi, M. Kampel, J. Richey, P. Stadler, J. Crawford, R. Striegl, E. Vermote, N. Pahlevan, and D. Butman, “Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity,” Remote. Sens. Environ. 224, 104–118 (2019).
[Crossref]

D’Alimonte, D.

G. Zibordi, F. Mélin, J.-F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmospheric Ocean. Technol. 26, 1634–1651 (2009).
[Crossref]

de Araújo, J. C.

F. J. S. Pereira, C. A. G. Costa, S. Foerster, A. Brosinsky, and J. C. de Araújo, “Estimation of suspended sediment concentration in an intermittent river using multi-temporal high-resolution satellite imagery,” Int. J. Appl. Earth Obs. Geoinformation 79, 153–161 (2019).
[Crossref]

de Matos Valerio, A.

C. Kuhn, A. de Matos Valerio, N. Ward, L. Loken, H. O. Sawakuchi, M. Kampel, J. Richey, P. Stadler, J. Crawford, R. Striegl, E. Vermote, N. Pahlevan, and D. Butman, “Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity,” Remote. Sens. Environ. 224, 104–118 (2019).
[Crossref]

Deschamps, P.-Y.

Douillet, P.

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors 8, 4165–4185 (2008).
[Crossref] [PubMed]

S. Ouillon, P. Douillet, and S. Andréfouët, “Coupling satellite data with in situ measurements and numerical modeling to study fine suspended-sediment transport: a study for the lagoon of New Caledonia,” Coral Reefs 23, 109–122 (2004).

Doxaran, D.

A. Ody, D. Doxaran, Q. Vanhellemont, B. Nechad, S. Novoa, G. Many, F. Bourrin, R. Verney, I. Pairaud, and B. Gentili, “Potential of High Spatial and Temporal Ocean Color Satellite Data to Study the Dynamics of Suspended Particles in a Micro-TidalRiver Plume,” Remote. Sens. 8, 245 (2016).
[Crossref]

D. Doxaran, P. Castaing, and S. Lavender, “Monitoring the maximum turbidity zone and detecting fine-scale turbidity features in the Gironde estuary using high spatial resolution satellite sensor (SPOT HRV, Landsat ETM+) data,” Int. J. Remote. Sens. 27, 2303–2321 (2006).
[Crossref]

Dupouy, C.

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors 8, 4165–4185 (2008).
[Crossref] [PubMed]

Eleveld, M. A.

G. Y. El Serafy, M. A. Eleveld, M. Blaas, T. van Kessel, S. G. Aguilar, and H. J. Van der Woerd, “Improving the description of the suspended particulate matter concentrations in the southern North Sea through assimilating remotely sensed data,” Ocean. Sci. J. 46, 179 (2011).
[Crossref]

Evans, R. H.

H. R. Gordon, J. W. Brown, and R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 coastal zone color scanner,” Appl. optics 27, 862–871 (1988).
[Crossref]

Fabbri, B. E.

G. Zibordi, F. Mélin, J.-F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmospheric Ocean. Technol. 26, 1634–1651 (2009).
[Crossref]

Falcieri, F.

V. Brando, F. Braga, L. Zaggia, C. Giardino, M. Bresciani, E. Matta, D. Bellafiore, C. Ferrarin, F. Maicu, A. Benetazzo, D. Bonaldo, F. Falcieri, A. Coluccelli, A. Russo, and S. Carniel, “High-resolution satellite turbidity and sea surface temperature observations of river plume interactions during a significant flood event,” Ocean. Sci. 11, 909 (2015).
[Crossref]

Feng, H.

G. Zibordi, F. Mélin, J.-F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmospheric Ocean. Technol. 26, 1634–1651 (2009).
[Crossref]

Ferrarin, C.

V. Brando, F. Braga, L. Zaggia, C. Giardino, M. Bresciani, E. Matta, D. Bellafiore, C. Ferrarin, F. Maicu, A. Benetazzo, D. Bonaldo, F. Falcieri, A. Coluccelli, A. Russo, and S. Carniel, “High-resolution satellite turbidity and sea surface temperature observations of river plume interactions during a significant flood event,” Ocean. Sci. 11, 909 (2015).
[Crossref]

Fisher, J. B.

B. Aragon, R. Houborg, K. Tu, J. B. Fisher, and M. McCabe, “CubeSats Enable High Spatiotemporal Retrievals of Crop-Water Use for Precision Agriculture,” Remote. Sens. 10, 1867 (2018).
[Crossref]

Foerster, S.

F. J. S. Pereira, C. A. G. Costa, S. Foerster, A. Brosinsky, and J. C. de Araújo, “Estimation of suspended sediment concentration in an intermittent river using multi-temporal high-resolution satellite imagery,” Int. J. Appl. Earth Obs. Geoinformation 79, 153–161 (2019).
[Crossref]

Foujols, T.

G. Thuillier, M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions,” Sol. Phys. 214, 1–22 (2003).
[Crossref]

Froidefond, J.-M.

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors 8, 4165–4185 (2008).
[Crossref] [PubMed]

Gentili, B.

A. Ody, D. Doxaran, Q. Vanhellemont, B. Nechad, S. Novoa, G. Many, F. Bourrin, R. Verney, I. Pairaud, and B. Gentili, “Potential of High Spatial and Temporal Ocean Color Satellite Data to Study the Dynamics of Suspended Particles in a Micro-TidalRiver Plume,” Remote. Sens. 8, 245 (2016).
[Crossref]

Giardino, C.

V. Brando, F. Braga, L. Zaggia, C. Giardino, M. Bresciani, E. Matta, D. Bellafiore, C. Ferrarin, F. Maicu, A. Benetazzo, D. Bonaldo, F. Falcieri, A. Coluccelli, A. Russo, and S. Carniel, “High-resolution satellite turbidity and sea surface temperature observations of river plume interactions during a significant flood event,” Ocean. Sci. 11, 909 (2015).
[Crossref]

Giles, D.

G. Zibordi, F. Mélin, J.-F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmospheric Ocean. Technol. 26, 1634–1651 (2009).
[Crossref]

Gillotay, D.

G. Thuillier, M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions,” Sol. Phys. 214, 1–22 (2003).
[Crossref]

Gordon, H. R.

H. R. Gordon, J. W. Brown, and R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 coastal zone color scanner,” Appl. optics 27, 862–871 (1988).
[Crossref]

Greenwood, N.

G. Neukermans, K. Ruddick, and N. Greenwood, “Diurnal variability of turbidity and light attenuation in the southern North Sea from the SEVIRI geostationary sensor,” Remote. Sens. Environ. 124, 564–580 (2012).
[Crossref]

Gypens, N.

G. Lacroix, K. Ruddick, Y. Park, N. Gypens, and C. Lancelot, “Validation of the 3D biogeochemical model MIRO&CO with field nutrient and phytoplankton data and MERIS-derived surface chlorophyll a images,” J. Mar. Syst. 64, 66–88 (2007).
[Crossref]

Hein, C. L.

P. J. Lisi and C. L. Hein, “Eutrophication drives divergent water clarity responses to decadal variation in lake level,” Limnol. Oceanogr. 64, S49–S59 (2019).
[Crossref]

Heins, C.

D. Mills, R. Laane, J. Rees, M. R. van der Loeff, J. Suylen, D. Pearce, D. Sivyer, C. Heins, K. Platt, and M. Rawlinson, “Smartbuoy: A marine environmental monitoring buoy with a difference,” in Elsevier Oceanography Series, vol. 69 (Elsevier, 2003), pp. 311–316.
[Crossref]

Hersé, M.

G. Thuillier, M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions,” Sol. Phys. 214, 1–22 (2003).
[Crossref]

Holben, B.

G. Zibordi, F. Mélin, J.-F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmospheric Ocean. Technol. 26, 1634–1651 (2009).
[Crossref]

Houborg, R.

B. Aragon, R. Houborg, K. Tu, J. B. Fisher, and M. McCabe, “CubeSats Enable High Spatiotemporal Retrievals of Crop-Water Use for Precision Agriculture,” Remote. Sens. 10, 1867 (2018).
[Crossref]

Hu, C.

B. B. Barnes, C. Hu, C. Kovach, and R. N. Silverstein, “Sediment plumes induced by the Port of Miami dredging: Analysis and interpretation using Landsat and MODIS data,” Remote. Sens. Environ. 170, 328–339 (2015).
[Crossref]

Huang, H.

X. Yang, Z. Mao, H. Huang, and Q. Zhu, “Using GOCI retrieval data to initialize and validate a sediment transport model for monitoring diurnal variation of SSC in Hangzhou Bay, China,” Water 8, 108 (2016).
[Crossref]

Isidro, C. M.

C. M. Isidro, N. McIntyre, A. M. Lechner, and I. Callow, “Quantifying suspended solids in small rivers using satellite data,” Sci. Total. Environ. 634, 1554–1562 (2018).
[Crossref] [PubMed]

Kaitala, S.

G. Zibordi, F. Mélin, J.-F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmospheric Ocean. Technol. 26, 1634–1651 (2009).
[Crossref]

Kampel, M.

C. Kuhn, A. de Matos Valerio, N. Ward, L. Loken, H. O. Sawakuchi, M. Kampel, J. Richey, P. Stadler, J. Crawford, R. Striegl, E. Vermote, N. Pahlevan, and D. Butman, “Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity,” Remote. Sens. Environ. 224, 104–118 (2019).
[Crossref]

Kargel, J. S.

C. S. Watson, J. S. Kargel, D. Regmi, S. Rupper, J. M. Maurer, and A. Karki, “Shrinkage of Nepal’s Second Largest Lake (Phewa Tal) Due to Watershed Degradation and Increased Sediment Influx,” Remote. Sens. 11, 444 (2019).
[Crossref]

Karki, A.

C. S. Watson, J. S. Kargel, D. Regmi, S. Rupper, J. M. Maurer, and A. Karki, “Shrinkage of Nepal’s Second Largest Lake (Phewa Tal) Due to Watershed Degradation and Increased Sediment Influx,” Remote. Sens. 11, 444 (2019).
[Crossref]

Kovach, C.

B. B. Barnes, C. Hu, C. Kovach, and R. N. Silverstein, “Sediment plumes induced by the Port of Miami dredging: Analysis and interpretation using Landsat and MODIS data,” Remote. Sens. Environ. 170, 328–339 (2015).
[Crossref]

Kuhn, C.

C. Kuhn, A. de Matos Valerio, N. Ward, L. Loken, H. O. Sawakuchi, M. Kampel, J. Richey, P. Stadler, J. Crawford, R. Striegl, E. Vermote, N. Pahlevan, and D. Butman, “Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity,” Remote. Sens. Environ. 224, 104–118 (2019).
[Crossref]

Laane, R.

D. Mills, R. Laane, J. Rees, M. R. van der Loeff, J. Suylen, D. Pearce, D. Sivyer, C. Heins, K. Platt, and M. Rawlinson, “Smartbuoy: A marine environmental monitoring buoy with a difference,” in Elsevier Oceanography Series, vol. 69 (Elsevier, 2003), pp. 311–316.
[Crossref]

Labs, D.

G. Thuillier, M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions,” Sol. Phys. 214, 1–22 (2003).
[Crossref]

Lacroix, G.

G. Lacroix, K. Ruddick, Y. Park, N. Gypens, and C. Lancelot, “Validation of the 3D biogeochemical model MIRO&CO with field nutrient and phytoplankton data and MERIS-derived surface chlorophyll a images,” J. Mar. Syst. 64, 66–88 (2007).
[Crossref]

Lancelot, C.

G. Lacroix, K. Ruddick, Y. Park, N. Gypens, and C. Lancelot, “Validation of the 3D biogeochemical model MIRO&CO with field nutrient and phytoplankton data and MERIS-derived surface chlorophyll a images,” J. Mar. Syst. 64, 66–88 (2007).
[Crossref]

Lathrop, R. C.

R. C. Lathrop, S. R. Carpenter, and L. G. Rudstam, “Water clarity in Lake Mendota since 1900: responses to differing levels of nutrients and herbivory,” Can. J. Fish. Aquatic Sci. 53, 2250–2261 (1996).
[Crossref]

Lavender, S.

D. Doxaran, P. Castaing, and S. Lavender, “Monitoring the maximum turbidity zone and detecting fine-scale turbidity features in the Gironde estuary using high spatial resolution satellite sensor (SPOT HRV, Landsat ETM+) data,” Int. J. Remote. Sens. 27, 2303–2321 (2006).
[Crossref]

Leathers, R.

J. Booth, R. Miller, B. McKee, and R. Leathers, “Wind-induced bottom sediment resuspension in a microtidal coastal environment,” Cont. Shelf Res. 20, 785–806 (2000).
[Crossref]

Lechner, A. M.

C. M. Isidro, N. McIntyre, A. M. Lechner, and I. Callow, “Quantifying suspended solids in small rivers using satellite data,” Sci. Total. Environ. 634, 1554–1562 (2018).
[Crossref] [PubMed]

Lisi, P. J.

P. J. Lisi and C. L. Hein, “Eutrophication drives divergent water clarity responses to decadal variation in lake level,” Limnol. Oceanogr. 64, S49–S59 (2019).
[Crossref]

Loken, L.

C. Kuhn, A. de Matos Valerio, N. Ward, L. Loken, H. O. Sawakuchi, M. Kampel, J. Richey, P. Stadler, J. Crawford, R. Striegl, E. Vermote, N. Pahlevan, and D. Butman, “Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity,” Remote. Sens. Environ. 224, 104–118 (2019).
[Crossref]

Maicu, F.

V. Brando, F. Braga, L. Zaggia, C. Giardino, M. Bresciani, E. Matta, D. Bellafiore, C. Ferrarin, F. Maicu, A. Benetazzo, D. Bonaldo, F. Falcieri, A. Coluccelli, A. Russo, and S. Carniel, “High-resolution satellite turbidity and sea surface temperature observations of river plume interactions during a significant flood event,” Ocean. Sci. 11, 909 (2015).
[Crossref]

Mandel, H.

G. Thuillier, M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions,” Sol. Phys. 214, 1–22 (2003).
[Crossref]

Many, G.

A. Ody, D. Doxaran, Q. Vanhellemont, B. Nechad, S. Novoa, G. Many, F. Bourrin, R. Verney, I. Pairaud, and B. Gentili, “Potential of High Spatial and Temporal Ocean Color Satellite Data to Study the Dynamics of Suspended Particles in a Micro-TidalRiver Plume,” Remote. Sens. 8, 245 (2016).
[Crossref]

Mao, Z.

X. Yang, Z. Mao, H. Huang, and Q. Zhu, “Using GOCI retrieval data to initialize and validate a sediment transport model for monitoring diurnal variation of SSC in Hangzhou Bay, China,” Water 8, 108 (2016).
[Crossref]

Mascaro, J.

S. Cooley, L. Smith, L. Stepan, and J. Mascaro, “Tracking dynamic northern surface water changes with high-frequency planet CubeSat imagery,” Remote. Sens. 9, 1306 (2017).
[Crossref]

Matta, E.

V. Brando, F. Braga, L. Zaggia, C. Giardino, M. Bresciani, E. Matta, D. Bellafiore, C. Ferrarin, F. Maicu, A. Benetazzo, D. Bonaldo, F. Falcieri, A. Coluccelli, A. Russo, and S. Carniel, “High-resolution satellite turbidity and sea surface temperature observations of river plume interactions during a significant flood event,” Ocean. Sci. 11, 909 (2015).
[Crossref]

Maurer, J. M.

C. S. Watson, J. S. Kargel, D. Regmi, S. Rupper, J. M. Maurer, and A. Karki, “Shrinkage of Nepal’s Second Largest Lake (Phewa Tal) Due to Watershed Degradation and Increased Sediment Influx,” Remote. Sens. 11, 444 (2019).
[Crossref]

McCabe, M.

B. Aragon, R. Houborg, K. Tu, J. B. Fisher, and M. McCabe, “CubeSats Enable High Spatiotemporal Retrievals of Crop-Water Use for Precision Agriculture,” Remote. Sens. 10, 1867 (2018).
[Crossref]

McIntyre, N.

C. M. Isidro, N. McIntyre, A. M. Lechner, and I. Callow, “Quantifying suspended solids in small rivers using satellite data,” Sci. Total. Environ. 634, 1554–1562 (2018).
[Crossref] [PubMed]

McKee, B.

J. Booth, R. Miller, B. McKee, and R. Leathers, “Wind-induced bottom sediment resuspension in a microtidal coastal environment,” Cont. Shelf Res. 20, 785–806 (2000).
[Crossref]

Mélin, F.

G. Zibordi, F. Mélin, J.-F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmospheric Ocean. Technol. 26, 1634–1651 (2009).
[Crossref]

Meredith, A.

S. Mishra, R. P. Stumpf, and A. Meredith, “Evaluation of RapidEye data for mapping algal blooms in inland waters,” Int. J. Remote. Sens. 40, 2811–2829 (2019).
[Crossref]

Miller, R.

J. Booth, R. Miller, B. McKee, and R. Leathers, “Wind-induced bottom sediment resuspension in a microtidal coastal environment,” Cont. Shelf Res. 20, 785–806 (2000).
[Crossref]

Mills, D.

D. Mills, R. Laane, J. Rees, M. R. van der Loeff, J. Suylen, D. Pearce, D. Sivyer, C. Heins, K. Platt, and M. Rawlinson, “Smartbuoy: A marine environmental monitoring buoy with a difference,” in Elsevier Oceanography Series, vol. 69 (Elsevier, 2003), pp. 311–316.
[Crossref]

Mishra, S.

S. Mishra, R. P. Stumpf, and A. Meredith, “Evaluation of RapidEye data for mapping algal blooms in inland waters,” Int. J. Remote. Sens. 40, 2811–2829 (2019).
[Crossref]

Muñoz-Caravaca, A.

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors 8, 4165–4185 (2008).
[Crossref] [PubMed]

Navarro, G.

I. Caballero, G. Navarro, and J. Ruiz, “Multi-platform assessment of turbidity plumes during dredging operations in a major estuarine system,” Int. J. Appl. Earth Obs. Geoinformation 68, 31–41 (2018).
[Crossref]

Nechad, B.

A. Ody, D. Doxaran, Q. Vanhellemont, B. Nechad, S. Novoa, G. Many, F. Bourrin, R. Verney, I. Pairaud, and B. Gentili, “Potential of High Spatial and Temporal Ocean Color Satellite Data to Study the Dynamics of Suspended Particles in a Micro-TidalRiver Plume,” Remote. Sens. 8, 245 (2016).
[Crossref]

G. Neukermans, K. Ruddick, E. Bernard, D. Ramon, B. Nechad, and P.-Y. Deschamps, “Mapping total suspended matter from geostationary satellites: a feasibility study with SEVIRI in the Southern North Sea,” Opt. Express 17, 14029–14052 (2009).
[Crossref] [PubMed]

B. Nechad, K. Ruddick, and G. Neukermans, “Calibration and validation of a generic multisensor algorithm for mapping of turbidity in coastal waters,” in SPIEEurope Remote. Sens., (International Society for Optics and Photonics, 2009), pp.74730H.

Neukermans, G.

Q. Vanhellemont, G. Neukermans, and K. Ruddick, “Synergy between polar-orbiting and geostationary sensors: Remote sensing of the ocean at high spatial and high temporal resolution,” Remote. Sens. Environ. 146, 49–62 (2014).
[Crossref]

G. Neukermans, K. Ruddick, and N. Greenwood, “Diurnal variability of turbidity and light attenuation in the southern North Sea from the SEVIRI geostationary sensor,” Remote. Sens. Environ. 124, 564–580 (2012).
[Crossref]

G. Neukermans, K. Ruddick, E. Bernard, D. Ramon, B. Nechad, and P.-Y. Deschamps, “Mapping total suspended matter from geostationary satellites: a feasibility study with SEVIRI in the Southern North Sea,” Opt. Express 17, 14029–14052 (2009).
[Crossref] [PubMed]

B. Nechad, K. Ruddick, and G. Neukermans, “Calibration and validation of a generic multisensor algorithm for mapping of turbidity in coastal waters,” in SPIEEurope Remote. Sens., (International Society for Optics and Photonics, 2009), pp.74730H.

Neveux, J.

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors 8, 4165–4185 (2008).
[Crossref] [PubMed]

Novoa, S.

A. Ody, D. Doxaran, Q. Vanhellemont, B. Nechad, S. Novoa, G. Many, F. Bourrin, R. Verney, I. Pairaud, and B. Gentili, “Potential of High Spatial and Temporal Ocean Color Satellite Data to Study the Dynamics of Suspended Particles in a Micro-TidalRiver Plume,” Remote. Sens. 8, 245 (2016).
[Crossref]

Ody, A.

A. Ody, D. Doxaran, Q. Vanhellemont, B. Nechad, S. Novoa, G. Many, F. Bourrin, R. Verney, I. Pairaud, and B. Gentili, “Potential of High Spatial and Temporal Ocean Color Satellite Data to Study the Dynamics of Suspended Particles in a Micro-TidalRiver Plume,” Remote. Sens. 8, 245 (2016).
[Crossref]

Ouillon, S.

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors 8, 4165–4185 (2008).
[Crossref] [PubMed]

S. Ouillon, P. Douillet, and S. Andréfouët, “Coupling satellite data with in situ measurements and numerical modeling to study fine suspended-sediment transport: a study for the lagoon of New Caledonia,” Coral Reefs 23, 109–122 (2004).

Pahlevan, N.

C. Kuhn, A. de Matos Valerio, N. Ward, L. Loken, H. O. Sawakuchi, M. Kampel, J. Richey, P. Stadler, J. Crawford, R. Striegl, E. Vermote, N. Pahlevan, and D. Butman, “Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity,” Remote. Sens. Environ. 224, 104–118 (2019).
[Crossref]

Pairaud, I.

A. Ody, D. Doxaran, Q. Vanhellemont, B. Nechad, S. Novoa, G. Many, F. Bourrin, R. Verney, I. Pairaud, and B. Gentili, “Potential of High Spatial and Temporal Ocean Color Satellite Data to Study the Dynamics of Suspended Particles in a Micro-TidalRiver Plume,” Remote. Sens. 8, 245 (2016).
[Crossref]

Park, Y.

G. Lacroix, K. Ruddick, Y. Park, N. Gypens, and C. Lancelot, “Validation of the 3D biogeochemical model MIRO&CO with field nutrient and phytoplankton data and MERIS-derived surface chlorophyll a images,” J. Mar. Syst. 64, 66–88 (2007).
[Crossref]

Pavelsky, T. M.

S. W. Cooley, L. C. Smith, J. C. Ryan, L. H. Pitcher, and T. M. Pavelsky, “Arctic-Boreal Lake Dynamics Revealed Using CubeSat Imagery,” Geophys. Res. Lett. 46, 2111–2120 (2019).
[Crossref]

Pearce, D.

D. Mills, R. Laane, J. Rees, M. R. van der Loeff, J. Suylen, D. Pearce, D. Sivyer, C. Heins, K. Platt, and M. Rawlinson, “Smartbuoy: A marine environmental monitoring buoy with a difference,” in Elsevier Oceanography Series, vol. 69 (Elsevier, 2003), pp. 311–316.
[Crossref]

Peetermans, W.

G. Thuillier, M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions,” Sol. Phys. 214, 1–22 (2003).
[Crossref]

Pennock, J. R.

R. P. Stumpf and J. R. Pennock, “Calibration of a general optical equation for remote sensing of suspended sediments in a moderately turbid estuary,” J. Geophys. Res. Ocean. 94, 14363–14371 (1989).
[Crossref]

Pereira, F. J. S.

F. J. S. Pereira, C. A. G. Costa, S. Foerster, A. Brosinsky, and J. C. de Araújo, “Estimation of suspended sediment concentration in an intermittent river using multi-temporal high-resolution satellite imagery,” Int. J. Appl. Earth Obs. Geoinformation 79, 153–161 (2019).
[Crossref]

Petrenko, A.

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors 8, 4165–4185 (2008).
[Crossref] [PubMed]

Pitcher, L. H.

S. W. Cooley, L. C. Smith, J. C. Ryan, L. H. Pitcher, and T. M. Pavelsky, “Arctic-Boreal Lake Dynamics Revealed Using CubeSat Imagery,” Geophys. Res. Lett. 46, 2111–2120 (2019).
[Crossref]

Platt, K.

D. Mills, R. Laane, J. Rees, M. R. van der Loeff, J. Suylen, D. Pearce, D. Sivyer, C. Heins, K. Platt, and M. Rawlinson, “Smartbuoy: A marine environmental monitoring buoy with a difference,” in Elsevier Oceanography Series, vol. 69 (Elsevier, 2003), pp. 311–316.
[Crossref]

Ramon, D.

Rawlinson, M.

D. Mills, R. Laane, J. Rees, M. R. van der Loeff, J. Suylen, D. Pearce, D. Sivyer, C. Heins, K. Platt, and M. Rawlinson, “Smartbuoy: A marine environmental monitoring buoy with a difference,” in Elsevier Oceanography Series, vol. 69 (Elsevier, 2003), pp. 311–316.
[Crossref]

Rees, J.

D. Mills, R. Laane, J. Rees, M. R. van der Loeff, J. Suylen, D. Pearce, D. Sivyer, C. Heins, K. Platt, and M. Rawlinson, “Smartbuoy: A marine environmental monitoring buoy with a difference,” in Elsevier Oceanography Series, vol. 69 (Elsevier, 2003), pp. 311–316.
[Crossref]

Regmi, D.

C. S. Watson, J. S. Kargel, D. Regmi, S. Rupper, J. M. Maurer, and A. Karki, “Shrinkage of Nepal’s Second Largest Lake (Phewa Tal) Due to Watershed Degradation and Increased Sediment Influx,” Remote. Sens. 11, 444 (2019).
[Crossref]

Richey, J.

C. Kuhn, A. de Matos Valerio, N. Ward, L. Loken, H. O. Sawakuchi, M. Kampel, J. Richey, P. Stadler, J. Crawford, R. Striegl, E. Vermote, N. Pahlevan, and D. Butman, “Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity,” Remote. Sens. Environ. 224, 104–118 (2019).
[Crossref]

Ruddick, K.

Q. Vanhellemont and K. Ruddick, “Atmospheric correction of metre-scale optical satellite data for inland and coastal water applications,” Remote. Sens. Environ. 216, 586–597 (2018).
[Crossref]

Q. Vanhellemont and K. Ruddick, “Turbid wakes associated with offshore wind turbines observed with Landsat 8,” Remote. Sens. Environ. 145, 105–115 (2014).
[Crossref]

Q. Vanhellemont, G. Neukermans, and K. Ruddick, “Synergy between polar-orbiting and geostationary sensors: Remote sensing of the ocean at high spatial and high temporal resolution,” Remote. Sens. Environ. 146, 49–62 (2014).
[Crossref]

G. Neukermans, K. Ruddick, and N. Greenwood, “Diurnal variability of turbidity and light attenuation in the southern North Sea from the SEVIRI geostationary sensor,” Remote. Sens. Environ. 124, 564–580 (2012).
[Crossref]

G. Neukermans, K. Ruddick, E. Bernard, D. Ramon, B. Nechad, and P.-Y. Deschamps, “Mapping total suspended matter from geostationary satellites: a feasibility study with SEVIRI in the Southern North Sea,” Opt. Express 17, 14029–14052 (2009).
[Crossref] [PubMed]

G. Lacroix, K. Ruddick, Y. Park, N. Gypens, and C. Lancelot, “Validation of the 3D biogeochemical model MIRO&CO with field nutrient and phytoplankton data and MERIS-derived surface chlorophyll a images,” J. Mar. Syst. 64, 66–88 (2007).
[Crossref]

B. Nechad, K. Ruddick, and G. Neukermans, “Calibration and validation of a generic multisensor algorithm for mapping of turbidity in coastal waters,” in SPIEEurope Remote. Sens., (International Society for Optics and Photonics, 2009), pp.74730H.

Q. Vanhellemont and K. Ruddick, “ACOLITE For Sentinel-2: Aquatic Applications of MSI imagery,” in ESA Special Publication SP-740, ESA Living Planet Symposium proceedings, (European Space Agency, 2016).

Rudstam, L. G.

R. C. Lathrop, S. R. Carpenter, and L. G. Rudstam, “Water clarity in Lake Mendota since 1900: responses to differing levels of nutrients and herbivory,” Can. J. Fish. Aquatic Sci. 53, 2250–2261 (1996).
[Crossref]

Ruiz, J.

I. Caballero, G. Navarro, and J. Ruiz, “Multi-platform assessment of turbidity plumes during dredging operations in a major estuarine system,” Int. J. Appl. Earth Obs. Geoinformation 68, 31–41 (2018).
[Crossref]

Rupper, S.

C. S. Watson, J. S. Kargel, D. Regmi, S. Rupper, J. M. Maurer, and A. Karki, “Shrinkage of Nepal’s Second Largest Lake (Phewa Tal) Due to Watershed Degradation and Increased Sediment Influx,” Remote. Sens. 11, 444 (2019).
[Crossref]

Russo, A.

V. Brando, F. Braga, L. Zaggia, C. Giardino, M. Bresciani, E. Matta, D. Bellafiore, C. Ferrarin, F. Maicu, A. Benetazzo, D. Bonaldo, F. Falcieri, A. Coluccelli, A. Russo, and S. Carniel, “High-resolution satellite turbidity and sea surface temperature observations of river plume interactions during a significant flood event,” Ocean. Sci. 11, 909 (2015).
[Crossref]

Ryan, J. C.

S. W. Cooley, L. C. Smith, J. C. Ryan, L. H. Pitcher, and T. M. Pavelsky, “Arctic-Boreal Lake Dynamics Revealed Using CubeSat Imagery,” Geophys. Res. Lett. 46, 2111–2120 (2019).
[Crossref]

Sawakuchi, H. O.

C. Kuhn, A. de Matos Valerio, N. Ward, L. Loken, H. O. Sawakuchi, M. Kampel, J. Richey, P. Stadler, J. Crawford, R. Striegl, E. Vermote, N. Pahlevan, and D. Butman, “Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity,” Remote. Sens. Environ. 224, 104–118 (2019).
[Crossref]

Schuster, G.

G. Zibordi, F. Mélin, J.-F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmospheric Ocean. Technol. 26, 1634–1651 (2009).
[Crossref]

Seppälä, J.

G. Zibordi, F. Mélin, J.-F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmospheric Ocean. Technol. 26, 1634–1651 (2009).
[Crossref]

Serafy, G. Y. El

G. Y. El Serafy, M. A. Eleveld, M. Blaas, T. van Kessel, S. G. Aguilar, and H. J. Van der Woerd, “Improving the description of the suspended particulate matter concentrations in the southern North Sea through assimilating remotely sensed data,” Ocean. Sci. J. 46, 179 (2011).
[Crossref]

Silverstein, R. N.

B. B. Barnes, C. Hu, C. Kovach, and R. N. Silverstein, “Sediment plumes induced by the Port of Miami dredging: Analysis and interpretation using Landsat and MODIS data,” Remote. Sens. Environ. 170, 328–339 (2015).
[Crossref]

Simon, P.

G. Thuillier, M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions,” Sol. Phys. 214, 1–22 (2003).
[Crossref]

Sivyer, D.

D. Mills, R. Laane, J. Rees, M. R. van der Loeff, J. Suylen, D. Pearce, D. Sivyer, C. Heins, K. Platt, and M. Rawlinson, “Smartbuoy: A marine environmental monitoring buoy with a difference,” in Elsevier Oceanography Series, vol. 69 (Elsevier, 2003), pp. 311–316.
[Crossref]

Slutsker, I.

G. Zibordi, F. Mélin, J.-F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmospheric Ocean. Technol. 26, 1634–1651 (2009).
[Crossref]

Smith, L.

S. Cooley, L. Smith, L. Stepan, and J. Mascaro, “Tracking dynamic northern surface water changes with high-frequency planet CubeSat imagery,” Remote. Sens. 9, 1306 (2017).
[Crossref]

Smith, L. C.

S. W. Cooley, L. C. Smith, J. C. Ryan, L. H. Pitcher, and T. M. Pavelsky, “Arctic-Boreal Lake Dynamics Revealed Using CubeSat Imagery,” Geophys. Res. Lett. 46, 2111–2120 (2019).
[Crossref]

Stadler, P.

C. Kuhn, A. de Matos Valerio, N. Ward, L. Loken, H. O. Sawakuchi, M. Kampel, J. Richey, P. Stadler, J. Crawford, R. Striegl, E. Vermote, N. Pahlevan, and D. Butman, “Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity,” Remote. Sens. Environ. 224, 104–118 (2019).
[Crossref]

Stepan, L.

S. Cooley, L. Smith, L. Stepan, and J. Mascaro, “Tracking dynamic northern surface water changes with high-frequency planet CubeSat imagery,” Remote. Sens. 9, 1306 (2017).
[Crossref]

Striegl, R.

C. Kuhn, A. de Matos Valerio, N. Ward, L. Loken, H. O. Sawakuchi, M. Kampel, J. Richey, P. Stadler, J. Crawford, R. Striegl, E. Vermote, N. Pahlevan, and D. Butman, “Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity,” Remote. Sens. Environ. 224, 104–118 (2019).
[Crossref]

Stumpf, R. P.

S. Mishra, R. P. Stumpf, and A. Meredith, “Evaluation of RapidEye data for mapping algal blooms in inland waters,” Int. J. Remote. Sens. 40, 2811–2829 (2019).
[Crossref]

R. P. Stumpf and J. R. Pennock, “Calibration of a general optical equation for remote sensing of suspended sediments in a moderately turbid estuary,” J. Geophys. Res. Ocean. 94, 14363–14371 (1989).
[Crossref]

Suylen, J.

D. Mills, R. Laane, J. Rees, M. R. van der Loeff, J. Suylen, D. Pearce, D. Sivyer, C. Heins, K. Platt, and M. Rawlinson, “Smartbuoy: A marine environmental monitoring buoy with a difference,” in Elsevier Oceanography Series, vol. 69 (Elsevier, 2003), pp. 311–316.
[Crossref]

Thuillier, G.

G. Thuillier, M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions,” Sol. Phys. 214, 1–22 (2003).
[Crossref]

Tu, K.

B. Aragon, R. Houborg, K. Tu, J. B. Fisher, and M. McCabe, “CubeSats Enable High Spatiotemporal Retrievals of Crop-Water Use for Precision Agriculture,” Remote. Sens. 10, 1867 (2018).
[Crossref]

van der Loeff, M. R.

D. Mills, R. Laane, J. Rees, M. R. van der Loeff, J. Suylen, D. Pearce, D. Sivyer, C. Heins, K. Platt, and M. Rawlinson, “Smartbuoy: A marine environmental monitoring buoy with a difference,” in Elsevier Oceanography Series, vol. 69 (Elsevier, 2003), pp. 311–316.
[Crossref]

Van der Woerd, H. J.

G. Y. El Serafy, M. A. Eleveld, M. Blaas, T. van Kessel, S. G. Aguilar, and H. J. Van der Woerd, “Improving the description of the suspended particulate matter concentrations in the southern North Sea through assimilating remotely sensed data,” Ocean. Sci. J. 46, 179 (2011).
[Crossref]

van Kessel, T.

G. Y. El Serafy, M. A. Eleveld, M. Blaas, T. van Kessel, S. G. Aguilar, and H. J. Van der Woerd, “Improving the description of the suspended particulate matter concentrations in the southern North Sea through assimilating remotely sensed data,” Ocean. Sci. J. 46, 179 (2011).
[Crossref]

Vandemark, D.

G. Zibordi, F. Mélin, J.-F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmospheric Ocean. Technol. 26, 1634–1651 (2009).
[Crossref]

Vanhellemont, Q.

Q. Vanhellemont, “Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives,” Remote. Sens. Environ. 225, 175–192 (2019).
[Crossref]

Q. Vanhellemont and K. Ruddick, “Atmospheric correction of metre-scale optical satellite data for inland and coastal water applications,” Remote. Sens. Environ. 216, 586–597 (2018).
[Crossref]

A. Ody, D. Doxaran, Q. Vanhellemont, B. Nechad, S. Novoa, G. Many, F. Bourrin, R. Verney, I. Pairaud, and B. Gentili, “Potential of High Spatial and Temporal Ocean Color Satellite Data to Study the Dynamics of Suspended Particles in a Micro-TidalRiver Plume,” Remote. Sens. 8, 245 (2016).
[Crossref]

Q. Vanhellemont and K. Ruddick, “Turbid wakes associated with offshore wind turbines observed with Landsat 8,” Remote. Sens. Environ. 145, 105–115 (2014).
[Crossref]

Q. Vanhellemont, G. Neukermans, and K. Ruddick, “Synergy between polar-orbiting and geostationary sensors: Remote sensing of the ocean at high spatial and high temporal resolution,” Remote. Sens. Environ. 146, 49–62 (2014).
[Crossref]

Q. Vanhellemont and K. Ruddick, “ACOLITE For Sentinel-2: Aquatic Applications of MSI imagery,” in ESA Special Publication SP-740, ESA Living Planet Symposium proceedings, (European Space Agency, 2016).

Vermote, E.

C. Kuhn, A. de Matos Valerio, N. Ward, L. Loken, H. O. Sawakuchi, M. Kampel, J. Richey, P. Stadler, J. Crawford, R. Striegl, E. Vermote, N. Pahlevan, and D. Butman, “Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity,” Remote. Sens. Environ. 224, 104–118 (2019).
[Crossref]

Verney, R.

A. Ody, D. Doxaran, Q. Vanhellemont, B. Nechad, S. Novoa, G. Many, F. Bourrin, R. Verney, I. Pairaud, and B. Gentili, “Potential of High Spatial and Temporal Ocean Color Satellite Data to Study the Dynamics of Suspended Particles in a Micro-TidalRiver Plume,” Remote. Sens. 8, 245 (2016).
[Crossref]

Ward, N.

C. Kuhn, A. de Matos Valerio, N. Ward, L. Loken, H. O. Sawakuchi, M. Kampel, J. Richey, P. Stadler, J. Crawford, R. Striegl, E. Vermote, N. Pahlevan, and D. Butman, “Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity,” Remote. Sens. Environ. 224, 104–118 (2019).
[Crossref]

Watson, C. S.

C. S. Watson, J. S. Kargel, D. Regmi, S. Rupper, J. M. Maurer, and A. Karki, “Shrinkage of Nepal’s Second Largest Lake (Phewa Tal) Due to Watershed Degradation and Increased Sediment Influx,” Remote. Sens. 11, 444 (2019).
[Crossref]

Yang, X.

X. Yang, Z. Mao, H. Huang, and Q. Zhu, “Using GOCI retrieval data to initialize and validate a sediment transport model for monitoring diurnal variation of SSC in Hangzhou Bay, China,” Water 8, 108 (2016).
[Crossref]

Zaggia, L.

V. Brando, F. Braga, L. Zaggia, C. Giardino, M. Bresciani, E. Matta, D. Bellafiore, C. Ferrarin, F. Maicu, A. Benetazzo, D. Bonaldo, F. Falcieri, A. Coluccelli, A. Russo, and S. Carniel, “High-resolution satellite turbidity and sea surface temperature observations of river plume interactions during a significant flood event,” Ocean. Sci. 11, 909 (2015).
[Crossref]

Zhu, Q.

X. Yang, Z. Mao, H. Huang, and Q. Zhu, “Using GOCI retrieval data to initialize and validate a sediment transport model for monitoring diurnal variation of SSC in Hangzhou Bay, China,” Water 8, 108 (2016).
[Crossref]

Zibordi, G.

G. Zibordi, F. Mélin, J.-F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmospheric Ocean. Technol. 26, 1634–1651 (2009).
[Crossref]

Appl. optics (1)

H. R. Gordon, J. W. Brown, and R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 coastal zone color scanner,” Appl. optics 27, 862–871 (1988).
[Crossref]

Can. J. Fish. Aquatic Sci. (1)

R. C. Lathrop, S. R. Carpenter, and L. G. Rudstam, “Water clarity in Lake Mendota since 1900: responses to differing levels of nutrients and herbivory,” Can. J. Fish. Aquatic Sci. 53, 2250–2261 (1996).
[Crossref]

Cont. Shelf Res. (1)

J. Booth, R. Miller, B. McKee, and R. Leathers, “Wind-induced bottom sediment resuspension in a microtidal coastal environment,” Cont. Shelf Res. 20, 785–806 (2000).
[Crossref]

Coral Reefs (1)

S. Ouillon, P. Douillet, and S. Andréfouët, “Coupling satellite data with in situ measurements and numerical modeling to study fine suspended-sediment transport: a study for the lagoon of New Caledonia,” Coral Reefs 23, 109–122 (2004).

Geophys. Res. Lett. (1)

S. W. Cooley, L. C. Smith, J. C. Ryan, L. H. Pitcher, and T. M. Pavelsky, “Arctic-Boreal Lake Dynamics Revealed Using CubeSat Imagery,” Geophys. Res. Lett. 46, 2111–2120 (2019).
[Crossref]

Int. J. Appl. Earth Obs. Geoinformation (2)

F. J. S. Pereira, C. A. G. Costa, S. Foerster, A. Brosinsky, and J. C. de Araújo, “Estimation of suspended sediment concentration in an intermittent river using multi-temporal high-resolution satellite imagery,” Int. J. Appl. Earth Obs. Geoinformation 79, 153–161 (2019).
[Crossref]

I. Caballero, G. Navarro, and J. Ruiz, “Multi-platform assessment of turbidity plumes during dredging operations in a major estuarine system,” Int. J. Appl. Earth Obs. Geoinformation 68, 31–41 (2018).
[Crossref]

Int. J. Remote. Sens. (2)

D. Doxaran, P. Castaing, and S. Lavender, “Monitoring the maximum turbidity zone and detecting fine-scale turbidity features in the Gironde estuary using high spatial resolution satellite sensor (SPOT HRV, Landsat ETM+) data,” Int. J. Remote. Sens. 27, 2303–2321 (2006).
[Crossref]

S. Mishra, R. P. Stumpf, and A. Meredith, “Evaluation of RapidEye data for mapping algal blooms in inland waters,” Int. J. Remote. Sens. 40, 2811–2829 (2019).
[Crossref]

J. Atmospheric Ocean. Technol. (1)

G. Zibordi, F. Mélin, J.-F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmospheric Ocean. Technol. 26, 1634–1651 (2009).
[Crossref]

J. Geophys. Res. Ocean. (1)

R. P. Stumpf and J. R. Pennock, “Calibration of a general optical equation for remote sensing of suspended sediments in a moderately turbid estuary,” J. Geophys. Res. Ocean. 94, 14363–14371 (1989).
[Crossref]

J. Mar. Syst. (1)

G. Lacroix, K. Ruddick, Y. Park, N. Gypens, and C. Lancelot, “Validation of the 3D biogeochemical model MIRO&CO with field nutrient and phytoplankton data and MERIS-derived surface chlorophyll a images,” J. Mar. Syst. 64, 66–88 (2007).
[Crossref]

Limnol. Oceanogr. (1)

P. J. Lisi and C. L. Hein, “Eutrophication drives divergent water clarity responses to decadal variation in lake level,” Limnol. Oceanogr. 64, S49–S59 (2019).
[Crossref]

Ocean. Sci. (1)

V. Brando, F. Braga, L. Zaggia, C. Giardino, M. Bresciani, E. Matta, D. Bellafiore, C. Ferrarin, F. Maicu, A. Benetazzo, D. Bonaldo, F. Falcieri, A. Coluccelli, A. Russo, and S. Carniel, “High-resolution satellite turbidity and sea surface temperature observations of river plume interactions during a significant flood event,” Ocean. Sci. 11, 909 (2015).
[Crossref]

Ocean. Sci. J. (1)

G. Y. El Serafy, M. A. Eleveld, M. Blaas, T. van Kessel, S. G. Aguilar, and H. J. Van der Woerd, “Improving the description of the suspended particulate matter concentrations in the southern North Sea through assimilating remotely sensed data,” Ocean. Sci. J. 46, 179 (2011).
[Crossref]

Opt. Express (1)

Remote. Sens. (4)

A. Ody, D. Doxaran, Q. Vanhellemont, B. Nechad, S. Novoa, G. Many, F. Bourrin, R. Verney, I. Pairaud, and B. Gentili, “Potential of High Spatial and Temporal Ocean Color Satellite Data to Study the Dynamics of Suspended Particles in a Micro-TidalRiver Plume,” Remote. Sens. 8, 245 (2016).
[Crossref]

C. S. Watson, J. S. Kargel, D. Regmi, S. Rupper, J. M. Maurer, and A. Karki, “Shrinkage of Nepal’s Second Largest Lake (Phewa Tal) Due to Watershed Degradation and Increased Sediment Influx,” Remote. Sens. 11, 444 (2019).
[Crossref]

B. Aragon, R. Houborg, K. Tu, J. B. Fisher, and M. McCabe, “CubeSats Enable High Spatiotemporal Retrievals of Crop-Water Use for Precision Agriculture,” Remote. Sens. 10, 1867 (2018).
[Crossref]

S. Cooley, L. Smith, L. Stepan, and J. Mascaro, “Tracking dynamic northern surface water changes with high-frequency planet CubeSat imagery,” Remote. Sens. 9, 1306 (2017).
[Crossref]

Remote. Sens. Environ. (7)

G. Neukermans, K. Ruddick, and N. Greenwood, “Diurnal variability of turbidity and light attenuation in the southern North Sea from the SEVIRI geostationary sensor,” Remote. Sens. Environ. 124, 564–580 (2012).
[Crossref]

Q. Vanhellemont, G. Neukermans, and K. Ruddick, “Synergy between polar-orbiting and geostationary sensors: Remote sensing of the ocean at high spatial and high temporal resolution,” Remote. Sens. Environ. 146, 49–62 (2014).
[Crossref]

B. B. Barnes, C. Hu, C. Kovach, and R. N. Silverstein, “Sediment plumes induced by the Port of Miami dredging: Analysis and interpretation using Landsat and MODIS data,” Remote. Sens. Environ. 170, 328–339 (2015).
[Crossref]

C. Kuhn, A. de Matos Valerio, N. Ward, L. Loken, H. O. Sawakuchi, M. Kampel, J. Richey, P. Stadler, J. Crawford, R. Striegl, E. Vermote, N. Pahlevan, and D. Butman, “Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity,” Remote. Sens. Environ. 224, 104–118 (2019).
[Crossref]

Q. Vanhellemont and K. Ruddick, “Turbid wakes associated with offshore wind turbines observed with Landsat 8,” Remote. Sens. Environ. 145, 105–115 (2014).
[Crossref]

Q. Vanhellemont and K. Ruddick, “Atmospheric correction of metre-scale optical satellite data for inland and coastal water applications,” Remote. Sens. Environ. 216, 586–597 (2018).
[Crossref]

Q. Vanhellemont, “Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives,” Remote. Sens. Environ. 225, 175–192 (2019).
[Crossref]

Sci. Total. Environ. (1)

C. M. Isidro, N. McIntyre, A. M. Lechner, and I. Callow, “Quantifying suspended solids in small rivers using satellite data,” Sci. Total. Environ. 634, 1554–1562 (2018).
[Crossref] [PubMed]

Sensors (1)

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors 8, 4165–4185 (2008).
[Crossref] [PubMed]

Sol. Phys. (1)

G. Thuillier, M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions,” Sol. Phys. 214, 1–22 (2003).
[Crossref]

Water (1)

X. Yang, Z. Mao, H. Huang, and Q. Zhu, “Using GOCI retrieval data to initialize and validate a sediment transport model for monitoring diurnal variation of SSC in Hangzhou Bay, China,” Water 8, 108 (2016).
[Crossref]

Other (7)

B. Nechad, K. Ruddick, and G. Neukermans, “Calibration and validation of a generic multisensor algorithm for mapping of turbidity in coastal waters,” in SPIEEurope Remote. Sens., (International Society for Optics and Photonics, 2009), pp.74730H.

Q. Vanhellemont and K. Ruddick, “ACOLITE For Sentinel-2: Aquatic Applications of MSI imagery,” in ESA Special Publication SP-740, ESA Living Planet Symposium proceedings, (European Space Agency, 2016).

Team Planet, “Planet application program interface: In space for life on earth,” San Francisco, CA2017, 40 (2017).

D. Mills, R. Laane, J. Rees, M. R. van der Loeff, J. Suylen, D. Pearce, D. Sivyer, C. Heins, K. Platt, and M. Rawlinson, “Smartbuoy: A marine environmental monitoring buoy with a difference,” in Elsevier Oceanography Series, vol. 69 (Elsevier, 2003), pp. 311–316.
[Crossref]

F. Chollet, “Keras,” https://keras.io (2015).

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software available from tensorflow.org .

Planet Ltd., “Planet Imagery Product Specifications,” https://assets.planet.com/docs/combined-imagery-product-spec-final-may-2019.pdf (2019). Accessed: 2019-07-02.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1 Relative Spectral Responses for (top) PS 0c, 0e, and 0f and (bottom) RE.
Fig. 2
Fig. 2 A RE-1 image acquired 2018-05-07 over the port of Oostende, Belgium. Top row: ρs RGB composite, ρs 555 nm, bottom row: ρs at 658 and 709 nm. Spectra for the labeled points are given in Fig. 3.
Fig. 3
Fig. 3 Spectra from the three points marked on Fig. 2. P1 and P2 are moderately and highly turbid waters, while P3 shows the Red absorption and Red-Edge peak characteristic of a high chlorophyll a concentration. Vertical errorbars show the standard deviation in a 11x11 pixel box.
Fig. 4
Fig. 4 PS ρs matchups with global AERONET-OC stations (lev15 data). Vertical error bars are the standard deviation within an 11x11 pixel box around the station. The horizontal error bars are the standard deviation for the insitu data in the daylight period containing the satellite overpass. Colours denote the different sites. Note that these points come from 37 different satellite sensors over 11 different validation sites.
Fig. 5
Fig. 5 Same as Fig. 4 but for RE. Note that these points come from 5 different satellite sensors over 13 different validation sites.
Fig. 6
Fig. 6 Selected PS scenes and Red band derived turbidity with final masking applied for a 3x3 km region around Dumbarton Bridge, south San Francisco Bay. Top: low tide, middle: high tide, bottom: flood tide, with turbid wakes associated with the bridge piers. The three structures spanning the Bay from North to South are the Dumbarton road bridge and power lines, the Hetch Hetchy Aquaduct (emerging in the middle of the Bay), and the Dumbarton rail bridge, with the western end partially destroyed.
Fig. 7
Fig. 7 Matchups with the SmartBuoy sites for turbidity derived from the RE Red, RedEdge and NIR bands. Vertical error bars are the standard deviation within an 11x11 pixel box around the station, horizontal error bars the in situ standard deviation in a 6 hour window centred on the overpass time. Colours denote the different sites. The black line is the RMA regression line, the dashed grey line the 1:1 line.
Fig. 8
Fig. 8 Same as Fig. 7 but for the USGS Water Data sites.
Fig. 9
Fig. 9 Same as Fig. 7 but for the PS Red and NIR band derived turbidity.
Fig. 10
Fig. 10 Same as Fig. 8 but for the PS Red and NIR band derived turbidity.
Fig. 11
Fig. 11 Time-series of in situ (solid line), and Red-band derived RE (green dots), and PS (orange dots) turbidity for the SmartBuoy Warp site. The top and bottom plots show an upper boundary for the Y-axis of 175 and 50 FNU.
Fig. 12
Fig. 12 Same as Fig. 11 but for the USGS Rio Vista site.
Fig. 13
Fig. 13 A comparison of near-coincident (within 15 min) PS images over Dumbarton Bridge. The colours denote pixel density in a logarithmic scale.
Fig. 14
Fig. 14 Same as Fig. 13 but for Oostende.
Fig. 15
Fig. 15 The pixel classification applied to a RE-3 scene over Lucinda (2015-05-04). Top row: RGB composite (left), dilated final masking (middle, masked pixels in white). and (right) clear water class >50% (left, blue). Bottom row: non-water class >50% (left, yellow), mixed class >50% (middle, red) and turbid water class >50% (right, purple). Scenes are 3x3 km.
Fig. 16
Fig. 16 Same as Fig. 15 but for a PS (0e20) scene over Zeebrugge MOW1 (2017-04-08). Note the turbid wake of the MOW1 structure in the direction of the flood current.
Fig. 17
Fig. 17 PS RGB composites (left) with the neural net non-water (middle) and turbid water (right) masking for the USGS Water Data sites. From top to bottom: 11185185 - Mallard Island, 11313433 - Jersey Island, 11337190 - Jersey Point, 11455420 - Rio Vista, 11455478 - Decker Island, 11455508 - Van Sickle Island. Scenes are 1.2x1.2 km.

Tables (6)

Tables Icon

Table 1 Locations and Data Ranges for the Turbidity Sites

Tables Icon

Table 2 Coefficients for the Turbidity Algorithm

Tables Icon

Table 3 Summary Statistics for AERONET-OC lev15 Data

Tables Icon

Table 4 Summary Statistics for AERONET-OC lev10 Data

Tables Icon

Table 5 Summary Statistics for the Matchups with USGS Water Data

Tables Icon

Table 6 Summary Statistics for the Matchups with SmartBuoy Data

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ρ w = π L w n F 0
ρ t = π L t d 2 F 0 cos  θ s ,
T = A ρ w 1 ρ w C ,

Metrics