Abstract

We demonstrate a simple, spectrally resolved ocean color remote sensing model to estimate benthic photosynthetically active radiation (bPAR) for the waters of the Great Barrier Reef (GBR), Australia. For coastal marine environments and coral reefs, the underwater light field is critical to ecosystem health, but data on bPAR rarely exist at ecologically relevant spatio-temporal scales. The bPAR model presented here is based on Lambert-Beer’s Law and uses: (i) sea surface values of the downwelling solar irradiance, Es(λ); (ii) high-resolution seafloor bathymetry data; and (iii) spectral estimates of the diffuse attenuation coefficient, Kd(λ), calculated from GBR-specific spectral inherent optical properties (IOPs). We first derive estimates of instantaneous bPAR. Assuming clear skies, these instantaneous values were then used to obtain daily integrated benthic PAR values. Matchup comparisons between concurrent satellite-derived bPAR and in situ values recorded at four optically varying test sites indicated strong agreement, small bias, and low mean absolute error. Overall, the matchup results suggest that our benthic irradiance model was robust to spatial variation in optical properties, typical of complex shallow coastal waters such as the GBR. We demonstrated the bPAR model for a small test region in the central GBR, with the results revealing strong patterns of temporal variability. The model will provide baseline datasets to assess changes in bPAR and its external drivers and may form the basis for a future GBR water-quality index. This model may also be applicable to other coastal waters for which spectral IOP and high-resolution bathymetry data exist.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Approach for identifying optically shallow pixels when processing ocean-color imagery

Lachlan I. W. McKinna and P. Jeremy Werdell
Opt. Express 26(22) A915-A928 (2018)

Development and evaluation of a genetic algorithm-based ocean color inversion model for simultaneously retrieving optical properties and bottom types in coral reef regions

Chih-Hua Chang, Cheng-Chien Liu, Hsiao-Wei Chung, Long-Jeng Lee, and Wen-Chang Yang
Appl. Opt. 53(4) 605-617 (2014)

Rapid estimation of bathymetry from multispectral imagery without in situ bathymetry data

Yongming Liu, Ruru Deng, Yan Qin, Bin Cao, Yeheng Liang, Yingfei Liu, Jianlin Tian, and Shuailei Wang
Appl. Opt. 58(27) 7538-7551 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J.-P. Gattuso, B. Gentili, C. M. Duarte, J. A. Kleypas, J. J. Middelburg, and D. Antoine, “Light availability in the coastal ocean: impact on the distribution of benthic photosynthetic organisms and contribution to primary production,” Biogeosciences Discuss. 3(4), 895–959 (2006).
    [Crossref]
  2. P. J. Ralph, M. J. Durako, S. Enríquez, C. J. Collier, and M. A. Doblin, “Impact of light limitation on seagrasses,” J. Exp. Mar. Biol. Ecol. 350(1-2), 176–193 (2007).
    [Crossref]
  3. C. Collier, M. Waycott, and L. McKenzie, “Light thresholds derived from seagrass loss in the coastal zone of the northern Great Barrier Reef, Australia,” Ecol. Indic. 23, 211–219 (2012).
    [Crossref]
  4. W. C. Dennison, “Effects of light on seagrass photosynthesis, growth and depth distribution,” Aquat. Bot. 27(1), 15–26 (1987).
    [Crossref]
  5. C. Collier, K. Chartrand, C. Honchin, A. Fletcher, and M. Rasheed, “Light thresholds for seagrasses of the GBR: a synthesis and guiding document. Including knowledge gaps and future priorities,” James Cook University (2016).
  6. J. A. Kleypas, J. W. McManus, and L. A. Meñez, “Environmental limits to coral reef development: where do we draw the line?” Am. Zool. 39(1), 146–159 (1999).
    [Crossref]
  7. P. R. Muir, C. C. Wallace, T. Done, and J. D. Aguirre, “Limited scope for latitudinal extension of reef corals,” Science 348(6239), 1135–1138 (2015).
    [Crossref] [PubMed]
  8. K. E. Fabricius, “Factors determining the resilience of coral reefs to eutrophication: a review and conceptual model,” in Coral Reefs: An Ecosystem in Transition, Z. Dubinsky and N. Stambler, eds. (Springer, 2011), pp. 493–505.
  9. T. F. Cooper, S. Uthicke, C. Humphrey, and K. E. Fabricius, “Gradients in water column nutrients, sediment parameters, irradiance and coral reef development in the Whitsunday Region, central Great Barrier Reef,” Estuar. Coast. Shelf Sci. 74(3), 458–470 (2007).
    [Crossref]
  10. D. J. Suggett, L. F. Dong, T. Lawson, E. Lawrenz, L. Torres, and D. J. Smith, “Light availability determines susceptibility of reef building corals to ocean acidification,” Coral Reefs 32(2), 327–337 (2013).
    [Crossref]
  11. N. Vogel, F. W. Meyer, C. Wild, and S. Uthicke, “Decreased light availability can amplify negative impacts of ocean acidification on calcifying coral reef organisms,” Mar. Ecol. Prog. Ser. 521, 49–61 (2015).
    [Crossref]
  12. P. J. Mumby, J. R. M. Chisholm, A. J. Edwards, S. Andrefouet, and J. Jaubert, “Cloudy weather may have saved Society Island reef corals during the 1998 ENSO event,” Mar. Ecol. Prog. Ser. 222, 209–216 (2001).
    [Crossref]
  13. S. M. Leahy, M. J. Kingsford, and C. R. Steinberg, “Do clouds save the Great Barrier Reef? Satellite imagery elucidates the cloud-SST relationship at the local scale,” PLoS One 8(7), e70400 (2013).
    [Crossref] [PubMed]
  14. S. G. Ackleson, “Light in shallow waters: A brief research review,” Limnol. Oceanogr. 48(1part2), 323–328 (2003).
    [Crossref]
  15. R. Frouin, J. McPherson, K. Ueyoshi, and B. A. Franz, “A time series of photosynthetically available radiation at the ocean surface from SeaWiFS and MODIS data,” Proc. SPIE 8525, 852519 (2012).
    [Crossref]
  16. R. Frouin and J. McPherson, “Estimating photosynthetically available radiation at the ocean surface from GOCI data,” Ocean Sci. J. 47(3), 313–321 (2012).
    [Crossref]
  17. K. Anthony, P. V. Ridd, A. R. Orpin, P. Larcombe, and J. Lough, “Temporal variation of light availability in coastal benthic habitats: Effects of clouds, turbidity, and tides,” Limnol. Oceanogr. 49(6), 2201–2211 (2004).
    [Crossref]
  18. P. J. Ralph, M. J. Durako, S. Enríquez, C. J. Collier, and M. A. Doblin, “Impact of light limitation on seagrasses,” J. Exp. Mar. Biol. Ecol. 350(1-2), 176–193 (2007).
    [Crossref]
  19. J. Whinney, R. Jones, A. Duckworth, and P. Ridd, “Continuous in situ monitoring of sediment deposition in shallow benthic environments,” Coral Reefs 36(2), 521–533 (2017).
    [Crossref]
  20. M. M. Slivkoff, “Ocean colour remote sensing of the Great Barrier Reef waters,” PhD Thesis (Curtin University, 2014).
  21. S. Weeks, P. Werdell, B. Schaffelke, M. Canto, Z. Lee, J. Wilding, and G. Feldman, “Satellite-derived photic depth on the Great Barrier Reef: spatio-temporal patterns of water clarity,” Remote Sens. 4(12), 3781–3795 (2012).
    [Crossref]
  22. L. I. W. McKinna, P. R. C. Fearns, S. J. Weeks, J. P. Werdell, M. Reichstetter, B. A. Franz, D. M. Shea, and G. C. Feldman, “A semianalytical ocean color inversion algorithm with explicit water column depth and substrate reflectance parameterization,” J. Geophys. Res. Oceans 120(3), 1741–1770 (2015).
    [Crossref]
  23. V. E. Brando, A. G. Dekker, Y. J. Park, and T. Schroeder, “Adaptive semianalytical inversion of ocean color radiometry in optically complex waters,” Appl. Opt. 51(15), 2808–2833 (2012).
    [Crossref] [PubMed]
  24. P. J. Werdell, L. I. W. McKinna, E. Boss, S. G. Ackleson, S. E. Craig, W. W. Gregg, Z. Lee, S. Maritorena, C. S. Roesler, C. S. Rousseaux, D. Stramski, J. M. Sullivan, M. S. Twardowski, M. Tzortziou, and X. Zhang, “An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing,” Prog. Oceanogr. 160, 186–212 (2018).
    [Crossref] [PubMed]
  25. J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems, 3rd ed (Cambridge University, 2011).
  26. I. S. Robinson, Measuring the Oceans from Space: The Principles and Methods of Satellite Oceanography (Springer-Verlag, 2004).
  27. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).
  28. L. I. W. McKinna and P. J. Werdell, “Approach for identifying optically shallow pixels when processing ocean-color imagery,” Opt. Express 26(22), A915–A928 (2018).
    [Crossref] [PubMed]
  29. R. Beaman, Project 3DGBR: A high-resolution depth model for the Great Barrier Reef and Coral Sea, Marine and Tropical Sciences Research Facility (MTSRF) Project 2.5i.1a, Final Report, Reef and Rainforest Research Centre (2010).
  30. M. Reichstetter, P. Fearns, S. Weeks, L. McKinna, C. Roelfsema, and M. Furnas, “Bottom reflectance in ocean color satellite remote sensing for coral reef environments,” Remote Sens. 7(12), 16756–16777 (2015).
    [Crossref]
  31. Z. Lee, S. Shang, K. Du, J. Wei, and R. Arnone, “Usable solar radiation and its attenuation in the upper water column,” J. Geophys. Res. Oceans 119(2), 1488–1497 (2014).
    [Crossref]
  32. Z. Lee, “KPAR: An optical property associated with ambiguous values,” Hupo Kexue 21(2), 159–164 (2009).
    [Crossref]
  33. C. D. Mobley, J. Werdell, B. Franz, Z. Ahmad, and S. Bailey, Atmospheric correction for satellite ocean color radiometry, in NASA Technical Memorandum 2016–217551, GSFC-E-DAA-TN35509, (NASA Goddard Space Flight Center, 2016).
  34. J. T. O. Kirk, “The Nature and Measurement of the Light Environment in the Ocean,” in Primary Productivity and Biogeochemical Cycles in the Sea, P. G. Falkowski, A. D. Woodhead, and K. Vivirito, (Springer, 1992), pp. 9–29.
  35. K. Baker and R. C. Smith, “Irradiance transmittance through the air/water interface,” Proc. SPIE 1302, 556–565 (1990).
    [Crossref]
  36. R. C. Smith and K. S. Baker, “Analysis of ocean optical data II,” in Ocean Optics VIII (International Society for Optics and Photonics, 1986), pp. 95–108.
  37. Z.-P. Lee, K.-P. Du, and R. Arnone, “A model for the diffuse attenuation coefficient of downwelling irradiance,” J. Geophys. Res. 110(C2), C02016 (2005).
    [Crossref]
  38. R. W. Austin and T. J. Petzold, “The Determination of the Diffuse Attenuation Coefficient of Sea Water Using the Coastal Zone Color Scanner,” in Oceanography from Space, J. F. R. Gower, ed. (Springer, 1981), pp. 239–256.
  39. J. L. Mueller, “SeaWIFS algorithm for the diffuse attenuation coefficient, K(490), using water-leaving radiances at 490 and 555 nm,” in NASA Technical Memorandum 2000–206892, SeaWiFS Postlaunch Techinal Report Series, SeaWIFS Postlaunch Calibration and Validation Analyses, S. B. Hooker and E. R. Firestone (NASA Goddard Space Flight Center, 2000, Volume XI), pp. 24–27.
  40. A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters),” J. Geophys. Res. 93(C9), 10749–10768 (1988).
    [Crossref]
  41. A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
    [Crossref]
  42. Z.-P. Lee, M. Darecki, K. L. Carder, C. O. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. Oceans 110, C02017 (2005).
  43. C. D. Mobley and L. K. Sundman, Hydrolight 5 Ecolight 5 Users' Guide (Sequoia Scientific 2008).
  44. NASA, “SeaDAS,” https://seadas.gsfc.nasa.gov .
  45. Z. Ahmad, B. A. Franz, C. R. McClain, E. J. Kwiatkowska, J. Werdell, E. P. Shettle, and B. N. Holben, “New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans: publisher’s note,” Appl. Opt. 50(5), 626 (2011).
    [Crossref]
  46. D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39(21), 3582–3591 (2000).
    [Crossref] [PubMed]
  47. S. W. Bailey, B. A. Franz, and P. J. Werdell, “Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing,” Opt. Express 18(7), 7521–7527 (2010).
    [Crossref] [PubMed]
  48. P. Rigby, C. R. Steinberg, D. K. Williams, G. Brinkman, R. Brinkman, H. Tonin, and D. Hughes, “Real-time marine observing systems: challenges, benefits and opportunities in Australian coastal waters,” Aust. J. Civ. Eng. 12(1), 83–99 (2014).
    [Crossref]
  49. W. D. Robinson, B. A. Franz, F. S. Patt, S. W. Bailey, and P. J. Werdell, “Masks and flags update,” in NASA Technical Memorandum 2003–206892, SeaWIFS Postlaunch Technical Report Series, Algorithm updates for the fourth SeaWiFS data reprocessing, S. B. Hooker and E. R. Firestone, eds. (NASA Goddard Space Flight Center, 2003, Volume XXII), pp. 34–40.
  50. B. B. Barnes, C. Hu, B. A. Schaeffer, Z. Lee, D. A. Palandro, and J. C. Lehrter, “MODIS-derived spatiotemporal water clarity patterns in optically shallow Florida Keys waters: A new approach to remove bottom contamination,” Remote Sens. Environ. 134, 377–391 (2013).
    [Crossref]
  51. B. N. Seegers, R. P. Stumpf, B. A. Schaeffer, K. A. Loftin, and P. J. Werdell, “Performance metrics for the assessment of satellite data products: an ocean color case study,” Opt. Express 26(6), 7404–7422 (2018).
    [Crossref] [PubMed]
  52. S. W. Bailey and P. J. Werdell, “A multi-sensor approach for the on-orbit validation of ocean color satellite data products,” Remote Sens. Environ. 102(1-2), 12–23 (2006).
    [Crossref]
  53. R. C. Team, “R: A Language and Environment for Statistical Computing” (R Foundation for Statistical Computing, 2017).
  54. P. Legendre, “lmodel2: Model II Regression” (R package version 1.7–3, 2018), https://CRAN.R-project.org/package=lmodel2 .
  55. P. Hutchings, M. Kingsford, and O. Hoegh-Guldberg, The Great Barrier Reef: Biology, Environment and Management (CSIRO Publishing, 2008).
  56. M. J. Devlin, L. W. McKinna, J. G. Alvarez-Romero, C. Petus, B. Abott, P. Harkness, and J. Brodie, “Mapping the pollutants in surface riverine flood plume waters in the Great Barrier Reef, Australia,” Mar. Pollut. Bull. 65(4-9), 224–235 (2012).
    [Crossref] [PubMed]
  57. BOM, Tropical Cyclone Debbie technical report: a comprehensive summary of meteorological and hydrological data associated with Severe Tropical Cyclone Debbie that affected Queensland and New South Wales during March and April 2017 (Department of Natural Resources and Mines, 2018).
  58. K. E. Fabricius, M. Logan, S. J. Weeks, S. E. Lewis, and J. Brodie, “Changes in water clarity in response to river discharges on the Great Barrier Reef continental shelf: 2002–2013,” Estuar. Coast. Shelf Sci. 173, A1–A15 (2016).
    [Crossref]
  59. S. B. Hooker and W. E. Esaias, “An overview of the SeaWiFS Project,” Eos (Wash. D.C.) 74(21), 241–246 (1993).
    [Crossref]
  60. B. B. Barnes, C. Hu, J. P. Cannizzaro, S. E. Craig, P. Hallock, D. L. Jones, J. C. Lehrter, N. Melo, B. A. Schaeffer, and R. Zepp, “Estimation of diffuse attenuation of ultraviolet light in optically shallow Florida Keys waters from MODIS measurements,” Remote Sens. Environ. 140, 519–532 (2014).
    [Crossref]
  61. C. R. McClain, G. C. Feldman, and S. B. Hooker, “An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series,” Deep Sea Res. Part II Top. Stud. Oceanogr. 51(1-3), 5–42 (2004).
    [Crossref]
  62. V. I. Haltrin, “Algorithm and code to calculate specular reflection of light from a wavy water surface,” in Proceedings of the Seventh International Conference on Remote Sensing for Marine and Coastal Environments (2002).
  63. V. I. Haltrin, W. E. McBride, and A. D. Weidemann, “Fresnel reflection by wavy sea surface,” in Proceedings of IEEE International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment (IEEE, 2000), pp. 1863–1865.
    [Crossref]
  64. M. E. Baird, N. Cherukuru, E. Jones, N. Margvelashvili, M. Mongin, K. Oubelkheir, P. J. Ralph, F. Rizwi, B. J. Robson, T. Schroeder, J. Skerratt, A. D. L. Steven, and K. A. Wild-Allen, “Remote-sensing reflectance and true colour produced by a coupled hydrodynamic, optical, sediment, biogeochemical model of the Great Barrier Reef, Australia: comparison with satellite data,” Environ. Model. Softw. 78, 79–96 (2016).
    [Crossref]

2018 (3)

P. J. Werdell, L. I. W. McKinna, E. Boss, S. G. Ackleson, S. E. Craig, W. W. Gregg, Z. Lee, S. Maritorena, C. S. Roesler, C. S. Rousseaux, D. Stramski, J. M. Sullivan, M. S. Twardowski, M. Tzortziou, and X. Zhang, “An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing,” Prog. Oceanogr. 160, 186–212 (2018).
[Crossref] [PubMed]

L. I. W. McKinna and P. J. Werdell, “Approach for identifying optically shallow pixels when processing ocean-color imagery,” Opt. Express 26(22), A915–A928 (2018).
[Crossref] [PubMed]

B. N. Seegers, R. P. Stumpf, B. A. Schaeffer, K. A. Loftin, and P. J. Werdell, “Performance metrics for the assessment of satellite data products: an ocean color case study,” Opt. Express 26(6), 7404–7422 (2018).
[Crossref] [PubMed]

2017 (1)

J. Whinney, R. Jones, A. Duckworth, and P. Ridd, “Continuous in situ monitoring of sediment deposition in shallow benthic environments,” Coral Reefs 36(2), 521–533 (2017).
[Crossref]

2016 (2)

K. E. Fabricius, M. Logan, S. J. Weeks, S. E. Lewis, and J. Brodie, “Changes in water clarity in response to river discharges on the Great Barrier Reef continental shelf: 2002–2013,” Estuar. Coast. Shelf Sci. 173, A1–A15 (2016).
[Crossref]

M. E. Baird, N. Cherukuru, E. Jones, N. Margvelashvili, M. Mongin, K. Oubelkheir, P. J. Ralph, F. Rizwi, B. J. Robson, T. Schroeder, J. Skerratt, A. D. L. Steven, and K. A. Wild-Allen, “Remote-sensing reflectance and true colour produced by a coupled hydrodynamic, optical, sediment, biogeochemical model of the Great Barrier Reef, Australia: comparison with satellite data,” Environ. Model. Softw. 78, 79–96 (2016).
[Crossref]

2015 (4)

N. Vogel, F. W. Meyer, C. Wild, and S. Uthicke, “Decreased light availability can amplify negative impacts of ocean acidification on calcifying coral reef organisms,” Mar. Ecol. Prog. Ser. 521, 49–61 (2015).
[Crossref]

P. R. Muir, C. C. Wallace, T. Done, and J. D. Aguirre, “Limited scope for latitudinal extension of reef corals,” Science 348(6239), 1135–1138 (2015).
[Crossref] [PubMed]

M. Reichstetter, P. Fearns, S. Weeks, L. McKinna, C. Roelfsema, and M. Furnas, “Bottom reflectance in ocean color satellite remote sensing for coral reef environments,” Remote Sens. 7(12), 16756–16777 (2015).
[Crossref]

L. I. W. McKinna, P. R. C. Fearns, S. J. Weeks, J. P. Werdell, M. Reichstetter, B. A. Franz, D. M. Shea, and G. C. Feldman, “A semianalytical ocean color inversion algorithm with explicit water column depth and substrate reflectance parameterization,” J. Geophys. Res. Oceans 120(3), 1741–1770 (2015).
[Crossref]

2014 (3)

Z. Lee, S. Shang, K. Du, J. Wei, and R. Arnone, “Usable solar radiation and its attenuation in the upper water column,” J. Geophys. Res. Oceans 119(2), 1488–1497 (2014).
[Crossref]

P. Rigby, C. R. Steinberg, D. K. Williams, G. Brinkman, R. Brinkman, H. Tonin, and D. Hughes, “Real-time marine observing systems: challenges, benefits and opportunities in Australian coastal waters,” Aust. J. Civ. Eng. 12(1), 83–99 (2014).
[Crossref]

B. B. Barnes, C. Hu, J. P. Cannizzaro, S. E. Craig, P. Hallock, D. L. Jones, J. C. Lehrter, N. Melo, B. A. Schaeffer, and R. Zepp, “Estimation of diffuse attenuation of ultraviolet light in optically shallow Florida Keys waters from MODIS measurements,” Remote Sens. Environ. 140, 519–532 (2014).
[Crossref]

2013 (3)

B. B. Barnes, C. Hu, B. A. Schaeffer, Z. Lee, D. A. Palandro, and J. C. Lehrter, “MODIS-derived spatiotemporal water clarity patterns in optically shallow Florida Keys waters: A new approach to remove bottom contamination,” Remote Sens. Environ. 134, 377–391 (2013).
[Crossref]

D. J. Suggett, L. F. Dong, T. Lawson, E. Lawrenz, L. Torres, and D. J. Smith, “Light availability determines susceptibility of reef building corals to ocean acidification,” Coral Reefs 32(2), 327–337 (2013).
[Crossref]

S. M. Leahy, M. J. Kingsford, and C. R. Steinberg, “Do clouds save the Great Barrier Reef? Satellite imagery elucidates the cloud-SST relationship at the local scale,” PLoS One 8(7), e70400 (2013).
[Crossref] [PubMed]

2012 (6)

S. Weeks, P. Werdell, B. Schaffelke, M. Canto, Z. Lee, J. Wilding, and G. Feldman, “Satellite-derived photic depth on the Great Barrier Reef: spatio-temporal patterns of water clarity,” Remote Sens. 4(12), 3781–3795 (2012).
[Crossref]

R. Frouin, J. McPherson, K. Ueyoshi, and B. A. Franz, “A time series of photosynthetically available radiation at the ocean surface from SeaWiFS and MODIS data,” Proc. SPIE 8525, 852519 (2012).
[Crossref]

R. Frouin and J. McPherson, “Estimating photosynthetically available radiation at the ocean surface from GOCI data,” Ocean Sci. J. 47(3), 313–321 (2012).
[Crossref]

C. Collier, M. Waycott, and L. McKenzie, “Light thresholds derived from seagrass loss in the coastal zone of the northern Great Barrier Reef, Australia,” Ecol. Indic. 23, 211–219 (2012).
[Crossref]

V. E. Brando, A. G. Dekker, Y. J. Park, and T. Schroeder, “Adaptive semianalytical inversion of ocean color radiometry in optically complex waters,” Appl. Opt. 51(15), 2808–2833 (2012).
[Crossref] [PubMed]

M. J. Devlin, L. W. McKinna, J. G. Alvarez-Romero, C. Petus, B. Abott, P. Harkness, and J. Brodie, “Mapping the pollutants in surface riverine flood plume waters in the Great Barrier Reef, Australia,” Mar. Pollut. Bull. 65(4-9), 224–235 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

2009 (1)

Z. Lee, “KPAR: An optical property associated with ambiguous values,” Hupo Kexue 21(2), 159–164 (2009).
[Crossref]

2007 (4)

P. J. Ralph, M. J. Durako, S. Enríquez, C. J. Collier, and M. A. Doblin, “Impact of light limitation on seagrasses,” J. Exp. Mar. Biol. Ecol. 350(1-2), 176–193 (2007).
[Crossref]

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[Crossref]

P. J. Ralph, M. J. Durako, S. Enríquez, C. J. Collier, and M. A. Doblin, “Impact of light limitation on seagrasses,” J. Exp. Mar. Biol. Ecol. 350(1-2), 176–193 (2007).
[Crossref]

T. F. Cooper, S. Uthicke, C. Humphrey, and K. E. Fabricius, “Gradients in water column nutrients, sediment parameters, irradiance and coral reef development in the Whitsunday Region, central Great Barrier Reef,” Estuar. Coast. Shelf Sci. 74(3), 458–470 (2007).
[Crossref]

2006 (2)

J.-P. Gattuso, B. Gentili, C. M. Duarte, J. A. Kleypas, J. J. Middelburg, and D. Antoine, “Light availability in the coastal ocean: impact on the distribution of benthic photosynthetic organisms and contribution to primary production,” Biogeosciences Discuss. 3(4), 895–959 (2006).
[Crossref]

S. W. Bailey and P. J. Werdell, “A multi-sensor approach for the on-orbit validation of ocean color satellite data products,” Remote Sens. Environ. 102(1-2), 12–23 (2006).
[Crossref]

2005 (2)

Z.-P. Lee, M. Darecki, K. L. Carder, C. O. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. Oceans 110, C02017 (2005).

Z.-P. Lee, K.-P. Du, and R. Arnone, “A model for the diffuse attenuation coefficient of downwelling irradiance,” J. Geophys. Res. 110(C2), C02016 (2005).
[Crossref]

2004 (2)

K. Anthony, P. V. Ridd, A. R. Orpin, P. Larcombe, and J. Lough, “Temporal variation of light availability in coastal benthic habitats: Effects of clouds, turbidity, and tides,” Limnol. Oceanogr. 49(6), 2201–2211 (2004).
[Crossref]

C. R. McClain, G. C. Feldman, and S. B. Hooker, “An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series,” Deep Sea Res. Part II Top. Stud. Oceanogr. 51(1-3), 5–42 (2004).
[Crossref]

2003 (1)

S. G. Ackleson, “Light in shallow waters: A brief research review,” Limnol. Oceanogr. 48(1part2), 323–328 (2003).
[Crossref]

2001 (1)

P. J. Mumby, J. R. M. Chisholm, A. J. Edwards, S. Andrefouet, and J. Jaubert, “Cloudy weather may have saved Society Island reef corals during the 1998 ENSO event,” Mar. Ecol. Prog. Ser. 222, 209–216 (2001).
[Crossref]

2000 (1)

1999 (1)

J. A. Kleypas, J. W. McManus, and L. A. Meñez, “Environmental limits to coral reef development: where do we draw the line?” Am. Zool. 39(1), 146–159 (1999).
[Crossref]

1993 (1)

S. B. Hooker and W. E. Esaias, “An overview of the SeaWiFS Project,” Eos (Wash. D.C.) 74(21), 241–246 (1993).
[Crossref]

1990 (1)

K. Baker and R. C. Smith, “Irradiance transmittance through the air/water interface,” Proc. SPIE 1302, 556–565 (1990).
[Crossref]

1988 (1)

A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters),” J. Geophys. Res. 93(C9), 10749–10768 (1988).
[Crossref]

1987 (1)

W. C. Dennison, “Effects of light on seagrass photosynthesis, growth and depth distribution,” Aquat. Bot. 27(1), 15–26 (1987).
[Crossref]

Abott, B.

M. J. Devlin, L. W. McKinna, J. G. Alvarez-Romero, C. Petus, B. Abott, P. Harkness, and J. Brodie, “Mapping the pollutants in surface riverine flood plume waters in the Great Barrier Reef, Australia,” Mar. Pollut. Bull. 65(4-9), 224–235 (2012).
[Crossref] [PubMed]

Ackleson, S. G.

P. J. Werdell, L. I. W. McKinna, E. Boss, S. G. Ackleson, S. E. Craig, W. W. Gregg, Z. Lee, S. Maritorena, C. S. Roesler, C. S. Rousseaux, D. Stramski, J. M. Sullivan, M. S. Twardowski, M. Tzortziou, and X. Zhang, “An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing,” Prog. Oceanogr. 160, 186–212 (2018).
[Crossref] [PubMed]

S. G. Ackleson, “Light in shallow waters: A brief research review,” Limnol. Oceanogr. 48(1part2), 323–328 (2003).
[Crossref]

Aguirre, J. D.

P. R. Muir, C. C. Wallace, T. Done, and J. D. Aguirre, “Limited scope for latitudinal extension of reef corals,” Science 348(6239), 1135–1138 (2015).
[Crossref] [PubMed]

Ahmad, Z.

Alvarez-Romero, J. G.

M. J. Devlin, L. W. McKinna, J. G. Alvarez-Romero, C. Petus, B. Abott, P. Harkness, and J. Brodie, “Mapping the pollutants in surface riverine flood plume waters in the Great Barrier Reef, Australia,” Mar. Pollut. Bull. 65(4-9), 224–235 (2012).
[Crossref] [PubMed]

Andrefouet, S.

P. J. Mumby, J. R. M. Chisholm, A. J. Edwards, S. Andrefouet, and J. Jaubert, “Cloudy weather may have saved Society Island reef corals during the 1998 ENSO event,” Mar. Ecol. Prog. Ser. 222, 209–216 (2001).
[Crossref]

Anthony, K.

K. Anthony, P. V. Ridd, A. R. Orpin, P. Larcombe, and J. Lough, “Temporal variation of light availability in coastal benthic habitats: Effects of clouds, turbidity, and tides,” Limnol. Oceanogr. 49(6), 2201–2211 (2004).
[Crossref]

Antoine, D.

J.-P. Gattuso, B. Gentili, C. M. Duarte, J. A. Kleypas, J. J. Middelburg, and D. Antoine, “Light availability in the coastal ocean: impact on the distribution of benthic photosynthetic organisms and contribution to primary production,” Biogeosciences Discuss. 3(4), 895–959 (2006).
[Crossref]

Arnone, R.

Z. Lee, S. Shang, K. Du, J. Wei, and R. Arnone, “Usable solar radiation and its attenuation in the upper water column,” J. Geophys. Res. Oceans 119(2), 1488–1497 (2014).
[Crossref]

Z.-P. Lee, K.-P. Du, and R. Arnone, “A model for the diffuse attenuation coefficient of downwelling irradiance,” J. Geophys. Res. 110(C2), C02016 (2005).
[Crossref]

Bailey, S. W.

S. W. Bailey, B. A. Franz, and P. J. Werdell, “Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing,” Opt. Express 18(7), 7521–7527 (2010).
[Crossref] [PubMed]

S. W. Bailey and P. J. Werdell, “A multi-sensor approach for the on-orbit validation of ocean color satellite data products,” Remote Sens. Environ. 102(1-2), 12–23 (2006).
[Crossref]

Baird, M. E.

M. E. Baird, N. Cherukuru, E. Jones, N. Margvelashvili, M. Mongin, K. Oubelkheir, P. J. Ralph, F. Rizwi, B. J. Robson, T. Schroeder, J. Skerratt, A. D. L. Steven, and K. A. Wild-Allen, “Remote-sensing reflectance and true colour produced by a coupled hydrodynamic, optical, sediment, biogeochemical model of the Great Barrier Reef, Australia: comparison with satellite data,” Environ. Model. Softw. 78, 79–96 (2016).
[Crossref]

Baker, K.

K. Baker and R. C. Smith, “Irradiance transmittance through the air/water interface,” Proc. SPIE 1302, 556–565 (1990).
[Crossref]

Barnes, B. B.

B. B. Barnes, C. Hu, J. P. Cannizzaro, S. E. Craig, P. Hallock, D. L. Jones, J. C. Lehrter, N. Melo, B. A. Schaeffer, and R. Zepp, “Estimation of diffuse attenuation of ultraviolet light in optically shallow Florida Keys waters from MODIS measurements,” Remote Sens. Environ. 140, 519–532 (2014).
[Crossref]

B. B. Barnes, C. Hu, B. A. Schaeffer, Z. Lee, D. A. Palandro, and J. C. Lehrter, “MODIS-derived spatiotemporal water clarity patterns in optically shallow Florida Keys waters: A new approach to remove bottom contamination,” Remote Sens. Environ. 134, 377–391 (2013).
[Crossref]

Boss, E.

P. J. Werdell, L. I. W. McKinna, E. Boss, S. G. Ackleson, S. E. Craig, W. W. Gregg, Z. Lee, S. Maritorena, C. S. Roesler, C. S. Rousseaux, D. Stramski, J. M. Sullivan, M. S. Twardowski, M. Tzortziou, and X. Zhang, “An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing,” Prog. Oceanogr. 160, 186–212 (2018).
[Crossref] [PubMed]

Brando, V. E.

Brinkman, G.

P. Rigby, C. R. Steinberg, D. K. Williams, G. Brinkman, R. Brinkman, H. Tonin, and D. Hughes, “Real-time marine observing systems: challenges, benefits and opportunities in Australian coastal waters,” Aust. J. Civ. Eng. 12(1), 83–99 (2014).
[Crossref]

Brinkman, R.

P. Rigby, C. R. Steinberg, D. K. Williams, G. Brinkman, R. Brinkman, H. Tonin, and D. Hughes, “Real-time marine observing systems: challenges, benefits and opportunities in Australian coastal waters,” Aust. J. Civ. Eng. 12(1), 83–99 (2014).
[Crossref]

Brodie, J.

K. E. Fabricius, M. Logan, S. J. Weeks, S. E. Lewis, and J. Brodie, “Changes in water clarity in response to river discharges on the Great Barrier Reef continental shelf: 2002–2013,” Estuar. Coast. Shelf Sci. 173, A1–A15 (2016).
[Crossref]

M. J. Devlin, L. W. McKinna, J. G. Alvarez-Romero, C. Petus, B. Abott, P. Harkness, and J. Brodie, “Mapping the pollutants in surface riverine flood plume waters in the Great Barrier Reef, Australia,” Mar. Pollut. Bull. 65(4-9), 224–235 (2012).
[Crossref] [PubMed]

Cannizzaro, J. P.

B. B. Barnes, C. Hu, J. P. Cannizzaro, S. E. Craig, P. Hallock, D. L. Jones, J. C. Lehrter, N. Melo, B. A. Schaeffer, and R. Zepp, “Estimation of diffuse attenuation of ultraviolet light in optically shallow Florida Keys waters from MODIS measurements,” Remote Sens. Environ. 140, 519–532 (2014).
[Crossref]

Canto, M.

S. Weeks, P. Werdell, B. Schaffelke, M. Canto, Z. Lee, J. Wilding, and G. Feldman, “Satellite-derived photic depth on the Great Barrier Reef: spatio-temporal patterns of water clarity,” Remote Sens. 4(12), 3781–3795 (2012).
[Crossref]

Carder, K. L.

Z.-P. Lee, M. Darecki, K. L. Carder, C. O. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. Oceans 110, C02017 (2005).

Cherukuru, N.

M. E. Baird, N. Cherukuru, E. Jones, N. Margvelashvili, M. Mongin, K. Oubelkheir, P. J. Ralph, F. Rizwi, B. J. Robson, T. Schroeder, J. Skerratt, A. D. L. Steven, and K. A. Wild-Allen, “Remote-sensing reflectance and true colour produced by a coupled hydrodynamic, optical, sediment, biogeochemical model of the Great Barrier Reef, Australia: comparison with satellite data,” Environ. Model. Softw. 78, 79–96 (2016).
[Crossref]

Chisholm, J. R. M.

P. J. Mumby, J. R. M. Chisholm, A. J. Edwards, S. Andrefouet, and J. Jaubert, “Cloudy weather may have saved Society Island reef corals during the 1998 ENSO event,” Mar. Ecol. Prog. Ser. 222, 209–216 (2001).
[Crossref]

Collier, C.

C. Collier, M. Waycott, and L. McKenzie, “Light thresholds derived from seagrass loss in the coastal zone of the northern Great Barrier Reef, Australia,” Ecol. Indic. 23, 211–219 (2012).
[Crossref]

Collier, C. J.

P. J. Ralph, M. J. Durako, S. Enríquez, C. J. Collier, and M. A. Doblin, “Impact of light limitation on seagrasses,” J. Exp. Mar. Biol. Ecol. 350(1-2), 176–193 (2007).
[Crossref]

P. J. Ralph, M. J. Durako, S. Enríquez, C. J. Collier, and M. A. Doblin, “Impact of light limitation on seagrasses,” J. Exp. Mar. Biol. Ecol. 350(1-2), 176–193 (2007).
[Crossref]

Cooper, T. F.

T. F. Cooper, S. Uthicke, C. Humphrey, and K. E. Fabricius, “Gradients in water column nutrients, sediment parameters, irradiance and coral reef development in the Whitsunday Region, central Great Barrier Reef,” Estuar. Coast. Shelf Sci. 74(3), 458–470 (2007).
[Crossref]

Craig, S. E.

P. J. Werdell, L. I. W. McKinna, E. Boss, S. G. Ackleson, S. E. Craig, W. W. Gregg, Z. Lee, S. Maritorena, C. S. Roesler, C. S. Rousseaux, D. Stramski, J. M. Sullivan, M. S. Twardowski, M. Tzortziou, and X. Zhang, “An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing,” Prog. Oceanogr. 160, 186–212 (2018).
[Crossref] [PubMed]

B. B. Barnes, C. Hu, J. P. Cannizzaro, S. E. Craig, P. Hallock, D. L. Jones, J. C. Lehrter, N. Melo, B. A. Schaeffer, and R. Zepp, “Estimation of diffuse attenuation of ultraviolet light in optically shallow Florida Keys waters from MODIS measurements,” Remote Sens. Environ. 140, 519–532 (2014).
[Crossref]

Darecki, M.

Z.-P. Lee, M. Darecki, K. L. Carder, C. O. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. Oceans 110, C02017 (2005).

Davis, C. O.

Z.-P. Lee, M. Darecki, K. L. Carder, C. O. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. Oceans 110, C02017 (2005).

Dekker, A. G.

Dennison, W. C.

W. C. Dennison, “Effects of light on seagrass photosynthesis, growth and depth distribution,” Aquat. Bot. 27(1), 15–26 (1987).
[Crossref]

Devlin, M. J.

M. J. Devlin, L. W. McKinna, J. G. Alvarez-Romero, C. Petus, B. Abott, P. Harkness, and J. Brodie, “Mapping the pollutants in surface riverine flood plume waters in the Great Barrier Reef, Australia,” Mar. Pollut. Bull. 65(4-9), 224–235 (2012).
[Crossref] [PubMed]

Doblin, M. A.

P. J. Ralph, M. J. Durako, S. Enríquez, C. J. Collier, and M. A. Doblin, “Impact of light limitation on seagrasses,” J. Exp. Mar. Biol. Ecol. 350(1-2), 176–193 (2007).
[Crossref]

P. J. Ralph, M. J. Durako, S. Enríquez, C. J. Collier, and M. A. Doblin, “Impact of light limitation on seagrasses,” J. Exp. Mar. Biol. Ecol. 350(1-2), 176–193 (2007).
[Crossref]

Done, T.

P. R. Muir, C. C. Wallace, T. Done, and J. D. Aguirre, “Limited scope for latitudinal extension of reef corals,” Science 348(6239), 1135–1138 (2015).
[Crossref] [PubMed]

Dong, L. F.

D. J. Suggett, L. F. Dong, T. Lawson, E. Lawrenz, L. Torres, and D. J. Smith, “Light availability determines susceptibility of reef building corals to ocean acidification,” Coral Reefs 32(2), 327–337 (2013).
[Crossref]

Du, K.

Z. Lee, S. Shang, K. Du, J. Wei, and R. Arnone, “Usable solar radiation and its attenuation in the upper water column,” J. Geophys. Res. Oceans 119(2), 1488–1497 (2014).
[Crossref]

Du, K.-P.

Z.-P. Lee, K.-P. Du, and R. Arnone, “A model for the diffuse attenuation coefficient of downwelling irradiance,” J. Geophys. Res. 110(C2), C02016 (2005).
[Crossref]

Duarte, C. M.

J.-P. Gattuso, B. Gentili, C. M. Duarte, J. A. Kleypas, J. J. Middelburg, and D. Antoine, “Light availability in the coastal ocean: impact on the distribution of benthic photosynthetic organisms and contribution to primary production,” Biogeosciences Discuss. 3(4), 895–959 (2006).
[Crossref]

Duckworth, A.

J. Whinney, R. Jones, A. Duckworth, and P. Ridd, “Continuous in situ monitoring of sediment deposition in shallow benthic environments,” Coral Reefs 36(2), 521–533 (2017).
[Crossref]

Durako, M. J.

P. J. Ralph, M. J. Durako, S. Enríquez, C. J. Collier, and M. A. Doblin, “Impact of light limitation on seagrasses,” J. Exp. Mar. Biol. Ecol. 350(1-2), 176–193 (2007).
[Crossref]

P. J. Ralph, M. J. Durako, S. Enríquez, C. J. Collier, and M. A. Doblin, “Impact of light limitation on seagrasses,” J. Exp. Mar. Biol. Ecol. 350(1-2), 176–193 (2007).
[Crossref]

Edwards, A. J.

P. J. Mumby, J. R. M. Chisholm, A. J. Edwards, S. Andrefouet, and J. Jaubert, “Cloudy weather may have saved Society Island reef corals during the 1998 ENSO event,” Mar. Ecol. Prog. Ser. 222, 209–216 (2001).
[Crossref]

Enríquez, S.

P. J. Ralph, M. J. Durako, S. Enríquez, C. J. Collier, and M. A. Doblin, “Impact of light limitation on seagrasses,” J. Exp. Mar. Biol. Ecol. 350(1-2), 176–193 (2007).
[Crossref]

P. J. Ralph, M. J. Durako, S. Enríquez, C. J. Collier, and M. A. Doblin, “Impact of light limitation on seagrasses,” J. Exp. Mar. Biol. Ecol. 350(1-2), 176–193 (2007).
[Crossref]

Esaias, W. E.

S. B. Hooker and W. E. Esaias, “An overview of the SeaWiFS Project,” Eos (Wash. D.C.) 74(21), 241–246 (1993).
[Crossref]

Fabricius, K. E.

K. E. Fabricius, M. Logan, S. J. Weeks, S. E. Lewis, and J. Brodie, “Changes in water clarity in response to river discharges on the Great Barrier Reef continental shelf: 2002–2013,” Estuar. Coast. Shelf Sci. 173, A1–A15 (2016).
[Crossref]

T. F. Cooper, S. Uthicke, C. Humphrey, and K. E. Fabricius, “Gradients in water column nutrients, sediment parameters, irradiance and coral reef development in the Whitsunday Region, central Great Barrier Reef,” Estuar. Coast. Shelf Sci. 74(3), 458–470 (2007).
[Crossref]

Fearns, P.

M. Reichstetter, P. Fearns, S. Weeks, L. McKinna, C. Roelfsema, and M. Furnas, “Bottom reflectance in ocean color satellite remote sensing for coral reef environments,” Remote Sens. 7(12), 16756–16777 (2015).
[Crossref]

Fearns, P. R. C.

L. I. W. McKinna, P. R. C. Fearns, S. J. Weeks, J. P. Werdell, M. Reichstetter, B. A. Franz, D. M. Shea, and G. C. Feldman, “A semianalytical ocean color inversion algorithm with explicit water column depth and substrate reflectance parameterization,” J. Geophys. Res. Oceans 120(3), 1741–1770 (2015).
[Crossref]

Feldman, G.

S. Weeks, P. Werdell, B. Schaffelke, M. Canto, Z. Lee, J. Wilding, and G. Feldman, “Satellite-derived photic depth on the Great Barrier Reef: spatio-temporal patterns of water clarity,” Remote Sens. 4(12), 3781–3795 (2012).
[Crossref]

Feldman, G. C.

L. I. W. McKinna, P. R. C. Fearns, S. J. Weeks, J. P. Werdell, M. Reichstetter, B. A. Franz, D. M. Shea, and G. C. Feldman, “A semianalytical ocean color inversion algorithm with explicit water column depth and substrate reflectance parameterization,” J. Geophys. Res. Oceans 120(3), 1741–1770 (2015).
[Crossref]

C. R. McClain, G. C. Feldman, and S. B. Hooker, “An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series,” Deep Sea Res. Part II Top. Stud. Oceanogr. 51(1-3), 5–42 (2004).
[Crossref]

Franz, B. A.

L. I. W. McKinna, P. R. C. Fearns, S. J. Weeks, J. P. Werdell, M. Reichstetter, B. A. Franz, D. M. Shea, and G. C. Feldman, “A semianalytical ocean color inversion algorithm with explicit water column depth and substrate reflectance parameterization,” J. Geophys. Res. Oceans 120(3), 1741–1770 (2015).
[Crossref]

R. Frouin, J. McPherson, K. Ueyoshi, and B. A. Franz, “A time series of photosynthetically available radiation at the ocean surface from SeaWiFS and MODIS data,” Proc. SPIE 8525, 852519 (2012).
[Crossref]

Z. Ahmad, B. A. Franz, C. R. McClain, E. J. Kwiatkowska, J. Werdell, E. P. Shettle, and B. N. Holben, “New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans: publisher’s note,” Appl. Opt. 50(5), 626 (2011).
[Crossref]

S. W. Bailey, B. A. Franz, and P. J. Werdell, “Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing,” Opt. Express 18(7), 7521–7527 (2010).
[Crossref] [PubMed]

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[Crossref]

Frouin, R.

R. Frouin and J. McPherson, “Estimating photosynthetically available radiation at the ocean surface from GOCI data,” Ocean Sci. J. 47(3), 313–321 (2012).
[Crossref]

R. Frouin, J. McPherson, K. Ueyoshi, and B. A. Franz, “A time series of photosynthetically available radiation at the ocean surface from SeaWiFS and MODIS data,” Proc. SPIE 8525, 852519 (2012).
[Crossref]

Furnas, M.

M. Reichstetter, P. Fearns, S. Weeks, L. McKinna, C. Roelfsema, and M. Furnas, “Bottom reflectance in ocean color satellite remote sensing for coral reef environments,” Remote Sens. 7(12), 16756–16777 (2015).
[Crossref]

Gattuso, J.-P.

J.-P. Gattuso, B. Gentili, C. M. Duarte, J. A. Kleypas, J. J. Middelburg, and D. Antoine, “Light availability in the coastal ocean: impact on the distribution of benthic photosynthetic organisms and contribution to primary production,” Biogeosciences Discuss. 3(4), 895–959 (2006).
[Crossref]

Gentili, B.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[Crossref]

J.-P. Gattuso, B. Gentili, C. M. Duarte, J. A. Kleypas, J. J. Middelburg, and D. Antoine, “Light availability in the coastal ocean: impact on the distribution of benthic photosynthetic organisms and contribution to primary production,” Biogeosciences Discuss. 3(4), 895–959 (2006).
[Crossref]

Gregg, W. W.

P. J. Werdell, L. I. W. McKinna, E. Boss, S. G. Ackleson, S. E. Craig, W. W. Gregg, Z. Lee, S. Maritorena, C. S. Roesler, C. S. Rousseaux, D. Stramski, J. M. Sullivan, M. S. Twardowski, M. Tzortziou, and X. Zhang, “An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing,” Prog. Oceanogr. 160, 186–212 (2018).
[Crossref] [PubMed]

Hallock, P.

B. B. Barnes, C. Hu, J. P. Cannizzaro, S. E. Craig, P. Hallock, D. L. Jones, J. C. Lehrter, N. Melo, B. A. Schaeffer, and R. Zepp, “Estimation of diffuse attenuation of ultraviolet light in optically shallow Florida Keys waters from MODIS measurements,” Remote Sens. Environ. 140, 519–532 (2014).
[Crossref]

Haltrin, V. I.

V. I. Haltrin, “Algorithm and code to calculate specular reflection of light from a wavy water surface,” in Proceedings of the Seventh International Conference on Remote Sensing for Marine and Coastal Environments (2002).

Harkness, P.

M. J. Devlin, L. W. McKinna, J. G. Alvarez-Romero, C. Petus, B. Abott, P. Harkness, and J. Brodie, “Mapping the pollutants in surface riverine flood plume waters in the Great Barrier Reef, Australia,” Mar. Pollut. Bull. 65(4-9), 224–235 (2012).
[Crossref] [PubMed]

Holben, B. N.

Hooker, S. B.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[Crossref]

C. R. McClain, G. C. Feldman, and S. B. Hooker, “An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series,” Deep Sea Res. Part II Top. Stud. Oceanogr. 51(1-3), 5–42 (2004).
[Crossref]

S. B. Hooker and W. E. Esaias, “An overview of the SeaWiFS Project,” Eos (Wash. D.C.) 74(21), 241–246 (1993).
[Crossref]

Hu, C.

B. B. Barnes, C. Hu, J. P. Cannizzaro, S. E. Craig, P. Hallock, D. L. Jones, J. C. Lehrter, N. Melo, B. A. Schaeffer, and R. Zepp, “Estimation of diffuse attenuation of ultraviolet light in optically shallow Florida Keys waters from MODIS measurements,” Remote Sens. Environ. 140, 519–532 (2014).
[Crossref]

B. B. Barnes, C. Hu, B. A. Schaeffer, Z. Lee, D. A. Palandro, and J. C. Lehrter, “MODIS-derived spatiotemporal water clarity patterns in optically shallow Florida Keys waters: A new approach to remove bottom contamination,” Remote Sens. Environ. 134, 377–391 (2013).
[Crossref]

Hughes, D.

P. Rigby, C. R. Steinberg, D. K. Williams, G. Brinkman, R. Brinkman, H. Tonin, and D. Hughes, “Real-time marine observing systems: challenges, benefits and opportunities in Australian coastal waters,” Aust. J. Civ. Eng. 12(1), 83–99 (2014).
[Crossref]

Humphrey, C.

T. F. Cooper, S. Uthicke, C. Humphrey, and K. E. Fabricius, “Gradients in water column nutrients, sediment parameters, irradiance and coral reef development in the Whitsunday Region, central Great Barrier Reef,” Estuar. Coast. Shelf Sci. 74(3), 458–470 (2007).
[Crossref]

Huot, Y.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[Crossref]

Jaubert, J.

P. J. Mumby, J. R. M. Chisholm, A. J. Edwards, S. Andrefouet, and J. Jaubert, “Cloudy weather may have saved Society Island reef corals during the 1998 ENSO event,” Mar. Ecol. Prog. Ser. 222, 209–216 (2001).
[Crossref]

Jones, D. L.

B. B. Barnes, C. Hu, J. P. Cannizzaro, S. E. Craig, P. Hallock, D. L. Jones, J. C. Lehrter, N. Melo, B. A. Schaeffer, and R. Zepp, “Estimation of diffuse attenuation of ultraviolet light in optically shallow Florida Keys waters from MODIS measurements,” Remote Sens. Environ. 140, 519–532 (2014).
[Crossref]

Jones, E.

M. E. Baird, N. Cherukuru, E. Jones, N. Margvelashvili, M. Mongin, K. Oubelkheir, P. J. Ralph, F. Rizwi, B. J. Robson, T. Schroeder, J. Skerratt, A. D. L. Steven, and K. A. Wild-Allen, “Remote-sensing reflectance and true colour produced by a coupled hydrodynamic, optical, sediment, biogeochemical model of the Great Barrier Reef, Australia: comparison with satellite data,” Environ. Model. Softw. 78, 79–96 (2016).
[Crossref]

Jones, R.

J. Whinney, R. Jones, A. Duckworth, and P. Ridd, “Continuous in situ monitoring of sediment deposition in shallow benthic environments,” Coral Reefs 36(2), 521–533 (2017).
[Crossref]

Kingsford, M. J.

S. M. Leahy, M. J. Kingsford, and C. R. Steinberg, “Do clouds save the Great Barrier Reef? Satellite imagery elucidates the cloud-SST relationship at the local scale,” PLoS One 8(7), e70400 (2013).
[Crossref] [PubMed]

Kleypas, J. A.

J.-P. Gattuso, B. Gentili, C. M. Duarte, J. A. Kleypas, J. J. Middelburg, and D. Antoine, “Light availability in the coastal ocean: impact on the distribution of benthic photosynthetic organisms and contribution to primary production,” Biogeosciences Discuss. 3(4), 895–959 (2006).
[Crossref]

J. A. Kleypas, J. W. McManus, and L. A. Meñez, “Environmental limits to coral reef development: where do we draw the line?” Am. Zool. 39(1), 146–159 (1999).
[Crossref]

Kwiatkowska, E. J.

Larcombe, P.

K. Anthony, P. V. Ridd, A. R. Orpin, P. Larcombe, and J. Lough, “Temporal variation of light availability in coastal benthic habitats: Effects of clouds, turbidity, and tides,” Limnol. Oceanogr. 49(6), 2201–2211 (2004).
[Crossref]

Lawrenz, E.

D. J. Suggett, L. F. Dong, T. Lawson, E. Lawrenz, L. Torres, and D. J. Smith, “Light availability determines susceptibility of reef building corals to ocean acidification,” Coral Reefs 32(2), 327–337 (2013).
[Crossref]

Lawson, T.

D. J. Suggett, L. F. Dong, T. Lawson, E. Lawrenz, L. Torres, and D. J. Smith, “Light availability determines susceptibility of reef building corals to ocean acidification,” Coral Reefs 32(2), 327–337 (2013).
[Crossref]

Leahy, S. M.

S. M. Leahy, M. J. Kingsford, and C. R. Steinberg, “Do clouds save the Great Barrier Reef? Satellite imagery elucidates the cloud-SST relationship at the local scale,” PLoS One 8(7), e70400 (2013).
[Crossref] [PubMed]

Lee, Z.

P. J. Werdell, L. I. W. McKinna, E. Boss, S. G. Ackleson, S. E. Craig, W. W. Gregg, Z. Lee, S. Maritorena, C. S. Roesler, C. S. Rousseaux, D. Stramski, J. M. Sullivan, M. S. Twardowski, M. Tzortziou, and X. Zhang, “An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing,” Prog. Oceanogr. 160, 186–212 (2018).
[Crossref] [PubMed]

Z. Lee, S. Shang, K. Du, J. Wei, and R. Arnone, “Usable solar radiation and its attenuation in the upper water column,” J. Geophys. Res. Oceans 119(2), 1488–1497 (2014).
[Crossref]

B. B. Barnes, C. Hu, B. A. Schaeffer, Z. Lee, D. A. Palandro, and J. C. Lehrter, “MODIS-derived spatiotemporal water clarity patterns in optically shallow Florida Keys waters: A new approach to remove bottom contamination,” Remote Sens. Environ. 134, 377–391 (2013).
[Crossref]

S. Weeks, P. Werdell, B. Schaffelke, M. Canto, Z. Lee, J. Wilding, and G. Feldman, “Satellite-derived photic depth on the Great Barrier Reef: spatio-temporal patterns of water clarity,” Remote Sens. 4(12), 3781–3795 (2012).
[Crossref]

Z. Lee, “KPAR: An optical property associated with ambiguous values,” Hupo Kexue 21(2), 159–164 (2009).
[Crossref]

Lee, Z.-P.

Z.-P. Lee, M. Darecki, K. L. Carder, C. O. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. Oceans 110, C02017 (2005).

Z.-P. Lee, K.-P. Du, and R. Arnone, “A model for the diffuse attenuation coefficient of downwelling irradiance,” J. Geophys. Res. 110(C2), C02016 (2005).
[Crossref]

Lehrter, J. C.

B. B. Barnes, C. Hu, J. P. Cannizzaro, S. E. Craig, P. Hallock, D. L. Jones, J. C. Lehrter, N. Melo, B. A. Schaeffer, and R. Zepp, “Estimation of diffuse attenuation of ultraviolet light in optically shallow Florida Keys waters from MODIS measurements,” Remote Sens. Environ. 140, 519–532 (2014).
[Crossref]

B. B. Barnes, C. Hu, B. A. Schaeffer, Z. Lee, D. A. Palandro, and J. C. Lehrter, “MODIS-derived spatiotemporal water clarity patterns in optically shallow Florida Keys waters: A new approach to remove bottom contamination,” Remote Sens. Environ. 134, 377–391 (2013).
[Crossref]

Lewis, S. E.

K. E. Fabricius, M. Logan, S. J. Weeks, S. E. Lewis, and J. Brodie, “Changes in water clarity in response to river discharges on the Great Barrier Reef continental shelf: 2002–2013,” Estuar. Coast. Shelf Sci. 173, A1–A15 (2016).
[Crossref]

Loftin, K. A.

Logan, M.

K. E. Fabricius, M. Logan, S. J. Weeks, S. E. Lewis, and J. Brodie, “Changes in water clarity in response to river discharges on the Great Barrier Reef continental shelf: 2002–2013,” Estuar. Coast. Shelf Sci. 173, A1–A15 (2016).
[Crossref]

Lough, J.

K. Anthony, P. V. Ridd, A. R. Orpin, P. Larcombe, and J. Lough, “Temporal variation of light availability in coastal benthic habitats: Effects of clouds, turbidity, and tides,” Limnol. Oceanogr. 49(6), 2201–2211 (2004).
[Crossref]

Margvelashvili, N.

M. E. Baird, N. Cherukuru, E. Jones, N. Margvelashvili, M. Mongin, K. Oubelkheir, P. J. Ralph, F. Rizwi, B. J. Robson, T. Schroeder, J. Skerratt, A. D. L. Steven, and K. A. Wild-Allen, “Remote-sensing reflectance and true colour produced by a coupled hydrodynamic, optical, sediment, biogeochemical model of the Great Barrier Reef, Australia: comparison with satellite data,” Environ. Model. Softw. 78, 79–96 (2016).
[Crossref]

Maritorena, S.

P. J. Werdell, L. I. W. McKinna, E. Boss, S. G. Ackleson, S. E. Craig, W. W. Gregg, Z. Lee, S. Maritorena, C. S. Roesler, C. S. Rousseaux, D. Stramski, J. M. Sullivan, M. S. Twardowski, M. Tzortziou, and X. Zhang, “An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing,” Prog. Oceanogr. 160, 186–212 (2018).
[Crossref] [PubMed]

D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39(21), 3582–3591 (2000).
[Crossref] [PubMed]

McClain, C. R.

Z. Ahmad, B. A. Franz, C. R. McClain, E. J. Kwiatkowska, J. Werdell, E. P. Shettle, and B. N. Holben, “New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans: publisher’s note,” Appl. Opt. 50(5), 626 (2011).
[Crossref]

C. R. McClain, G. C. Feldman, and S. B. Hooker, “An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series,” Deep Sea Res. Part II Top. Stud. Oceanogr. 51(1-3), 5–42 (2004).
[Crossref]

McKenzie, L.

C. Collier, M. Waycott, and L. McKenzie, “Light thresholds derived from seagrass loss in the coastal zone of the northern Great Barrier Reef, Australia,” Ecol. Indic. 23, 211–219 (2012).
[Crossref]

McKinna, L.

M. Reichstetter, P. Fearns, S. Weeks, L. McKinna, C. Roelfsema, and M. Furnas, “Bottom reflectance in ocean color satellite remote sensing for coral reef environments,” Remote Sens. 7(12), 16756–16777 (2015).
[Crossref]

McKinna, L. I. W.

P. J. Werdell, L. I. W. McKinna, E. Boss, S. G. Ackleson, S. E. Craig, W. W. Gregg, Z. Lee, S. Maritorena, C. S. Roesler, C. S. Rousseaux, D. Stramski, J. M. Sullivan, M. S. Twardowski, M. Tzortziou, and X. Zhang, “An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing,” Prog. Oceanogr. 160, 186–212 (2018).
[Crossref] [PubMed]

L. I. W. McKinna and P. J. Werdell, “Approach for identifying optically shallow pixels when processing ocean-color imagery,” Opt. Express 26(22), A915–A928 (2018).
[Crossref] [PubMed]

L. I. W. McKinna, P. R. C. Fearns, S. J. Weeks, J. P. Werdell, M. Reichstetter, B. A. Franz, D. M. Shea, and G. C. Feldman, “A semianalytical ocean color inversion algorithm with explicit water column depth and substrate reflectance parameterization,” J. Geophys. Res. Oceans 120(3), 1741–1770 (2015).
[Crossref]

McKinna, L. W.

M. J. Devlin, L. W. McKinna, J. G. Alvarez-Romero, C. Petus, B. Abott, P. Harkness, and J. Brodie, “Mapping the pollutants in surface riverine flood plume waters in the Great Barrier Reef, Australia,” Mar. Pollut. Bull. 65(4-9), 224–235 (2012).
[Crossref] [PubMed]

McManus, J. W.

J. A. Kleypas, J. W. McManus, and L. A. Meñez, “Environmental limits to coral reef development: where do we draw the line?” Am. Zool. 39(1), 146–159 (1999).
[Crossref]

McPherson, J.

R. Frouin, J. McPherson, K. Ueyoshi, and B. A. Franz, “A time series of photosynthetically available radiation at the ocean surface from SeaWiFS and MODIS data,” Proc. SPIE 8525, 852519 (2012).
[Crossref]

R. Frouin and J. McPherson, “Estimating photosynthetically available radiation at the ocean surface from GOCI data,” Ocean Sci. J. 47(3), 313–321 (2012).
[Crossref]

Melo, N.

B. B. Barnes, C. Hu, J. P. Cannizzaro, S. E. Craig, P. Hallock, D. L. Jones, J. C. Lehrter, N. Melo, B. A. Schaeffer, and R. Zepp, “Estimation of diffuse attenuation of ultraviolet light in optically shallow Florida Keys waters from MODIS measurements,” Remote Sens. Environ. 140, 519–532 (2014).
[Crossref]

Meñez, L. A.

J. A. Kleypas, J. W. McManus, and L. A. Meñez, “Environmental limits to coral reef development: where do we draw the line?” Am. Zool. 39(1), 146–159 (1999).
[Crossref]

Meyer, F. W.

N. Vogel, F. W. Meyer, C. Wild, and S. Uthicke, “Decreased light availability can amplify negative impacts of ocean acidification on calcifying coral reef organisms,” Mar. Ecol. Prog. Ser. 521, 49–61 (2015).
[Crossref]

Middelburg, J. J.

J.-P. Gattuso, B. Gentili, C. M. Duarte, J. A. Kleypas, J. J. Middelburg, and D. Antoine, “Light availability in the coastal ocean: impact on the distribution of benthic photosynthetic organisms and contribution to primary production,” Biogeosciences Discuss. 3(4), 895–959 (2006).
[Crossref]

Mongin, M.

M. E. Baird, N. Cherukuru, E. Jones, N. Margvelashvili, M. Mongin, K. Oubelkheir, P. J. Ralph, F. Rizwi, B. J. Robson, T. Schroeder, J. Skerratt, A. D. L. Steven, and K. A. Wild-Allen, “Remote-sensing reflectance and true colour produced by a coupled hydrodynamic, optical, sediment, biogeochemical model of the Great Barrier Reef, Australia: comparison with satellite data,” Environ. Model. Softw. 78, 79–96 (2016).
[Crossref]

Morel, A.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[Crossref]

A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters),” J. Geophys. Res. 93(C9), 10749–10768 (1988).
[Crossref]

Muir, P. R.

P. R. Muir, C. C. Wallace, T. Done, and J. D. Aguirre, “Limited scope for latitudinal extension of reef corals,” Science 348(6239), 1135–1138 (2015).
[Crossref] [PubMed]

Mumby, P. J.

P. J. Mumby, J. R. M. Chisholm, A. J. Edwards, S. Andrefouet, and J. Jaubert, “Cloudy weather may have saved Society Island reef corals during the 1998 ENSO event,” Mar. Ecol. Prog. Ser. 222, 209–216 (2001).
[Crossref]

Orpin, A. R.

K. Anthony, P. V. Ridd, A. R. Orpin, P. Larcombe, and J. Lough, “Temporal variation of light availability in coastal benthic habitats: Effects of clouds, turbidity, and tides,” Limnol. Oceanogr. 49(6), 2201–2211 (2004).
[Crossref]

Oubelkheir, K.

M. E. Baird, N. Cherukuru, E. Jones, N. Margvelashvili, M. Mongin, K. Oubelkheir, P. J. Ralph, F. Rizwi, B. J. Robson, T. Schroeder, J. Skerratt, A. D. L. Steven, and K. A. Wild-Allen, “Remote-sensing reflectance and true colour produced by a coupled hydrodynamic, optical, sediment, biogeochemical model of the Great Barrier Reef, Australia: comparison with satellite data,” Environ. Model. Softw. 78, 79–96 (2016).
[Crossref]

Palandro, D. A.

B. B. Barnes, C. Hu, B. A. Schaeffer, Z. Lee, D. A. Palandro, and J. C. Lehrter, “MODIS-derived spatiotemporal water clarity patterns in optically shallow Florida Keys waters: A new approach to remove bottom contamination,” Remote Sens. Environ. 134, 377–391 (2013).
[Crossref]

Park, Y. J.

Petus, C.

M. J. Devlin, L. W. McKinna, J. G. Alvarez-Romero, C. Petus, B. Abott, P. Harkness, and J. Brodie, “Mapping the pollutants in surface riverine flood plume waters in the Great Barrier Reef, Australia,” Mar. Pollut. Bull. 65(4-9), 224–235 (2012).
[Crossref] [PubMed]

Ralph, P. J.

M. E. Baird, N. Cherukuru, E. Jones, N. Margvelashvili, M. Mongin, K. Oubelkheir, P. J. Ralph, F. Rizwi, B. J. Robson, T. Schroeder, J. Skerratt, A. D. L. Steven, and K. A. Wild-Allen, “Remote-sensing reflectance and true colour produced by a coupled hydrodynamic, optical, sediment, biogeochemical model of the Great Barrier Reef, Australia: comparison with satellite data,” Environ. Model. Softw. 78, 79–96 (2016).
[Crossref]

P. J. Ralph, M. J. Durako, S. Enríquez, C. J. Collier, and M. A. Doblin, “Impact of light limitation on seagrasses,” J. Exp. Mar. Biol. Ecol. 350(1-2), 176–193 (2007).
[Crossref]

P. J. Ralph, M. J. Durako, S. Enríquez, C. J. Collier, and M. A. Doblin, “Impact of light limitation on seagrasses,” J. Exp. Mar. Biol. Ecol. 350(1-2), 176–193 (2007).
[Crossref]

Reichstetter, M.

L. I. W. McKinna, P. R. C. Fearns, S. J. Weeks, J. P. Werdell, M. Reichstetter, B. A. Franz, D. M. Shea, and G. C. Feldman, “A semianalytical ocean color inversion algorithm with explicit water column depth and substrate reflectance parameterization,” J. Geophys. Res. Oceans 120(3), 1741–1770 (2015).
[Crossref]

M. Reichstetter, P. Fearns, S. Weeks, L. McKinna, C. Roelfsema, and M. Furnas, “Bottom reflectance in ocean color satellite remote sensing for coral reef environments,” Remote Sens. 7(12), 16756–16777 (2015).
[Crossref]

Rhea, W. J.

Z.-P. Lee, M. Darecki, K. L. Carder, C. O. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. Oceans 110, C02017 (2005).

Ridd, P.

J. Whinney, R. Jones, A. Duckworth, and P. Ridd, “Continuous in situ monitoring of sediment deposition in shallow benthic environments,” Coral Reefs 36(2), 521–533 (2017).
[Crossref]

Ridd, P. V.

K. Anthony, P. V. Ridd, A. R. Orpin, P. Larcombe, and J. Lough, “Temporal variation of light availability in coastal benthic habitats: Effects of clouds, turbidity, and tides,” Limnol. Oceanogr. 49(6), 2201–2211 (2004).
[Crossref]

Rigby, P.

P. Rigby, C. R. Steinberg, D. K. Williams, G. Brinkman, R. Brinkman, H. Tonin, and D. Hughes, “Real-time marine observing systems: challenges, benefits and opportunities in Australian coastal waters,” Aust. J. Civ. Eng. 12(1), 83–99 (2014).
[Crossref]

Rizwi, F.

M. E. Baird, N. Cherukuru, E. Jones, N. Margvelashvili, M. Mongin, K. Oubelkheir, P. J. Ralph, F. Rizwi, B. J. Robson, T. Schroeder, J. Skerratt, A. D. L. Steven, and K. A. Wild-Allen, “Remote-sensing reflectance and true colour produced by a coupled hydrodynamic, optical, sediment, biogeochemical model of the Great Barrier Reef, Australia: comparison with satellite data,” Environ. Model. Softw. 78, 79–96 (2016).
[Crossref]

Robinson, W.

Robson, B. J.

M. E. Baird, N. Cherukuru, E. Jones, N. Margvelashvili, M. Mongin, K. Oubelkheir, P. J. Ralph, F. Rizwi, B. J. Robson, T. Schroeder, J. Skerratt, A. D. L. Steven, and K. A. Wild-Allen, “Remote-sensing reflectance and true colour produced by a coupled hydrodynamic, optical, sediment, biogeochemical model of the Great Barrier Reef, Australia: comparison with satellite data,” Environ. Model. Softw. 78, 79–96 (2016).
[Crossref]

Roelfsema, C.

M. Reichstetter, P. Fearns, S. Weeks, L. McKinna, C. Roelfsema, and M. Furnas, “Bottom reflectance in ocean color satellite remote sensing for coral reef environments,” Remote Sens. 7(12), 16756–16777 (2015).
[Crossref]

Roesler, C. S.

P. J. Werdell, L. I. W. McKinna, E. Boss, S. G. Ackleson, S. E. Craig, W. W. Gregg, Z. Lee, S. Maritorena, C. S. Roesler, C. S. Rousseaux, D. Stramski, J. M. Sullivan, M. S. Twardowski, M. Tzortziou, and X. Zhang, “An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing,” Prog. Oceanogr. 160, 186–212 (2018).
[Crossref] [PubMed]

Rousseaux, C. S.

P. J. Werdell, L. I. W. McKinna, E. Boss, S. G. Ackleson, S. E. Craig, W. W. Gregg, Z. Lee, S. Maritorena, C. S. Roesler, C. S. Rousseaux, D. Stramski, J. M. Sullivan, M. S. Twardowski, M. Tzortziou, and X. Zhang, “An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing,” Prog. Oceanogr. 160, 186–212 (2018).
[Crossref] [PubMed]

Schaeffer, B. A.

B. N. Seegers, R. P. Stumpf, B. A. Schaeffer, K. A. Loftin, and P. J. Werdell, “Performance metrics for the assessment of satellite data products: an ocean color case study,” Opt. Express 26(6), 7404–7422 (2018).
[Crossref] [PubMed]

B. B. Barnes, C. Hu, J. P. Cannizzaro, S. E. Craig, P. Hallock, D. L. Jones, J. C. Lehrter, N. Melo, B. A. Schaeffer, and R. Zepp, “Estimation of diffuse attenuation of ultraviolet light in optically shallow Florida Keys waters from MODIS measurements,” Remote Sens. Environ. 140, 519–532 (2014).
[Crossref]

B. B. Barnes, C. Hu, B. A. Schaeffer, Z. Lee, D. A. Palandro, and J. C. Lehrter, “MODIS-derived spatiotemporal water clarity patterns in optically shallow Florida Keys waters: A new approach to remove bottom contamination,” Remote Sens. Environ. 134, 377–391 (2013).
[Crossref]

Schaffelke, B.

S. Weeks, P. Werdell, B. Schaffelke, M. Canto, Z. Lee, J. Wilding, and G. Feldman, “Satellite-derived photic depth on the Great Barrier Reef: spatio-temporal patterns of water clarity,” Remote Sens. 4(12), 3781–3795 (2012).
[Crossref]

Schroeder, T.

M. E. Baird, N. Cherukuru, E. Jones, N. Margvelashvili, M. Mongin, K. Oubelkheir, P. J. Ralph, F. Rizwi, B. J. Robson, T. Schroeder, J. Skerratt, A. D. L. Steven, and K. A. Wild-Allen, “Remote-sensing reflectance and true colour produced by a coupled hydrodynamic, optical, sediment, biogeochemical model of the Great Barrier Reef, Australia: comparison with satellite data,” Environ. Model. Softw. 78, 79–96 (2016).
[Crossref]

V. E. Brando, A. G. Dekker, Y. J. Park, and T. Schroeder, “Adaptive semianalytical inversion of ocean color radiometry in optically complex waters,” Appl. Opt. 51(15), 2808–2833 (2012).
[Crossref] [PubMed]

Seegers, B. N.

Shang, S.

Z. Lee, S. Shang, K. Du, J. Wei, and R. Arnone, “Usable solar radiation and its attenuation in the upper water column,” J. Geophys. Res. Oceans 119(2), 1488–1497 (2014).
[Crossref]

Shea, D. M.

L. I. W. McKinna, P. R. C. Fearns, S. J. Weeks, J. P. Werdell, M. Reichstetter, B. A. Franz, D. M. Shea, and G. C. Feldman, “A semianalytical ocean color inversion algorithm with explicit water column depth and substrate reflectance parameterization,” J. Geophys. Res. Oceans 120(3), 1741–1770 (2015).
[Crossref]

Shettle, E. P.

Siegel, D. A.

Skerratt, J.

M. E. Baird, N. Cherukuru, E. Jones, N. Margvelashvili, M. Mongin, K. Oubelkheir, P. J. Ralph, F. Rizwi, B. J. Robson, T. Schroeder, J. Skerratt, A. D. L. Steven, and K. A. Wild-Allen, “Remote-sensing reflectance and true colour produced by a coupled hydrodynamic, optical, sediment, biogeochemical model of the Great Barrier Reef, Australia: comparison with satellite data,” Environ. Model. Softw. 78, 79–96 (2016).
[Crossref]

Smith, D. J.

D. J. Suggett, L. F. Dong, T. Lawson, E. Lawrenz, L. Torres, and D. J. Smith, “Light availability determines susceptibility of reef building corals to ocean acidification,” Coral Reefs 32(2), 327–337 (2013).
[Crossref]

Smith, R. C.

K. Baker and R. C. Smith, “Irradiance transmittance through the air/water interface,” Proc. SPIE 1302, 556–565 (1990).
[Crossref]

Steinberg, C. R.

P. Rigby, C. R. Steinberg, D. K. Williams, G. Brinkman, R. Brinkman, H. Tonin, and D. Hughes, “Real-time marine observing systems: challenges, benefits and opportunities in Australian coastal waters,” Aust. J. Civ. Eng. 12(1), 83–99 (2014).
[Crossref]

S. M. Leahy, M. J. Kingsford, and C. R. Steinberg, “Do clouds save the Great Barrier Reef? Satellite imagery elucidates the cloud-SST relationship at the local scale,” PLoS One 8(7), e70400 (2013).
[Crossref] [PubMed]

Steven, A. D. L.

M. E. Baird, N. Cherukuru, E. Jones, N. Margvelashvili, M. Mongin, K. Oubelkheir, P. J. Ralph, F. Rizwi, B. J. Robson, T. Schroeder, J. Skerratt, A. D. L. Steven, and K. A. Wild-Allen, “Remote-sensing reflectance and true colour produced by a coupled hydrodynamic, optical, sediment, biogeochemical model of the Great Barrier Reef, Australia: comparison with satellite data,” Environ. Model. Softw. 78, 79–96 (2016).
[Crossref]

Stramski, D.

P. J. Werdell, L. I. W. McKinna, E. Boss, S. G. Ackleson, S. E. Craig, W. W. Gregg, Z. Lee, S. Maritorena, C. S. Roesler, C. S. Rousseaux, D. Stramski, J. M. Sullivan, M. S. Twardowski, M. Tzortziou, and X. Zhang, “An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing,” Prog. Oceanogr. 160, 186–212 (2018).
[Crossref] [PubMed]

Z.-P. Lee, M. Darecki, K. L. Carder, C. O. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. Oceans 110, C02017 (2005).

Stumpf, R. P.

Suggett, D. J.

D. J. Suggett, L. F. Dong, T. Lawson, E. Lawrenz, L. Torres, and D. J. Smith, “Light availability determines susceptibility of reef building corals to ocean acidification,” Coral Reefs 32(2), 327–337 (2013).
[Crossref]

Sullivan, J. M.

P. J. Werdell, L. I. W. McKinna, E. Boss, S. G. Ackleson, S. E. Craig, W. W. Gregg, Z. Lee, S. Maritorena, C. S. Roesler, C. S. Rousseaux, D. Stramski, J. M. Sullivan, M. S. Twardowski, M. Tzortziou, and X. Zhang, “An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing,” Prog. Oceanogr. 160, 186–212 (2018).
[Crossref] [PubMed]

Tonin, H.

P. Rigby, C. R. Steinberg, D. K. Williams, G. Brinkman, R. Brinkman, H. Tonin, and D. Hughes, “Real-time marine observing systems: challenges, benefits and opportunities in Australian coastal waters,” Aust. J. Civ. Eng. 12(1), 83–99 (2014).
[Crossref]

Torres, L.

D. J. Suggett, L. F. Dong, T. Lawson, E. Lawrenz, L. Torres, and D. J. Smith, “Light availability determines susceptibility of reef building corals to ocean acidification,” Coral Reefs 32(2), 327–337 (2013).
[Crossref]

Twardowski, M. S.

P. J. Werdell, L. I. W. McKinna, E. Boss, S. G. Ackleson, S. E. Craig, W. W. Gregg, Z. Lee, S. Maritorena, C. S. Roesler, C. S. Rousseaux, D. Stramski, J. M. Sullivan, M. S. Twardowski, M. Tzortziou, and X. Zhang, “An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing,” Prog. Oceanogr. 160, 186–212 (2018).
[Crossref] [PubMed]

Tzortziou, M.

P. J. Werdell, L. I. W. McKinna, E. Boss, S. G. Ackleson, S. E. Craig, W. W. Gregg, Z. Lee, S. Maritorena, C. S. Roesler, C. S. Rousseaux, D. Stramski, J. M. Sullivan, M. S. Twardowski, M. Tzortziou, and X. Zhang, “An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing,” Prog. Oceanogr. 160, 186–212 (2018).
[Crossref] [PubMed]

Ueyoshi, K.

R. Frouin, J. McPherson, K. Ueyoshi, and B. A. Franz, “A time series of photosynthetically available radiation at the ocean surface from SeaWiFS and MODIS data,” Proc. SPIE 8525, 852519 (2012).
[Crossref]

Uthicke, S.

N. Vogel, F. W. Meyer, C. Wild, and S. Uthicke, “Decreased light availability can amplify negative impacts of ocean acidification on calcifying coral reef organisms,” Mar. Ecol. Prog. Ser. 521, 49–61 (2015).
[Crossref]

T. F. Cooper, S. Uthicke, C. Humphrey, and K. E. Fabricius, “Gradients in water column nutrients, sediment parameters, irradiance and coral reef development in the Whitsunday Region, central Great Barrier Reef,” Estuar. Coast. Shelf Sci. 74(3), 458–470 (2007).
[Crossref]

Vogel, N.

N. Vogel, F. W. Meyer, C. Wild, and S. Uthicke, “Decreased light availability can amplify negative impacts of ocean acidification on calcifying coral reef organisms,” Mar. Ecol. Prog. Ser. 521, 49–61 (2015).
[Crossref]

Wallace, C. C.

P. R. Muir, C. C. Wallace, T. Done, and J. D. Aguirre, “Limited scope for latitudinal extension of reef corals,” Science 348(6239), 1135–1138 (2015).
[Crossref] [PubMed]

Wang, M.

Waycott, M.

C. Collier, M. Waycott, and L. McKenzie, “Light thresholds derived from seagrass loss in the coastal zone of the northern Great Barrier Reef, Australia,” Ecol. Indic. 23, 211–219 (2012).
[Crossref]

Weeks, S.

M. Reichstetter, P. Fearns, S. Weeks, L. McKinna, C. Roelfsema, and M. Furnas, “Bottom reflectance in ocean color satellite remote sensing for coral reef environments,” Remote Sens. 7(12), 16756–16777 (2015).
[Crossref]

S. Weeks, P. Werdell, B. Schaffelke, M. Canto, Z. Lee, J. Wilding, and G. Feldman, “Satellite-derived photic depth on the Great Barrier Reef: spatio-temporal patterns of water clarity,” Remote Sens. 4(12), 3781–3795 (2012).
[Crossref]

Weeks, S. J.

K. E. Fabricius, M. Logan, S. J. Weeks, S. E. Lewis, and J. Brodie, “Changes in water clarity in response to river discharges on the Great Barrier Reef continental shelf: 2002–2013,” Estuar. Coast. Shelf Sci. 173, A1–A15 (2016).
[Crossref]

L. I. W. McKinna, P. R. C. Fearns, S. J. Weeks, J. P. Werdell, M. Reichstetter, B. A. Franz, D. M. Shea, and G. C. Feldman, “A semianalytical ocean color inversion algorithm with explicit water column depth and substrate reflectance parameterization,” J. Geophys. Res. Oceans 120(3), 1741–1770 (2015).
[Crossref]

Wei, J.

Z. Lee, S. Shang, K. Du, J. Wei, and R. Arnone, “Usable solar radiation and its attenuation in the upper water column,” J. Geophys. Res. Oceans 119(2), 1488–1497 (2014).
[Crossref]

Werdell, J.

Werdell, J. P.

L. I. W. McKinna, P. R. C. Fearns, S. J. Weeks, J. P. Werdell, M. Reichstetter, B. A. Franz, D. M. Shea, and G. C. Feldman, “A semianalytical ocean color inversion algorithm with explicit water column depth and substrate reflectance parameterization,” J. Geophys. Res. Oceans 120(3), 1741–1770 (2015).
[Crossref]

Werdell, P.

S. Weeks, P. Werdell, B. Schaffelke, M. Canto, Z. Lee, J. Wilding, and G. Feldman, “Satellite-derived photic depth on the Great Barrier Reef: spatio-temporal patterns of water clarity,” Remote Sens. 4(12), 3781–3795 (2012).
[Crossref]

Werdell, P. J.

P. J. Werdell, L. I. W. McKinna, E. Boss, S. G. Ackleson, S. E. Craig, W. W. Gregg, Z. Lee, S. Maritorena, C. S. Roesler, C. S. Rousseaux, D. Stramski, J. M. Sullivan, M. S. Twardowski, M. Tzortziou, and X. Zhang, “An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing,” Prog. Oceanogr. 160, 186–212 (2018).
[Crossref] [PubMed]

B. N. Seegers, R. P. Stumpf, B. A. Schaeffer, K. A. Loftin, and P. J. Werdell, “Performance metrics for the assessment of satellite data products: an ocean color case study,” Opt. Express 26(6), 7404–7422 (2018).
[Crossref] [PubMed]

L. I. W. McKinna and P. J. Werdell, “Approach for identifying optically shallow pixels when processing ocean-color imagery,” Opt. Express 26(22), A915–A928 (2018).
[Crossref] [PubMed]

S. W. Bailey, B. A. Franz, and P. J. Werdell, “Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing,” Opt. Express 18(7), 7521–7527 (2010).
[Crossref] [PubMed]

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[Crossref]

S. W. Bailey and P. J. Werdell, “A multi-sensor approach for the on-orbit validation of ocean color satellite data products,” Remote Sens. Environ. 102(1-2), 12–23 (2006).
[Crossref]

Whinney, J.

J. Whinney, R. Jones, A. Duckworth, and P. Ridd, “Continuous in situ monitoring of sediment deposition in shallow benthic environments,” Coral Reefs 36(2), 521–533 (2017).
[Crossref]

Wild, C.

N. Vogel, F. W. Meyer, C. Wild, and S. Uthicke, “Decreased light availability can amplify negative impacts of ocean acidification on calcifying coral reef organisms,” Mar. Ecol. Prog. Ser. 521, 49–61 (2015).
[Crossref]

Wild-Allen, K. A.

M. E. Baird, N. Cherukuru, E. Jones, N. Margvelashvili, M. Mongin, K. Oubelkheir, P. J. Ralph, F. Rizwi, B. J. Robson, T. Schroeder, J. Skerratt, A. D. L. Steven, and K. A. Wild-Allen, “Remote-sensing reflectance and true colour produced by a coupled hydrodynamic, optical, sediment, biogeochemical model of the Great Barrier Reef, Australia: comparison with satellite data,” Environ. Model. Softw. 78, 79–96 (2016).
[Crossref]

Wilding, J.

S. Weeks, P. Werdell, B. Schaffelke, M. Canto, Z. Lee, J. Wilding, and G. Feldman, “Satellite-derived photic depth on the Great Barrier Reef: spatio-temporal patterns of water clarity,” Remote Sens. 4(12), 3781–3795 (2012).
[Crossref]

Williams, D. K.

P. Rigby, C. R. Steinberg, D. K. Williams, G. Brinkman, R. Brinkman, H. Tonin, and D. Hughes, “Real-time marine observing systems: challenges, benefits and opportunities in Australian coastal waters,” Aust. J. Civ. Eng. 12(1), 83–99 (2014).
[Crossref]

Zepp, R.

B. B. Barnes, C. Hu, J. P. Cannizzaro, S. E. Craig, P. Hallock, D. L. Jones, J. C. Lehrter, N. Melo, B. A. Schaeffer, and R. Zepp, “Estimation of diffuse attenuation of ultraviolet light in optically shallow Florida Keys waters from MODIS measurements,” Remote Sens. Environ. 140, 519–532 (2014).
[Crossref]

Zhang, X.

P. J. Werdell, L. I. W. McKinna, E. Boss, S. G. Ackleson, S. E. Craig, W. W. Gregg, Z. Lee, S. Maritorena, C. S. Roesler, C. S. Rousseaux, D. Stramski, J. M. Sullivan, M. S. Twardowski, M. Tzortziou, and X. Zhang, “An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing,” Prog. Oceanogr. 160, 186–212 (2018).
[Crossref] [PubMed]

Am. Zool. (1)

J. A. Kleypas, J. W. McManus, and L. A. Meñez, “Environmental limits to coral reef development: where do we draw the line?” Am. Zool. 39(1), 146–159 (1999).
[Crossref]

Appl. Opt. (3)

Aquat. Bot. (1)

W. C. Dennison, “Effects of light on seagrass photosynthesis, growth and depth distribution,” Aquat. Bot. 27(1), 15–26 (1987).
[Crossref]

Aust. J. Civ. Eng. (1)

P. Rigby, C. R. Steinberg, D. K. Williams, G. Brinkman, R. Brinkman, H. Tonin, and D. Hughes, “Real-time marine observing systems: challenges, benefits and opportunities in Australian coastal waters,” Aust. J. Civ. Eng. 12(1), 83–99 (2014).
[Crossref]

Biogeosciences Discuss. (1)

J.-P. Gattuso, B. Gentili, C. M. Duarte, J. A. Kleypas, J. J. Middelburg, and D. Antoine, “Light availability in the coastal ocean: impact on the distribution of benthic photosynthetic organisms and contribution to primary production,” Biogeosciences Discuss. 3(4), 895–959 (2006).
[Crossref]

Coral Reefs (2)

D. J. Suggett, L. F. Dong, T. Lawson, E. Lawrenz, L. Torres, and D. J. Smith, “Light availability determines susceptibility of reef building corals to ocean acidification,” Coral Reefs 32(2), 327–337 (2013).
[Crossref]

J. Whinney, R. Jones, A. Duckworth, and P. Ridd, “Continuous in situ monitoring of sediment deposition in shallow benthic environments,” Coral Reefs 36(2), 521–533 (2017).
[Crossref]

Deep Sea Res. Part II Top. Stud. Oceanogr. (1)

C. R. McClain, G. C. Feldman, and S. B. Hooker, “An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series,” Deep Sea Res. Part II Top. Stud. Oceanogr. 51(1-3), 5–42 (2004).
[Crossref]

Ecol. Indic. (1)

C. Collier, M. Waycott, and L. McKenzie, “Light thresholds derived from seagrass loss in the coastal zone of the northern Great Barrier Reef, Australia,” Ecol. Indic. 23, 211–219 (2012).
[Crossref]

Environ. Model. Softw. (1)

M. E. Baird, N. Cherukuru, E. Jones, N. Margvelashvili, M. Mongin, K. Oubelkheir, P. J. Ralph, F. Rizwi, B. J. Robson, T. Schroeder, J. Skerratt, A. D. L. Steven, and K. A. Wild-Allen, “Remote-sensing reflectance and true colour produced by a coupled hydrodynamic, optical, sediment, biogeochemical model of the Great Barrier Reef, Australia: comparison with satellite data,” Environ. Model. Softw. 78, 79–96 (2016).
[Crossref]

Eos (Wash. D.C.) (1)

S. B. Hooker and W. E. Esaias, “An overview of the SeaWiFS Project,” Eos (Wash. D.C.) 74(21), 241–246 (1993).
[Crossref]

Estuar. Coast. Shelf Sci. (2)

K. E. Fabricius, M. Logan, S. J. Weeks, S. E. Lewis, and J. Brodie, “Changes in water clarity in response to river discharges on the Great Barrier Reef continental shelf: 2002–2013,” Estuar. Coast. Shelf Sci. 173, A1–A15 (2016).
[Crossref]

T. F. Cooper, S. Uthicke, C. Humphrey, and K. E. Fabricius, “Gradients in water column nutrients, sediment parameters, irradiance and coral reef development in the Whitsunday Region, central Great Barrier Reef,” Estuar. Coast. Shelf Sci. 74(3), 458–470 (2007).
[Crossref]

Hupo Kexue (1)

Z. Lee, “KPAR: An optical property associated with ambiguous values,” Hupo Kexue 21(2), 159–164 (2009).
[Crossref]

J. Exp. Mar. Biol. Ecol. (2)

P. J. Ralph, M. J. Durako, S. Enríquez, C. J. Collier, and M. A. Doblin, “Impact of light limitation on seagrasses,” J. Exp. Mar. Biol. Ecol. 350(1-2), 176–193 (2007).
[Crossref]

P. J. Ralph, M. J. Durako, S. Enríquez, C. J. Collier, and M. A. Doblin, “Impact of light limitation on seagrasses,” J. Exp. Mar. Biol. Ecol. 350(1-2), 176–193 (2007).
[Crossref]

J. Geophys. Res. (2)

Z.-P. Lee, K.-P. Du, and R. Arnone, “A model for the diffuse attenuation coefficient of downwelling irradiance,” J. Geophys. Res. 110(C2), C02016 (2005).
[Crossref]

A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters),” J. Geophys. Res. 93(C9), 10749–10768 (1988).
[Crossref]

J. Geophys. Res. Oceans (3)

Z.-P. Lee, M. Darecki, K. L. Carder, C. O. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. Oceans 110, C02017 (2005).

Z. Lee, S. Shang, K. Du, J. Wei, and R. Arnone, “Usable solar radiation and its attenuation in the upper water column,” J. Geophys. Res. Oceans 119(2), 1488–1497 (2014).
[Crossref]

L. I. W. McKinna, P. R. C. Fearns, S. J. Weeks, J. P. Werdell, M. Reichstetter, B. A. Franz, D. M. Shea, and G. C. Feldman, “A semianalytical ocean color inversion algorithm with explicit water column depth and substrate reflectance parameterization,” J. Geophys. Res. Oceans 120(3), 1741–1770 (2015).
[Crossref]

Limnol. Oceanogr. (2)

S. G. Ackleson, “Light in shallow waters: A brief research review,” Limnol. Oceanogr. 48(1part2), 323–328 (2003).
[Crossref]

K. Anthony, P. V. Ridd, A. R. Orpin, P. Larcombe, and J. Lough, “Temporal variation of light availability in coastal benthic habitats: Effects of clouds, turbidity, and tides,” Limnol. Oceanogr. 49(6), 2201–2211 (2004).
[Crossref]

Mar. Ecol. Prog. Ser. (2)

N. Vogel, F. W. Meyer, C. Wild, and S. Uthicke, “Decreased light availability can amplify negative impacts of ocean acidification on calcifying coral reef organisms,” Mar. Ecol. Prog. Ser. 521, 49–61 (2015).
[Crossref]

P. J. Mumby, J. R. M. Chisholm, A. J. Edwards, S. Andrefouet, and J. Jaubert, “Cloudy weather may have saved Society Island reef corals during the 1998 ENSO event,” Mar. Ecol. Prog. Ser. 222, 209–216 (2001).
[Crossref]

Mar. Pollut. Bull. (1)

M. J. Devlin, L. W. McKinna, J. G. Alvarez-Romero, C. Petus, B. Abott, P. Harkness, and J. Brodie, “Mapping the pollutants in surface riverine flood plume waters in the Great Barrier Reef, Australia,” Mar. Pollut. Bull. 65(4-9), 224–235 (2012).
[Crossref] [PubMed]

Ocean Sci. J. (1)

R. Frouin and J. McPherson, “Estimating photosynthetically available radiation at the ocean surface from GOCI data,” Ocean Sci. J. 47(3), 313–321 (2012).
[Crossref]

Opt. Express (3)

PLoS One (1)

S. M. Leahy, M. J. Kingsford, and C. R. Steinberg, “Do clouds save the Great Barrier Reef? Satellite imagery elucidates the cloud-SST relationship at the local scale,” PLoS One 8(7), e70400 (2013).
[Crossref] [PubMed]

Proc. SPIE (2)

R. Frouin, J. McPherson, K. Ueyoshi, and B. A. Franz, “A time series of photosynthetically available radiation at the ocean surface from SeaWiFS and MODIS data,” Proc. SPIE 8525, 852519 (2012).
[Crossref]

K. Baker and R. C. Smith, “Irradiance transmittance through the air/water interface,” Proc. SPIE 1302, 556–565 (1990).
[Crossref]

Prog. Oceanogr. (1)

P. J. Werdell, L. I. W. McKinna, E. Boss, S. G. Ackleson, S. E. Craig, W. W. Gregg, Z. Lee, S. Maritorena, C. S. Roesler, C. S. Rousseaux, D. Stramski, J. M. Sullivan, M. S. Twardowski, M. Tzortziou, and X. Zhang, “An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing,” Prog. Oceanogr. 160, 186–212 (2018).
[Crossref] [PubMed]

Remote Sens. (2)

S. Weeks, P. Werdell, B. Schaffelke, M. Canto, Z. Lee, J. Wilding, and G. Feldman, “Satellite-derived photic depth on the Great Barrier Reef: spatio-temporal patterns of water clarity,” Remote Sens. 4(12), 3781–3795 (2012).
[Crossref]

M. Reichstetter, P. Fearns, S. Weeks, L. McKinna, C. Roelfsema, and M. Furnas, “Bottom reflectance in ocean color satellite remote sensing for coral reef environments,” Remote Sens. 7(12), 16756–16777 (2015).
[Crossref]

Remote Sens. Environ. (4)

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[Crossref]

S. W. Bailey and P. J. Werdell, “A multi-sensor approach for the on-orbit validation of ocean color satellite data products,” Remote Sens. Environ. 102(1-2), 12–23 (2006).
[Crossref]

B. B. Barnes, C. Hu, B. A. Schaeffer, Z. Lee, D. A. Palandro, and J. C. Lehrter, “MODIS-derived spatiotemporal water clarity patterns in optically shallow Florida Keys waters: A new approach to remove bottom contamination,” Remote Sens. Environ. 134, 377–391 (2013).
[Crossref]

B. B. Barnes, C. Hu, J. P. Cannizzaro, S. E. Craig, P. Hallock, D. L. Jones, J. C. Lehrter, N. Melo, B. A. Schaeffer, and R. Zepp, “Estimation of diffuse attenuation of ultraviolet light in optically shallow Florida Keys waters from MODIS measurements,” Remote Sens. Environ. 140, 519–532 (2014).
[Crossref]

Science (1)

P. R. Muir, C. C. Wallace, T. Done, and J. D. Aguirre, “Limited scope for latitudinal extension of reef corals,” Science 348(6239), 1135–1138 (2015).
[Crossref] [PubMed]

Other (21)

K. E. Fabricius, “Factors determining the resilience of coral reefs to eutrophication: a review and conceptual model,” in Coral Reefs: An Ecosystem in Transition, Z. Dubinsky and N. Stambler, eds. (Springer, 2011), pp. 493–505.

C. Collier, K. Chartrand, C. Honchin, A. Fletcher, and M. Rasheed, “Light thresholds for seagrasses of the GBR: a synthesis and guiding document. Including knowledge gaps and future priorities,” James Cook University (2016).

R. Beaman, Project 3DGBR: A high-resolution depth model for the Great Barrier Reef and Coral Sea, Marine and Tropical Sciences Research Facility (MTSRF) Project 2.5i.1a, Final Report, Reef and Rainforest Research Centre (2010).

R. C. Smith and K. S. Baker, “Analysis of ocean optical data II,” in Ocean Optics VIII (International Society for Optics and Photonics, 1986), pp. 95–108.

C. D. Mobley, J. Werdell, B. Franz, Z. Ahmad, and S. Bailey, Atmospheric correction for satellite ocean color radiometry, in NASA Technical Memorandum 2016–217551, GSFC-E-DAA-TN35509, (NASA Goddard Space Flight Center, 2016).

J. T. O. Kirk, “The Nature and Measurement of the Light Environment in the Ocean,” in Primary Productivity and Biogeochemical Cycles in the Sea, P. G. Falkowski, A. D. Woodhead, and K. Vivirito, (Springer, 1992), pp. 9–29.

M. M. Slivkoff, “Ocean colour remote sensing of the Great Barrier Reef waters,” PhD Thesis (Curtin University, 2014).

J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems, 3rd ed (Cambridge University, 2011).

I. S. Robinson, Measuring the Oceans from Space: The Principles and Methods of Satellite Oceanography (Springer-Verlag, 2004).

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).

BOM, Tropical Cyclone Debbie technical report: a comprehensive summary of meteorological and hydrological data associated with Severe Tropical Cyclone Debbie that affected Queensland and New South Wales during March and April 2017 (Department of Natural Resources and Mines, 2018).

V. I. Haltrin, “Algorithm and code to calculate specular reflection of light from a wavy water surface,” in Proceedings of the Seventh International Conference on Remote Sensing for Marine and Coastal Environments (2002).

V. I. Haltrin, W. E. McBride, and A. D. Weidemann, “Fresnel reflection by wavy sea surface,” in Proceedings of IEEE International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment (IEEE, 2000), pp. 1863–1865.
[Crossref]

W. D. Robinson, B. A. Franz, F. S. Patt, S. W. Bailey, and P. J. Werdell, “Masks and flags update,” in NASA Technical Memorandum 2003–206892, SeaWIFS Postlaunch Technical Report Series, Algorithm updates for the fourth SeaWiFS data reprocessing, S. B. Hooker and E. R. Firestone, eds. (NASA Goddard Space Flight Center, 2003, Volume XXII), pp. 34–40.

R. C. Team, “R: A Language and Environment for Statistical Computing” (R Foundation for Statistical Computing, 2017).

P. Legendre, “lmodel2: Model II Regression” (R package version 1.7–3, 2018), https://CRAN.R-project.org/package=lmodel2 .

P. Hutchings, M. Kingsford, and O. Hoegh-Guldberg, The Great Barrier Reef: Biology, Environment and Management (CSIRO Publishing, 2008).

R. W. Austin and T. J. Petzold, “The Determination of the Diffuse Attenuation Coefficient of Sea Water Using the Coastal Zone Color Scanner,” in Oceanography from Space, J. F. R. Gower, ed. (Springer, 1981), pp. 239–256.

J. L. Mueller, “SeaWIFS algorithm for the diffuse attenuation coefficient, K(490), using water-leaving radiances at 490 and 555 nm,” in NASA Technical Memorandum 2000–206892, SeaWiFS Postlaunch Techinal Report Series, SeaWIFS Postlaunch Calibration and Validation Analyses, S. B. Hooker and E. R. Firestone (NASA Goddard Space Flight Center, 2000, Volume XI), pp. 24–27.

C. D. Mobley and L. K. Sundman, Hydrolight 5 Ecolight 5 Users' Guide (Sequoia Scientific 2008).

NASA, “SeaDAS,” https://seadas.gsfc.nasa.gov .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Location map of the four validation test sites (black filled circles) within the GBR region along the north eastern coast of Australia (inset map). The color gradient indicates depth contours within the 200 m bathymetric shelf. The blue rectangle indicates the boundary of the small regional box, Burdekin region, used for temporal evaluation of the model (as detailed in section 3.6) with the corresponding subset bathymetry showing the complex topographic features in the model region. Red filled circle indicates location of the Burdekin River mouth while gray masked regions indicate land and coral reefs.
Fig. 2
Fig. 2 Top row: solid lines represent layer-averaged spectral diffuse attenuation coefficients for four different layer depths for an oligotrophic scenario. Blue, orange, green, and red lines correspond to layer depths of 5, 10, 20, and 30 m, respectively. The dashed line represents layer averaged spectral diffuse attenuation coefficient derived by the Lee, et al. [37] model. Each panel (left-to-right) corresponds to four solar zenith angles (10, 30, 50, and 80°). Bottom row: absolute percent difference (APD) between radiative transfer modelled layer-averaged spectral diffuse attenuation coefficients and values estimated using the Lee, et al. [37] model. The horizontal gray line represents 1% APD.
Fig. 3
Fig. 3 Top row: solid lines represent layer-averaged spectral diffuse attenuation coefficients for four different layer depths for a mesotrophic scenario. Blue, orange, green, and red lines correspond to layer depths of 5, 10, 20, and 30 m, respectively. The dashed line represents layer averaged spectral diffuse attenuation coefficient derived by the Lee, et al. [37] model. Each panel (left-to-right) corresponds to four solar zenith angles (10, 30, 50, and 80°). Bottom row: absolute percent difference (APD) between radiative transfer modelled layer-averaged spectral diffuse attenuation coefficients and values estimated using the Lee, et al. [37] model. The horizontal gray line represents 1% APD.
Fig. 4
Fig. 4 Scatter plots that compare known bPARi (i.e., derived from radiative transfer simulations) with modelled values. Each panel (left-to-right) corresponds to a different model approach: (a) Chlorophyll-based, (b) Kd(490)-based, and (c) the IOP-based. The one-to-one line is plotted in black solid line. Data points are color coded by geometric depth. Highest values of bPARi typically occur in shallow waters less than 5 m in depth. For our radiative transfer simulations, incident surface PAR values were 1679 μmol photons m−2 s−1.
Fig. 5
Fig. 5 Scatterplots of concurrent log-transformed instantaneous satellite-derived (bPARi) and in situ bPAR for the four test regions of varying optical properties (a-b, d-e) plotted according to month of observation, and ALL sites combined plotted (c) by month of observation and (f) according to site. Color scale gradient for the months of observations are defined to delineate seasonal contrast between austral wet (November to April of following calendar year, yellow-red) and austral dry (May to October, green) seasons. The thin and thick black solid lines indicate the 1:1 line and the reduced major axis regression slope, respectively. Filled triangles in (a, c, and f) indicate the extremely low bPAR values coinciding with a severe tropical cyclone but were excluded in the regression analysis.
Fig. 6
Fig. 6 Scatterplots of concurrent log-transformed daily integrated satellite-derived (bPARd) and in situ bPAR for the four test regions of varying optical properties (a-b, d-e) plotted according to month of observation, and ALL sites combined plotted (c) by month of observation and (f) according to site. Color scale gradient for the months of observations are defined to delineate seasonal contrast between austral wet (November to April of following calendar year, yellow-red) and austral dry (May to October, green) seasons. The thin and thick black solid lines indicate the 1:1 line and the reduced major axis regression slope, respectively.
Fig. 7
Fig. 7 Timeseries plot of satellite-derived (a) instantaneous benthic PAR, bPARi, and (b) daily integrated benthic PAR, bPARd, for the Yongala test region from July 2002 to December 2018. The color gradient indicate bPAR values while dashed horizontal line indicate the median value of the entire time series data for each parameter, overlaid for reference. The grayed out areas indicate the austral wet season months (extending from November to April of following calendar year). Downward pointed black arrows on the x-axes denote occurrences of selected severe tropical cyclones that hit the eastern Australian coast. Note that vertical axes are in logarithmic scale.
Fig. 8
Fig. 8 Depth sensitivity analysis and model results comparison at the Yongala test site. (a) plot of satellite-derived instantaneous benthic PAR values modeled using Beaman 3D-GBR bathymetry as z (red, 3D-GBR model) with in situ instantaneous benthic PAR (black); (b) plot of satellite-derived instantaneous benthic PAR values modeled using in situ pressure data as z (blue, pressure model) with in situ instantaneous benthic PAR (black); (c) unbiased percent difference (UPD) between bPARi, calculated as: |(bPAR3D-GBRbPARpressure)|/(0.5 * bPAR3D-GBR + 0.5 * bPARpressure) * 100; and (d) scatterplot of the residuals (against in situ values) of the two models where diagonal black solid line denotes the 1:1 line. Gaps in plots a-c indicate periods where there were no in situ data available for validation.
Fig. 9
Fig. 9 Map of 2016 annual mean of daily integrated benthic PAR (bPARd) for the Great Barrier Reef region. Color gradient indicates values in mol photons m−2 d−1.

Tables (3)

Tables Icon

Table 1 IMOS mooring stations for in situ PAR data collection in the GBR.

Tables Icon

Table 2 Matchup statistics for instantaneous satellite-derived (bPARi) and concurrent in situ bPAR observations for the four test sites and all sites combined (denoted as ALL). The number of concurrent valid data pairs (days of observation) after all quality criteria were applied and used in regression analyses is indicated as n. The number of valid data points when only the L2 flags were used as the exclusion criterion is given by (n0), shown to emphasize the importance of additional exclusion criteria as described in section 3.4.1. The highlighted row for Yongala indicate matchup statistics when extremely low bPAR values (coinciding with a severe tropical cyclone that passed across the Queensland coast in late March 2017) were included in the regression analysis. Note that model performance metrics are in multiplicative-space, while range of concurrent satellite-derived and in situ PAR values are given in the observed (non-transformed) scale to facilitate interpretation.

Tables Icon

Table 3 Matchup statistics for daily integrated satellite-derived (bPARd) and concurrent in situ bPAR observations. The number of concurrent valid data points (days of observation) after all quality criteria were applied and which were used in regression analyses is indicated as n. Note that model performance and error metrics are in multiplicative-space, while range of bPAR values are given in the observed scale to facilitate interpretation.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

E b (λ)= E d (λ, 0 )exp( K d (λ)z)
E d (λ, 0 )= t g E s (λ, 0 + )
ρ sun =( [ sin( θ solz θ t ) sin( θ solz + θ t ) ] 2 + [ tan( θ solz θ t ) tan( θ solz + θ t ) ] 2 )*0.5
θ t = sin 1 (sin θ solz / n w )
ρ sun = ( n w 1 n w +1 ) 2
K d (λ)=(1+0.005 θ solz )a(λ)+4.18(10.52 e 10.18a(λ) ) b b (λ)
bPA R i = 400 700 E b (λ)dλ.
bPA R n = 400 700 [ t g E s (λ, 0 + )cos θ solz ] e K d (λ)z dλ
θ solz (ϕ)= cos 1 ( sin(lat)sin(δ)+cos(lat)cos(δ)cos(ϕ) )
δ=0.0069180.399912cos(γ)+ 0.070257sin(γ)0.006758cos(2γ)+ 0.000907sin(2γ)0.002697cos(3γ)+0.00148sin(3γ)
γ= 2π 365 *(jday1)
bPA R d =2*( ϕ rise ϕ noon dϕ 400 700 dλ[ t g E s (λ, 0 + )cos θ solz cos{ θ solz (ϕ) } ] e K d (λ)z )
ϕ rise = cos 1 ( tan(δ)tan(lat) ).
bias=10^( i=1 n log 10 (bPA R sat ) log 10 (bPA R insitu ) n )
MAE=10^( i=1 n | log 10 (bPA R sat ) log 10 (bPA R insitu )| n )