Abstract

The effect of energy level alignment between the hole transport layer (HTL) and active layer in PbS quantum dot (QD) solar cells was investigated. Here, a great variation in device performance was observed when employing different hole transporting materials. Devices using HTLs that could not block electrons only show poor device behaviors, while those employing wide band-gap hole transporting materials with shallow lowest unoccupied molecular orbital (LUMO) energies to block electrons exhibit reduced dark currents as well as enhanced device efficiencies. A power conversion efficiency of 4.4% was obtained by utilizing Poly-TPD as the HTL due to the optimized energy level alignment. These improvements were realized by preventing current leakage and consequent counter diode formation. The efficiency can be further improved to 4.9% by inserting EDT-treated PbS QD film (PbS-EDT) hole transporting materials with higher hole mobility as well as suitable energy levels that can increase the collection efficiency.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-performance quantum dot light-emitting diodes with hybrid hole transport layer via doping engineering

Qianqian Huang, Jiangyong Pan, Yuning Zhang, Jing Chen, Zhi Tao, Chao He, Kaifeng Zhou, Yan Tu, and Wei Lei
Opt. Express 24(23) 25955-25963 (2016)

Modeling photovoltaic performance in periodic patterned colloidal quantum dot solar cells

Yulan Fu, Abay G. Dinku, Yukihiro Hara, Christopher W. Miller, Kristina T. Vrouwenvelder, and Rene Lopez
Opt. Express 23(15) A779-A790 (2015)

p-type Li, Cu-codoped NiOx hole-transporting layer for efficient planar perovskite solar cells

Ming-Hua Liu, Zheng-Ji Zhou, Pan-Pan Zhang, Qing-Wen Tian, Wen-Hui Zhou, Dong-Xing Kou, and Si-Xin Wu
Opt. Express 24(22) A1349-A1359 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (version 52),” Prog. Photovolt. Res. Appl. 26(7), 427–436 (2018).
    [Crossref]
  2. T. Feurer, P. Reinhard, E. Avancini, B. Bissig, J. Löckinger, P. Fuchs, R. Carron, T. P. Weiss, J. Perrenoud, S. Stutterheim, S. Buecheler, and A. N. Tiwari, “Progress in thin film CIGS photovoltaics - Research and development, manufacturing, and applications,” Prog. Photovolt. Res. Appl. 25(7), 645–667 (2017).
    [Crossref]
  3. M. Jawaid and M. M. Khan, Polymer-based Nanocomposites for Energy and Environmental Applications (Woodhead Publishing, 2018).
  4. S. Ananthakumar and S. Moorthy Babu, “Progress on synthesis and applications of hybrid perovskite semiconductor nanomaterials—A review,” Synth. Met. 246, 64–95 (2018).
    [Crossref]
  5. M. A. Hines and G. D. Scholes, “Colloidal PbS Nanocrystals with Size‐Tunable Near‐Infrared Emission: Observation of Post‐Synthesis Self‐Narrowing of the Particle Size Distribution,” Adv. Mater. 15(21), 1844–1849 (2003).
    [Crossref]
  6. S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
    [Crossref] [PubMed]
  7. X. Lan, O. Voznyy, A. Kiani, F. P. García de Arquer, A. S. Abbas, G. H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance,” Adv. Mater. 28(2), 299–304 (2016).
    [Crossref] [PubMed]
  8. X. Zhang and E. M. J. Johansson, “Reduction of charge recombination in PbS colloidal quantum dot solar cells at the quantum dot/ZnO interface by inserting a MgZnO buffer layer,” J. Mater. Chem. A Mater. Energy Sustain. 5(1), 303–310 (2017).
    [Crossref]
  9. X. Yao, Z. Song, L. Mi, G. Li, X. Wang, X. Wang, and Y. Jiang, “Improved stability of depletion heterojunction solar cells employing cation-exchange PbS quantum dots,” Sol. Energy Mater. Sol. Cells 164, 122–127 (2017).
    [Crossref]
  10. J. An, X. Yang, W. Wang, J. Li, H. Wang, Z. Yu, C. Gong, X. Wang, and L. Sun, “Stable and efficient PbS colloidal quantum dot solar cells incorporating low-temperature processed carbon paste counter electrodes,” Sol. Energy 158, 28–33 (2017).
    [Crossref]
  11. P. Maraghechi, A. J. Labelle, A. R. Kirmani, X. Lan, M. M. Adachi, S. M. Thon, S. Hoogland, A. Lee, Z. Ning, A. Fischer, A. Amassian, and E. H. Sargent, “The donor-supply electrode enhances performance in colloidal quantum dot solar cells,” ACS Nano 7(7), 6111–6116 (2013).
    [Crossref] [PubMed]
  12. Y.-C. Yao, M.-T. Tsai, C.-Y. Huang, T.-Y. Lin, J.-K. Sheu, and Y.-J. Lee, “Efficient collection of photogenerated carriers by inserting double tunnel junctions in III-nitride p-i-n solar cells,” Appl. Phys. Lett. 103(19), 193503 (2013).
    [Crossref]
  13. A. Manjceevan and J. Bandara, “Systematic stacking of PbS/CdS/CdSe multi-layered quantum dots for the enhancement of solar cell efficiency by harvesting wide solar spectrum,” Electrochim. Acta 271, 567–575 (2018).
    [Crossref]
  14. S. Zang, Y. Wang, M. Li, W. Su, H. Zhu, X. Zhang, and Y. Liu, “Fabrication of efficient PbS colloidal quantum dot solar cell with low temperature sputter-deposited ZnO electron transport layer,” Sol. Energy Mater. Sol. Cells 169, 264–269 (2017).
    [Crossref]
  15. Z. Zhang, C. Shi, K. Lv, C. Ma, G. Xiao, and L. Ni, “200-nm long TiO2 nanorod arrays for efficient solid-state PbS quantum dot-sensitized solar cells,” J. Energy Chem. 27(4), 1214–1218 (2018).
    [Crossref]
  16. J.-Y. Kim, Y. J. Jang, J. Park, J. Kim, J. S. Kang, D. Y. Chung, Y.-E. Sung, C. Lee, J. S. Lee, and M. J. Ko, “Highly loaded PbS/Mn-doped CdS quantum dots for dual application in solar-to-electrical and solar-to-chemical energy conversion,” Appl. Catal. B 227, 409–417 (2018).
    [Crossref]
  17. F. Eisner, A. Seitkhan, Y. Han, D. Khim, E. Yengel, A. R. Kirmani, J. Xu, F. P. García de Arquer, E. H. Sargent, A. Amassian, Z. Fei, M. Heeney, and T. D. Anthopoulos, “Solution-Processed In2O3/ZnO Heterojunction Electron Transport Layers for Efficient Organic Bulk Heterojunction and Inorganic Colloidal Quantum-Dot Solar Cells,” Sol. RRL 2(7), 1800076 (2018).
    [Crossref]
  18. W. Xu, F. Tan, Q. Liu, X. Liu, Q. Jiang, L. Wei, W. Zhang, Z. Wang, S. Qu, and Z. Wang, “Efficient PbS QD solar cell with an inverted structure,” Sol. Energy Mater. Sol. Cells 159, 503–509 (2017).
    [Crossref]
  19. N. Chaudhary, J. P. Kesari, R. Chaudhary, and A. Patra, “Low band gap polymeric solar cells using solution-processable copper iodide as hole transporting layer,” Opt. Mater. 58, 116–120 (2016).
    [Crossref]
  20. S. Yoon, H. Kim, E.-Y. Shin, I.-G. Bae, B. Park, Y.-Y. Noh, and I. Hwang, “Enhanced hole extraction by interaction between CuI and MoO3 in the hole transport layer of organic photovoltaic devices,” Org. Electron. 32, 200–207 (2016).
    [Crossref]
  21. J. Gao, C. L. Perkins, J. M. Luther, M. C. Hanna, H.-Y. Chen, O. E. Semonin, A. J. Nozik, R. J. Ellingson, and M. C. Beard, “n-Type Transition Metal Oxide as a Hole Extraction Layer in PbS Quantum Dot Solar Cells,” Nano Lett. 11(8), 3263–3266 (2011).
    [Crossref] [PubMed]
  22. C.-H. M. Chuang, P. R. Brown, V. Bulović, and M. G. Bawendi, “Improved performance and stability in quantum dot solar cells through band alignment engineering,” Nat. Mater. 13(8), 796–801 (2014).
    [Crossref] [PubMed]
  23. A. Wolcott, V. Doyeux, C. A. Nelson, R. Gearba, K. W. Lei, K. G. Yager, A. D. Dolocan, K. Williams, D. Nguyen, and X. Y. Zhu, “Anomalously Large Polarization Effect Responsible for Excitonic Red Shifts in PbSe Quantum Dot Solids,” J. Phys. Chem. Lett. 2(7), 795–800 (2011).
    [Crossref]
  24. J. M. Luther, M. C. Beard, Q. Song, M. Law, R. J. Ellingson, and A. J. Nozik, “Multiple Exciton Generation in Films of Electronically Coupled PbSe Quantum Dots,” Nano Lett. 7(6), 1779–1784 (2007).
    [Crossref] [PubMed]
  25. L. Hu, A. Mandelis, X. Lan, A. Melnikov, S. Hoogland, and E. H. Sargent, “Imbalanced charge carrier mobility and Schottky junction induced anomalous current-voltage characteristics of excitonic PbS colloidal quantum dot solar cells,” Sol. Energy Mater. Sol. Cells 155, 155–165 (2016).
    [Crossref]
  26. P. H. Rekemeyer, S. Chang, C.-H. M. Chuang, G. W. Hwang, M. G. Bawendi, and S. Gradečak, “Enhanced Photocurrent in PbS Quantum Dot Photovoltaics via ZnO Nanowires and Band Alignment Engineering,” Adv. Energy Mater. 6(24), 1600848 (2016).
    [Crossref]
  27. L. Hu, D.-B. Li, L. Gao, H. Tan, C. Chen, K. Li, M. Li, J.-B. Han, H. Song, H. Liu, and J. Tang, “Graphene Doping Improved Device Performance of ZnMgO/PbS Colloidal Quantum Dot Photovoltaics,” Adv. Funct. Mater. 26(12), 1899–1907 (2016).
    [Crossref]
  28. P. R. Brown, D. Kim, R. R. Lunt, N. Zhao, M. G. Bawendi, J. C. Grossman, and V. Bulović, “Energy Level Modification in Lead Sulfide Quantum Dot Thin Films Through Ligand Exchange,” ACS Nano 8(6), 5863–5872 (2014).
    [Crossref] [PubMed]
  29. F. Wang, Z. Tan, and Y. Li, “Solution-processable metal oxides/chelates as electrode buffer layers for efficient and stable polymer solar cells,” Energy Environ. Sci. 8(4), 1059–1091 (2015).
    [Crossref]
  30. D. C. J. Neo, N. Zhang, Y. Tazawa, H. Jiang, G. M. Hughes, C. R. M. Grovenor, H. E. Assender, and A. A. R. Watt, “Poly(3-hexylthiophene-2,5-diyl) as a Hole Transport Layer for Colloidal Quantum Dot Solar Cells,” ACS Appl. Mater. Interfaces 8(19), 12101–12108 (2016).
    [Crossref] [PubMed]
  31. Q. Lin, H. Shen, H. Wang, A. Wang, J. Niu, L. Qian, F. Guo, and L. S. Li, “Cadmium-free quantum dots based violet light-emitting diodes: High-efficiency and brightness via optimization of organic hole transport layers,” Org. Electron. 25, 178–183 (2015).
    [Crossref]
  32. A. Gadisa, M. Svensson, M. R. Andersson, and O. Inganäs, “Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/ fullerene derivative,” Appl. Phys. Lett. 84(9), 1609–1611 (2004).
    [Crossref]
  33. C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the Open Circuit Voltage of Plastic Solar Cells,” Adv. Funct. Mater. 11(5), 374–380 (2001).
    [Crossref]
  34. Y. Sun, P. D. Donaldson, J. Garcia-Barriocanal, and S. L. Swisher, “Understanding quantum confinement and ligand removal in solution-based ZnO thin films from highly stable nanocrystal ink,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(34), 9181–9190 (2018).
    [Crossref]
  35. C. Goh, R. J. Kline, M. D. McGehee, E. N. Kadnikova, and J. M. J. Fréchet, “Molecular-weight-dependent mobilities in regioregular poly(3-hexyl-thiophene) diodes,” Appl. Phys. Lett. 86(12), 122110 (2005).
    [Crossref]
  36. S. Z. Bisri, C. Piliego, M. Yarema, W. Heiss, and M. A. Loi, “Low driving voltage and high mobility ambipolar field-effect transistors with PbS colloidal nanocrystals,” Adv. Mater. 25(31), 4309–4314 (2013).
    [Crossref] [PubMed]

2018 (7)

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (version 52),” Prog. Photovolt. Res. Appl. 26(7), 427–436 (2018).
[Crossref]

S. Ananthakumar and S. Moorthy Babu, “Progress on synthesis and applications of hybrid perovskite semiconductor nanomaterials—A review,” Synth. Met. 246, 64–95 (2018).
[Crossref]

A. Manjceevan and J. Bandara, “Systematic stacking of PbS/CdS/CdSe multi-layered quantum dots for the enhancement of solar cell efficiency by harvesting wide solar spectrum,” Electrochim. Acta 271, 567–575 (2018).
[Crossref]

Z. Zhang, C. Shi, K. Lv, C. Ma, G. Xiao, and L. Ni, “200-nm long TiO2 nanorod arrays for efficient solid-state PbS quantum dot-sensitized solar cells,” J. Energy Chem. 27(4), 1214–1218 (2018).
[Crossref]

J.-Y. Kim, Y. J. Jang, J. Park, J. Kim, J. S. Kang, D. Y. Chung, Y.-E. Sung, C. Lee, J. S. Lee, and M. J. Ko, “Highly loaded PbS/Mn-doped CdS quantum dots for dual application in solar-to-electrical and solar-to-chemical energy conversion,” Appl. Catal. B 227, 409–417 (2018).
[Crossref]

F. Eisner, A. Seitkhan, Y. Han, D. Khim, E. Yengel, A. R. Kirmani, J. Xu, F. P. García de Arquer, E. H. Sargent, A. Amassian, Z. Fei, M. Heeney, and T. D. Anthopoulos, “Solution-Processed In2O3/ZnO Heterojunction Electron Transport Layers for Efficient Organic Bulk Heterojunction and Inorganic Colloidal Quantum-Dot Solar Cells,” Sol. RRL 2(7), 1800076 (2018).
[Crossref]

Y. Sun, P. D. Donaldson, J. Garcia-Barriocanal, and S. L. Swisher, “Understanding quantum confinement and ligand removal in solution-based ZnO thin films from highly stable nanocrystal ink,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(34), 9181–9190 (2018).
[Crossref]

2017 (6)

W. Xu, F. Tan, Q. Liu, X. Liu, Q. Jiang, L. Wei, W. Zhang, Z. Wang, S. Qu, and Z. Wang, “Efficient PbS QD solar cell with an inverted structure,” Sol. Energy Mater. Sol. Cells 159, 503–509 (2017).
[Crossref]

S. Zang, Y. Wang, M. Li, W. Su, H. Zhu, X. Zhang, and Y. Liu, “Fabrication of efficient PbS colloidal quantum dot solar cell with low temperature sputter-deposited ZnO electron transport layer,” Sol. Energy Mater. Sol. Cells 169, 264–269 (2017).
[Crossref]

T. Feurer, P. Reinhard, E. Avancini, B. Bissig, J. Löckinger, P. Fuchs, R. Carron, T. P. Weiss, J. Perrenoud, S. Stutterheim, S. Buecheler, and A. N. Tiwari, “Progress in thin film CIGS photovoltaics - Research and development, manufacturing, and applications,” Prog. Photovolt. Res. Appl. 25(7), 645–667 (2017).
[Crossref]

X. Zhang and E. M. J. Johansson, “Reduction of charge recombination in PbS colloidal quantum dot solar cells at the quantum dot/ZnO interface by inserting a MgZnO buffer layer,” J. Mater. Chem. A Mater. Energy Sustain. 5(1), 303–310 (2017).
[Crossref]

X. Yao, Z. Song, L. Mi, G. Li, X. Wang, X. Wang, and Y. Jiang, “Improved stability of depletion heterojunction solar cells employing cation-exchange PbS quantum dots,” Sol. Energy Mater. Sol. Cells 164, 122–127 (2017).
[Crossref]

J. An, X. Yang, W. Wang, J. Li, H. Wang, Z. Yu, C. Gong, X. Wang, and L. Sun, “Stable and efficient PbS colloidal quantum dot solar cells incorporating low-temperature processed carbon paste counter electrodes,” Sol. Energy 158, 28–33 (2017).
[Crossref]

2016 (7)

X. Lan, O. Voznyy, A. Kiani, F. P. García de Arquer, A. S. Abbas, G. H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance,” Adv. Mater. 28(2), 299–304 (2016).
[Crossref] [PubMed]

N. Chaudhary, J. P. Kesari, R. Chaudhary, and A. Patra, “Low band gap polymeric solar cells using solution-processable copper iodide as hole transporting layer,” Opt. Mater. 58, 116–120 (2016).
[Crossref]

S. Yoon, H. Kim, E.-Y. Shin, I.-G. Bae, B. Park, Y.-Y. Noh, and I. Hwang, “Enhanced hole extraction by interaction between CuI and MoO3 in the hole transport layer of organic photovoltaic devices,” Org. Electron. 32, 200–207 (2016).
[Crossref]

L. Hu, A. Mandelis, X. Lan, A. Melnikov, S. Hoogland, and E. H. Sargent, “Imbalanced charge carrier mobility and Schottky junction induced anomalous current-voltage characteristics of excitonic PbS colloidal quantum dot solar cells,” Sol. Energy Mater. Sol. Cells 155, 155–165 (2016).
[Crossref]

P. H. Rekemeyer, S. Chang, C.-H. M. Chuang, G. W. Hwang, M. G. Bawendi, and S. Gradečak, “Enhanced Photocurrent in PbS Quantum Dot Photovoltaics via ZnO Nanowires and Band Alignment Engineering,” Adv. Energy Mater. 6(24), 1600848 (2016).
[Crossref]

L. Hu, D.-B. Li, L. Gao, H. Tan, C. Chen, K. Li, M. Li, J.-B. Han, H. Song, H. Liu, and J. Tang, “Graphene Doping Improved Device Performance of ZnMgO/PbS Colloidal Quantum Dot Photovoltaics,” Adv. Funct. Mater. 26(12), 1899–1907 (2016).
[Crossref]

D. C. J. Neo, N. Zhang, Y. Tazawa, H. Jiang, G. M. Hughes, C. R. M. Grovenor, H. E. Assender, and A. A. R. Watt, “Poly(3-hexylthiophene-2,5-diyl) as a Hole Transport Layer for Colloidal Quantum Dot Solar Cells,” ACS Appl. Mater. Interfaces 8(19), 12101–12108 (2016).
[Crossref] [PubMed]

2015 (2)

Q. Lin, H. Shen, H. Wang, A. Wang, J. Niu, L. Qian, F. Guo, and L. S. Li, “Cadmium-free quantum dots based violet light-emitting diodes: High-efficiency and brightness via optimization of organic hole transport layers,” Org. Electron. 25, 178–183 (2015).
[Crossref]

F. Wang, Z. Tan, and Y. Li, “Solution-processable metal oxides/chelates as electrode buffer layers for efficient and stable polymer solar cells,” Energy Environ. Sci. 8(4), 1059–1091 (2015).
[Crossref]

2014 (2)

C.-H. M. Chuang, P. R. Brown, V. Bulović, and M. G. Bawendi, “Improved performance and stability in quantum dot solar cells through band alignment engineering,” Nat. Mater. 13(8), 796–801 (2014).
[Crossref] [PubMed]

P. R. Brown, D. Kim, R. R. Lunt, N. Zhao, M. G. Bawendi, J. C. Grossman, and V. Bulović, “Energy Level Modification in Lead Sulfide Quantum Dot Thin Films Through Ligand Exchange,” ACS Nano 8(6), 5863–5872 (2014).
[Crossref] [PubMed]

2013 (3)

S. Z. Bisri, C. Piliego, M. Yarema, W. Heiss, and M. A. Loi, “Low driving voltage and high mobility ambipolar field-effect transistors with PbS colloidal nanocrystals,” Adv. Mater. 25(31), 4309–4314 (2013).
[Crossref] [PubMed]

P. Maraghechi, A. J. Labelle, A. R. Kirmani, X. Lan, M. M. Adachi, S. M. Thon, S. Hoogland, A. Lee, Z. Ning, A. Fischer, A. Amassian, and E. H. Sargent, “The donor-supply electrode enhances performance in colloidal quantum dot solar cells,” ACS Nano 7(7), 6111–6116 (2013).
[Crossref] [PubMed]

Y.-C. Yao, M.-T. Tsai, C.-Y. Huang, T.-Y. Lin, J.-K. Sheu, and Y.-J. Lee, “Efficient collection of photogenerated carriers by inserting double tunnel junctions in III-nitride p-i-n solar cells,” Appl. Phys. Lett. 103(19), 193503 (2013).
[Crossref]

2011 (2)

J. Gao, C. L. Perkins, J. M. Luther, M. C. Hanna, H.-Y. Chen, O. E. Semonin, A. J. Nozik, R. J. Ellingson, and M. C. Beard, “n-Type Transition Metal Oxide as a Hole Extraction Layer in PbS Quantum Dot Solar Cells,” Nano Lett. 11(8), 3263–3266 (2011).
[Crossref] [PubMed]

A. Wolcott, V. Doyeux, C. A. Nelson, R. Gearba, K. W. Lei, K. G. Yager, A. D. Dolocan, K. Williams, D. Nguyen, and X. Y. Zhu, “Anomalously Large Polarization Effect Responsible for Excitonic Red Shifts in PbSe Quantum Dot Solids,” J. Phys. Chem. Lett. 2(7), 795–800 (2011).
[Crossref]

2007 (1)

J. M. Luther, M. C. Beard, Q. Song, M. Law, R. J. Ellingson, and A. J. Nozik, “Multiple Exciton Generation in Films of Electronically Coupled PbSe Quantum Dots,” Nano Lett. 7(6), 1779–1784 (2007).
[Crossref] [PubMed]

2005 (2)

C. Goh, R. J. Kline, M. D. McGehee, E. N. Kadnikova, and J. M. J. Fréchet, “Molecular-weight-dependent mobilities in regioregular poly(3-hexyl-thiophene) diodes,” Appl. Phys. Lett. 86(12), 122110 (2005).
[Crossref]

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

2004 (1)

A. Gadisa, M. Svensson, M. R. Andersson, and O. Inganäs, “Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/ fullerene derivative,” Appl. Phys. Lett. 84(9), 1609–1611 (2004).
[Crossref]

2003 (1)

M. A. Hines and G. D. Scholes, “Colloidal PbS Nanocrystals with Size‐Tunable Near‐Infrared Emission: Observation of Post‐Synthesis Self‐Narrowing of the Particle Size Distribution,” Adv. Mater. 15(21), 1844–1849 (2003).
[Crossref]

2001 (1)

C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the Open Circuit Voltage of Plastic Solar Cells,” Adv. Funct. Mater. 11(5), 374–380 (2001).
[Crossref]

Abbas, A. S.

X. Lan, O. Voznyy, A. Kiani, F. P. García de Arquer, A. S. Abbas, G. H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance,” Adv. Mater. 28(2), 299–304 (2016).
[Crossref] [PubMed]

Adachi, M. M.

P. Maraghechi, A. J. Labelle, A. R. Kirmani, X. Lan, M. M. Adachi, S. M. Thon, S. Hoogland, A. Lee, Z. Ning, A. Fischer, A. Amassian, and E. H. Sargent, “The donor-supply electrode enhances performance in colloidal quantum dot solar cells,” ACS Nano 7(7), 6111–6116 (2013).
[Crossref] [PubMed]

Amassian, A.

F. Eisner, A. Seitkhan, Y. Han, D. Khim, E. Yengel, A. R. Kirmani, J. Xu, F. P. García de Arquer, E. H. Sargent, A. Amassian, Z. Fei, M. Heeney, and T. D. Anthopoulos, “Solution-Processed In2O3/ZnO Heterojunction Electron Transport Layers for Efficient Organic Bulk Heterojunction and Inorganic Colloidal Quantum-Dot Solar Cells,” Sol. RRL 2(7), 1800076 (2018).
[Crossref]

P. Maraghechi, A. J. Labelle, A. R. Kirmani, X. Lan, M. M. Adachi, S. M. Thon, S. Hoogland, A. Lee, Z. Ning, A. Fischer, A. Amassian, and E. H. Sargent, “The donor-supply electrode enhances performance in colloidal quantum dot solar cells,” ACS Nano 7(7), 6111–6116 (2013).
[Crossref] [PubMed]

An, J.

J. An, X. Yang, W. Wang, J. Li, H. Wang, Z. Yu, C. Gong, X. Wang, and L. Sun, “Stable and efficient PbS colloidal quantum dot solar cells incorporating low-temperature processed carbon paste counter electrodes,” Sol. Energy 158, 28–33 (2017).
[Crossref]

Ananthakumar, S.

S. Ananthakumar and S. Moorthy Babu, “Progress on synthesis and applications of hybrid perovskite semiconductor nanomaterials—A review,” Synth. Met. 246, 64–95 (2018).
[Crossref]

Andersson, M. R.

A. Gadisa, M. Svensson, M. R. Andersson, and O. Inganäs, “Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/ fullerene derivative,” Appl. Phys. Lett. 84(9), 1609–1611 (2004).
[Crossref]

Anthopoulos, T. D.

F. Eisner, A. Seitkhan, Y. Han, D. Khim, E. Yengel, A. R. Kirmani, J. Xu, F. P. García de Arquer, E. H. Sargent, A. Amassian, Z. Fei, M. Heeney, and T. D. Anthopoulos, “Solution-Processed In2O3/ZnO Heterojunction Electron Transport Layers for Efficient Organic Bulk Heterojunction and Inorganic Colloidal Quantum-Dot Solar Cells,” Sol. RRL 2(7), 1800076 (2018).
[Crossref]

Assender, H. E.

D. C. J. Neo, N. Zhang, Y. Tazawa, H. Jiang, G. M. Hughes, C. R. M. Grovenor, H. E. Assender, and A. A. R. Watt, “Poly(3-hexylthiophene-2,5-diyl) as a Hole Transport Layer for Colloidal Quantum Dot Solar Cells,” ACS Appl. Mater. Interfaces 8(19), 12101–12108 (2016).
[Crossref] [PubMed]

Avancini, E.

T. Feurer, P. Reinhard, E. Avancini, B. Bissig, J. Löckinger, P. Fuchs, R. Carron, T. P. Weiss, J. Perrenoud, S. Stutterheim, S. Buecheler, and A. N. Tiwari, “Progress in thin film CIGS photovoltaics - Research and development, manufacturing, and applications,” Prog. Photovolt. Res. Appl. 25(7), 645–667 (2017).
[Crossref]

Bae, I.-G.

S. Yoon, H. Kim, E.-Y. Shin, I.-G. Bae, B. Park, Y.-Y. Noh, and I. Hwang, “Enhanced hole extraction by interaction between CuI and MoO3 in the hole transport layer of organic photovoltaic devices,” Org. Electron. 32, 200–207 (2016).
[Crossref]

Bandara, J.

A. Manjceevan and J. Bandara, “Systematic stacking of PbS/CdS/CdSe multi-layered quantum dots for the enhancement of solar cell efficiency by harvesting wide solar spectrum,” Electrochim. Acta 271, 567–575 (2018).
[Crossref]

Bawendi, M. G.

P. H. Rekemeyer, S. Chang, C.-H. M. Chuang, G. W. Hwang, M. G. Bawendi, and S. Gradečak, “Enhanced Photocurrent in PbS Quantum Dot Photovoltaics via ZnO Nanowires and Band Alignment Engineering,” Adv. Energy Mater. 6(24), 1600848 (2016).
[Crossref]

P. R. Brown, D. Kim, R. R. Lunt, N. Zhao, M. G. Bawendi, J. C. Grossman, and V. Bulović, “Energy Level Modification in Lead Sulfide Quantum Dot Thin Films Through Ligand Exchange,” ACS Nano 8(6), 5863–5872 (2014).
[Crossref] [PubMed]

C.-H. M. Chuang, P. R. Brown, V. Bulović, and M. G. Bawendi, “Improved performance and stability in quantum dot solar cells through band alignment engineering,” Nat. Mater. 13(8), 796–801 (2014).
[Crossref] [PubMed]

Beard, M. C.

J. Gao, C. L. Perkins, J. M. Luther, M. C. Hanna, H.-Y. Chen, O. E. Semonin, A. J. Nozik, R. J. Ellingson, and M. C. Beard, “n-Type Transition Metal Oxide as a Hole Extraction Layer in PbS Quantum Dot Solar Cells,” Nano Lett. 11(8), 3263–3266 (2011).
[Crossref] [PubMed]

J. M. Luther, M. C. Beard, Q. Song, M. Law, R. J. Ellingson, and A. J. Nozik, “Multiple Exciton Generation in Films of Electronically Coupled PbSe Quantum Dots,” Nano Lett. 7(6), 1779–1784 (2007).
[Crossref] [PubMed]

Bisri, S. Z.

S. Z. Bisri, C. Piliego, M. Yarema, W. Heiss, and M. A. Loi, “Low driving voltage and high mobility ambipolar field-effect transistors with PbS colloidal nanocrystals,” Adv. Mater. 25(31), 4309–4314 (2013).
[Crossref] [PubMed]

Bissig, B.

T. Feurer, P. Reinhard, E. Avancini, B. Bissig, J. Löckinger, P. Fuchs, R. Carron, T. P. Weiss, J. Perrenoud, S. Stutterheim, S. Buecheler, and A. N. Tiwari, “Progress in thin film CIGS photovoltaics - Research and development, manufacturing, and applications,” Prog. Photovolt. Res. Appl. 25(7), 645–667 (2017).
[Crossref]

Brabec, C. J.

C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the Open Circuit Voltage of Plastic Solar Cells,” Adv. Funct. Mater. 11(5), 374–380 (2001).
[Crossref]

Brown, P. R.

C.-H. M. Chuang, P. R. Brown, V. Bulović, and M. G. Bawendi, “Improved performance and stability in quantum dot solar cells through band alignment engineering,” Nat. Mater. 13(8), 796–801 (2014).
[Crossref] [PubMed]

P. R. Brown, D. Kim, R. R. Lunt, N. Zhao, M. G. Bawendi, J. C. Grossman, and V. Bulović, “Energy Level Modification in Lead Sulfide Quantum Dot Thin Films Through Ligand Exchange,” ACS Nano 8(6), 5863–5872 (2014).
[Crossref] [PubMed]

Buecheler, S.

T. Feurer, P. Reinhard, E. Avancini, B. Bissig, J. Löckinger, P. Fuchs, R. Carron, T. P. Weiss, J. Perrenoud, S. Stutterheim, S. Buecheler, and A. N. Tiwari, “Progress in thin film CIGS photovoltaics - Research and development, manufacturing, and applications,” Prog. Photovolt. Res. Appl. 25(7), 645–667 (2017).
[Crossref]

Bulovic, V.

P. R. Brown, D. Kim, R. R. Lunt, N. Zhao, M. G. Bawendi, J. C. Grossman, and V. Bulović, “Energy Level Modification in Lead Sulfide Quantum Dot Thin Films Through Ligand Exchange,” ACS Nano 8(6), 5863–5872 (2014).
[Crossref] [PubMed]

C.-H. M. Chuang, P. R. Brown, V. Bulović, and M. G. Bawendi, “Improved performance and stability in quantum dot solar cells through band alignment engineering,” Nat. Mater. 13(8), 796–801 (2014).
[Crossref] [PubMed]

Carron, R.

T. Feurer, P. Reinhard, E. Avancini, B. Bissig, J. Löckinger, P. Fuchs, R. Carron, T. P. Weiss, J. Perrenoud, S. Stutterheim, S. Buecheler, and A. N. Tiwari, “Progress in thin film CIGS photovoltaics - Research and development, manufacturing, and applications,” Prog. Photovolt. Res. Appl. 25(7), 645–667 (2017).
[Crossref]

Chang, S.

P. H. Rekemeyer, S. Chang, C.-H. M. Chuang, G. W. Hwang, M. G. Bawendi, and S. Gradečak, “Enhanced Photocurrent in PbS Quantum Dot Photovoltaics via ZnO Nanowires and Band Alignment Engineering,” Adv. Energy Mater. 6(24), 1600848 (2016).
[Crossref]

Chaudhary, N.

N. Chaudhary, J. P. Kesari, R. Chaudhary, and A. Patra, “Low band gap polymeric solar cells using solution-processable copper iodide as hole transporting layer,” Opt. Mater. 58, 116–120 (2016).
[Crossref]

Chaudhary, R.

N. Chaudhary, J. P. Kesari, R. Chaudhary, and A. Patra, “Low band gap polymeric solar cells using solution-processable copper iodide as hole transporting layer,” Opt. Mater. 58, 116–120 (2016).
[Crossref]

Chen, C.

L. Hu, D.-B. Li, L. Gao, H. Tan, C. Chen, K. Li, M. Li, J.-B. Han, H. Song, H. Liu, and J. Tang, “Graphene Doping Improved Device Performance of ZnMgO/PbS Colloidal Quantum Dot Photovoltaics,” Adv. Funct. Mater. 26(12), 1899–1907 (2016).
[Crossref]

Chen, H.-Y.

J. Gao, C. L. Perkins, J. M. Luther, M. C. Hanna, H.-Y. Chen, O. E. Semonin, A. J. Nozik, R. J. Ellingson, and M. C. Beard, “n-Type Transition Metal Oxide as a Hole Extraction Layer in PbS Quantum Dot Solar Cells,” Nano Lett. 11(8), 3263–3266 (2011).
[Crossref] [PubMed]

Chuang, C.-H. M.

P. H. Rekemeyer, S. Chang, C.-H. M. Chuang, G. W. Hwang, M. G. Bawendi, and S. Gradečak, “Enhanced Photocurrent in PbS Quantum Dot Photovoltaics via ZnO Nanowires and Band Alignment Engineering,” Adv. Energy Mater. 6(24), 1600848 (2016).
[Crossref]

C.-H. M. Chuang, P. R. Brown, V. Bulović, and M. G. Bawendi, “Improved performance and stability in quantum dot solar cells through band alignment engineering,” Nat. Mater. 13(8), 796–801 (2014).
[Crossref] [PubMed]

Chung, D. Y.

J.-Y. Kim, Y. J. Jang, J. Park, J. Kim, J. S. Kang, D. Y. Chung, Y.-E. Sung, C. Lee, J. S. Lee, and M. J. Ko, “Highly loaded PbS/Mn-doped CdS quantum dots for dual application in solar-to-electrical and solar-to-chemical energy conversion,” Appl. Catal. B 227, 409–417 (2018).
[Crossref]

Cravino, A.

C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the Open Circuit Voltage of Plastic Solar Cells,” Adv. Funct. Mater. 11(5), 374–380 (2001).
[Crossref]

Cyr, P. W.

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Dolocan, A. D.

A. Wolcott, V. Doyeux, C. A. Nelson, R. Gearba, K. W. Lei, K. G. Yager, A. D. Dolocan, K. Williams, D. Nguyen, and X. Y. Zhu, “Anomalously Large Polarization Effect Responsible for Excitonic Red Shifts in PbSe Quantum Dot Solids,” J. Phys. Chem. Lett. 2(7), 795–800 (2011).
[Crossref]

Donaldson, P. D.

Y. Sun, P. D. Donaldson, J. Garcia-Barriocanal, and S. L. Swisher, “Understanding quantum confinement and ligand removal in solution-based ZnO thin films from highly stable nanocrystal ink,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(34), 9181–9190 (2018).
[Crossref]

Doyeux, V.

A. Wolcott, V. Doyeux, C. A. Nelson, R. Gearba, K. W. Lei, K. G. Yager, A. D. Dolocan, K. Williams, D. Nguyen, and X. Y. Zhu, “Anomalously Large Polarization Effect Responsible for Excitonic Red Shifts in PbSe Quantum Dot Solids,” J. Phys. Chem. Lett. 2(7), 795–800 (2011).
[Crossref]

Dunlop, E. D.

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (version 52),” Prog. Photovolt. Res. Appl. 26(7), 427–436 (2018).
[Crossref]

Eisner, F.

F. Eisner, A. Seitkhan, Y. Han, D. Khim, E. Yengel, A. R. Kirmani, J. Xu, F. P. García de Arquer, E. H. Sargent, A. Amassian, Z. Fei, M. Heeney, and T. D. Anthopoulos, “Solution-Processed In2O3/ZnO Heterojunction Electron Transport Layers for Efficient Organic Bulk Heterojunction and Inorganic Colloidal Quantum-Dot Solar Cells,” Sol. RRL 2(7), 1800076 (2018).
[Crossref]

Ellingson, R. J.

J. Gao, C. L. Perkins, J. M. Luther, M. C. Hanna, H.-Y. Chen, O. E. Semonin, A. J. Nozik, R. J. Ellingson, and M. C. Beard, “n-Type Transition Metal Oxide as a Hole Extraction Layer in PbS Quantum Dot Solar Cells,” Nano Lett. 11(8), 3263–3266 (2011).
[Crossref] [PubMed]

J. M. Luther, M. C. Beard, Q. Song, M. Law, R. J. Ellingson, and A. J. Nozik, “Multiple Exciton Generation in Films of Electronically Coupled PbSe Quantum Dots,” Nano Lett. 7(6), 1779–1784 (2007).
[Crossref] [PubMed]

Fan, F.

X. Lan, O. Voznyy, A. Kiani, F. P. García de Arquer, A. S. Abbas, G. H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance,” Adv. Mater. 28(2), 299–304 (2016).
[Crossref] [PubMed]

Fei, Z.

F. Eisner, A. Seitkhan, Y. Han, D. Khim, E. Yengel, A. R. Kirmani, J. Xu, F. P. García de Arquer, E. H. Sargent, A. Amassian, Z. Fei, M. Heeney, and T. D. Anthopoulos, “Solution-Processed In2O3/ZnO Heterojunction Electron Transport Layers for Efficient Organic Bulk Heterojunction and Inorganic Colloidal Quantum-Dot Solar Cells,” Sol. RRL 2(7), 1800076 (2018).
[Crossref]

Feurer, T.

T. Feurer, P. Reinhard, E. Avancini, B. Bissig, J. Löckinger, P. Fuchs, R. Carron, T. P. Weiss, J. Perrenoud, S. Stutterheim, S. Buecheler, and A. N. Tiwari, “Progress in thin film CIGS photovoltaics - Research and development, manufacturing, and applications,” Prog. Photovolt. Res. Appl. 25(7), 645–667 (2017).
[Crossref]

Fischer, A.

P. Maraghechi, A. J. Labelle, A. R. Kirmani, X. Lan, M. M. Adachi, S. M. Thon, S. Hoogland, A. Lee, Z. Ning, A. Fischer, A. Amassian, and E. H. Sargent, “The donor-supply electrode enhances performance in colloidal quantum dot solar cells,” ACS Nano 7(7), 6111–6116 (2013).
[Crossref] [PubMed]

Fréchet, J. M. J.

C. Goh, R. J. Kline, M. D. McGehee, E. N. Kadnikova, and J. M. J. Fréchet, “Molecular-weight-dependent mobilities in regioregular poly(3-hexyl-thiophene) diodes,” Appl. Phys. Lett. 86(12), 122110 (2005).
[Crossref]

Fromherz, T.

C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the Open Circuit Voltage of Plastic Solar Cells,” Adv. Funct. Mater. 11(5), 374–380 (2001).
[Crossref]

Fuchs, P.

T. Feurer, P. Reinhard, E. Avancini, B. Bissig, J. Löckinger, P. Fuchs, R. Carron, T. P. Weiss, J. Perrenoud, S. Stutterheim, S. Buecheler, and A. N. Tiwari, “Progress in thin film CIGS photovoltaics - Research and development, manufacturing, and applications,” Prog. Photovolt. Res. Appl. 25(7), 645–667 (2017).
[Crossref]

Gadisa, A.

A. Gadisa, M. Svensson, M. R. Andersson, and O. Inganäs, “Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/ fullerene derivative,” Appl. Phys. Lett. 84(9), 1609–1611 (2004).
[Crossref]

Gao, J.

J. Gao, C. L. Perkins, J. M. Luther, M. C. Hanna, H.-Y. Chen, O. E. Semonin, A. J. Nozik, R. J. Ellingson, and M. C. Beard, “n-Type Transition Metal Oxide as a Hole Extraction Layer in PbS Quantum Dot Solar Cells,” Nano Lett. 11(8), 3263–3266 (2011).
[Crossref] [PubMed]

Gao, L.

L. Hu, D.-B. Li, L. Gao, H. Tan, C. Chen, K. Li, M. Li, J.-B. Han, H. Song, H. Liu, and J. Tang, “Graphene Doping Improved Device Performance of ZnMgO/PbS Colloidal Quantum Dot Photovoltaics,” Adv. Funct. Mater. 26(12), 1899–1907 (2016).
[Crossref]

García de Arquer, F. P.

F. Eisner, A. Seitkhan, Y. Han, D. Khim, E. Yengel, A. R. Kirmani, J. Xu, F. P. García de Arquer, E. H. Sargent, A. Amassian, Z. Fei, M. Heeney, and T. D. Anthopoulos, “Solution-Processed In2O3/ZnO Heterojunction Electron Transport Layers for Efficient Organic Bulk Heterojunction and Inorganic Colloidal Quantum-Dot Solar Cells,” Sol. RRL 2(7), 1800076 (2018).
[Crossref]

X. Lan, O. Voznyy, A. Kiani, F. P. García de Arquer, A. S. Abbas, G. H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance,” Adv. Mater. 28(2), 299–304 (2016).
[Crossref] [PubMed]

Garcia-Barriocanal, J.

Y. Sun, P. D. Donaldson, J. Garcia-Barriocanal, and S. L. Swisher, “Understanding quantum confinement and ligand removal in solution-based ZnO thin films from highly stable nanocrystal ink,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(34), 9181–9190 (2018).
[Crossref]

Gearba, R.

A. Wolcott, V. Doyeux, C. A. Nelson, R. Gearba, K. W. Lei, K. G. Yager, A. D. Dolocan, K. Williams, D. Nguyen, and X. Y. Zhu, “Anomalously Large Polarization Effect Responsible for Excitonic Red Shifts in PbSe Quantum Dot Solids,” J. Phys. Chem. Lett. 2(7), 795–800 (2011).
[Crossref]

Goh, C.

C. Goh, R. J. Kline, M. D. McGehee, E. N. Kadnikova, and J. M. J. Fréchet, “Molecular-weight-dependent mobilities in regioregular poly(3-hexyl-thiophene) diodes,” Appl. Phys. Lett. 86(12), 122110 (2005).
[Crossref]

Gong, C.

J. An, X. Yang, W. Wang, J. Li, H. Wang, Z. Yu, C. Gong, X. Wang, and L. Sun, “Stable and efficient PbS colloidal quantum dot solar cells incorporating low-temperature processed carbon paste counter electrodes,” Sol. Energy 158, 28–33 (2017).
[Crossref]

Gradecak, S.

P. H. Rekemeyer, S. Chang, C.-H. M. Chuang, G. W. Hwang, M. G. Bawendi, and S. Gradečak, “Enhanced Photocurrent in PbS Quantum Dot Photovoltaics via ZnO Nanowires and Band Alignment Engineering,” Adv. Energy Mater. 6(24), 1600848 (2016).
[Crossref]

Green, M. A.

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (version 52),” Prog. Photovolt. Res. Appl. 26(7), 427–436 (2018).
[Crossref]

Grossman, J. C.

P. R. Brown, D. Kim, R. R. Lunt, N. Zhao, M. G. Bawendi, J. C. Grossman, and V. Bulović, “Energy Level Modification in Lead Sulfide Quantum Dot Thin Films Through Ligand Exchange,” ACS Nano 8(6), 5863–5872 (2014).
[Crossref] [PubMed]

Grovenor, C. R. M.

D. C. J. Neo, N. Zhang, Y. Tazawa, H. Jiang, G. M. Hughes, C. R. M. Grovenor, H. E. Assender, and A. A. R. Watt, “Poly(3-hexylthiophene-2,5-diyl) as a Hole Transport Layer for Colloidal Quantum Dot Solar Cells,” ACS Appl. Mater. Interfaces 8(19), 12101–12108 (2016).
[Crossref] [PubMed]

Guo, F.

Q. Lin, H. Shen, H. Wang, A. Wang, J. Niu, L. Qian, F. Guo, and L. S. Li, “Cadmium-free quantum dots based violet light-emitting diodes: High-efficiency and brightness via optimization of organic hole transport layers,” Org. Electron. 25, 178–183 (2015).
[Crossref]

Han, J.-B.

L. Hu, D.-B. Li, L. Gao, H. Tan, C. Chen, K. Li, M. Li, J.-B. Han, H. Song, H. Liu, and J. Tang, “Graphene Doping Improved Device Performance of ZnMgO/PbS Colloidal Quantum Dot Photovoltaics,” Adv. Funct. Mater. 26(12), 1899–1907 (2016).
[Crossref]

Han, Y.

F. Eisner, A. Seitkhan, Y. Han, D. Khim, E. Yengel, A. R. Kirmani, J. Xu, F. P. García de Arquer, E. H. Sargent, A. Amassian, Z. Fei, M. Heeney, and T. D. Anthopoulos, “Solution-Processed In2O3/ZnO Heterojunction Electron Transport Layers for Efficient Organic Bulk Heterojunction and Inorganic Colloidal Quantum-Dot Solar Cells,” Sol. RRL 2(7), 1800076 (2018).
[Crossref]

Hanna, M. C.

J. Gao, C. L. Perkins, J. M. Luther, M. C. Hanna, H.-Y. Chen, O. E. Semonin, A. J. Nozik, R. J. Ellingson, and M. C. Beard, “n-Type Transition Metal Oxide as a Hole Extraction Layer in PbS Quantum Dot Solar Cells,” Nano Lett. 11(8), 3263–3266 (2011).
[Crossref] [PubMed]

Heeney, M.

F. Eisner, A. Seitkhan, Y. Han, D. Khim, E. Yengel, A. R. Kirmani, J. Xu, F. P. García de Arquer, E. H. Sargent, A. Amassian, Z. Fei, M. Heeney, and T. D. Anthopoulos, “Solution-Processed In2O3/ZnO Heterojunction Electron Transport Layers for Efficient Organic Bulk Heterojunction and Inorganic Colloidal Quantum-Dot Solar Cells,” Sol. RRL 2(7), 1800076 (2018).
[Crossref]

Heiss, W.

S. Z. Bisri, C. Piliego, M. Yarema, W. Heiss, and M. A. Loi, “Low driving voltage and high mobility ambipolar field-effect transistors with PbS colloidal nanocrystals,” Adv. Mater. 25(31), 4309–4314 (2013).
[Crossref] [PubMed]

Hines, M. A.

M. A. Hines and G. D. Scholes, “Colloidal PbS Nanocrystals with Size‐Tunable Near‐Infrared Emission: Observation of Post‐Synthesis Self‐Narrowing of the Particle Size Distribution,” Adv. Mater. 15(21), 1844–1849 (2003).
[Crossref]

Hishikawa, Y.

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (version 52),” Prog. Photovolt. Res. Appl. 26(7), 427–436 (2018).
[Crossref]

Ho-Baillie, A. W. Y.

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (version 52),” Prog. Photovolt. Res. Appl. 26(7), 427–436 (2018).
[Crossref]

Hohl-Ebinger, J.

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (version 52),” Prog. Photovolt. Res. Appl. 26(7), 427–436 (2018).
[Crossref]

Hoogland, S.

X. Lan, O. Voznyy, A. Kiani, F. P. García de Arquer, A. S. Abbas, G. H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance,” Adv. Mater. 28(2), 299–304 (2016).
[Crossref] [PubMed]

L. Hu, A. Mandelis, X. Lan, A. Melnikov, S. Hoogland, and E. H. Sargent, “Imbalanced charge carrier mobility and Schottky junction induced anomalous current-voltage characteristics of excitonic PbS colloidal quantum dot solar cells,” Sol. Energy Mater. Sol. Cells 155, 155–165 (2016).
[Crossref]

P. Maraghechi, A. J. Labelle, A. R. Kirmani, X. Lan, M. M. Adachi, S. M. Thon, S. Hoogland, A. Lee, Z. Ning, A. Fischer, A. Amassian, and E. H. Sargent, “The donor-supply electrode enhances performance in colloidal quantum dot solar cells,” ACS Nano 7(7), 6111–6116 (2013).
[Crossref] [PubMed]

Hu, L.

L. Hu, D.-B. Li, L. Gao, H. Tan, C. Chen, K. Li, M. Li, J.-B. Han, H. Song, H. Liu, and J. Tang, “Graphene Doping Improved Device Performance of ZnMgO/PbS Colloidal Quantum Dot Photovoltaics,” Adv. Funct. Mater. 26(12), 1899–1907 (2016).
[Crossref]

L. Hu, A. Mandelis, X. Lan, A. Melnikov, S. Hoogland, and E. H. Sargent, “Imbalanced charge carrier mobility and Schottky junction induced anomalous current-voltage characteristics of excitonic PbS colloidal quantum dot solar cells,” Sol. Energy Mater. Sol. Cells 155, 155–165 (2016).
[Crossref]

Huang, C.-Y.

Y.-C. Yao, M.-T. Tsai, C.-Y. Huang, T.-Y. Lin, J.-K. Sheu, and Y.-J. Lee, “Efficient collection of photogenerated carriers by inserting double tunnel junctions in III-nitride p-i-n solar cells,” Appl. Phys. Lett. 103(19), 193503 (2013).
[Crossref]

Hughes, G. M.

D. C. J. Neo, N. Zhang, Y. Tazawa, H. Jiang, G. M. Hughes, C. R. M. Grovenor, H. E. Assender, and A. A. R. Watt, “Poly(3-hexylthiophene-2,5-diyl) as a Hole Transport Layer for Colloidal Quantum Dot Solar Cells,” ACS Appl. Mater. Interfaces 8(19), 12101–12108 (2016).
[Crossref] [PubMed]

Hummelen, J. C.

C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the Open Circuit Voltage of Plastic Solar Cells,” Adv. Funct. Mater. 11(5), 374–380 (2001).
[Crossref]

Hwang, G. W.

P. H. Rekemeyer, S. Chang, C.-H. M. Chuang, G. W. Hwang, M. G. Bawendi, and S. Gradečak, “Enhanced Photocurrent in PbS Quantum Dot Photovoltaics via ZnO Nanowires and Band Alignment Engineering,” Adv. Energy Mater. 6(24), 1600848 (2016).
[Crossref]

Hwang, I.

S. Yoon, H. Kim, E.-Y. Shin, I.-G. Bae, B. Park, Y.-Y. Noh, and I. Hwang, “Enhanced hole extraction by interaction between CuI and MoO3 in the hole transport layer of organic photovoltaic devices,” Org. Electron. 32, 200–207 (2016).
[Crossref]

Inganäs, O.

A. Gadisa, M. Svensson, M. R. Andersson, and O. Inganäs, “Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/ fullerene derivative,” Appl. Phys. Lett. 84(9), 1609–1611 (2004).
[Crossref]

Jang, Y. J.

J.-Y. Kim, Y. J. Jang, J. Park, J. Kim, J. S. Kang, D. Y. Chung, Y.-E. Sung, C. Lee, J. S. Lee, and M. J. Ko, “Highly loaded PbS/Mn-doped CdS quantum dots for dual application in solar-to-electrical and solar-to-chemical energy conversion,” Appl. Catal. B 227, 409–417 (2018).
[Crossref]

Jiang, H.

D. C. J. Neo, N. Zhang, Y. Tazawa, H. Jiang, G. M. Hughes, C. R. M. Grovenor, H. E. Assender, and A. A. R. Watt, “Poly(3-hexylthiophene-2,5-diyl) as a Hole Transport Layer for Colloidal Quantum Dot Solar Cells,” ACS Appl. Mater. Interfaces 8(19), 12101–12108 (2016).
[Crossref] [PubMed]

Jiang, Q.

W. Xu, F. Tan, Q. Liu, X. Liu, Q. Jiang, L. Wei, W. Zhang, Z. Wang, S. Qu, and Z. Wang, “Efficient PbS QD solar cell with an inverted structure,” Sol. Energy Mater. Sol. Cells 159, 503–509 (2017).
[Crossref]

Jiang, Y.

X. Yao, Z. Song, L. Mi, G. Li, X. Wang, X. Wang, and Y. Jiang, “Improved stability of depletion heterojunction solar cells employing cation-exchange PbS quantum dots,” Sol. Energy Mater. Sol. Cells 164, 122–127 (2017).
[Crossref]

Johansson, E. M. J.

X. Zhang and E. M. J. Johansson, “Reduction of charge recombination in PbS colloidal quantum dot solar cells at the quantum dot/ZnO interface by inserting a MgZnO buffer layer,” J. Mater. Chem. A Mater. Energy Sustain. 5(1), 303–310 (2017).
[Crossref]

Kadnikova, E. N.

C. Goh, R. J. Kline, M. D. McGehee, E. N. Kadnikova, and J. M. J. Fréchet, “Molecular-weight-dependent mobilities in regioregular poly(3-hexyl-thiophene) diodes,” Appl. Phys. Lett. 86(12), 122110 (2005).
[Crossref]

Kang, J. S.

J.-Y. Kim, Y. J. Jang, J. Park, J. Kim, J. S. Kang, D. Y. Chung, Y.-E. Sung, C. Lee, J. S. Lee, and M. J. Ko, “Highly loaded PbS/Mn-doped CdS quantum dots for dual application in solar-to-electrical and solar-to-chemical energy conversion,” Appl. Catal. B 227, 409–417 (2018).
[Crossref]

Kanjanaboos, P.

X. Lan, O. Voznyy, A. Kiani, F. P. García de Arquer, A. S. Abbas, G. H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance,” Adv. Mater. 28(2), 299–304 (2016).
[Crossref] [PubMed]

Kesari, J. P.

N. Chaudhary, J. P. Kesari, R. Chaudhary, and A. Patra, “Low band gap polymeric solar cells using solution-processable copper iodide as hole transporting layer,” Opt. Mater. 58, 116–120 (2016).
[Crossref]

Khim, D.

F. Eisner, A. Seitkhan, Y. Han, D. Khim, E. Yengel, A. R. Kirmani, J. Xu, F. P. García de Arquer, E. H. Sargent, A. Amassian, Z. Fei, M. Heeney, and T. D. Anthopoulos, “Solution-Processed In2O3/ZnO Heterojunction Electron Transport Layers for Efficient Organic Bulk Heterojunction and Inorganic Colloidal Quantum-Dot Solar Cells,” Sol. RRL 2(7), 1800076 (2018).
[Crossref]

Kiani, A.

X. Lan, O. Voznyy, A. Kiani, F. P. García de Arquer, A. S. Abbas, G. H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance,” Adv. Mater. 28(2), 299–304 (2016).
[Crossref] [PubMed]

Kim, D.

P. R. Brown, D. Kim, R. R. Lunt, N. Zhao, M. G. Bawendi, J. C. Grossman, and V. Bulović, “Energy Level Modification in Lead Sulfide Quantum Dot Thin Films Through Ligand Exchange,” ACS Nano 8(6), 5863–5872 (2014).
[Crossref] [PubMed]

Kim, G. H.

X. Lan, O. Voznyy, A. Kiani, F. P. García de Arquer, A. S. Abbas, G. H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance,” Adv. Mater. 28(2), 299–304 (2016).
[Crossref] [PubMed]

Kim, H.

S. Yoon, H. Kim, E.-Y. Shin, I.-G. Bae, B. Park, Y.-Y. Noh, and I. Hwang, “Enhanced hole extraction by interaction between CuI and MoO3 in the hole transport layer of organic photovoltaic devices,” Org. Electron. 32, 200–207 (2016).
[Crossref]

Kim, J.

J.-Y. Kim, Y. J. Jang, J. Park, J. Kim, J. S. Kang, D. Y. Chung, Y.-E. Sung, C. Lee, J. S. Lee, and M. J. Ko, “Highly loaded PbS/Mn-doped CdS quantum dots for dual application in solar-to-electrical and solar-to-chemical energy conversion,” Appl. Catal. B 227, 409–417 (2018).
[Crossref]

Kim, J.-Y.

J.-Y. Kim, Y. J. Jang, J. Park, J. Kim, J. S. Kang, D. Y. Chung, Y.-E. Sung, C. Lee, J. S. Lee, and M. J. Ko, “Highly loaded PbS/Mn-doped CdS quantum dots for dual application in solar-to-electrical and solar-to-chemical energy conversion,” Appl. Catal. B 227, 409–417 (2018).
[Crossref]

Kirmani, A. R.

F. Eisner, A. Seitkhan, Y. Han, D. Khim, E. Yengel, A. R. Kirmani, J. Xu, F. P. García de Arquer, E. H. Sargent, A. Amassian, Z. Fei, M. Heeney, and T. D. Anthopoulos, “Solution-Processed In2O3/ZnO Heterojunction Electron Transport Layers for Efficient Organic Bulk Heterojunction and Inorganic Colloidal Quantum-Dot Solar Cells,” Sol. RRL 2(7), 1800076 (2018).
[Crossref]

P. Maraghechi, A. J. Labelle, A. R. Kirmani, X. Lan, M. M. Adachi, S. M. Thon, S. Hoogland, A. Lee, Z. Ning, A. Fischer, A. Amassian, and E. H. Sargent, “The donor-supply electrode enhances performance in colloidal quantum dot solar cells,” ACS Nano 7(7), 6111–6116 (2013).
[Crossref] [PubMed]

Klem, E. J. D.

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Kline, R. J.

C. Goh, R. J. Kline, M. D. McGehee, E. N. Kadnikova, and J. M. J. Fréchet, “Molecular-weight-dependent mobilities in regioregular poly(3-hexyl-thiophene) diodes,” Appl. Phys. Lett. 86(12), 122110 (2005).
[Crossref]

Ko, M. J.

J.-Y. Kim, Y. J. Jang, J. Park, J. Kim, J. S. Kang, D. Y. Chung, Y.-E. Sung, C. Lee, J. S. Lee, and M. J. Ko, “Highly loaded PbS/Mn-doped CdS quantum dots for dual application in solar-to-electrical and solar-to-chemical energy conversion,” Appl. Catal. B 227, 409–417 (2018).
[Crossref]

Konstantatos, G.

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Kramer, I.

X. Lan, O. Voznyy, A. Kiani, F. P. García de Arquer, A. S. Abbas, G. H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance,” Adv. Mater. 28(2), 299–304 (2016).
[Crossref] [PubMed]

Labelle, A. J.

P. Maraghechi, A. J. Labelle, A. R. Kirmani, X. Lan, M. M. Adachi, S. M. Thon, S. Hoogland, A. Lee, Z. Ning, A. Fischer, A. Amassian, and E. H. Sargent, “The donor-supply electrode enhances performance in colloidal quantum dot solar cells,” ACS Nano 7(7), 6111–6116 (2013).
[Crossref] [PubMed]

Lan, X.

X. Lan, O. Voznyy, A. Kiani, F. P. García de Arquer, A. S. Abbas, G. H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance,” Adv. Mater. 28(2), 299–304 (2016).
[Crossref] [PubMed]

L. Hu, A. Mandelis, X. Lan, A. Melnikov, S. Hoogland, and E. H. Sargent, “Imbalanced charge carrier mobility and Schottky junction induced anomalous current-voltage characteristics of excitonic PbS colloidal quantum dot solar cells,” Sol. Energy Mater. Sol. Cells 155, 155–165 (2016).
[Crossref]

P. Maraghechi, A. J. Labelle, A. R. Kirmani, X. Lan, M. M. Adachi, S. M. Thon, S. Hoogland, A. Lee, Z. Ning, A. Fischer, A. Amassian, and E. H. Sargent, “The donor-supply electrode enhances performance in colloidal quantum dot solar cells,” ACS Nano 7(7), 6111–6116 (2013).
[Crossref] [PubMed]

Law, M.

J. M. Luther, M. C. Beard, Q. Song, M. Law, R. J. Ellingson, and A. J. Nozik, “Multiple Exciton Generation in Films of Electronically Coupled PbSe Quantum Dots,” Nano Lett. 7(6), 1779–1784 (2007).
[Crossref] [PubMed]

Lee, A.

P. Maraghechi, A. J. Labelle, A. R. Kirmani, X. Lan, M. M. Adachi, S. M. Thon, S. Hoogland, A. Lee, Z. Ning, A. Fischer, A. Amassian, and E. H. Sargent, “The donor-supply electrode enhances performance in colloidal quantum dot solar cells,” ACS Nano 7(7), 6111–6116 (2013).
[Crossref] [PubMed]

Lee, C.

J.-Y. Kim, Y. J. Jang, J. Park, J. Kim, J. S. Kang, D. Y. Chung, Y.-E. Sung, C. Lee, J. S. Lee, and M. J. Ko, “Highly loaded PbS/Mn-doped CdS quantum dots for dual application in solar-to-electrical and solar-to-chemical energy conversion,” Appl. Catal. B 227, 409–417 (2018).
[Crossref]

Lee, J. S.

J.-Y. Kim, Y. J. Jang, J. Park, J. Kim, J. S. Kang, D. Y. Chung, Y.-E. Sung, C. Lee, J. S. Lee, and M. J. Ko, “Highly loaded PbS/Mn-doped CdS quantum dots for dual application in solar-to-electrical and solar-to-chemical energy conversion,” Appl. Catal. B 227, 409–417 (2018).
[Crossref]

Lee, P.

X. Lan, O. Voznyy, A. Kiani, F. P. García de Arquer, A. S. Abbas, G. H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance,” Adv. Mater. 28(2), 299–304 (2016).
[Crossref] [PubMed]

Lee, Y.-J.

Y.-C. Yao, M.-T. Tsai, C.-Y. Huang, T.-Y. Lin, J.-K. Sheu, and Y.-J. Lee, “Efficient collection of photogenerated carriers by inserting double tunnel junctions in III-nitride p-i-n solar cells,” Appl. Phys. Lett. 103(19), 193503 (2013).
[Crossref]

Lei, K. W.

A. Wolcott, V. Doyeux, C. A. Nelson, R. Gearba, K. W. Lei, K. G. Yager, A. D. Dolocan, K. Williams, D. Nguyen, and X. Y. Zhu, “Anomalously Large Polarization Effect Responsible for Excitonic Red Shifts in PbSe Quantum Dot Solids,” J. Phys. Chem. Lett. 2(7), 795–800 (2011).
[Crossref]

Levi, D. H.

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (version 52),” Prog. Photovolt. Res. Appl. 26(7), 427–436 (2018).
[Crossref]

Levina, L.

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Li, D.-B.

L. Hu, D.-B. Li, L. Gao, H. Tan, C. Chen, K. Li, M. Li, J.-B. Han, H. Song, H. Liu, and J. Tang, “Graphene Doping Improved Device Performance of ZnMgO/PbS Colloidal Quantum Dot Photovoltaics,” Adv. Funct. Mater. 26(12), 1899–1907 (2016).
[Crossref]

Li, G.

X. Yao, Z. Song, L. Mi, G. Li, X. Wang, X. Wang, and Y. Jiang, “Improved stability of depletion heterojunction solar cells employing cation-exchange PbS quantum dots,” Sol. Energy Mater. Sol. Cells 164, 122–127 (2017).
[Crossref]

Li, J.

J. An, X. Yang, W. Wang, J. Li, H. Wang, Z. Yu, C. Gong, X. Wang, and L. Sun, “Stable and efficient PbS colloidal quantum dot solar cells incorporating low-temperature processed carbon paste counter electrodes,” Sol. Energy 158, 28–33 (2017).
[Crossref]

Li, K.

L. Hu, D.-B. Li, L. Gao, H. Tan, C. Chen, K. Li, M. Li, J.-B. Han, H. Song, H. Liu, and J. Tang, “Graphene Doping Improved Device Performance of ZnMgO/PbS Colloidal Quantum Dot Photovoltaics,” Adv. Funct. Mater. 26(12), 1899–1907 (2016).
[Crossref]

Li, L. S.

Q. Lin, H. Shen, H. Wang, A. Wang, J. Niu, L. Qian, F. Guo, and L. S. Li, “Cadmium-free quantum dots based violet light-emitting diodes: High-efficiency and brightness via optimization of organic hole transport layers,” Org. Electron. 25, 178–183 (2015).
[Crossref]

Li, M.

S. Zang, Y. Wang, M. Li, W. Su, H. Zhu, X. Zhang, and Y. Liu, “Fabrication of efficient PbS colloidal quantum dot solar cell with low temperature sputter-deposited ZnO electron transport layer,” Sol. Energy Mater. Sol. Cells 169, 264–269 (2017).
[Crossref]

L. Hu, D.-B. Li, L. Gao, H. Tan, C. Chen, K. Li, M. Li, J.-B. Han, H. Song, H. Liu, and J. Tang, “Graphene Doping Improved Device Performance of ZnMgO/PbS Colloidal Quantum Dot Photovoltaics,” Adv. Funct. Mater. 26(12), 1899–1907 (2016).
[Crossref]

Li, Y.

F. Wang, Z. Tan, and Y. Li, “Solution-processable metal oxides/chelates as electrode buffer layers for efficient and stable polymer solar cells,” Energy Environ. Sci. 8(4), 1059–1091 (2015).
[Crossref]

Lin, Q.

Q. Lin, H. Shen, H. Wang, A. Wang, J. Niu, L. Qian, F. Guo, and L. S. Li, “Cadmium-free quantum dots based violet light-emitting diodes: High-efficiency and brightness via optimization of organic hole transport layers,” Org. Electron. 25, 178–183 (2015).
[Crossref]

Lin, T.-Y.

Y.-C. Yao, M.-T. Tsai, C.-Y. Huang, T.-Y. Lin, J.-K. Sheu, and Y.-J. Lee, “Efficient collection of photogenerated carriers by inserting double tunnel junctions in III-nitride p-i-n solar cells,” Appl. Phys. Lett. 103(19), 193503 (2013).
[Crossref]

Liu, H.

L. Hu, D.-B. Li, L. Gao, H. Tan, C. Chen, K. Li, M. Li, J.-B. Han, H. Song, H. Liu, and J. Tang, “Graphene Doping Improved Device Performance of ZnMgO/PbS Colloidal Quantum Dot Photovoltaics,” Adv. Funct. Mater. 26(12), 1899–1907 (2016).
[Crossref]

Liu, M.

X. Lan, O. Voznyy, A. Kiani, F. P. García de Arquer, A. S. Abbas, G. H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance,” Adv. Mater. 28(2), 299–304 (2016).
[Crossref] [PubMed]

Liu, Q.

W. Xu, F. Tan, Q. Liu, X. Liu, Q. Jiang, L. Wei, W. Zhang, Z. Wang, S. Qu, and Z. Wang, “Efficient PbS QD solar cell with an inverted structure,” Sol. Energy Mater. Sol. Cells 159, 503–509 (2017).
[Crossref]

Liu, X.

W. Xu, F. Tan, Q. Liu, X. Liu, Q. Jiang, L. Wei, W. Zhang, Z. Wang, S. Qu, and Z. Wang, “Efficient PbS QD solar cell with an inverted structure,” Sol. Energy Mater. Sol. Cells 159, 503–509 (2017).
[Crossref]

Liu, Y.

S. Zang, Y. Wang, M. Li, W. Su, H. Zhu, X. Zhang, and Y. Liu, “Fabrication of efficient PbS colloidal quantum dot solar cell with low temperature sputter-deposited ZnO electron transport layer,” Sol. Energy Mater. Sol. Cells 169, 264–269 (2017).
[Crossref]

Löckinger, J.

T. Feurer, P. Reinhard, E. Avancini, B. Bissig, J. Löckinger, P. Fuchs, R. Carron, T. P. Weiss, J. Perrenoud, S. Stutterheim, S. Buecheler, and A. N. Tiwari, “Progress in thin film CIGS photovoltaics - Research and development, manufacturing, and applications,” Prog. Photovolt. Res. Appl. 25(7), 645–667 (2017).
[Crossref]

Loi, M. A.

S. Z. Bisri, C. Piliego, M. Yarema, W. Heiss, and M. A. Loi, “Low driving voltage and high mobility ambipolar field-effect transistors with PbS colloidal nanocrystals,” Adv. Mater. 25(31), 4309–4314 (2013).
[Crossref] [PubMed]

Lunt, R. R.

P. R. Brown, D. Kim, R. R. Lunt, N. Zhao, M. G. Bawendi, J. C. Grossman, and V. Bulović, “Energy Level Modification in Lead Sulfide Quantum Dot Thin Films Through Ligand Exchange,” ACS Nano 8(6), 5863–5872 (2014).
[Crossref] [PubMed]

Luther, J. M.

J. Gao, C. L. Perkins, J. M. Luther, M. C. Hanna, H.-Y. Chen, O. E. Semonin, A. J. Nozik, R. J. Ellingson, and M. C. Beard, “n-Type Transition Metal Oxide as a Hole Extraction Layer in PbS Quantum Dot Solar Cells,” Nano Lett. 11(8), 3263–3266 (2011).
[Crossref] [PubMed]

J. M. Luther, M. C. Beard, Q. Song, M. Law, R. J. Ellingson, and A. J. Nozik, “Multiple Exciton Generation in Films of Electronically Coupled PbSe Quantum Dots,” Nano Lett. 7(6), 1779–1784 (2007).
[Crossref] [PubMed]

Lv, K.

Z. Zhang, C. Shi, K. Lv, C. Ma, G. Xiao, and L. Ni, “200-nm long TiO2 nanorod arrays for efficient solid-state PbS quantum dot-sensitized solar cells,” J. Energy Chem. 27(4), 1214–1218 (2018).
[Crossref]

Ma, C.

Z. Zhang, C. Shi, K. Lv, C. Ma, G. Xiao, and L. Ni, “200-nm long TiO2 nanorod arrays for efficient solid-state PbS quantum dot-sensitized solar cells,” J. Energy Chem. 27(4), 1214–1218 (2018).
[Crossref]

Mandelis, A.

L. Hu, A. Mandelis, X. Lan, A. Melnikov, S. Hoogland, and E. H. Sargent, “Imbalanced charge carrier mobility and Schottky junction induced anomalous current-voltage characteristics of excitonic PbS colloidal quantum dot solar cells,” Sol. Energy Mater. Sol. Cells 155, 155–165 (2016).
[Crossref]

Manjceevan, A.

A. Manjceevan and J. Bandara, “Systematic stacking of PbS/CdS/CdSe multi-layered quantum dots for the enhancement of solar cell efficiency by harvesting wide solar spectrum,” Electrochim. Acta 271, 567–575 (2018).
[Crossref]

Maraghechi, P.

P. Maraghechi, A. J. Labelle, A. R. Kirmani, X. Lan, M. M. Adachi, S. M. Thon, S. Hoogland, A. Lee, Z. Ning, A. Fischer, A. Amassian, and E. H. Sargent, “The donor-supply electrode enhances performance in colloidal quantum dot solar cells,” ACS Nano 7(7), 6111–6116 (2013).
[Crossref] [PubMed]

McDonald, S. A.

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

McGehee, M. D.

C. Goh, R. J. Kline, M. D. McGehee, E. N. Kadnikova, and J. M. J. Fréchet, “Molecular-weight-dependent mobilities in regioregular poly(3-hexyl-thiophene) diodes,” Appl. Phys. Lett. 86(12), 122110 (2005).
[Crossref]

Meissner, D.

C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the Open Circuit Voltage of Plastic Solar Cells,” Adv. Funct. Mater. 11(5), 374–380 (2001).
[Crossref]

Melnikov, A.

L. Hu, A. Mandelis, X. Lan, A. Melnikov, S. Hoogland, and E. H. Sargent, “Imbalanced charge carrier mobility and Schottky junction induced anomalous current-voltage characteristics of excitonic PbS colloidal quantum dot solar cells,” Sol. Energy Mater. Sol. Cells 155, 155–165 (2016).
[Crossref]

Mi, L.

X. Yao, Z. Song, L. Mi, G. Li, X. Wang, X. Wang, and Y. Jiang, “Improved stability of depletion heterojunction solar cells employing cation-exchange PbS quantum dots,” Sol. Energy Mater. Sol. Cells 164, 122–127 (2017).
[Crossref]

Moorthy Babu, S.

S. Ananthakumar and S. Moorthy Babu, “Progress on synthesis and applications of hybrid perovskite semiconductor nanomaterials—A review,” Synth. Met. 246, 64–95 (2018).
[Crossref]

Nelson, C. A.

A. Wolcott, V. Doyeux, C. A. Nelson, R. Gearba, K. W. Lei, K. G. Yager, A. D. Dolocan, K. Williams, D. Nguyen, and X. Y. Zhu, “Anomalously Large Polarization Effect Responsible for Excitonic Red Shifts in PbSe Quantum Dot Solids,” J. Phys. Chem. Lett. 2(7), 795–800 (2011).
[Crossref]

Neo, D. C. J.

D. C. J. Neo, N. Zhang, Y. Tazawa, H. Jiang, G. M. Hughes, C. R. M. Grovenor, H. E. Assender, and A. A. R. Watt, “Poly(3-hexylthiophene-2,5-diyl) as a Hole Transport Layer for Colloidal Quantum Dot Solar Cells,” ACS Appl. Mater. Interfaces 8(19), 12101–12108 (2016).
[Crossref] [PubMed]

Nguyen, D.

A. Wolcott, V. Doyeux, C. A. Nelson, R. Gearba, K. W. Lei, K. G. Yager, A. D. Dolocan, K. Williams, D. Nguyen, and X. Y. Zhu, “Anomalously Large Polarization Effect Responsible for Excitonic Red Shifts in PbSe Quantum Dot Solids,” J. Phys. Chem. Lett. 2(7), 795–800 (2011).
[Crossref]

Ni, L.

Z. Zhang, C. Shi, K. Lv, C. Ma, G. Xiao, and L. Ni, “200-nm long TiO2 nanorod arrays for efficient solid-state PbS quantum dot-sensitized solar cells,” J. Energy Chem. 27(4), 1214–1218 (2018).
[Crossref]

Ning, Z.

X. Lan, O. Voznyy, A. Kiani, F. P. García de Arquer, A. S. Abbas, G. H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance,” Adv. Mater. 28(2), 299–304 (2016).
[Crossref] [PubMed]

P. Maraghechi, A. J. Labelle, A. R. Kirmani, X. Lan, M. M. Adachi, S. M. Thon, S. Hoogland, A. Lee, Z. Ning, A. Fischer, A. Amassian, and E. H. Sargent, “The donor-supply electrode enhances performance in colloidal quantum dot solar cells,” ACS Nano 7(7), 6111–6116 (2013).
[Crossref] [PubMed]

Niu, J.

Q. Lin, H. Shen, H. Wang, A. Wang, J. Niu, L. Qian, F. Guo, and L. S. Li, “Cadmium-free quantum dots based violet light-emitting diodes: High-efficiency and brightness via optimization of organic hole transport layers,” Org. Electron. 25, 178–183 (2015).
[Crossref]

Noh, Y.-Y.

S. Yoon, H. Kim, E.-Y. Shin, I.-G. Bae, B. Park, Y.-Y. Noh, and I. Hwang, “Enhanced hole extraction by interaction between CuI and MoO3 in the hole transport layer of organic photovoltaic devices,” Org. Electron. 32, 200–207 (2016).
[Crossref]

Nozik, A. J.

J. Gao, C. L. Perkins, J. M. Luther, M. C. Hanna, H.-Y. Chen, O. E. Semonin, A. J. Nozik, R. J. Ellingson, and M. C. Beard, “n-Type Transition Metal Oxide as a Hole Extraction Layer in PbS Quantum Dot Solar Cells,” Nano Lett. 11(8), 3263–3266 (2011).
[Crossref] [PubMed]

J. M. Luther, M. C. Beard, Q. Song, M. Law, R. J. Ellingson, and A. J. Nozik, “Multiple Exciton Generation in Films of Electronically Coupled PbSe Quantum Dots,” Nano Lett. 7(6), 1779–1784 (2007).
[Crossref] [PubMed]

Park, B.

S. Yoon, H. Kim, E.-Y. Shin, I.-G. Bae, B. Park, Y.-Y. Noh, and I. Hwang, “Enhanced hole extraction by interaction between CuI and MoO3 in the hole transport layer of organic photovoltaic devices,” Org. Electron. 32, 200–207 (2016).
[Crossref]

Park, J.

J.-Y. Kim, Y. J. Jang, J. Park, J. Kim, J. S. Kang, D. Y. Chung, Y.-E. Sung, C. Lee, J. S. Lee, and M. J. Ko, “Highly loaded PbS/Mn-doped CdS quantum dots for dual application in solar-to-electrical and solar-to-chemical energy conversion,” Appl. Catal. B 227, 409–417 (2018).
[Crossref]

Patra, A.

N. Chaudhary, J. P. Kesari, R. Chaudhary, and A. Patra, “Low band gap polymeric solar cells using solution-processable copper iodide as hole transporting layer,” Opt. Mater. 58, 116–120 (2016).
[Crossref]

Perelgut, A.

X. Lan, O. Voznyy, A. Kiani, F. P. García de Arquer, A. S. Abbas, G. H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance,” Adv. Mater. 28(2), 299–304 (2016).
[Crossref] [PubMed]

Perkins, C. L.

J. Gao, C. L. Perkins, J. M. Luther, M. C. Hanna, H.-Y. Chen, O. E. Semonin, A. J. Nozik, R. J. Ellingson, and M. C. Beard, “n-Type Transition Metal Oxide as a Hole Extraction Layer in PbS Quantum Dot Solar Cells,” Nano Lett. 11(8), 3263–3266 (2011).
[Crossref] [PubMed]

Perrenoud, J.

T. Feurer, P. Reinhard, E. Avancini, B. Bissig, J. Löckinger, P. Fuchs, R. Carron, T. P. Weiss, J. Perrenoud, S. Stutterheim, S. Buecheler, and A. N. Tiwari, “Progress in thin film CIGS photovoltaics - Research and development, manufacturing, and applications,” Prog. Photovolt. Res. Appl. 25(7), 645–667 (2017).
[Crossref]

Piliego, C.

S. Z. Bisri, C. Piliego, M. Yarema, W. Heiss, and M. A. Loi, “Low driving voltage and high mobility ambipolar field-effect transistors with PbS colloidal nanocrystals,” Adv. Mater. 25(31), 4309–4314 (2013).
[Crossref] [PubMed]

Qian, L.

Q. Lin, H. Shen, H. Wang, A. Wang, J. Niu, L. Qian, F. Guo, and L. S. Li, “Cadmium-free quantum dots based violet light-emitting diodes: High-efficiency and brightness via optimization of organic hole transport layers,” Org. Electron. 25, 178–183 (2015).
[Crossref]

Qu, S.

W. Xu, F. Tan, Q. Liu, X. Liu, Q. Jiang, L. Wei, W. Zhang, Z. Wang, S. Qu, and Z. Wang, “Efficient PbS QD solar cell with an inverted structure,” Sol. Energy Mater. Sol. Cells 159, 503–509 (2017).
[Crossref]

Reinhard, P.

T. Feurer, P. Reinhard, E. Avancini, B. Bissig, J. Löckinger, P. Fuchs, R. Carron, T. P. Weiss, J. Perrenoud, S. Stutterheim, S. Buecheler, and A. N. Tiwari, “Progress in thin film CIGS photovoltaics - Research and development, manufacturing, and applications,” Prog. Photovolt. Res. Appl. 25(7), 645–667 (2017).
[Crossref]

Rekemeyer, P. H.

P. H. Rekemeyer, S. Chang, C.-H. M. Chuang, G. W. Hwang, M. G. Bawendi, and S. Gradečak, “Enhanced Photocurrent in PbS Quantum Dot Photovoltaics via ZnO Nanowires and Band Alignment Engineering,” Adv. Energy Mater. 6(24), 1600848 (2016).
[Crossref]

Rispens, M. T.

C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the Open Circuit Voltage of Plastic Solar Cells,” Adv. Funct. Mater. 11(5), 374–380 (2001).
[Crossref]

Sanchez, L.

C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the Open Circuit Voltage of Plastic Solar Cells,” Adv. Funct. Mater. 11(5), 374–380 (2001).
[Crossref]

Sargent, E. H.

F. Eisner, A. Seitkhan, Y. Han, D. Khim, E. Yengel, A. R. Kirmani, J. Xu, F. P. García de Arquer, E. H. Sargent, A. Amassian, Z. Fei, M. Heeney, and T. D. Anthopoulos, “Solution-Processed In2O3/ZnO Heterojunction Electron Transport Layers for Efficient Organic Bulk Heterojunction and Inorganic Colloidal Quantum-Dot Solar Cells,” Sol. RRL 2(7), 1800076 (2018).
[Crossref]

X. Lan, O. Voznyy, A. Kiani, F. P. García de Arquer, A. S. Abbas, G. H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance,” Adv. Mater. 28(2), 299–304 (2016).
[Crossref] [PubMed]

L. Hu, A. Mandelis, X. Lan, A. Melnikov, S. Hoogland, and E. H. Sargent, “Imbalanced charge carrier mobility and Schottky junction induced anomalous current-voltage characteristics of excitonic PbS colloidal quantum dot solar cells,” Sol. Energy Mater. Sol. Cells 155, 155–165 (2016).
[Crossref]

P. Maraghechi, A. J. Labelle, A. R. Kirmani, X. Lan, M. M. Adachi, S. M. Thon, S. Hoogland, A. Lee, Z. Ning, A. Fischer, A. Amassian, and E. H. Sargent, “The donor-supply electrode enhances performance in colloidal quantum dot solar cells,” ACS Nano 7(7), 6111–6116 (2013).
[Crossref] [PubMed]

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Sariciftci, N. S.

C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the Open Circuit Voltage of Plastic Solar Cells,” Adv. Funct. Mater. 11(5), 374–380 (2001).
[Crossref]

Scholes, G. D.

M. A. Hines and G. D. Scholes, “Colloidal PbS Nanocrystals with Size‐Tunable Near‐Infrared Emission: Observation of Post‐Synthesis Self‐Narrowing of the Particle Size Distribution,” Adv. Mater. 15(21), 1844–1849 (2003).
[Crossref]

Seitkhan, A.

F. Eisner, A. Seitkhan, Y. Han, D. Khim, E. Yengel, A. R. Kirmani, J. Xu, F. P. García de Arquer, E. H. Sargent, A. Amassian, Z. Fei, M. Heeney, and T. D. Anthopoulos, “Solution-Processed In2O3/ZnO Heterojunction Electron Transport Layers for Efficient Organic Bulk Heterojunction and Inorganic Colloidal Quantum-Dot Solar Cells,” Sol. RRL 2(7), 1800076 (2018).
[Crossref]

Semonin, O. E.

J. Gao, C. L. Perkins, J. M. Luther, M. C. Hanna, H.-Y. Chen, O. E. Semonin, A. J. Nozik, R. J. Ellingson, and M. C. Beard, “n-Type Transition Metal Oxide as a Hole Extraction Layer in PbS Quantum Dot Solar Cells,” Nano Lett. 11(8), 3263–3266 (2011).
[Crossref] [PubMed]

Shen, H.

Q. Lin, H. Shen, H. Wang, A. Wang, J. Niu, L. Qian, F. Guo, and L. S. Li, “Cadmium-free quantum dots based violet light-emitting diodes: High-efficiency and brightness via optimization of organic hole transport layers,” Org. Electron. 25, 178–183 (2015).
[Crossref]

Sheu, J.-K.

Y.-C. Yao, M.-T. Tsai, C.-Y. Huang, T.-Y. Lin, J.-K. Sheu, and Y.-J. Lee, “Efficient collection of photogenerated carriers by inserting double tunnel junctions in III-nitride p-i-n solar cells,” Appl. Phys. Lett. 103(19), 193503 (2013).
[Crossref]

Shi, C.

Z. Zhang, C. Shi, K. Lv, C. Ma, G. Xiao, and L. Ni, “200-nm long TiO2 nanorod arrays for efficient solid-state PbS quantum dot-sensitized solar cells,” J. Energy Chem. 27(4), 1214–1218 (2018).
[Crossref]

Shin, E.-Y.

S. Yoon, H. Kim, E.-Y. Shin, I.-G. Bae, B. Park, Y.-Y. Noh, and I. Hwang, “Enhanced hole extraction by interaction between CuI and MoO3 in the hole transport layer of organic photovoltaic devices,” Org. Electron. 32, 200–207 (2016).
[Crossref]

Song, H.

L. Hu, D.-B. Li, L. Gao, H. Tan, C. Chen, K. Li, M. Li, J.-B. Han, H. Song, H. Liu, and J. Tang, “Graphene Doping Improved Device Performance of ZnMgO/PbS Colloidal Quantum Dot Photovoltaics,” Adv. Funct. Mater. 26(12), 1899–1907 (2016).
[Crossref]

Song, Q.

J. M. Luther, M. C. Beard, Q. Song, M. Law, R. J. Ellingson, and A. J. Nozik, “Multiple Exciton Generation in Films of Electronically Coupled PbSe Quantum Dots,” Nano Lett. 7(6), 1779–1784 (2007).
[Crossref] [PubMed]

Song, Z.

X. Yao, Z. Song, L. Mi, G. Li, X. Wang, X. Wang, and Y. Jiang, “Improved stability of depletion heterojunction solar cells employing cation-exchange PbS quantum dots,” Sol. Energy Mater. Sol. Cells 164, 122–127 (2017).
[Crossref]

Stutterheim, S.

T. Feurer, P. Reinhard, E. Avancini, B. Bissig, J. Löckinger, P. Fuchs, R. Carron, T. P. Weiss, J. Perrenoud, S. Stutterheim, S. Buecheler, and A. N. Tiwari, “Progress in thin film CIGS photovoltaics - Research and development, manufacturing, and applications,” Prog. Photovolt. Res. Appl. 25(7), 645–667 (2017).
[Crossref]

Su, W.

S. Zang, Y. Wang, M. Li, W. Su, H. Zhu, X. Zhang, and Y. Liu, “Fabrication of efficient PbS colloidal quantum dot solar cell with low temperature sputter-deposited ZnO electron transport layer,” Sol. Energy Mater. Sol. Cells 169, 264–269 (2017).
[Crossref]

Sun, L.

J. An, X. Yang, W. Wang, J. Li, H. Wang, Z. Yu, C. Gong, X. Wang, and L. Sun, “Stable and efficient PbS colloidal quantum dot solar cells incorporating low-temperature processed carbon paste counter electrodes,” Sol. Energy 158, 28–33 (2017).
[Crossref]

Sun, Y.

Y. Sun, P. D. Donaldson, J. Garcia-Barriocanal, and S. L. Swisher, “Understanding quantum confinement and ligand removal in solution-based ZnO thin films from highly stable nanocrystal ink,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(34), 9181–9190 (2018).
[Crossref]

Sung, Y.-E.

J.-Y. Kim, Y. J. Jang, J. Park, J. Kim, J. S. Kang, D. Y. Chung, Y.-E. Sung, C. Lee, J. S. Lee, and M. J. Ko, “Highly loaded PbS/Mn-doped CdS quantum dots for dual application in solar-to-electrical and solar-to-chemical energy conversion,” Appl. Catal. B 227, 409–417 (2018).
[Crossref]

Svensson, M.

A. Gadisa, M. Svensson, M. R. Andersson, and O. Inganäs, “Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/ fullerene derivative,” Appl. Phys. Lett. 84(9), 1609–1611 (2004).
[Crossref]

Swisher, S. L.

Y. Sun, P. D. Donaldson, J. Garcia-Barriocanal, and S. L. Swisher, “Understanding quantum confinement and ligand removal in solution-based ZnO thin films from highly stable nanocrystal ink,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(34), 9181–9190 (2018).
[Crossref]

Tan, F.

W. Xu, F. Tan, Q. Liu, X. Liu, Q. Jiang, L. Wei, W. Zhang, Z. Wang, S. Qu, and Z. Wang, “Efficient PbS QD solar cell with an inverted structure,” Sol. Energy Mater. Sol. Cells 159, 503–509 (2017).
[Crossref]

Tan, H.

L. Hu, D.-B. Li, L. Gao, H. Tan, C. Chen, K. Li, M. Li, J.-B. Han, H. Song, H. Liu, and J. Tang, “Graphene Doping Improved Device Performance of ZnMgO/PbS Colloidal Quantum Dot Photovoltaics,” Adv. Funct. Mater. 26(12), 1899–1907 (2016).
[Crossref]

Tan, Z.

F. Wang, Z. Tan, and Y. Li, “Solution-processable metal oxides/chelates as electrode buffer layers for efficient and stable polymer solar cells,” Energy Environ. Sci. 8(4), 1059–1091 (2015).
[Crossref]

Tang, J.

L. Hu, D.-B. Li, L. Gao, H. Tan, C. Chen, K. Li, M. Li, J.-B. Han, H. Song, H. Liu, and J. Tang, “Graphene Doping Improved Device Performance of ZnMgO/PbS Colloidal Quantum Dot Photovoltaics,” Adv. Funct. Mater. 26(12), 1899–1907 (2016).
[Crossref]

Tazawa, Y.

D. C. J. Neo, N. Zhang, Y. Tazawa, H. Jiang, G. M. Hughes, C. R. M. Grovenor, H. E. Assender, and A. A. R. Watt, “Poly(3-hexylthiophene-2,5-diyl) as a Hole Transport Layer for Colloidal Quantum Dot Solar Cells,” ACS Appl. Mater. Interfaces 8(19), 12101–12108 (2016).
[Crossref] [PubMed]

Thon, S. M.

P. Maraghechi, A. J. Labelle, A. R. Kirmani, X. Lan, M. M. Adachi, S. M. Thon, S. Hoogland, A. Lee, Z. Ning, A. Fischer, A. Amassian, and E. H. Sargent, “The donor-supply electrode enhances performance in colloidal quantum dot solar cells,” ACS Nano 7(7), 6111–6116 (2013).
[Crossref] [PubMed]

Tiwari, A. N.

T. Feurer, P. Reinhard, E. Avancini, B. Bissig, J. Löckinger, P. Fuchs, R. Carron, T. P. Weiss, J. Perrenoud, S. Stutterheim, S. Buecheler, and A. N. Tiwari, “Progress in thin film CIGS photovoltaics - Research and development, manufacturing, and applications,” Prog. Photovolt. Res. Appl. 25(7), 645–667 (2017).
[Crossref]

Tsai, M.-T.

Y.-C. Yao, M.-T. Tsai, C.-Y. Huang, T.-Y. Lin, J.-K. Sheu, and Y.-J. Lee, “Efficient collection of photogenerated carriers by inserting double tunnel junctions in III-nitride p-i-n solar cells,” Appl. Phys. Lett. 103(19), 193503 (2013).
[Crossref]

Voznyy, O.

X. Lan, O. Voznyy, A. Kiani, F. P. García de Arquer, A. S. Abbas, G. H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance,” Adv. Mater. 28(2), 299–304 (2016).
[Crossref] [PubMed]

Walters, G.

X. Lan, O. Voznyy, A. Kiani, F. P. García de Arquer, A. S. Abbas, G. H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance,” Adv. Mater. 28(2), 299–304 (2016).
[Crossref] [PubMed]

Wang, A.

Q. Lin, H. Shen, H. Wang, A. Wang, J. Niu, L. Qian, F. Guo, and L. S. Li, “Cadmium-free quantum dots based violet light-emitting diodes: High-efficiency and brightness via optimization of organic hole transport layers,” Org. Electron. 25, 178–183 (2015).
[Crossref]

Wang, F.

F. Wang, Z. Tan, and Y. Li, “Solution-processable metal oxides/chelates as electrode buffer layers for efficient and stable polymer solar cells,” Energy Environ. Sci. 8(4), 1059–1091 (2015).
[Crossref]

Wang, H.

J. An, X. Yang, W. Wang, J. Li, H. Wang, Z. Yu, C. Gong, X. Wang, and L. Sun, “Stable and efficient PbS colloidal quantum dot solar cells incorporating low-temperature processed carbon paste counter electrodes,” Sol. Energy 158, 28–33 (2017).
[Crossref]

Q. Lin, H. Shen, H. Wang, A. Wang, J. Niu, L. Qian, F. Guo, and L. S. Li, “Cadmium-free quantum dots based violet light-emitting diodes: High-efficiency and brightness via optimization of organic hole transport layers,” Org. Electron. 25, 178–183 (2015).
[Crossref]

Wang, W.

J. An, X. Yang, W. Wang, J. Li, H. Wang, Z. Yu, C. Gong, X. Wang, and L. Sun, “Stable and efficient PbS colloidal quantum dot solar cells incorporating low-temperature processed carbon paste counter electrodes,” Sol. Energy 158, 28–33 (2017).
[Crossref]

Wang, X.

J. An, X. Yang, W. Wang, J. Li, H. Wang, Z. Yu, C. Gong, X. Wang, and L. Sun, “Stable and efficient PbS colloidal quantum dot solar cells incorporating low-temperature processed carbon paste counter electrodes,” Sol. Energy 158, 28–33 (2017).
[Crossref]

X. Yao, Z. Song, L. Mi, G. Li, X. Wang, X. Wang, and Y. Jiang, “Improved stability of depletion heterojunction solar cells employing cation-exchange PbS quantum dots,” Sol. Energy Mater. Sol. Cells 164, 122–127 (2017).
[Crossref]

X. Yao, Z. Song, L. Mi, G. Li, X. Wang, X. Wang, and Y. Jiang, “Improved stability of depletion heterojunction solar cells employing cation-exchange PbS quantum dots,” Sol. Energy Mater. Sol. Cells 164, 122–127 (2017).
[Crossref]

Wang, Y.

S. Zang, Y. Wang, M. Li, W. Su, H. Zhu, X. Zhang, and Y. Liu, “Fabrication of efficient PbS colloidal quantum dot solar cell with low temperature sputter-deposited ZnO electron transport layer,” Sol. Energy Mater. Sol. Cells 169, 264–269 (2017).
[Crossref]

Wang, Z.

W. Xu, F. Tan, Q. Liu, X. Liu, Q. Jiang, L. Wei, W. Zhang, Z. Wang, S. Qu, and Z. Wang, “Efficient PbS QD solar cell with an inverted structure,” Sol. Energy Mater. Sol. Cells 159, 503–509 (2017).
[Crossref]

W. Xu, F. Tan, Q. Liu, X. Liu, Q. Jiang, L. Wei, W. Zhang, Z. Wang, S. Qu, and Z. Wang, “Efficient PbS QD solar cell with an inverted structure,” Sol. Energy Mater. Sol. Cells 159, 503–509 (2017).
[Crossref]

Watt, A. A. R.

D. C. J. Neo, N. Zhang, Y. Tazawa, H. Jiang, G. M. Hughes, C. R. M. Grovenor, H. E. Assender, and A. A. R. Watt, “Poly(3-hexylthiophene-2,5-diyl) as a Hole Transport Layer for Colloidal Quantum Dot Solar Cells,” ACS Appl. Mater. Interfaces 8(19), 12101–12108 (2016).
[Crossref] [PubMed]

Wei, L.

W. Xu, F. Tan, Q. Liu, X. Liu, Q. Jiang, L. Wei, W. Zhang, Z. Wang, S. Qu, and Z. Wang, “Efficient PbS QD solar cell with an inverted structure,” Sol. Energy Mater. Sol. Cells 159, 503–509 (2017).
[Crossref]

Weiss, T. P.

T. Feurer, P. Reinhard, E. Avancini, B. Bissig, J. Löckinger, P. Fuchs, R. Carron, T. P. Weiss, J. Perrenoud, S. Stutterheim, S. Buecheler, and A. N. Tiwari, “Progress in thin film CIGS photovoltaics - Research and development, manufacturing, and applications,” Prog. Photovolt. Res. Appl. 25(7), 645–667 (2017).
[Crossref]

Williams, K.

A. Wolcott, V. Doyeux, C. A. Nelson, R. Gearba, K. W. Lei, K. G. Yager, A. D. Dolocan, K. Williams, D. Nguyen, and X. Y. Zhu, “Anomalously Large Polarization Effect Responsible for Excitonic Red Shifts in PbSe Quantum Dot Solids,” J. Phys. Chem. Lett. 2(7), 795–800 (2011).
[Crossref]

Wolcott, A.

A. Wolcott, V. Doyeux, C. A. Nelson, R. Gearba, K. W. Lei, K. G. Yager, A. D. Dolocan, K. Williams, D. Nguyen, and X. Y. Zhu, “Anomalously Large Polarization Effect Responsible for Excitonic Red Shifts in PbSe Quantum Dot Solids,” J. Phys. Chem. Lett. 2(7), 795–800 (2011).
[Crossref]

Xiao, G.

Z. Zhang, C. Shi, K. Lv, C. Ma, G. Xiao, and L. Ni, “200-nm long TiO2 nanorod arrays for efficient solid-state PbS quantum dot-sensitized solar cells,” J. Energy Chem. 27(4), 1214–1218 (2018).
[Crossref]

Xu, J.

F. Eisner, A. Seitkhan, Y. Han, D. Khim, E. Yengel, A. R. Kirmani, J. Xu, F. P. García de Arquer, E. H. Sargent, A. Amassian, Z. Fei, M. Heeney, and T. D. Anthopoulos, “Solution-Processed In2O3/ZnO Heterojunction Electron Transport Layers for Efficient Organic Bulk Heterojunction and Inorganic Colloidal Quantum-Dot Solar Cells,” Sol. RRL 2(7), 1800076 (2018).
[Crossref]

X. Lan, O. Voznyy, A. Kiani, F. P. García de Arquer, A. S. Abbas, G. H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance,” Adv. Mater. 28(2), 299–304 (2016).
[Crossref] [PubMed]

Xu, W.

W. Xu, F. Tan, Q. Liu, X. Liu, Q. Jiang, L. Wei, W. Zhang, Z. Wang, S. Qu, and Z. Wang, “Efficient PbS QD solar cell with an inverted structure,” Sol. Energy Mater. Sol. Cells 159, 503–509 (2017).
[Crossref]

Yager, K. G.

A. Wolcott, V. Doyeux, C. A. Nelson, R. Gearba, K. W. Lei, K. G. Yager, A. D. Dolocan, K. Williams, D. Nguyen, and X. Y. Zhu, “Anomalously Large Polarization Effect Responsible for Excitonic Red Shifts in PbSe Quantum Dot Solids,” J. Phys. Chem. Lett. 2(7), 795–800 (2011).
[Crossref]

Yang, X.

J. An, X. Yang, W. Wang, J. Li, H. Wang, Z. Yu, C. Gong, X. Wang, and L. Sun, “Stable and efficient PbS colloidal quantum dot solar cells incorporating low-temperature processed carbon paste counter electrodes,” Sol. Energy 158, 28–33 (2017).
[Crossref]

Yang, Z.

X. Lan, O. Voznyy, A. Kiani, F. P. García de Arquer, A. S. Abbas, G. H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance,” Adv. Mater. 28(2), 299–304 (2016).
[Crossref] [PubMed]

Yao, X.

X. Yao, Z. Song, L. Mi, G. Li, X. Wang, X. Wang, and Y. Jiang, “Improved stability of depletion heterojunction solar cells employing cation-exchange PbS quantum dots,” Sol. Energy Mater. Sol. Cells 164, 122–127 (2017).
[Crossref]

Yao, Y.-C.

Y.-C. Yao, M.-T. Tsai, C.-Y. Huang, T.-Y. Lin, J.-K. Sheu, and Y.-J. Lee, “Efficient collection of photogenerated carriers by inserting double tunnel junctions in III-nitride p-i-n solar cells,” Appl. Phys. Lett. 103(19), 193503 (2013).
[Crossref]

Yarema, M.

S. Z. Bisri, C. Piliego, M. Yarema, W. Heiss, and M. A. Loi, “Low driving voltage and high mobility ambipolar field-effect transistors with PbS colloidal nanocrystals,” Adv. Mater. 25(31), 4309–4314 (2013).
[Crossref] [PubMed]

Yengel, E.

F. Eisner, A. Seitkhan, Y. Han, D. Khim, E. Yengel, A. R. Kirmani, J. Xu, F. P. García de Arquer, E. H. Sargent, A. Amassian, Z. Fei, M. Heeney, and T. D. Anthopoulos, “Solution-Processed In2O3/ZnO Heterojunction Electron Transport Layers for Efficient Organic Bulk Heterojunction and Inorganic Colloidal Quantum-Dot Solar Cells,” Sol. RRL 2(7), 1800076 (2018).
[Crossref]

Yoon, S.

S. Yoon, H. Kim, E.-Y. Shin, I.-G. Bae, B. Park, Y.-Y. Noh, and I. Hwang, “Enhanced hole extraction by interaction between CuI and MoO3 in the hole transport layer of organic photovoltaic devices,” Org. Electron. 32, 200–207 (2016).
[Crossref]

Yu, Z.

J. An, X. Yang, W. Wang, J. Li, H. Wang, Z. Yu, C. Gong, X. Wang, and L. Sun, “Stable and efficient PbS colloidal quantum dot solar cells incorporating low-temperature processed carbon paste counter electrodes,” Sol. Energy 158, 28–33 (2017).
[Crossref]

Yuan, M.

X. Lan, O. Voznyy, A. Kiani, F. P. García de Arquer, A. S. Abbas, G. H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance,” Adv. Mater. 28(2), 299–304 (2016).
[Crossref] [PubMed]

Zang, S.

S. Zang, Y. Wang, M. Li, W. Su, H. Zhu, X. Zhang, and Y. Liu, “Fabrication of efficient PbS colloidal quantum dot solar cell with low temperature sputter-deposited ZnO electron transport layer,” Sol. Energy Mater. Sol. Cells 169, 264–269 (2017).
[Crossref]

Zhang, N.

D. C. J. Neo, N. Zhang, Y. Tazawa, H. Jiang, G. M. Hughes, C. R. M. Grovenor, H. E. Assender, and A. A. R. Watt, “Poly(3-hexylthiophene-2,5-diyl) as a Hole Transport Layer for Colloidal Quantum Dot Solar Cells,” ACS Appl. Mater. Interfaces 8(19), 12101–12108 (2016).
[Crossref] [PubMed]

Zhang, S.

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Zhang, W.

W. Xu, F. Tan, Q. Liu, X. Liu, Q. Jiang, L. Wei, W. Zhang, Z. Wang, S. Qu, and Z. Wang, “Efficient PbS QD solar cell with an inverted structure,” Sol. Energy Mater. Sol. Cells 159, 503–509 (2017).
[Crossref]

Zhang, X.

S. Zang, Y. Wang, M. Li, W. Su, H. Zhu, X. Zhang, and Y. Liu, “Fabrication of efficient PbS colloidal quantum dot solar cell with low temperature sputter-deposited ZnO electron transport layer,” Sol. Energy Mater. Sol. Cells 169, 264–269 (2017).
[Crossref]

X. Zhang and E. M. J. Johansson, “Reduction of charge recombination in PbS colloidal quantum dot solar cells at the quantum dot/ZnO interface by inserting a MgZnO buffer layer,” J. Mater. Chem. A Mater. Energy Sustain. 5(1), 303–310 (2017).
[Crossref]

Zhang, Z.

Z. Zhang, C. Shi, K. Lv, C. Ma, G. Xiao, and L. Ni, “200-nm long TiO2 nanorod arrays for efficient solid-state PbS quantum dot-sensitized solar cells,” J. Energy Chem. 27(4), 1214–1218 (2018).
[Crossref]

Zhao, N.

P. R. Brown, D. Kim, R. R. Lunt, N. Zhao, M. G. Bawendi, J. C. Grossman, and V. Bulović, “Energy Level Modification in Lead Sulfide Quantum Dot Thin Films Through Ligand Exchange,” ACS Nano 8(6), 5863–5872 (2014).
[Crossref] [PubMed]

Zhitomirsky, D.

X. Lan, O. Voznyy, A. Kiani, F. P. García de Arquer, A. S. Abbas, G. H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance,” Adv. Mater. 28(2), 299–304 (2016).
[Crossref] [PubMed]

Zhu, H.

S. Zang, Y. Wang, M. Li, W. Su, H. Zhu, X. Zhang, and Y. Liu, “Fabrication of efficient PbS colloidal quantum dot solar cell with low temperature sputter-deposited ZnO electron transport layer,” Sol. Energy Mater. Sol. Cells 169, 264–269 (2017).
[Crossref]

Zhu, X. Y.

A. Wolcott, V. Doyeux, C. A. Nelson, R. Gearba, K. W. Lei, K. G. Yager, A. D. Dolocan, K. Williams, D. Nguyen, and X. Y. Zhu, “Anomalously Large Polarization Effect Responsible for Excitonic Red Shifts in PbSe Quantum Dot Solids,” J. Phys. Chem. Lett. 2(7), 795–800 (2011).
[Crossref]

ACS Appl. Mater. Interfaces (1)

D. C. J. Neo, N. Zhang, Y. Tazawa, H. Jiang, G. M. Hughes, C. R. M. Grovenor, H. E. Assender, and A. A. R. Watt, “Poly(3-hexylthiophene-2,5-diyl) as a Hole Transport Layer for Colloidal Quantum Dot Solar Cells,” ACS Appl. Mater. Interfaces 8(19), 12101–12108 (2016).
[Crossref] [PubMed]

ACS Nano (2)

P. R. Brown, D. Kim, R. R. Lunt, N. Zhao, M. G. Bawendi, J. C. Grossman, and V. Bulović, “Energy Level Modification in Lead Sulfide Quantum Dot Thin Films Through Ligand Exchange,” ACS Nano 8(6), 5863–5872 (2014).
[Crossref] [PubMed]

P. Maraghechi, A. J. Labelle, A. R. Kirmani, X. Lan, M. M. Adachi, S. M. Thon, S. Hoogland, A. Lee, Z. Ning, A. Fischer, A. Amassian, and E. H. Sargent, “The donor-supply electrode enhances performance in colloidal quantum dot solar cells,” ACS Nano 7(7), 6111–6116 (2013).
[Crossref] [PubMed]

Adv. Energy Mater. (1)

P. H. Rekemeyer, S. Chang, C.-H. M. Chuang, G. W. Hwang, M. G. Bawendi, and S. Gradečak, “Enhanced Photocurrent in PbS Quantum Dot Photovoltaics via ZnO Nanowires and Band Alignment Engineering,” Adv. Energy Mater. 6(24), 1600848 (2016).
[Crossref]

Adv. Funct. Mater. (2)

L. Hu, D.-B. Li, L. Gao, H. Tan, C. Chen, K. Li, M. Li, J.-B. Han, H. Song, H. Liu, and J. Tang, “Graphene Doping Improved Device Performance of ZnMgO/PbS Colloidal Quantum Dot Photovoltaics,” Adv. Funct. Mater. 26(12), 1899–1907 (2016).
[Crossref]

C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the Open Circuit Voltage of Plastic Solar Cells,” Adv. Funct. Mater. 11(5), 374–380 (2001).
[Crossref]

Adv. Mater. (3)

M. A. Hines and G. D. Scholes, “Colloidal PbS Nanocrystals with Size‐Tunable Near‐Infrared Emission: Observation of Post‐Synthesis Self‐Narrowing of the Particle Size Distribution,” Adv. Mater. 15(21), 1844–1849 (2003).
[Crossref]

X. Lan, O. Voznyy, A. Kiani, F. P. García de Arquer, A. S. Abbas, G. H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance,” Adv. Mater. 28(2), 299–304 (2016).
[Crossref] [PubMed]

S. Z. Bisri, C. Piliego, M. Yarema, W. Heiss, and M. A. Loi, “Low driving voltage and high mobility ambipolar field-effect transistors with PbS colloidal nanocrystals,” Adv. Mater. 25(31), 4309–4314 (2013).
[Crossref] [PubMed]

Appl. Catal. B (1)

J.-Y. Kim, Y. J. Jang, J. Park, J. Kim, J. S. Kang, D. Y. Chung, Y.-E. Sung, C. Lee, J. S. Lee, and M. J. Ko, “Highly loaded PbS/Mn-doped CdS quantum dots for dual application in solar-to-electrical and solar-to-chemical energy conversion,” Appl. Catal. B 227, 409–417 (2018).
[Crossref]

Appl. Phys. Lett. (3)

Y.-C. Yao, M.-T. Tsai, C.-Y. Huang, T.-Y. Lin, J.-K. Sheu, and Y.-J. Lee, “Efficient collection of photogenerated carriers by inserting double tunnel junctions in III-nitride p-i-n solar cells,” Appl. Phys. Lett. 103(19), 193503 (2013).
[Crossref]

A. Gadisa, M. Svensson, M. R. Andersson, and O. Inganäs, “Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/ fullerene derivative,” Appl. Phys. Lett. 84(9), 1609–1611 (2004).
[Crossref]

C. Goh, R. J. Kline, M. D. McGehee, E. N. Kadnikova, and J. M. J. Fréchet, “Molecular-weight-dependent mobilities in regioregular poly(3-hexyl-thiophene) diodes,” Appl. Phys. Lett. 86(12), 122110 (2005).
[Crossref]

Electrochim. Acta (1)

A. Manjceevan and J. Bandara, “Systematic stacking of PbS/CdS/CdSe multi-layered quantum dots for the enhancement of solar cell efficiency by harvesting wide solar spectrum,” Electrochim. Acta 271, 567–575 (2018).
[Crossref]

Energy Environ. Sci. (1)

F. Wang, Z. Tan, and Y. Li, “Solution-processable metal oxides/chelates as electrode buffer layers for efficient and stable polymer solar cells,” Energy Environ. Sci. 8(4), 1059–1091 (2015).
[Crossref]

J. Energy Chem. (1)

Z. Zhang, C. Shi, K. Lv, C. Ma, G. Xiao, and L. Ni, “200-nm long TiO2 nanorod arrays for efficient solid-state PbS quantum dot-sensitized solar cells,” J. Energy Chem. 27(4), 1214–1218 (2018).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (1)

X. Zhang and E. M. J. Johansson, “Reduction of charge recombination in PbS colloidal quantum dot solar cells at the quantum dot/ZnO interface by inserting a MgZnO buffer layer,” J. Mater. Chem. A Mater. Energy Sustain. 5(1), 303–310 (2017).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

Y. Sun, P. D. Donaldson, J. Garcia-Barriocanal, and S. L. Swisher, “Understanding quantum confinement and ligand removal in solution-based ZnO thin films from highly stable nanocrystal ink,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(34), 9181–9190 (2018).
[Crossref]

J. Phys. Chem. Lett. (1)

A. Wolcott, V. Doyeux, C. A. Nelson, R. Gearba, K. W. Lei, K. G. Yager, A. D. Dolocan, K. Williams, D. Nguyen, and X. Y. Zhu, “Anomalously Large Polarization Effect Responsible for Excitonic Red Shifts in PbSe Quantum Dot Solids,” J. Phys. Chem. Lett. 2(7), 795–800 (2011).
[Crossref]

Nano Lett. (2)

J. M. Luther, M. C. Beard, Q. Song, M. Law, R. J. Ellingson, and A. J. Nozik, “Multiple Exciton Generation in Films of Electronically Coupled PbSe Quantum Dots,” Nano Lett. 7(6), 1779–1784 (2007).
[Crossref] [PubMed]

J. Gao, C. L. Perkins, J. M. Luther, M. C. Hanna, H.-Y. Chen, O. E. Semonin, A. J. Nozik, R. J. Ellingson, and M. C. Beard, “n-Type Transition Metal Oxide as a Hole Extraction Layer in PbS Quantum Dot Solar Cells,” Nano Lett. 11(8), 3263–3266 (2011).
[Crossref] [PubMed]

Nat. Mater. (2)

C.-H. M. Chuang, P. R. Brown, V. Bulović, and M. G. Bawendi, “Improved performance and stability in quantum dot solar cells through band alignment engineering,” Nat. Mater. 13(8), 796–801 (2014).
[Crossref] [PubMed]

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Opt. Mater. (1)

N. Chaudhary, J. P. Kesari, R. Chaudhary, and A. Patra, “Low band gap polymeric solar cells using solution-processable copper iodide as hole transporting layer,” Opt. Mater. 58, 116–120 (2016).
[Crossref]

Org. Electron. (2)

S. Yoon, H. Kim, E.-Y. Shin, I.-G. Bae, B. Park, Y.-Y. Noh, and I. Hwang, “Enhanced hole extraction by interaction between CuI and MoO3 in the hole transport layer of organic photovoltaic devices,” Org. Electron. 32, 200–207 (2016).
[Crossref]

Q. Lin, H. Shen, H. Wang, A. Wang, J. Niu, L. Qian, F. Guo, and L. S. Li, “Cadmium-free quantum dots based violet light-emitting diodes: High-efficiency and brightness via optimization of organic hole transport layers,” Org. Electron. 25, 178–183 (2015).
[Crossref]

Prog. Photovolt. Res. Appl. (2)

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (version 52),” Prog. Photovolt. Res. Appl. 26(7), 427–436 (2018).
[Crossref]

T. Feurer, P. Reinhard, E. Avancini, B. Bissig, J. Löckinger, P. Fuchs, R. Carron, T. P. Weiss, J. Perrenoud, S. Stutterheim, S. Buecheler, and A. N. Tiwari, “Progress in thin film CIGS photovoltaics - Research and development, manufacturing, and applications,” Prog. Photovolt. Res. Appl. 25(7), 645–667 (2017).
[Crossref]

Sol. Energy (1)

J. An, X. Yang, W. Wang, J. Li, H. Wang, Z. Yu, C. Gong, X. Wang, and L. Sun, “Stable and efficient PbS colloidal quantum dot solar cells incorporating low-temperature processed carbon paste counter electrodes,” Sol. Energy 158, 28–33 (2017).
[Crossref]

Sol. Energy Mater. Sol. Cells (4)

X. Yao, Z. Song, L. Mi, G. Li, X. Wang, X. Wang, and Y. Jiang, “Improved stability of depletion heterojunction solar cells employing cation-exchange PbS quantum dots,” Sol. Energy Mater. Sol. Cells 164, 122–127 (2017).
[Crossref]

W. Xu, F. Tan, Q. Liu, X. Liu, Q. Jiang, L. Wei, W. Zhang, Z. Wang, S. Qu, and Z. Wang, “Efficient PbS QD solar cell with an inverted structure,” Sol. Energy Mater. Sol. Cells 159, 503–509 (2017).
[Crossref]

S. Zang, Y. Wang, M. Li, W. Su, H. Zhu, X. Zhang, and Y. Liu, “Fabrication of efficient PbS colloidal quantum dot solar cell with low temperature sputter-deposited ZnO electron transport layer,” Sol. Energy Mater. Sol. Cells 169, 264–269 (2017).
[Crossref]

L. Hu, A. Mandelis, X. Lan, A. Melnikov, S. Hoogland, and E. H. Sargent, “Imbalanced charge carrier mobility and Schottky junction induced anomalous current-voltage characteristics of excitonic PbS colloidal quantum dot solar cells,” Sol. Energy Mater. Sol. Cells 155, 155–165 (2016).
[Crossref]

Sol. RRL (1)

F. Eisner, A. Seitkhan, Y. Han, D. Khim, E. Yengel, A. R. Kirmani, J. Xu, F. P. García de Arquer, E. H. Sargent, A. Amassian, Z. Fei, M. Heeney, and T. D. Anthopoulos, “Solution-Processed In2O3/ZnO Heterojunction Electron Transport Layers for Efficient Organic Bulk Heterojunction and Inorganic Colloidal Quantum-Dot Solar Cells,” Sol. RRL 2(7), 1800076 (2018).
[Crossref]

Synth. Met. (1)

S. Ananthakumar and S. Moorthy Babu, “Progress on synthesis and applications of hybrid perovskite semiconductor nanomaterials—A review,” Synth. Met. 246, 64–95 (2018).
[Crossref]

Other (1)

M. Jawaid and M. M. Khan, Polymer-based Nanocomposites for Energy and Environmental Applications (Woodhead Publishing, 2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) TEM image of PbS QDs, the inset shows the HR-TEM image of PbS QD. (b) XRD patterns of PbS QDs and ZnO nanocrystals. (c) Absorption spectra of PbS QDs in octane solution and a PbS QD film treated using TBAI. (d) Absorption spectra of ZnO NCs, poly-TPD, and P3HT in chloroform solution.
Fig. 2
Fig. 2 (a) FTIR spectra of oleic acid capped PbS film and PbS-TBAI film. (b) UPS spectrum of the PbS-TBAI film.
Fig. 3
Fig. 3 (a) Device architecture. (b) Energy level diagram. HUMO and LUMO levels of the various components are taken from refs [22,26,29–31].
Fig. 4
Fig. 4 (a) J–V curves obtained under dark conditions for MoOx, PEDOT:PSS, P3HT, and poly-TPD based devices; (b) and (c) are representative J–V characteristics and power density versus applied bias measurements for the same devices, respectively.
Fig. 5
Fig. 5 (a) The J-V characteristics of PbS-EDT and pure PEDOT:PSS based CQD cells. (b) EQE spectra for devices with and without PbS-EDT.
Fig. 6
Fig. 6 The PCE histogram distribution diagram of CQD solar cells using PbS-EDT as HTLs.

Tables (1)

Tables Icon

Table 1 Summary of photovoltaic performances of PbS CQD solar cells using different HTLs. The cell parameters are the champion cell performances and the standard deviations (marked in italic) are based on 12 solar cells.