Abstract

In this paper, we show that it is possible to build a polarization splitter from a pair of commercially available geometrical phase lenses. This optical component splits an incoming beam into two circularly polarized beams, with a separation angle that can be varied by a simple translation or rotation adjustment. Our experiments show that excellent polarization separation is obtained with separation angles ranging from nearly zero up to 120mrad, and for wavelengths ranging from 532nm up to 780nm. The measured properties of this new component are well described by a simple analytical model. However, unlike conventional Wollaston prisms, this component exhibits a very large dispersion with wavelength. It can also be described as a polarization grating with adjustable dispersion.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Differential schlieren-interferometry with a simple adjustable Wollaston-like prism

Matthew M. Biss, Gary S. Settles, Matthew E. Staymates, and Simon R. Sanderson
Appl. Opt. 47(3) 328-335 (2008)

Achromatic Wollaston prism beam splitter using polarization gratings

Michael W. Kudenov, Matthew Miskiewicz, Nathan Sanders, and Michael J. Escuti
Opt. Lett. 41(19) 4461-4463 (2016)

Achromatization of Wollaston polarizing beam splitters

Gerald Wong, Roger Pilkington, and Andrew R. Harvey
Opt. Lett. 36(8) 1332-1334 (2011)

References

  • View by:
  • |
  • |
  • |

  1. D. F. Vanderf, “Applied Prismatic and Reflective Optics,” (SPIE, 2010).
  2. G. Nomarski, “Nouveau Dispositif Pour l'Observation En Contraste De Phase Differentiel,” J. Phys. Radium 16, S88 (1955).
  3. O. Arteaga, E. Garcia-Caurel, and R. Ossikovski, “Stern-Gerlach experiment with light: separating photons by spin with the method of A. Fresnel,” Opt. Express 27(4), 4758–4768 (2019).
    [Crossref]
  4. T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23(23), 4309–4312 (1984).
    [Crossref]
  5. M. J. Escuti, J. Kim, and M. W. Kudenov, “Controlling light with geometric-phase holograms,” Opt. Photonics News 27(2), 22–29 (2016).
    [Crossref]
  6. T. Zhan, Y.-H. Lee, G. Tan, J. Xiong, K. Yin, F. Gou, J. Zou, N. Zhang, D. Zhao, J. Yang, S. Liu, and S.-T. Wu, “Pancharatnam–Berry optical elements for head-up and near-eye displays [Invited],” J. Opt. Soc. Am. B 36(5), D52–D65 (2019).
    [Crossref]
  7. C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008).
    [Crossref]
  8. N. V. Tabiryan, S. V. Serak, S. R. Nersisyan, D. E. Roberts, B. Y. Zeldovich, D. M. Steeves, and B. R. Kimball, “Broadband waveplate lenses,” Opt. Express 24(7), 7091–7102 (2016).
    [Crossref]
  9. M. W. Kudenov, M. Miskiewicz, N. Sanders, and M. J. Escuti, “Achromatic Wollaston prism beam splitter using polarization gratings,” Opt. Lett. 41(19), 4461–4463 (2016).
    [Crossref]
  10. K. J. Hornburg, X. Xiang, M. W. Kudenov, and M. J. Escuti, “Optimization of aspheric geometric-phase lenses for improved field-of-view,” Proc. SPIE 10743, 1074305 (2018).
    [Crossref]
  11. www.edmundoptics.com
  12. O. Acher and S. Richard, “séparateur de polarisation Wollaston-like à angle de séparation ajustable ; application à l'interférométrie différentielle et à la microscopie à contraste différentiel,” French Patent Application Nr 19 02638 (2019).
  13. E. A. Watson, “Analysis of beam steering with decentered microlens arrays,” Opt. Eng. 32(11), 2665 (1993).
    [Crossref]
  14. W. Lin, P. Benitez, and J. C. Miñano, “Beam-steering array optics designs with the SMS method,” Proc. SPIE 8485, 848505 (2012).
    [Crossref]
  15. F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, and Y. Le Montagner, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9(7), 690–696 (2012).
    [Crossref]
  16. C. Dent, P. Jensen, S. Waller, and B. Webster, “Research Use of Patented Knowledge : A Review,” Documents de travail de l'OCDE sur la science, la technologie et l'industrie, no 2006/02, Éditions OCDE, Paris, https://doi.org/10.1787/683715055704 (2006).
  17. J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
    [Crossref]

2019 (2)

2018 (1)

K. J. Hornburg, X. Xiang, M. W. Kudenov, and M. J. Escuti, “Optimization of aspheric geometric-phase lenses for improved field-of-view,” Proc. SPIE 10743, 1074305 (2018).
[Crossref]

2016 (3)

2012 (2)

W. Lin, P. Benitez, and J. C. Miñano, “Beam-steering array optics designs with the SMS method,” Proc. SPIE 8485, 848505 (2012).
[Crossref]

F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, and Y. Le Montagner, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9(7), 690–696 (2012).
[Crossref]

2008 (2)

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008).
[Crossref]

1993 (1)

E. A. Watson, “Analysis of beam steering with decentered microlens arrays,” Opt. Eng. 32(11), 2665 (1993).
[Crossref]

1984 (1)

1955 (1)

G. Nomarski, “Nouveau Dispositif Pour l'Observation En Contraste De Phase Differentiel,” J. Phys. Radium 16, S88 (1955).

Acher, O.

O. Acher and S. Richard, “séparateur de polarisation Wollaston-like à angle de séparation ajustable ; application à l'interférométrie différentielle et à la microscopie à contraste différentiel,” French Patent Application Nr 19 02638 (2019).

Arteaga, O.

Benitez, P.

W. Lin, P. Benitez, and J. C. Miñano, “Beam-steering array optics designs with the SMS method,” Proc. SPIE 8485, 848505 (2012).
[Crossref]

Chenouard, N.

F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, and Y. Le Montagner, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9(7), 690–696 (2012).
[Crossref]

Dallongeville, S.

F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, and Y. Le Montagner, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9(7), 690–696 (2012).
[Crossref]

De Chaumont, F.

F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, and Y. Le Montagner, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9(7), 690–696 (2012).
[Crossref]

Dent, C.

C. Dent, P. Jensen, S. Waller, and B. Webster, “Research Use of Patented Knowledge : A Review,” Documents de travail de l'OCDE sur la science, la technologie et l'industrie, no 2006/02, Éditions OCDE, Paris, https://doi.org/10.1787/683715055704 (2006).

Escuti, M. J.

K. J. Hornburg, X. Xiang, M. W. Kudenov, and M. J. Escuti, “Optimization of aspheric geometric-phase lenses for improved field-of-view,” Proc. SPIE 10743, 1074305 (2018).
[Crossref]

M. J. Escuti, J. Kim, and M. W. Kudenov, “Controlling light with geometric-phase holograms,” Opt. Photonics News 27(2), 22–29 (2016).
[Crossref]

M. W. Kudenov, M. Miskiewicz, N. Sanders, and M. J. Escuti, “Achromatic Wollaston prism beam splitter using polarization gratings,” Opt. Lett. 41(19), 4461–4463 (2016).
[Crossref]

C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008).
[Crossref]

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

Garcia-Caurel, E.

Gou, F.

Hervé, N.

F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, and Y. Le Montagner, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9(7), 690–696 (2012).
[Crossref]

Hornburg, K. J.

K. J. Hornburg, X. Xiang, M. W. Kudenov, and M. J. Escuti, “Optimization of aspheric geometric-phase lenses for improved field-of-view,” Proc. SPIE 10743, 1074305 (2018).
[Crossref]

Hosting, L.

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

Jensen, P.

C. Dent, P. Jensen, S. Waller, and B. Webster, “Research Use of Patented Knowledge : A Review,” Documents de travail de l'OCDE sur la science, la technologie et l'industrie, no 2006/02, Éditions OCDE, Paris, https://doi.org/10.1787/683715055704 (2006).

Kim, J.

M. J. Escuti, J. Kim, and M. W. Kudenov, “Controlling light with geometric-phase holograms,” Opt. Photonics News 27(2), 22–29 (2016).
[Crossref]

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

Kimball, B. R.

Kudenov, M. W.

K. J. Hornburg, X. Xiang, M. W. Kudenov, and M. J. Escuti, “Optimization of aspheric geometric-phase lenses for improved field-of-view,” Proc. SPIE 10743, 1074305 (2018).
[Crossref]

M. J. Escuti, J. Kim, and M. W. Kudenov, “Controlling light with geometric-phase holograms,” Opt. Photonics News 27(2), 22–29 (2016).
[Crossref]

M. W. Kudenov, M. Miskiewicz, N. Sanders, and M. J. Escuti, “Achromatic Wollaston prism beam splitter using polarization gratings,” Opt. Lett. 41(19), 4461–4463 (2016).
[Crossref]

Le Montagner, Y.

F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, and Y. Le Montagner, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9(7), 690–696 (2012).
[Crossref]

Lecomte, T.

F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, and Y. Le Montagner, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9(7), 690–696 (2012).
[Crossref]

Lee, Y.-H.

Lin, W.

W. Lin, P. Benitez, and J. C. Miñano, “Beam-steering array optics designs with the SMS method,” Proc. SPIE 8485, 848505 (2012).
[Crossref]

Liu, S.

Meas-Yedid, V.

F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, and Y. Le Montagner, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9(7), 690–696 (2012).
[Crossref]

Miñano, J. C.

W. Lin, P. Benitez, and J. C. Miñano, “Beam-steering array optics designs with the SMS method,” Proc. SPIE 8485, 848505 (2012).
[Crossref]

Miskiewicz, M.

Nersisyan, S. R.

Nikolova, L.

Nomarski, G.

G. Nomarski, “Nouveau Dispositif Pour l'Observation En Contraste De Phase Differentiel,” J. Phys. Radium 16, S88 (1955).

Oh, C.

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008).
[Crossref]

Ossikovski, R.

Pankajakshan, P.

F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, and Y. Le Montagner, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9(7), 690–696 (2012).
[Crossref]

Pop, S.

F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, and Y. Le Montagner, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9(7), 690–696 (2012).
[Crossref]

Provoost, T.

F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, and Y. Le Montagner, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9(7), 690–696 (2012).
[Crossref]

Richard, S.

O. Acher and S. Richard, “séparateur de polarisation Wollaston-like à angle de séparation ajustable ; application à l'interférométrie différentielle et à la microscopie à contraste différentiel,” French Patent Application Nr 19 02638 (2019).

Roberts, D. E.

Sanders, N.

Serak, S. V.

Serati, S.

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

Steeves, D. M.

Tabiryan, N. V.

Tan, G.

Todorov, T.

Tomova, N.

Vanderf, D. F.

D. F. Vanderf, “Applied Prismatic and Reflective Optics,” (SPIE, 2010).

Waller, S.

C. Dent, P. Jensen, S. Waller, and B. Webster, “Research Use of Patented Knowledge : A Review,” Documents de travail de l'OCDE sur la science, la technologie et l'industrie, no 2006/02, Éditions OCDE, Paris, https://doi.org/10.1787/683715055704 (2006).

Watson, E. A.

E. A. Watson, “Analysis of beam steering with decentered microlens arrays,” Opt. Eng. 32(11), 2665 (1993).
[Crossref]

Webster, B.

C. Dent, P. Jensen, S. Waller, and B. Webster, “Research Use of Patented Knowledge : A Review,” Documents de travail de l'OCDE sur la science, la technologie et l'industrie, no 2006/02, Éditions OCDE, Paris, https://doi.org/10.1787/683715055704 (2006).

Wu, S.-T.

Xiang, X.

K. J. Hornburg, X. Xiang, M. W. Kudenov, and M. J. Escuti, “Optimization of aspheric geometric-phase lenses for improved field-of-view,” Proc. SPIE 10743, 1074305 (2018).
[Crossref]

Xiong, J.

Yang, J.

Yin, K.

Zeldovich, B. Y.

Zhan, T.

Zhang, N.

Zhao, D.

Zou, J.

Appl. Opt. (1)

J. Opt. Soc. Am. B (1)

J. Phys. Radium (1)

G. Nomarski, “Nouveau Dispositif Pour l'Observation En Contraste De Phase Differentiel,” J. Phys. Radium 16, S88 (1955).

Nat. Methods (1)

F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, and Y. Le Montagner, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9(7), 690–696 (2012).
[Crossref]

Opt. Eng. (1)

E. A. Watson, “Analysis of beam steering with decentered microlens arrays,” Opt. Eng. 32(11), 2665 (1993).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt. Photonics News (1)

M. J. Escuti, J. Kim, and M. W. Kudenov, “Controlling light with geometric-phase holograms,” Opt. Photonics News 27(2), 22–29 (2016).
[Crossref]

Proc. SPIE (3)

W. Lin, P. Benitez, and J. C. Miñano, “Beam-steering array optics designs with the SMS method,” Proc. SPIE 8485, 848505 (2012).
[Crossref]

K. J. Hornburg, X. Xiang, M. W. Kudenov, and M. J. Escuti, “Optimization of aspheric geometric-phase lenses for improved field-of-view,” Proc. SPIE 10743, 1074305 (2018).
[Crossref]

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

Other (4)

D. F. Vanderf, “Applied Prismatic and Reflective Optics,” (SPIE, 2010).

C. Dent, P. Jensen, S. Waller, and B. Webster, “Research Use of Patented Knowledge : A Review,” Documents de travail de l'OCDE sur la science, la technologie et l'industrie, no 2006/02, Éditions OCDE, Paris, https://doi.org/10.1787/683715055704 (2006).

www.edmundoptics.com

O. Acher and S. Richard, “séparateur de polarisation Wollaston-like à angle de séparation ajustable ; application à l'interférométrie différentielle et à la microscopie à contraste différentiel,” French Patent Application Nr 19 02638 (2019).

Supplementary Material (4)

NameDescription
» Visualization 1       Separation of polarised beam through a Variable Angle Polarisation Splitter (VASP) at 780nm, for various settings
» Visualization 2       Separation of polarised beam through a Variable Angle Polarisation Splitter (VASP) at 650nm, for various settings
» Visualization 3       Separation of polarised beam through a Variable Angle Polarisation Splitter (VASP) at 532nm, for various settings
» Visualization 4       Separation of polarised beam through a Variable Angle Polarisation Splitter (VASP) at 405nm, for various settings

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Optical model of a GPL for 2 orthogonal circular polarization incoming beam: Right Handed Circular (RHC) (top), and Left Handed Circular (LHC) (bottom).
Fig. 2.
Fig. 2. Optical model for a set of 2 GPLs with a lateral shift E between their optical axis, for an incoming beam with: Right Handed Circular (RHC) polarization (top), and Left Handed Circular (LHC) polarization (bottom).
Fig. 3.
Fig. 3. Optical model for a set of 2 GPLs with a lateral shift E between their optical axis, for an arbitrary input polarization.
Fig. 4.
Fig. 4. (a) Experimental setup, including arrangement for tuning the beam separation of the VAPS through a translation of one GPL ; (b): arrangement for tuning the separation through a rotation of the VAPS.
Fig. 5.
Fig. 5. Image stacks of a single focused beam after the insertion of a VAPS by varying the lateral shift E from 0 by 0,5mm steps for: (a) 780nm; (b) 405nm.
Fig. 6.
Fig. 6. Images of a linearly polarized beam after separation in a VAPS with a shift of E = 2mm, obtained at different wavelengths, with a color code to enhance the visibility of low light levels (dark red is less than 0,5%, red less than 2%, yellow less than 7% of maximum intensity) (associated Visualization 1 Visualization 2 Visualization 3 Visualization 4).
Fig. 7.
Fig. 7. Separation angle δ produced by the VAPS as a function of the lateral shift E between the GPLs: Experimental observation (markers), and model (dashed line).
Fig. 8.
Fig. 8. Separation angle δ produced by the VAPS as a function of the rotation angle θ: Experimental observation (markers), and simple model (dashed lines).
Fig. 9.
Fig. 9. Ratio of intensity of the non-deviated beam, over the sum of the intensities of the deviated beams.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P 1 ( x , y ) = ± [ π / ( λ . F ) ] . [ x 2 + y 2 ] P 2 ( x , y ) = [ π / ( λ . F ) ] . [ ( x E ) 2 + y 2 ]
P 1 ( x , y ) + P 2 ( x , y ) = ± [ π / ( λ . F ) ] . [ 2 Ex + E 2 ]

Metrics