Abstract

A micro-interferometer based on surface third-harmonic generation (THG) at two-photon-polymerized SU-8 cuboids for real-time monitoring of the refractive index changes of target fluids, which can be easily integrated into microfluidic photonic systems, is demonstrated. The third-harmonic (TH) interferogram is selectively generated only from the target volume by a simple vertical pumping, thereby eliminating the needs for complicated coupling and alignments. The dependence of the generated TH to the input pump polarization state is thoroughly investigated. The THG efficiency by linearly polarized excitation is found to be 2.6 × 10−7, which is the most efficient at the SU-8-air interface and independent of the input polarization direction. The THG efficiency from the SU-8-air interface is 12.17 times higher than that from the glass-air interface and 4.93 times higher than that from the SU-8-glass interface. Real-time monitoring of argon gas pressure is demonstrated using the micro- interferometer. The surface TH from two-photon-polymerized 3D structures offers novel design flexibility to the nonlinear optical light sources for microfluidic and microelectronic devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Surface third and fifth harmonic generation at crystalline Si for non-invasive inspection of Si wafer’s inter-layer defects

Yi Gao, Hyub Lee, Jiannan Jiao, Byung Jae Chun, Seungchul Kim, Dong-Hwan Kim, and Young-Jin Kim
Opt. Express 26(25) 32812-32823 (2018)

Third-harmonic generation in CMOS-compatible highly doped silica micro-ring resonator

Yuhua Li, Shao Hao Wang, Yayuan Tian, Wai Lok Ho, Yangyang Li, Leiran Wang, Roy R. Davidson, Brent E. Little, and Sai Tak Chu
Opt. Express 28(1) 641-651 (2020)

References

  • View by:
  • |
  • |
  • |

  1. F. Purr, M. Bassu, R. D. Lowe, B. Thürmann, A. Dietzel, and T. P. Burg, “Asymmetric nanofluidic grating detector for differential refractive index measurement and biosensing,” Lab Chip 17(24), 4265–4272 (2017).
    [Crossref] [PubMed]
  2. K. E. Bates and H. Lu, “Optics-integrated microfluidic platforms for biomolecular analyses,” Biophys. J. 110(8), 1684–1697 (2016).
    [Crossref] [PubMed]
  3. G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano 4(6), 3123–3130 (2010).
    [Crossref] [PubMed]
  4. F. Xing, Z. B. Liu, Z. C. Deng, X. T. Kong, X. Q. Yan, X. D. Chen, Q. Ye, C. P. Zhang, Y. S. Chen, and J. G. Tian, “Sensitive real-time monitoring of refractive indexes using a novel graphene-based optical sensor,” Sci. Rep. 2(1), 908 (2012).
    [Crossref] [PubMed]
  5. L. Augel, Y. Kawaguchi, S. Bechler, R. Körner, J. Schulze, H. Uchida, and I. A. Fischer, “Integrated collinear refractive index sensor with Ge PIN photodiodes,” ACS Photonics 5(11), 4586–4593 (2018).
    [Crossref]
  6. Q. G. Shi, L. N. Ying, L. Wang, B. J. Peng, and C. F. Ying, “A method of the detection of marine pollution based on the measurement of refractive index,” Appl. Mech. Mater. 551, 347–352 (2014).
    [Crossref]
  7. K. J. Gåsvik, Optical Metrology, 3rd Edition (John Wiley & Sons, 2002).
  8. A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
    [Crossref]
  9. H. Wu, H. Huang, M. Bai, P. Liu, M. Chao, J. Hu, J. Hao, and T. Cao, “An ultra-low detection-limit optofluidic biosensor based on all glass Fabry-Perot cavity,” Opt. Express 22(26), 31977–31983 (2014).
    [Crossref] [PubMed]
  10. T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators for sensing applications,” Laser Photonics Rev. 11(2), 1600265 (2017).
    [Crossref]
  11. J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16(6), 4296–4301 (2008).
    [Crossref] [PubMed]
  12. J. Zhao, Y. Yan, C. Wei, W. Zhang, Z. Gao, and Y. S. Zhao, “Switchable single-mode perovskite microlasers modulated by responsive organic microdisks,” Nano Lett. 18(2), 1241–1245 (2018).
    [Crossref] [PubMed]
  13. A. P. Zhang, G. Yan, S. Gao, S. He, B. Kim, J. Im, and Y. Chung, “Microfluidic refractive-index sensors based on small-hole microstructured optical fiber Bragg gratings,” Appl. Phys. Lett. 98(22), 221109 (2011).
    [Crossref]
  14. B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta 601(2), 141–155 (2007).
    [Crossref] [PubMed]
  15. G. Bettella, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, “LiNbO3 integrated system for opto-microfluidic sensing,” Sens. Actuator B-Chem. 282, 391–398 (2019).
    [Crossref]
  16. E. Weber and M. J. Vellekoop, “Optofluidic micro-sensors for the determination of liquid concentrations,” Lab Chip 12(19), 3754–3759 (2012).
    [Crossref] [PubMed]
  17. Y.-W. Hsieh, A.-B. Wang, X.-Y. Lu, and L. A. Wang, “High-throughput on-line multi-detection for refractive index, velocity, size, and concentration measurements of micro-two-phase flow using optical microfibers,” Sens, Actuator B-Chem. 237, 841–848 (2016).
    [Crossref]
  18. P. K. Shivhare, A. Prabhakar, and A. K. Sen, “Optofluidics based lab-on-chip device for in situ measurement of mean droplet size and droplet size distribution of an emulsion,” J. Micromech. Microeng. 27(3), 035003 (2017).
    [Crossref]
  19. L. Novak, P. Neuzil, J. Pipper, Y. Zhang, and S. Lee, “An integrated fluorescence detection system for lab-on-a-chip applications,” Lab Chip 7(1), 27–29 (2007).
    [Crossref] [PubMed]
  20. A. B. Matsko, Practical Applications of Microresonators in Optics and Photonics (CRC Press, 2009).
  21. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [Crossref] [PubMed]
  22. P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
    [Crossref]
  23. Y. Hirai, Y. Inamoto, K. Sugano, T. Tsuchiya, and O. Tabata, “Moving mask UV lithography for three-dimensional structuring,” J. Micromech. Microeng. 17(2), 199–206 (2007).
    [Crossref]
  24. L. Li and J. T. Fourkas, “Multiphoton polymerization,” Mater. Today 10(6), 30–37 (2007).
    [Crossref]
  25. S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev. 2(1-2), 100–111 (2008).
    [Crossref]
  26. T. Baldacchini, Three-Dimensional Microfabrication Using Two-Photon Polymerization: Fundamentals, Technology, and Applications (William Andrew, 2015).
  27. S. Magdassi and A. Kamyshny, Nanomaterials for 2D and 3D Printing (Wiley-VCH, 2017).
  28. R. Guo, S. Xiao, X. Zhai, J. Li, A. Xia, and W. Huang, “Micro lens fabrication by means of femtosecond two photon photopolymerization,” Opt. Express 14(2), 810–816 (2006).
    [Crossref] [PubMed]
  29. J. Zhang, Fabrication of Very High Aspect Micromold by SU-8 Photolithography and Electroforming (Nanyang Technological University, 2007).
  30. Z.-N. Tian, X.-W. Cao, W.-G. Yao, P.-X. Li, Y.-H. Yu, G. Li, Q.-D. Chen, and H.-B. Sun, “Hybrid refractive–diffractive optical vortex microlens,” IEEE Photonics Technol. Lett. 28(21), 2299–2302 (2016).
    [Crossref]
  31. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
    [Crossref]
  32. E. Garmire, “Nonlinear optics in daily life,” Opt. Express 21(25), 30532–30544 (2013).
    [Crossref] [PubMed]
  33. K. Rottwitt and P. Tidemand-Lichtenberg, Nonlinear Optics: Principles and Applications (CRC Press, 2014).
  34. M. Sivis, M. Taucer, G. Vampa, K. Johnston, A. Staudte, A. Y. Naumov, D. M. Villeneuve, C. Ropers, and P. B. Corkum, “Tailored semiconductors for high-harmonic optoelectronics,” Science 357(6348), 303–306 (2017).
    [Crossref] [PubMed]
  35. H. Farrokhi, J. Boonruangkan, B. J. Chun, T. M. Rohith, A. Mishra, H. T. Toh, H. S. Yoon, and Y. J. Kim, “Speckle reduction in quantitative phase imaging by generating spatially incoherent laser field at electroactive optical diffusers,” Opt. Express 25(10), 10791–10800 (2017).
    [Crossref] [PubMed]
  36. H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S. W. Kim, and Y. J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7(1), 15318 (2017).
    [Crossref] [PubMed]
  37. T. Y. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52(5), 4116–4125 (1995).
    [Crossref] [PubMed]
  38. G. Yi, H. Lee, J. Jiannan, B. J. Chun, S. Han, H. Kim, Y. W. Kim, D. Kim, S.-W. Kim, and Y.-J. Kim, “Nonlinear third harmonic generation at crystalline sapphires,” Opt. Express 25(21), 26002–26010 (2017).
    [Crossref] [PubMed]
  39. Y. Gao, H. Lee, W. Xu, J. Jiao, P. Chen, D. H. Kim, and Y. J. Kim, “Coherent power amplification of third-order harmonic femtosecond pulses at thin-film up-conversion nanoparticles,” Sci. Rep. 9(1), 5094 (2019).
    [Crossref] [PubMed]
  40. G. Bautista, S. G. Pfisterer, M. J. Huttunen, S. Ranjan, K. Kanerva, E. Ikonen, and M. Kauranen, “Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells,” Biophys. J. 107(10), 2230–2236 (2014).
    [Crossref] [PubMed]
  41. C. Stock, K. Zlatanov, and T. Halfmann, “Dispersion-enhanced third-harmonic microscopy,” Opt. Commun. 393, 289–293 (2017).
    [Crossref]
  42. Y. Gao, H. Lee, J. Jiao, B. J. Chun, S. Kim, D.-H. Kim, and Y.-J. Kim, “Surface third and fifth harmonic generation at crystalline Si for non-invasive inspection of Si wafer’s inter-layer defects,” Opt. Express 26(25), 32812–32823 (2018).
    [Crossref] [PubMed]
  43. P. Kunwar, J. Toivonen, M. Kauranen, and G. Bautista, “Third-harmonic generation imaging of three-dimensional microstructures fabricated by photopolymerization,” Opt. Express 24(9), 9353–9358 (2016).
    [Crossref] [PubMed]
  44. J. Squier, M. Müller, G. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3(9), 315–324 (1998).
    [Crossref] [PubMed]
  45. R. Genthial, E. Beaurepaire, M.-C. Schanne-Klein, F. Peyrin, D. Farlay, C. Olivier, Y. Bala, G. Boivin, J.-C. Vial, D. Débarre, and A. Gourrier, “Label-free imaging of bone multiscale porosity and interfaces using third-harmonic generation microscopy,” Sci. Rep. 7(1), 3419 (2017).
    [Crossref] [PubMed]
  46. S. Han, H. Kim, Y. W. Kim, Y.-J. Kim, S. Kim, I.-Y. Park, and S.-W. Kim, “High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure,” Nat. Commun. 7(1), 13105 (2016).
    [Crossref] [PubMed]
  47. D. Oron, E. Tal, and Y. Silberberg, “Depth-resolved multiphoton polarization microscopy by third-harmonic generation,” Opt. Lett. 28(23), 2315–2317 (2003).
    [Crossref] [PubMed]
  48. K. Isobe, W. Watanabe, and K. Itoh, Functional Imaging by Controlled Nonlinear Optical Phenomena (John Wiley & Sons, 2013).
  49. N. Olivier, F. Aptel, K. Plamann, M. C. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express 18(5), 5028–5040 (2010).
    [Crossref] [PubMed]
  50. F. S. Pavone and P. J. Campagnola, Second Harmonic Generation Imaging (CRC Press, 2014).

2019 (2)

G. Bettella, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, “LiNbO3 integrated system for opto-microfluidic sensing,” Sens. Actuator B-Chem. 282, 391–398 (2019).
[Crossref]

Y. Gao, H. Lee, W. Xu, J. Jiao, P. Chen, D. H. Kim, and Y. J. Kim, “Coherent power amplification of third-order harmonic femtosecond pulses at thin-film up-conversion nanoparticles,” Sci. Rep. 9(1), 5094 (2019).
[Crossref] [PubMed]

2018 (4)

Y. Gao, H. Lee, J. Jiao, B. J. Chun, S. Kim, D.-H. Kim, and Y.-J. Kim, “Surface third and fifth harmonic generation at crystalline Si for non-invasive inspection of Si wafer’s inter-layer defects,” Opt. Express 26(25), 32812–32823 (2018).
[Crossref] [PubMed]

J. Zhao, Y. Yan, C. Wei, W. Zhang, Z. Gao, and Y. S. Zhao, “Switchable single-mode perovskite microlasers modulated by responsive organic microdisks,” Nano Lett. 18(2), 1241–1245 (2018).
[Crossref] [PubMed]

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

L. Augel, Y. Kawaguchi, S. Bechler, R. Körner, J. Schulze, H. Uchida, and I. A. Fischer, “Integrated collinear refractive index sensor with Ge PIN photodiodes,” ACS Photonics 5(11), 4586–4593 (2018).
[Crossref]

2017 (9)

F. Purr, M. Bassu, R. D. Lowe, B. Thürmann, A. Dietzel, and T. P. Burg, “Asymmetric nanofluidic grating detector for differential refractive index measurement and biosensing,” Lab Chip 17(24), 4265–4272 (2017).
[Crossref] [PubMed]

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators for sensing applications,” Laser Photonics Rev. 11(2), 1600265 (2017).
[Crossref]

P. K. Shivhare, A. Prabhakar, and A. K. Sen, “Optofluidics based lab-on-chip device for in situ measurement of mean droplet size and droplet size distribution of an emulsion,” J. Micromech. Microeng. 27(3), 035003 (2017).
[Crossref]

G. Yi, H. Lee, J. Jiannan, B. J. Chun, S. Han, H. Kim, Y. W. Kim, D. Kim, S.-W. Kim, and Y.-J. Kim, “Nonlinear third harmonic generation at crystalline sapphires,” Opt. Express 25(21), 26002–26010 (2017).
[Crossref] [PubMed]

C. Stock, K. Zlatanov, and T. Halfmann, “Dispersion-enhanced third-harmonic microscopy,” Opt. Commun. 393, 289–293 (2017).
[Crossref]

M. Sivis, M. Taucer, G. Vampa, K. Johnston, A. Staudte, A. Y. Naumov, D. M. Villeneuve, C. Ropers, and P. B. Corkum, “Tailored semiconductors for high-harmonic optoelectronics,” Science 357(6348), 303–306 (2017).
[Crossref] [PubMed]

H. Farrokhi, J. Boonruangkan, B. J. Chun, T. M. Rohith, A. Mishra, H. T. Toh, H. S. Yoon, and Y. J. Kim, “Speckle reduction in quantitative phase imaging by generating spatially incoherent laser field at electroactive optical diffusers,” Opt. Express 25(10), 10791–10800 (2017).
[Crossref] [PubMed]

H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S. W. Kim, and Y. J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7(1), 15318 (2017).
[Crossref] [PubMed]

R. Genthial, E. Beaurepaire, M.-C. Schanne-Klein, F. Peyrin, D. Farlay, C. Olivier, Y. Bala, G. Boivin, J.-C. Vial, D. Débarre, and A. Gourrier, “Label-free imaging of bone multiscale porosity and interfaces using third-harmonic generation microscopy,” Sci. Rep. 7(1), 3419 (2017).
[Crossref] [PubMed]

2016 (5)

S. Han, H. Kim, Y. W. Kim, Y.-J. Kim, S. Kim, I.-Y. Park, and S.-W. Kim, “High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure,” Nat. Commun. 7(1), 13105 (2016).
[Crossref] [PubMed]

Z.-N. Tian, X.-W. Cao, W.-G. Yao, P.-X. Li, Y.-H. Yu, G. Li, Q.-D. Chen, and H.-B. Sun, “Hybrid refractive–diffractive optical vortex microlens,” IEEE Photonics Technol. Lett. 28(21), 2299–2302 (2016).
[Crossref]

P. Kunwar, J. Toivonen, M. Kauranen, and G. Bautista, “Third-harmonic generation imaging of three-dimensional microstructures fabricated by photopolymerization,” Opt. Express 24(9), 9353–9358 (2016).
[Crossref] [PubMed]

Y.-W. Hsieh, A.-B. Wang, X.-Y. Lu, and L. A. Wang, “High-throughput on-line multi-detection for refractive index, velocity, size, and concentration measurements of micro-two-phase flow using optical microfibers,” Sens, Actuator B-Chem. 237, 841–848 (2016).
[Crossref]

K. E. Bates and H. Lu, “Optics-integrated microfluidic platforms for biomolecular analyses,” Biophys. J. 110(8), 1684–1697 (2016).
[Crossref] [PubMed]

2014 (3)

Q. G. Shi, L. N. Ying, L. Wang, B. J. Peng, and C. F. Ying, “A method of the detection of marine pollution based on the measurement of refractive index,” Appl. Mech. Mater. 551, 347–352 (2014).
[Crossref]

H. Wu, H. Huang, M. Bai, P. Liu, M. Chao, J. Hu, J. Hao, and T. Cao, “An ultra-low detection-limit optofluidic biosensor based on all glass Fabry-Perot cavity,” Opt. Express 22(26), 31977–31983 (2014).
[Crossref] [PubMed]

G. Bautista, S. G. Pfisterer, M. J. Huttunen, S. Ranjan, K. Kanerva, E. Ikonen, and M. Kauranen, “Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells,” Biophys. J. 107(10), 2230–2236 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (4)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

F. Xing, Z. B. Liu, Z. C. Deng, X. T. Kong, X. Q. Yan, X. D. Chen, Q. Ye, C. P. Zhang, Y. S. Chen, and J. G. Tian, “Sensitive real-time monitoring of refractive indexes using a novel graphene-based optical sensor,” Sci. Rep. 2(1), 908 (2012).
[Crossref] [PubMed]

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

E. Weber and M. J. Vellekoop, “Optofluidic micro-sensors for the determination of liquid concentrations,” Lab Chip 12(19), 3754–3759 (2012).
[Crossref] [PubMed]

2011 (1)

A. P. Zhang, G. Yan, S. Gao, S. He, B. Kim, J. Im, and Y. Chung, “Microfluidic refractive-index sensors based on small-hole microstructured optical fiber Bragg gratings,” Appl. Phys. Lett. 98(22), 221109 (2011).
[Crossref]

2010 (2)

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano 4(6), 3123–3130 (2010).
[Crossref] [PubMed]

N. Olivier, F. Aptel, K. Plamann, M. C. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express 18(5), 5028–5040 (2010).
[Crossref] [PubMed]

2008 (2)

J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16(6), 4296–4301 (2008).
[Crossref] [PubMed]

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev. 2(1-2), 100–111 (2008).
[Crossref]

2007 (4)

B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta 601(2), 141–155 (2007).
[Crossref] [PubMed]

L. Novak, P. Neuzil, J. Pipper, Y. Zhang, and S. Lee, “An integrated fluorescence detection system for lab-on-a-chip applications,” Lab Chip 7(1), 27–29 (2007).
[Crossref] [PubMed]

Y. Hirai, Y. Inamoto, K. Sugano, T. Tsuchiya, and O. Tabata, “Moving mask UV lithography for three-dimensional structuring,” J. Micromech. Microeng. 17(2), 199–206 (2007).
[Crossref]

L. Li and J. T. Fourkas, “Multiphoton polymerization,” Mater. Today 10(6), 30–37 (2007).
[Crossref]

2006 (2)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

R. Guo, S. Xiao, X. Zhai, J. Li, A. Xia, and W. Huang, “Micro lens fabrication by means of femtosecond two photon photopolymerization,” Opt. Express 14(2), 810–816 (2006).
[Crossref] [PubMed]

2003 (1)

1998 (1)

1995 (1)

T. Y. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52(5), 4116–4125 (1995).
[Crossref] [PubMed]

Aptel, F.

Augel, L.

L. Augel, Y. Kawaguchi, S. Bechler, R. Körner, J. Schulze, H. Uchida, and I. A. Fischer, “Integrated collinear refractive index sensor with Ge PIN photodiodes,” ACS Photonics 5(11), 4586–4593 (2018).
[Crossref]

Bai, M.

Bala, Y.

R. Genthial, E. Beaurepaire, M.-C. Schanne-Klein, F. Peyrin, D. Farlay, C. Olivier, Y. Bala, G. Boivin, J.-C. Vial, D. Débarre, and A. Gourrier, “Label-free imaging of bone multiscale porosity and interfaces using third-harmonic generation microscopy,” Sci. Rep. 7(1), 3419 (2017).
[Crossref] [PubMed]

Bassu, M.

F. Purr, M. Bassu, R. D. Lowe, B. Thürmann, A. Dietzel, and T. P. Burg, “Asymmetric nanofluidic grating detector for differential refractive index measurement and biosensing,” Lab Chip 17(24), 4265–4272 (2017).
[Crossref] [PubMed]

Bates, K. E.

K. E. Bates and H. Lu, “Optics-integrated microfluidic platforms for biomolecular analyses,” Biophys. J. 110(8), 1684–1697 (2016).
[Crossref] [PubMed]

Bautista, G.

P. Kunwar, J. Toivonen, M. Kauranen, and G. Bautista, “Third-harmonic generation imaging of three-dimensional microstructures fabricated by photopolymerization,” Opt. Express 24(9), 9353–9358 (2016).
[Crossref] [PubMed]

G. Bautista, S. G. Pfisterer, M. J. Huttunen, S. Ranjan, K. Kanerva, E. Ikonen, and M. Kauranen, “Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells,” Biophys. J. 107(10), 2230–2236 (2014).
[Crossref] [PubMed]

Beaurepaire, E.

R. Genthial, E. Beaurepaire, M.-C. Schanne-Klein, F. Peyrin, D. Farlay, C. Olivier, Y. Bala, G. Boivin, J.-C. Vial, D. Débarre, and A. Gourrier, “Label-free imaging of bone multiscale porosity and interfaces using third-harmonic generation microscopy,” Sci. Rep. 7(1), 3419 (2017).
[Crossref] [PubMed]

N. Olivier, F. Aptel, K. Plamann, M. C. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express 18(5), 5028–5040 (2010).
[Crossref] [PubMed]

Bechler, S.

L. Augel, Y. Kawaguchi, S. Bechler, R. Körner, J. Schulze, H. Uchida, and I. A. Fischer, “Integrated collinear refractive index sensor with Ge PIN photodiodes,” ACS Photonics 5(11), 4586–4593 (2018).
[Crossref]

Bettella, G.

G. Bettella, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, “LiNbO3 integrated system for opto-microfluidic sensing,” Sens. Actuator B-Chem. 282, 391–398 (2019).
[Crossref]

Billah, M.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Blaicher, M.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Boivin, G.

R. Genthial, E. Beaurepaire, M.-C. Schanne-Klein, F. Peyrin, D. Farlay, C. Olivier, Y. Bala, G. Boivin, J.-C. Vial, D. Débarre, and A. Gourrier, “Label-free imaging of bone multiscale porosity and interfaces using third-harmonic generation microscopy,” Sci. Rep. 7(1), 3419 (2017).
[Crossref] [PubMed]

Bolaños Quiñones, V. A.

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano 4(6), 3123–3130 (2010).
[Crossref] [PubMed]

Boonruangkan, J.

H. Farrokhi, J. Boonruangkan, B. J. Chun, T. M. Rohith, A. Mishra, H. T. Toh, H. S. Yoon, and Y. J. Kim, “Speckle reduction in quantitative phase imaging by generating spatially incoherent laser field at electroactive optical diffusers,” Opt. Express 25(10), 10791–10800 (2017).
[Crossref] [PubMed]

H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S. W. Kim, and Y. J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7(1), 15318 (2017).
[Crossref] [PubMed]

Brakenhoff, G.

Brolo, A. G.

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

Burg, T. P.

F. Purr, M. Bassu, R. D. Lowe, B. Thürmann, A. Dietzel, and T. P. Burg, “Asymmetric nanofluidic grating detector for differential refractive index measurement and biosensing,” Lab Chip 17(24), 4265–4272 (2017).
[Crossref] [PubMed]

Caer, C.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Cao, T.

Cao, X.-W.

Z.-N. Tian, X.-W. Cao, W.-G. Yao, P.-X. Li, Y.-H. Yu, G. Li, Q.-D. Chen, and H.-B. Sun, “Hybrid refractive–diffractive optical vortex microlens,” IEEE Photonics Technol. Lett. 28(21), 2299–2302 (2016).
[Crossref]

Chao, M.

Chauvet, M.

G. Bettella, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, “LiNbO3 integrated system for opto-microfluidic sensing,” Sens. Actuator B-Chem. 282, 391–398 (2019).
[Crossref]

Chen, L.

Chen, P.

Y. Gao, H. Lee, W. Xu, J. Jiao, P. Chen, D. H. Kim, and Y. J. Kim, “Coherent power amplification of third-order harmonic femtosecond pulses at thin-film up-conversion nanoparticles,” Sci. Rep. 9(1), 5094 (2019).
[Crossref] [PubMed]

Chen, Q.-D.

Z.-N. Tian, X.-W. Cao, W.-G. Yao, P.-X. Li, Y.-H. Yu, G. Li, Q.-D. Chen, and H.-B. Sun, “Hybrid refractive–diffractive optical vortex microlens,” IEEE Photonics Technol. Lett. 28(21), 2299–2302 (2016).
[Crossref]

Chen, X. D.

F. Xing, Z. B. Liu, Z. C. Deng, X. T. Kong, X. Q. Yan, X. D. Chen, Q. Ye, C. P. Zhang, Y. S. Chen, and J. G. Tian, “Sensitive real-time monitoring of refractive indexes using a novel graphene-based optical sensor,” Sci. Rep. 2(1), 908 (2012).
[Crossref] [PubMed]

Chen, Y. S.

F. Xing, Z. B. Liu, Z. C. Deng, X. T. Kong, X. Q. Yan, X. D. Chen, Q. Ye, C. P. Zhang, Y. S. Chen, and J. G. Tian, “Sensitive real-time monitoring of refractive indexes using a novel graphene-based optical sensor,” Sci. Rep. 2(1), 908 (2012).
[Crossref] [PubMed]

Chun, B. J.

Chung, Y.

A. P. Zhang, G. Yan, S. Gao, S. He, B. Kim, J. Im, and Y. Chung, “Microfluidic refractive-index sensors based on small-hole microstructured optical fiber Bragg gratings,” Appl. Phys. Lett. 98(22), 221109 (2011).
[Crossref]

Corkum, P. B.

M. Sivis, M. Taucer, G. Vampa, K. Johnston, A. Staudte, A. Y. Naumov, D. M. Villeneuve, C. Ropers, and P. B. Corkum, “Tailored semiconductors for high-harmonic optoelectronics,” Science 357(6348), 303–306 (2017).
[Crossref] [PubMed]

Dangel, R.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Débarre, D.

R. Genthial, E. Beaurepaire, M.-C. Schanne-Klein, F. Peyrin, D. Farlay, C. Olivier, Y. Bala, G. Boivin, J.-C. Vial, D. Débarre, and A. Gourrier, “Label-free imaging of bone multiscale porosity and interfaces using third-harmonic generation microscopy,” Sci. Rep. 7(1), 3419 (2017).
[Crossref] [PubMed]

Deng, Z. C.

F. Xing, Z. B. Liu, Z. C. Deng, X. T. Kong, X. Q. Yan, X. D. Chen, Q. Ye, C. P. Zhang, Y. S. Chen, and J. G. Tian, “Sensitive real-time monitoring of refractive indexes using a novel graphene-based optical sensor,” Sci. Rep. 2(1), 908 (2012).
[Crossref] [PubMed]

Dietrich, P.-I.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Dietzel, A.

F. Purr, M. Bassu, R. D. Lowe, B. Thürmann, A. Dietzel, and T. P. Burg, “Asymmetric nanofluidic grating detector for differential refractive index measurement and biosensing,” Lab Chip 17(24), 4265–4272 (2017).
[Crossref] [PubMed]

Ding, F.

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano 4(6), 3123–3130 (2010).
[Crossref] [PubMed]

Fan, X.

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators for sensing applications,” Laser Photonics Rev. 11(2), 1600265 (2017).
[Crossref]

Farlay, D.

R. Genthial, E. Beaurepaire, M.-C. Schanne-Klein, F. Peyrin, D. Farlay, C. Olivier, Y. Bala, G. Boivin, J.-C. Vial, D. Débarre, and A. Gourrier, “Label-free imaging of bone multiscale porosity and interfaces using third-harmonic generation microscopy,” Sci. Rep. 7(1), 3419 (2017).
[Crossref] [PubMed]

Farrokhi, H.

H. Farrokhi, J. Boonruangkan, B. J. Chun, T. M. Rohith, A. Mishra, H. T. Toh, H. S. Yoon, and Y. J. Kim, “Speckle reduction in quantitative phase imaging by generating spatially incoherent laser field at electroactive optical diffusers,” Opt. Express 25(10), 10791–10800 (2017).
[Crossref] [PubMed]

H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S. W. Kim, and Y. J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7(1), 15318 (2017).
[Crossref] [PubMed]

Fischer, I. A.

L. Augel, Y. Kawaguchi, S. Bechler, R. Körner, J. Schulze, H. Uchida, and I. A. Fischer, “Integrated collinear refractive index sensor with Ge PIN photodiodes,” ACS Photonics 5(11), 4586–4593 (2018).
[Crossref]

Fourkas, J. T.

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev. 2(1-2), 100–111 (2008).
[Crossref]

L. Li and J. T. Fourkas, “Multiphoton polymerization,” Mater. Today 10(6), 30–37 (2007).
[Crossref]

François, A.

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators for sensing applications,” Laser Photonics Rev. 11(2), 1600265 (2017).
[Crossref]

Freude, W.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Gao, S.

A. P. Zhang, G. Yan, S. Gao, S. He, B. Kim, J. Im, and Y. Chung, “Microfluidic refractive-index sensors based on small-hole microstructured optical fiber Bragg gratings,” Appl. Phys. Lett. 98(22), 221109 (2011).
[Crossref]

Gao, Y.

Y. Gao, H. Lee, W. Xu, J. Jiao, P. Chen, D. H. Kim, and Y. J. Kim, “Coherent power amplification of third-order harmonic femtosecond pulses at thin-film up-conversion nanoparticles,” Sci. Rep. 9(1), 5094 (2019).
[Crossref] [PubMed]

Y. Gao, H. Lee, J. Jiao, B. J. Chun, S. Kim, D.-H. Kim, and Y.-J. Kim, “Surface third and fifth harmonic generation at crystalline Si for non-invasive inspection of Si wafer’s inter-layer defects,” Opt. Express 26(25), 32812–32823 (2018).
[Crossref] [PubMed]

Gao, Z.

J. Zhao, Y. Yan, C. Wei, W. Zhang, Z. Gao, and Y. S. Zhao, “Switchable single-mode perovskite microlasers modulated by responsive organic microdisks,” Nano Lett. 18(2), 1241–1245 (2018).
[Crossref] [PubMed]

Garmire, E.

Gauthier-Manuel, L.

G. Bettella, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, “LiNbO3 integrated system for opto-microfluidic sensing,” Sens. Actuator B-Chem. 282, 391–398 (2019).
[Crossref]

Genthial, R.

R. Genthial, E. Beaurepaire, M.-C. Schanne-Klein, F. Peyrin, D. Farlay, C. Olivier, Y. Bala, G. Boivin, J.-C. Vial, D. Débarre, and A. Gourrier, “Label-free imaging of bone multiscale porosity and interfaces using third-harmonic generation microscopy,” Sci. Rep. 7(1), 3419 (2017).
[Crossref] [PubMed]

Gourrier, A.

R. Genthial, E. Beaurepaire, M.-C. Schanne-Klein, F. Peyrin, D. Farlay, C. Olivier, Y. Bala, G. Boivin, J.-C. Vial, D. Débarre, and A. Gourrier, “Label-free imaging of bone multiscale porosity and interfaces using third-harmonic generation microscopy,” Sci. Rep. 7(1), 3419 (2017).
[Crossref] [PubMed]

Guo, R.

Halfmann, T.

C. Stock, K. Zlatanov, and T. Halfmann, “Dispersion-enhanced third-harmonic microscopy,” Opt. Commun. 393, 289–293 (2017).
[Crossref]

Hall, J. M. M.

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators for sensing applications,” Laser Photonics Rev. 11(2), 1600265 (2017).
[Crossref]

Han, S.

G. Yi, H. Lee, J. Jiannan, B. J. Chun, S. Han, H. Kim, Y. W. Kim, D. Kim, S.-W. Kim, and Y.-J. Kim, “Nonlinear third harmonic generation at crystalline sapphires,” Opt. Express 25(21), 26002–26010 (2017).
[Crossref] [PubMed]

H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S. W. Kim, and Y. J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7(1), 15318 (2017).
[Crossref] [PubMed]

S. Han, H. Kim, Y. W. Kim, Y.-J. Kim, S. Kim, I.-Y. Park, and S.-W. Kim, “High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure,” Nat. Commun. 7(1), 13105 (2016).
[Crossref] [PubMed]

Hao, J.

He, S.

A. P. Zhang, G. Yan, S. Gao, S. He, B. Kim, J. Im, and Y. Chung, “Microfluidic refractive-index sensors based on small-hole microstructured optical fiber Bragg gratings,” Appl. Phys. Lett. 98(22), 221109 (2011).
[Crossref]

Hirai, Y.

Y. Hirai, Y. Inamoto, K. Sugano, T. Tsuchiya, and O. Tabata, “Moving mask UV lithography for three-dimensional structuring,” J. Micromech. Microeng. 17(2), 199–206 (2007).
[Crossref]

Hofmann, A.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Hoose, T.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Hsieh, Y.-W.

Y.-W. Hsieh, A.-B. Wang, X.-Y. Lu, and L. A. Wang, “High-throughput on-line multi-detection for refractive index, velocity, size, and concentration measurements of micro-two-phase flow using optical microfibers,” Sens, Actuator B-Chem. 237, 841–848 (2016).
[Crossref]

Hu, J.

Huang, G.

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano 4(6), 3123–3130 (2010).
[Crossref] [PubMed]

Huang, H.

Huang, W.

Huskens, J.

B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta 601(2), 141–155 (2007).
[Crossref] [PubMed]

Huttunen, M. J.

G. Bautista, S. G. Pfisterer, M. J. Huttunen, S. Ranjan, K. Kanerva, E. Ikonen, and M. Kauranen, “Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells,” Biophys. J. 107(10), 2230–2236 (2014).
[Crossref] [PubMed]

Ikonen, E.

G. Bautista, S. G. Pfisterer, M. J. Huttunen, S. Ranjan, K. Kanerva, E. Ikonen, and M. Kauranen, “Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells,” Biophys. J. 107(10), 2230–2236 (2014).
[Crossref] [PubMed]

Im, J.

A. P. Zhang, G. Yan, S. Gao, S. He, B. Kim, J. Im, and Y. Chung, “Microfluidic refractive-index sensors based on small-hole microstructured optical fiber Bragg gratings,” Appl. Phys. Lett. 98(22), 221109 (2011).
[Crossref]

Inamoto, Y.

Y. Hirai, Y. Inamoto, K. Sugano, T. Tsuchiya, and O. Tabata, “Moving mask UV lithography for three-dimensional structuring,” J. Micromech. Microeng. 17(2), 199–206 (2007).
[Crossref]

Jiannan, J.

Jiao, J.

Y. Gao, H. Lee, W. Xu, J. Jiao, P. Chen, D. H. Kim, and Y. J. Kim, “Coherent power amplification of third-order harmonic femtosecond pulses at thin-film up-conversion nanoparticles,” Sci. Rep. 9(1), 5094 (2019).
[Crossref] [PubMed]

Y. Gao, H. Lee, J. Jiao, B. J. Chun, S. Kim, D.-H. Kim, and Y.-J. Kim, “Surface third and fifth harmonic generation at crystalline Si for non-invasive inspection of Si wafer’s inter-layer defects,” Opt. Express 26(25), 32812–32823 (2018).
[Crossref] [PubMed]

Johnston, K.

M. Sivis, M. Taucer, G. Vampa, K. Johnston, A. Staudte, A. Y. Naumov, D. M. Villeneuve, C. Ropers, and P. B. Corkum, “Tailored semiconductors for high-harmonic optoelectronics,” Science 357(6348), 303–306 (2017).
[Crossref] [PubMed]

Kanerva, K.

G. Bautista, S. G. Pfisterer, M. J. Huttunen, S. Ranjan, K. Kanerva, E. Ikonen, and M. Kauranen, “Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells,” Biophys. J. 107(10), 2230–2236 (2014).
[Crossref] [PubMed]

Kauranen, M.

P. Kunwar, J. Toivonen, M. Kauranen, and G. Bautista, “Third-harmonic generation imaging of three-dimensional microstructures fabricated by photopolymerization,” Opt. Express 24(9), 9353–9358 (2016).
[Crossref] [PubMed]

G. Bautista, S. G. Pfisterer, M. J. Huttunen, S. Ranjan, K. Kanerva, E. Ikonen, and M. Kauranen, “Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells,” Biophys. J. 107(10), 2230–2236 (2014).
[Crossref] [PubMed]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Kawaguchi, Y.

L. Augel, Y. Kawaguchi, S. Bechler, R. Körner, J. Schulze, H. Uchida, and I. A. Fischer, “Integrated collinear refractive index sensor with Ge PIN photodiodes,” ACS Photonics 5(11), 4586–4593 (2018).
[Crossref]

Kim, B.

A. P. Zhang, G. Yan, S. Gao, S. He, B. Kim, J. Im, and Y. Chung, “Microfluidic refractive-index sensors based on small-hole microstructured optical fiber Bragg gratings,” Appl. Phys. Lett. 98(22), 221109 (2011).
[Crossref]

Kim, D.

Kim, D. H.

Y. Gao, H. Lee, W. Xu, J. Jiao, P. Chen, D. H. Kim, and Y. J. Kim, “Coherent power amplification of third-order harmonic femtosecond pulses at thin-film up-conversion nanoparticles,” Sci. Rep. 9(1), 5094 (2019).
[Crossref] [PubMed]

Kim, D.-H.

Kim, H.

G. Yi, H. Lee, J. Jiannan, B. J. Chun, S. Han, H. Kim, Y. W. Kim, D. Kim, S.-W. Kim, and Y.-J. Kim, “Nonlinear third harmonic generation at crystalline sapphires,” Opt. Express 25(21), 26002–26010 (2017).
[Crossref] [PubMed]

H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S. W. Kim, and Y. J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7(1), 15318 (2017).
[Crossref] [PubMed]

S. Han, H. Kim, Y. W. Kim, Y.-J. Kim, S. Kim, I.-Y. Park, and S.-W. Kim, “High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure,” Nat. Commun. 7(1), 13105 (2016).
[Crossref] [PubMed]

Kim, S.

Y. Gao, H. Lee, J. Jiao, B. J. Chun, S. Kim, D.-H. Kim, and Y.-J. Kim, “Surface third and fifth harmonic generation at crystalline Si for non-invasive inspection of Si wafer’s inter-layer defects,” Opt. Express 26(25), 32812–32823 (2018).
[Crossref] [PubMed]

S. Han, H. Kim, Y. W. Kim, Y.-J. Kim, S. Kim, I.-Y. Park, and S.-W. Kim, “High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure,” Nat. Commun. 7(1), 13105 (2016).
[Crossref] [PubMed]

Kim, S. W.

H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S. W. Kim, and Y. J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7(1), 15318 (2017).
[Crossref] [PubMed]

Kim, S.-W.

G. Yi, H. Lee, J. Jiannan, B. J. Chun, S. Han, H. Kim, Y. W. Kim, D. Kim, S.-W. Kim, and Y.-J. Kim, “Nonlinear third harmonic generation at crystalline sapphires,” Opt. Express 25(21), 26002–26010 (2017).
[Crossref] [PubMed]

S. Han, H. Kim, Y. W. Kim, Y.-J. Kim, S. Kim, I.-Y. Park, and S.-W. Kim, “High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure,” Nat. Commun. 7(1), 13105 (2016).
[Crossref] [PubMed]

Kim, Y. J.

Y. Gao, H. Lee, W. Xu, J. Jiao, P. Chen, D. H. Kim, and Y. J. Kim, “Coherent power amplification of third-order harmonic femtosecond pulses at thin-film up-conversion nanoparticles,” Sci. Rep. 9(1), 5094 (2019).
[Crossref] [PubMed]

H. Farrokhi, J. Boonruangkan, B. J. Chun, T. M. Rohith, A. Mishra, H. T. Toh, H. S. Yoon, and Y. J. Kim, “Speckle reduction in quantitative phase imaging by generating spatially incoherent laser field at electroactive optical diffusers,” Opt. Express 25(10), 10791–10800 (2017).
[Crossref] [PubMed]

H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S. W. Kim, and Y. J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7(1), 15318 (2017).
[Crossref] [PubMed]

Kim, Y. W.

G. Yi, H. Lee, J. Jiannan, B. J. Chun, S. Han, H. Kim, Y. W. Kim, D. Kim, S.-W. Kim, and Y.-J. Kim, “Nonlinear third harmonic generation at crystalline sapphires,” Opt. Express 25(21), 26002–26010 (2017).
[Crossref] [PubMed]

S. Han, H. Kim, Y. W. Kim, Y.-J. Kim, S. Kim, I.-Y. Park, and S.-W. Kim, “High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure,” Nat. Commun. 7(1), 13105 (2016).
[Crossref] [PubMed]

Kim, Y.-J.

Kiravittaya, S.

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano 4(6), 3123–3130 (2010).
[Crossref] [PubMed]

Kong, X. T.

F. Xing, Z. B. Liu, Z. C. Deng, X. T. Kong, X. Q. Yan, X. D. Chen, Q. Ye, C. P. Zhang, Y. S. Chen, and J. G. Tian, “Sensitive real-time monitoring of refractive indexes using a novel graphene-based optical sensor,” Sci. Rep. 2(1), 908 (2012).
[Crossref] [PubMed]

Koos, C.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Körner, R.

L. Augel, Y. Kawaguchi, S. Bechler, R. Körner, J. Schulze, H. Uchida, and I. A. Fischer, “Integrated collinear refractive index sensor with Ge PIN photodiodes,” ACS Photonics 5(11), 4586–4593 (2018).
[Crossref]

Kunwar, P.

Kuswandi, B.

B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta 601(2), 141–155 (2007).
[Crossref] [PubMed]

Lee, H.

Lee, S.

L. Novak, P. Neuzil, J. Pipper, Y. Zhang, and S. Lee, “An integrated fluorescence detection system for lab-on-a-chip applications,” Lab Chip 7(1), 27–29 (2007).
[Crossref] [PubMed]

Li, G.

Z.-N. Tian, X.-W. Cao, W.-G. Yao, P.-X. Li, Y.-H. Yu, G. Li, Q.-D. Chen, and H.-B. Sun, “Hybrid refractive–diffractive optical vortex microlens,” IEEE Photonics Technol. Lett. 28(21), 2299–2302 (2016).
[Crossref]

Li, J.

Li, L.

L. Li and J. T. Fourkas, “Multiphoton polymerization,” Mater. Today 10(6), 30–37 (2007).
[Crossref]

Li, P.-X.

Z.-N. Tian, X.-W. Cao, W.-G. Yao, P.-X. Li, Y.-H. Yu, G. Li, Q.-D. Chen, and H.-B. Sun, “Hybrid refractive–diffractive optical vortex microlens,” IEEE Photonics Technol. Lett. 28(21), 2299–2302 (2016).
[Crossref]

Lipson, M.

Liu, P.

Liu, Z. B.

F. Xing, Z. B. Liu, Z. C. Deng, X. T. Kong, X. Q. Yan, X. D. Chen, Q. Ye, C. P. Zhang, Y. S. Chen, and J. G. Tian, “Sensitive real-time monitoring of refractive indexes using a novel graphene-based optical sensor,” Sci. Rep. 2(1), 908 (2012).
[Crossref] [PubMed]

Lowe, R. D.

F. Purr, M. Bassu, R. D. Lowe, B. Thürmann, A. Dietzel, and T. P. Burg, “Asymmetric nanofluidic grating detector for differential refractive index measurement and biosensing,” Lab Chip 17(24), 4265–4272 (2017).
[Crossref] [PubMed]

Lu, H.

K. E. Bates and H. Lu, “Optics-integrated microfluidic platforms for biomolecular analyses,” Biophys. J. 110(8), 1684–1697 (2016).
[Crossref] [PubMed]

Lu, X.-Y.

Y.-W. Hsieh, A.-B. Wang, X.-Y. Lu, and L. A. Wang, “High-throughput on-line multi-detection for refractive index, velocity, size, and concentration measurements of micro-two-phase flow using optical microfibers,” Sens, Actuator B-Chem. 237, 841–848 (2016).
[Crossref]

Maruo, S.

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev. 2(1-2), 100–111 (2008).
[Crossref]

Mei, Y.

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano 4(6), 3123–3130 (2010).
[Crossref] [PubMed]

Meldrum, A.

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators for sensing applications,” Laser Photonics Rev. 11(2), 1600265 (2017).
[Crossref]

Mishra, A.

Mistura, G.

G. Bettella, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, “LiNbO3 integrated system for opto-microfluidic sensing,” Sens. Actuator B-Chem. 282, 391–398 (2019).
[Crossref]

Moehrle, M.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Monro, T. M.

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators for sensing applications,” Laser Photonics Rev. 11(2), 1600265 (2017).
[Crossref]

Montevecchi, C.

G. Bettella, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, “LiNbO3 integrated system for opto-microfluidic sensing,” Sens. Actuator B-Chem. 282, 391–398 (2019).
[Crossref]

Müller, M.

Naumov, A. Y.

M. Sivis, M. Taucer, G. Vampa, K. Johnston, A. Staudte, A. Y. Naumov, D. M. Villeneuve, C. Ropers, and P. B. Corkum, “Tailored semiconductors for high-harmonic optoelectronics,” Science 357(6348), 303–306 (2017).
[Crossref] [PubMed]

Neuzil, P.

L. Novak, P. Neuzil, J. Pipper, Y. Zhang, and S. Lee, “An integrated fluorescence detection system for lab-on-a-chip applications,” Lab Chip 7(1), 27–29 (2007).
[Crossref] [PubMed]

Novak, L.

L. Novak, P. Neuzil, J. Pipper, Y. Zhang, and S. Lee, “An integrated fluorescence detection system for lab-on-a-chip applications,” Lab Chip 7(1), 27–29 (2007).
[Crossref] [PubMed]

Nuriman, J.

B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta 601(2), 141–155 (2007).
[Crossref] [PubMed]

Offrein, B.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Olivier, C.

R. Genthial, E. Beaurepaire, M.-C. Schanne-Klein, F. Peyrin, D. Farlay, C. Olivier, Y. Bala, G. Boivin, J.-C. Vial, D. Débarre, and A. Gourrier, “Label-free imaging of bone multiscale porosity and interfaces using third-harmonic generation microscopy,” Sci. Rep. 7(1), 3419 (2017).
[Crossref] [PubMed]

Olivier, N.

Oron, D.

Park, I.-Y.

S. Han, H. Kim, Y. W. Kim, Y.-J. Kim, S. Kim, I.-Y. Park, and S.-W. Kim, “High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure,” Nat. Commun. 7(1), 13105 (2016).
[Crossref] [PubMed]

Peng, B. J.

Q. G. Shi, L. N. Ying, L. Wang, B. J. Peng, and C. F. Ying, “A method of the detection of marine pollution based on the measurement of refractive index,” Appl. Mech. Mater. 551, 347–352 (2014).
[Crossref]

Peyrin, F.

R. Genthial, E. Beaurepaire, M.-C. Schanne-Klein, F. Peyrin, D. Farlay, C. Olivier, Y. Bala, G. Boivin, J.-C. Vial, D. Débarre, and A. Gourrier, “Label-free imaging of bone multiscale porosity and interfaces using third-harmonic generation microscopy,” Sci. Rep. 7(1), 3419 (2017).
[Crossref] [PubMed]

Pfisterer, S. G.

G. Bautista, S. G. Pfisterer, M. J. Huttunen, S. Ranjan, K. Kanerva, E. Ikonen, and M. Kauranen, “Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells,” Biophys. J. 107(10), 2230–2236 (2014).
[Crossref] [PubMed]

Pierno, M.

G. Bettella, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, “LiNbO3 integrated system for opto-microfluidic sensing,” Sens. Actuator B-Chem. 282, 391–398 (2019).
[Crossref]

Pipper, J.

L. Novak, P. Neuzil, J. Pipper, Y. Zhang, and S. Lee, “An integrated fluorescence detection system for lab-on-a-chip applications,” Lab Chip 7(1), 27–29 (2007).
[Crossref] [PubMed]

Plamann, K.

Pozza, G.

G. Bettella, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, “LiNbO3 integrated system for opto-microfluidic sensing,” Sens. Actuator B-Chem. 282, 391–398 (2019).
[Crossref]

Prabhakar, A.

P. K. Shivhare, A. Prabhakar, and A. K. Sen, “Optofluidics based lab-on-chip device for in situ measurement of mean droplet size and droplet size distribution of an emulsion,” J. Micromech. Microeng. 27(3), 035003 (2017).
[Crossref]

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Purr, F.

F. Purr, M. Bassu, R. D. Lowe, B. Thürmann, A. Dietzel, and T. P. Burg, “Asymmetric nanofluidic grating detector for differential refractive index measurement and biosensing,” Lab Chip 17(24), 4265–4272 (2017).
[Crossref] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Ranjan, S.

G. Bautista, S. G. Pfisterer, M. J. Huttunen, S. Ranjan, K. Kanerva, E. Ikonen, and M. Kauranen, “Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells,” Biophys. J. 107(10), 2230–2236 (2014).
[Crossref] [PubMed]

Reuter, I.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Reynolds, T.

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators for sensing applications,” Laser Photonics Rev. 11(2), 1600265 (2017).
[Crossref]

Riesen, N.

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators for sensing applications,” Laser Photonics Rev. 11(2), 1600265 (2017).
[Crossref]

Robinson, J. T.

Rohith, T. M.

H. Farrokhi, J. Boonruangkan, B. J. Chun, T. M. Rohith, A. Mishra, H. T. Toh, H. S. Yoon, and Y. J. Kim, “Speckle reduction in quantitative phase imaging by generating spatially incoherent laser field at electroactive optical diffusers,” Opt. Express 25(10), 10791–10800 (2017).
[Crossref] [PubMed]

H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S. W. Kim, and Y. J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7(1), 15318 (2017).
[Crossref] [PubMed]

Ropers, C.

M. Sivis, M. Taucer, G. Vampa, K. Johnston, A. Staudte, A. Y. Naumov, D. M. Villeneuve, C. Ropers, and P. B. Corkum, “Tailored semiconductors for high-harmonic optoelectronics,” Science 357(6348), 303–306 (2017).
[Crossref] [PubMed]

Sada, C.

G. Bettella, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, “LiNbO3 integrated system for opto-microfluidic sensing,” Sens. Actuator B-Chem. 282, 391–398 (2019).
[Crossref]

Schanne-Klein, M. C.

Schanne-Klein, M.-C.

R. Genthial, E. Beaurepaire, M.-C. Schanne-Klein, F. Peyrin, D. Farlay, C. Olivier, Y. Bala, G. Boivin, J.-C. Vial, D. Débarre, and A. Gourrier, “Label-free imaging of bone multiscale porosity and interfaces using third-harmonic generation microscopy,” Sci. Rep. 7(1), 3419 (2017).
[Crossref] [PubMed]

Schmidt, O. G.

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano 4(6), 3123–3130 (2010).
[Crossref] [PubMed]

Schulze, J.

L. Augel, Y. Kawaguchi, S. Bechler, R. Körner, J. Schulze, H. Uchida, and I. A. Fischer, “Integrated collinear refractive index sensor with Ge PIN photodiodes,” ACS Photonics 5(11), 4586–4593 (2018).
[Crossref]

Sen, A. K.

P. K. Shivhare, A. Prabhakar, and A. K. Sen, “Optofluidics based lab-on-chip device for in situ measurement of mean droplet size and droplet size distribution of an emulsion,” J. Micromech. Microeng. 27(3), 035003 (2017).
[Crossref]

Shi, Q. G.

Q. G. Shi, L. N. Ying, L. Wang, B. J. Peng, and C. F. Ying, “A method of the detection of marine pollution based on the measurement of refractive index,” Appl. Mech. Mater. 551, 347–352 (2014).
[Crossref]

Shivhare, P. K.

P. K. Shivhare, A. Prabhakar, and A. K. Sen, “Optofluidics based lab-on-chip device for in situ measurement of mean droplet size and droplet size distribution of an emulsion,” J. Micromech. Microeng. 27(3), 035003 (2017).
[Crossref]

Silberberg, Y.

Sivis, M.

M. Sivis, M. Taucer, G. Vampa, K. Johnston, A. Staudte, A. Y. Naumov, D. M. Villeneuve, C. Ropers, and P. B. Corkum, “Tailored semiconductors for high-harmonic optoelectronics,” Science 357(6348), 303–306 (2017).
[Crossref] [PubMed]

Squier, J.

Staudte, A.

M. Sivis, M. Taucer, G. Vampa, K. Johnston, A. Staudte, A. Y. Naumov, D. M. Villeneuve, C. Ropers, and P. B. Corkum, “Tailored semiconductors for high-harmonic optoelectronics,” Science 357(6348), 303–306 (2017).
[Crossref] [PubMed]

Stock, C.

C. Stock, K. Zlatanov, and T. Halfmann, “Dispersion-enhanced third-harmonic microscopy,” Opt. Commun. 393, 289–293 (2017).
[Crossref]

Sugano, K.

Y. Hirai, Y. Inamoto, K. Sugano, T. Tsuchiya, and O. Tabata, “Moving mask UV lithography for three-dimensional structuring,” J. Micromech. Microeng. 17(2), 199–206 (2007).
[Crossref]

Sun, H.-B.

Z.-N. Tian, X.-W. Cao, W.-G. Yao, P.-X. Li, Y.-H. Yu, G. Li, Q.-D. Chen, and H.-B. Sun, “Hybrid refractive–diffractive optical vortex microlens,” IEEE Photonics Technol. Lett. 28(21), 2299–2302 (2016).
[Crossref]

Tabata, O.

Y. Hirai, Y. Inamoto, K. Sugano, T. Tsuchiya, and O. Tabata, “Moving mask UV lithography for three-dimensional structuring,” J. Micromech. Microeng. 17(2), 199–206 (2007).
[Crossref]

Tal, E.

Taucer, M.

M. Sivis, M. Taucer, G. Vampa, K. Johnston, A. Staudte, A. Y. Naumov, D. M. Villeneuve, C. Ropers, and P. B. Corkum, “Tailored semiconductors for high-harmonic optoelectronics,” Science 357(6348), 303–306 (2017).
[Crossref] [PubMed]

Thürmann, B.

F. Purr, M. Bassu, R. D. Lowe, B. Thürmann, A. Dietzel, and T. P. Burg, “Asymmetric nanofluidic grating detector for differential refractive index measurement and biosensing,” Lab Chip 17(24), 4265–4272 (2017).
[Crossref] [PubMed]

Tian, J. G.

F. Xing, Z. B. Liu, Z. C. Deng, X. T. Kong, X. Q. Yan, X. D. Chen, Q. Ye, C. P. Zhang, Y. S. Chen, and J. G. Tian, “Sensitive real-time monitoring of refractive indexes using a novel graphene-based optical sensor,” Sci. Rep. 2(1), 908 (2012).
[Crossref] [PubMed]

Tian, Z.-N.

Z.-N. Tian, X.-W. Cao, W.-G. Yao, P.-X. Li, Y.-H. Yu, G. Li, Q.-D. Chen, and H.-B. Sun, “Hybrid refractive–diffractive optical vortex microlens,” IEEE Photonics Technol. Lett. 28(21), 2299–2302 (2016).
[Crossref]

Toh, H. T.

Toivonen, J.

Troppenz, U.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Tsang, T. Y.

T. Y. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52(5), 4116–4125 (1995).
[Crossref] [PubMed]

Tsuchiya, T.

Y. Hirai, Y. Inamoto, K. Sugano, T. Tsuchiya, and O. Tabata, “Moving mask UV lithography for three-dimensional structuring,” J. Micromech. Microeng. 17(2), 199–206 (2007).
[Crossref]

Uchida, H.

L. Augel, Y. Kawaguchi, S. Bechler, R. Körner, J. Schulze, H. Uchida, and I. A. Fischer, “Integrated collinear refractive index sensor with Ge PIN photodiodes,” ACS Photonics 5(11), 4586–4593 (2018).
[Crossref]

Vampa, G.

M. Sivis, M. Taucer, G. Vampa, K. Johnston, A. Staudte, A. Y. Naumov, D. M. Villeneuve, C. Ropers, and P. B. Corkum, “Tailored semiconductors for high-harmonic optoelectronics,” Science 357(6348), 303–306 (2017).
[Crossref] [PubMed]

Vellekoop, M. J.

E. Weber and M. J. Vellekoop, “Optofluidic micro-sensors for the determination of liquid concentrations,” Lab Chip 12(19), 3754–3759 (2012).
[Crossref] [PubMed]

Verboom, W.

B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta 601(2), 141–155 (2007).
[Crossref] [PubMed]

Vial, J.-C.

R. Genthial, E. Beaurepaire, M.-C. Schanne-Klein, F. Peyrin, D. Farlay, C. Olivier, Y. Bala, G. Boivin, J.-C. Vial, D. Débarre, and A. Gourrier, “Label-free imaging of bone multiscale porosity and interfaces using third-harmonic generation microscopy,” Sci. Rep. 7(1), 3419 (2017).
[Crossref] [PubMed]

Villeneuve, D. M.

M. Sivis, M. Taucer, G. Vampa, K. Johnston, A. Staudte, A. Y. Naumov, D. M. Villeneuve, C. Ropers, and P. B. Corkum, “Tailored semiconductors for high-harmonic optoelectronics,” Science 357(6348), 303–306 (2017).
[Crossref] [PubMed]

Wang, A.-B.

Y.-W. Hsieh, A.-B. Wang, X.-Y. Lu, and L. A. Wang, “High-throughput on-line multi-detection for refractive index, velocity, size, and concentration measurements of micro-two-phase flow using optical microfibers,” Sens, Actuator B-Chem. 237, 841–848 (2016).
[Crossref]

Wang, L.

Q. G. Shi, L. N. Ying, L. Wang, B. J. Peng, and C. F. Ying, “A method of the detection of marine pollution based on the measurement of refractive index,” Appl. Mech. Mater. 551, 347–352 (2014).
[Crossref]

Wang, L. A.

Y.-W. Hsieh, A.-B. Wang, X.-Y. Lu, and L. A. Wang, “High-throughput on-line multi-detection for refractive index, velocity, size, and concentration measurements of micro-two-phase flow using optical microfibers,” Sens, Actuator B-Chem. 237, 841–848 (2016).
[Crossref]

Weber, E.

E. Weber and M. J. Vellekoop, “Optofluidic micro-sensors for the determination of liquid concentrations,” Lab Chip 12(19), 3754–3759 (2012).
[Crossref] [PubMed]

Wei, C.

J. Zhao, Y. Yan, C. Wei, W. Zhang, Z. Gao, and Y. S. Zhao, “Switchable single-mode perovskite microlasers modulated by responsive organic microdisks,” Nano Lett. 18(2), 1241–1245 (2018).
[Crossref] [PubMed]

Wilson, K. R.

Wu, H.

Xia, A.

Xiao, S.

Xing, F.

F. Xing, Z. B. Liu, Z. C. Deng, X. T. Kong, X. Q. Yan, X. D. Chen, Q. Ye, C. P. Zhang, Y. S. Chen, and J. G. Tian, “Sensitive real-time monitoring of refractive indexes using a novel graphene-based optical sensor,” Sci. Rep. 2(1), 908 (2012).
[Crossref] [PubMed]

Xu, W.

Y. Gao, H. Lee, W. Xu, J. Jiao, P. Chen, D. H. Kim, and Y. J. Kim, “Coherent power amplification of third-order harmonic femtosecond pulses at thin-film up-conversion nanoparticles,” Sci. Rep. 9(1), 5094 (2019).
[Crossref] [PubMed]

Yan, G.

A. P. Zhang, G. Yan, S. Gao, S. He, B. Kim, J. Im, and Y. Chung, “Microfluidic refractive-index sensors based on small-hole microstructured optical fiber Bragg gratings,” Appl. Phys. Lett. 98(22), 221109 (2011).
[Crossref]

Yan, X. Q.

F. Xing, Z. B. Liu, Z. C. Deng, X. T. Kong, X. Q. Yan, X. D. Chen, Q. Ye, C. P. Zhang, Y. S. Chen, and J. G. Tian, “Sensitive real-time monitoring of refractive indexes using a novel graphene-based optical sensor,” Sci. Rep. 2(1), 908 (2012).
[Crossref] [PubMed]

Yan, Y.

J. Zhao, Y. Yan, C. Wei, W. Zhang, Z. Gao, and Y. S. Zhao, “Switchable single-mode perovskite microlasers modulated by responsive organic microdisks,” Nano Lett. 18(2), 1241–1245 (2018).
[Crossref] [PubMed]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Yao, W.-G.

Z.-N. Tian, X.-W. Cao, W.-G. Yao, P.-X. Li, Y.-H. Yu, G. Li, Q.-D. Chen, and H.-B. Sun, “Hybrid refractive–diffractive optical vortex microlens,” IEEE Photonics Technol. Lett. 28(21), 2299–2302 (2016).
[Crossref]

Ye, Q.

F. Xing, Z. B. Liu, Z. C. Deng, X. T. Kong, X. Q. Yan, X. D. Chen, Q. Ye, C. P. Zhang, Y. S. Chen, and J. G. Tian, “Sensitive real-time monitoring of refractive indexes using a novel graphene-based optical sensor,” Sci. Rep. 2(1), 908 (2012).
[Crossref] [PubMed]

Yi, G.

Ying, C. F.

Q. G. Shi, L. N. Ying, L. Wang, B. J. Peng, and C. F. Ying, “A method of the detection of marine pollution based on the measurement of refractive index,” Appl. Mech. Mater. 551, 347–352 (2014).
[Crossref]

Ying, L. N.

Q. G. Shi, L. N. Ying, L. Wang, B. J. Peng, and C. F. Ying, “A method of the detection of marine pollution based on the measurement of refractive index,” Appl. Mech. Mater. 551, 347–352 (2014).
[Crossref]

Yoon, H. S.

Yu, Y.-H.

Z.-N. Tian, X.-W. Cao, W.-G. Yao, P.-X. Li, Y.-H. Yu, G. Li, Q.-D. Chen, and H.-B. Sun, “Hybrid refractive–diffractive optical vortex microlens,” IEEE Photonics Technol. Lett. 28(21), 2299–2302 (2016).
[Crossref]

Zaltron, A.

G. Bettella, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, “LiNbO3 integrated system for opto-microfluidic sensing,” Sens. Actuator B-Chem. 282, 391–398 (2019).
[Crossref]

Zamboni, R.

G. Bettella, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, “LiNbO3 integrated system for opto-microfluidic sensing,” Sens. Actuator B-Chem. 282, 391–398 (2019).
[Crossref]

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Zhai, X.

Zhang, A. P.

A. P. Zhang, G. Yan, S. Gao, S. He, B. Kim, J. Im, and Y. Chung, “Microfluidic refractive-index sensors based on small-hole microstructured optical fiber Bragg gratings,” Appl. Phys. Lett. 98(22), 221109 (2011).
[Crossref]

Zhang, C. P.

F. Xing, Z. B. Liu, Z. C. Deng, X. T. Kong, X. Q. Yan, X. D. Chen, Q. Ye, C. P. Zhang, Y. S. Chen, and J. G. Tian, “Sensitive real-time monitoring of refractive indexes using a novel graphene-based optical sensor,” Sci. Rep. 2(1), 908 (2012).
[Crossref] [PubMed]

Zhang, W.

J. Zhao, Y. Yan, C. Wei, W. Zhang, Z. Gao, and Y. S. Zhao, “Switchable single-mode perovskite microlasers modulated by responsive organic microdisks,” Nano Lett. 18(2), 1241–1245 (2018).
[Crossref] [PubMed]

Zhang, Y.

L. Novak, P. Neuzil, J. Pipper, Y. Zhang, and S. Lee, “An integrated fluorescence detection system for lab-on-a-chip applications,” Lab Chip 7(1), 27–29 (2007).
[Crossref] [PubMed]

Zhao, J.

J. Zhao, Y. Yan, C. Wei, W. Zhang, Z. Gao, and Y. S. Zhao, “Switchable single-mode perovskite microlasers modulated by responsive organic microdisks,” Nano Lett. 18(2), 1241–1245 (2018).
[Crossref] [PubMed]

Zhao, Y. S.

J. Zhao, Y. Yan, C. Wei, W. Zhang, Z. Gao, and Y. S. Zhao, “Switchable single-mode perovskite microlasers modulated by responsive organic microdisks,” Nano Lett. 18(2), 1241–1245 (2018).
[Crossref] [PubMed]

Zlatanov, K.

C. Stock, K. Zlatanov, and T. Halfmann, “Dispersion-enhanced third-harmonic microscopy,” Opt. Commun. 393, 289–293 (2017).
[Crossref]

ACS Nano (1)

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano 4(6), 3123–3130 (2010).
[Crossref] [PubMed]

ACS Photonics (1)

L. Augel, Y. Kawaguchi, S. Bechler, R. Körner, J. Schulze, H. Uchida, and I. A. Fischer, “Integrated collinear refractive index sensor with Ge PIN photodiodes,” ACS Photonics 5(11), 4586–4593 (2018).
[Crossref]

Anal. Chim. Acta (1)

B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta 601(2), 141–155 (2007).
[Crossref] [PubMed]

Appl. Mech. Mater. (1)

Q. G. Shi, L. N. Ying, L. Wang, B. J. Peng, and C. F. Ying, “A method of the detection of marine pollution based on the measurement of refractive index,” Appl. Mech. Mater. 551, 347–352 (2014).
[Crossref]

Appl. Phys. Lett. (1)

A. P. Zhang, G. Yan, S. Gao, S. He, B. Kim, J. Im, and Y. Chung, “Microfluidic refractive-index sensors based on small-hole microstructured optical fiber Bragg gratings,” Appl. Phys. Lett. 98(22), 221109 (2011).
[Crossref]

Biophys. J. (2)

K. E. Bates and H. Lu, “Optics-integrated microfluidic platforms for biomolecular analyses,” Biophys. J. 110(8), 1684–1697 (2016).
[Crossref] [PubMed]

G. Bautista, S. G. Pfisterer, M. J. Huttunen, S. Ranjan, K. Kanerva, E. Ikonen, and M. Kauranen, “Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells,” Biophys. J. 107(10), 2230–2236 (2014).
[Crossref] [PubMed]

IEEE Photonics Technol. Lett. (1)

Z.-N. Tian, X.-W. Cao, W.-G. Yao, P.-X. Li, Y.-H. Yu, G. Li, Q.-D. Chen, and H.-B. Sun, “Hybrid refractive–diffractive optical vortex microlens,” IEEE Photonics Technol. Lett. 28(21), 2299–2302 (2016).
[Crossref]

J. Micromech. Microeng. (2)

Y. Hirai, Y. Inamoto, K. Sugano, T. Tsuchiya, and O. Tabata, “Moving mask UV lithography for three-dimensional structuring,” J. Micromech. Microeng. 17(2), 199–206 (2007).
[Crossref]

P. K. Shivhare, A. Prabhakar, and A. K. Sen, “Optofluidics based lab-on-chip device for in situ measurement of mean droplet size and droplet size distribution of an emulsion,” J. Micromech. Microeng. 27(3), 035003 (2017).
[Crossref]

Lab Chip (3)

L. Novak, P. Neuzil, J. Pipper, Y. Zhang, and S. Lee, “An integrated fluorescence detection system for lab-on-a-chip applications,” Lab Chip 7(1), 27–29 (2007).
[Crossref] [PubMed]

E. Weber and M. J. Vellekoop, “Optofluidic micro-sensors for the determination of liquid concentrations,” Lab Chip 12(19), 3754–3759 (2012).
[Crossref] [PubMed]

F. Purr, M. Bassu, R. D. Lowe, B. Thürmann, A. Dietzel, and T. P. Burg, “Asymmetric nanofluidic grating detector for differential refractive index measurement and biosensing,” Lab Chip 17(24), 4265–4272 (2017).
[Crossref] [PubMed]

Laser Photonics Rev. (2)

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev. 2(1-2), 100–111 (2008).
[Crossref]

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators for sensing applications,” Laser Photonics Rev. 11(2), 1600265 (2017).
[Crossref]

Mater. Today (1)

L. Li and J. T. Fourkas, “Multiphoton polymerization,” Mater. Today 10(6), 30–37 (2007).
[Crossref]

Nano Lett. (1)

J. Zhao, Y. Yan, C. Wei, W. Zhang, Z. Gao, and Y. S. Zhao, “Switchable single-mode perovskite microlasers modulated by responsive organic microdisks,” Nano Lett. 18(2), 1241–1245 (2018).
[Crossref] [PubMed]

Nat. Commun. (1)

S. Han, H. Kim, Y. W. Kim, Y.-J. Kim, S. Kim, I.-Y. Park, and S.-W. Kim, “High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure,” Nat. Commun. 7(1), 13105 (2016).
[Crossref] [PubMed]

Nat. Photonics (3)

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

Nature (1)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Opt. Commun. (1)

C. Stock, K. Zlatanov, and T. Halfmann, “Dispersion-enhanced third-harmonic microscopy,” Opt. Commun. 393, 289–293 (2017).
[Crossref]

Opt. Express (10)

J. Squier, M. Müller, G. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3(9), 315–324 (1998).
[Crossref] [PubMed]

R. Guo, S. Xiao, X. Zhai, J. Li, A. Xia, and W. Huang, “Micro lens fabrication by means of femtosecond two photon photopolymerization,” Opt. Express 14(2), 810–816 (2006).
[Crossref] [PubMed]

J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16(6), 4296–4301 (2008).
[Crossref] [PubMed]

N. Olivier, F. Aptel, K. Plamann, M. C. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express 18(5), 5028–5040 (2010).
[Crossref] [PubMed]

E. Garmire, “Nonlinear optics in daily life,” Opt. Express 21(25), 30532–30544 (2013).
[Crossref] [PubMed]

H. Wu, H. Huang, M. Bai, P. Liu, M. Chao, J. Hu, J. Hao, and T. Cao, “An ultra-low detection-limit optofluidic biosensor based on all glass Fabry-Perot cavity,” Opt. Express 22(26), 31977–31983 (2014).
[Crossref] [PubMed]

P. Kunwar, J. Toivonen, M. Kauranen, and G. Bautista, “Third-harmonic generation imaging of three-dimensional microstructures fabricated by photopolymerization,” Opt. Express 24(9), 9353–9358 (2016).
[Crossref] [PubMed]

H. Farrokhi, J. Boonruangkan, B. J. Chun, T. M. Rohith, A. Mishra, H. T. Toh, H. S. Yoon, and Y. J. Kim, “Speckle reduction in quantitative phase imaging by generating spatially incoherent laser field at electroactive optical diffusers,” Opt. Express 25(10), 10791–10800 (2017).
[Crossref] [PubMed]

G. Yi, H. Lee, J. Jiannan, B. J. Chun, S. Han, H. Kim, Y. W. Kim, D. Kim, S.-W. Kim, and Y.-J. Kim, “Nonlinear third harmonic generation at crystalline sapphires,” Opt. Express 25(21), 26002–26010 (2017).
[Crossref] [PubMed]

Y. Gao, H. Lee, J. Jiao, B. J. Chun, S. Kim, D.-H. Kim, and Y.-J. Kim, “Surface third and fifth harmonic generation at crystalline Si for non-invasive inspection of Si wafer’s inter-layer defects,” Opt. Express 26(25), 32812–32823 (2018).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. A (1)

T. Y. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52(5), 4116–4125 (1995).
[Crossref] [PubMed]

Sci. Rep. (4)

R. Genthial, E. Beaurepaire, M.-C. Schanne-Klein, F. Peyrin, D. Farlay, C. Olivier, Y. Bala, G. Boivin, J.-C. Vial, D. Débarre, and A. Gourrier, “Label-free imaging of bone multiscale porosity and interfaces using third-harmonic generation microscopy,” Sci. Rep. 7(1), 3419 (2017).
[Crossref] [PubMed]

H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S. W. Kim, and Y. J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7(1), 15318 (2017).
[Crossref] [PubMed]

Y. Gao, H. Lee, W. Xu, J. Jiao, P. Chen, D. H. Kim, and Y. J. Kim, “Coherent power amplification of third-order harmonic femtosecond pulses at thin-film up-conversion nanoparticles,” Sci. Rep. 9(1), 5094 (2019).
[Crossref] [PubMed]

F. Xing, Z. B. Liu, Z. C. Deng, X. T. Kong, X. Q. Yan, X. D. Chen, Q. Ye, C. P. Zhang, Y. S. Chen, and J. G. Tian, “Sensitive real-time monitoring of refractive indexes using a novel graphene-based optical sensor,” Sci. Rep. 2(1), 908 (2012).
[Crossref] [PubMed]

Science (1)

M. Sivis, M. Taucer, G. Vampa, K. Johnston, A. Staudte, A. Y. Naumov, D. M. Villeneuve, C. Ropers, and P. B. Corkum, “Tailored semiconductors for high-harmonic optoelectronics,” Science 357(6348), 303–306 (2017).
[Crossref] [PubMed]

Sens, Actuator B-Chem. (1)

Y.-W. Hsieh, A.-B. Wang, X.-Y. Lu, and L. A. Wang, “High-throughput on-line multi-detection for refractive index, velocity, size, and concentration measurements of micro-two-phase flow using optical microfibers,” Sens, Actuator B-Chem. 237, 841–848 (2016).
[Crossref]

Sens. Actuator B-Chem. (1)

G. Bettella, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, “LiNbO3 integrated system for opto-microfluidic sensing,” Sens. Actuator B-Chem. 282, 391–398 (2019).
[Crossref]

Other (8)

A. B. Matsko, Practical Applications of Microresonators in Optics and Photonics (CRC Press, 2009).

T. Baldacchini, Three-Dimensional Microfabrication Using Two-Photon Polymerization: Fundamentals, Technology, and Applications (William Andrew, 2015).

S. Magdassi and A. Kamyshny, Nanomaterials for 2D and 3D Printing (Wiley-VCH, 2017).

K. Rottwitt and P. Tidemand-Lichtenberg, Nonlinear Optics: Principles and Applications (CRC Press, 2014).

K. J. Gåsvik, Optical Metrology, 3rd Edition (John Wiley & Sons, 2002).

J. Zhang, Fabrication of Very High Aspect Micromold by SU-8 Photolithography and Electroforming (Nanyang Technological University, 2007).

K. Isobe, W. Watanabe, and K. Itoh, Functional Imaging by Controlled Nonlinear Optical Phenomena (John Wiley & Sons, 2013).

F. S. Pavone and P. J. Campagnola, Second Harmonic Generation Imaging (CRC Press, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 THG from 3D-printed SU-8 micro-structures. (a) Illustration of micro-optofluidic refractive index sensing with TH interferometry. (b) Optical and (c) SEM images of the TPP structures; the scale bar is 20 μm. (d) Optical layout of the TH analysis system. Abbreviations: HWP: half-wave plate, QWP: quarter-wave plate, LPF: long-pass filter, SPF: short-pass filter, BS: beam splitter, M: mirror, F-OBJ: focusing objective, I-OBJ: imaging objective, L: lens, CMOS: compact complementary metal oxide semiconductor camera and EMCCD: electron-multiplying charge-coupled device.
Fig. 2
Fig. 2 THG dependence on input polarization ellipticities and focused target interfaces. (a) System schematic for measuring THG with different excitation ellipticities. (b) System schematic for measuring TH generated at different interfaces. (c) Optical spectrum of the generated TH. (d) Normalized TH bandwidth compared with that of the fundamental beam. (e) to (g): Normalized peak intensity spectra from air-glass, glass-SU-8, and SU-8-air interfaces with different polarization ellipticities of the incident beam. (h) Comparison of the TH intensities at different interfaces with different ellipticities of the incident beam. Abbreviations: HWP: half-wave plate, QWP: quarter-wave plate, LPF: long-pass filter, OBJ: objective.
Fig. 3
Fig. 3 Linear polarization dependence and excitation position dependence of THG. (a) System schematic for measuring THG with different linear polarization states. (b) to (d): Normalized peak intensity spectra from air-glass, glass-SU-8, and SU-8-air interfaces with different input linear polarization states. (e) TH intensity distribution at different excitation depths along the sample. Abbreviations: HWP: half-wave plate, LPF: long-pass filter, OBJ: objective.
Fig. 4
Fig. 4 Coherent TH interferometry using 3D-printed micro-cuboids. (a) Schematic illustration of the Young’s double slit interferometry created by the two coherent TH sources. (b) Normalized intensity map along propagation direction. (c) Spectrum of the incident laser beam. (d) Spectrum of the TH generated at the SU-8-air interface of the cuboids. Inset shows the optical image of the TH sources. (e) Spatial intensity distribution of the TH sources along the width of the cuboids. (f) Intensity distribution of the interference pattern imaged at 50 μm from the TH sources. (g) Spatial frequency distribution of the imaged interference pattern. (h) Zoomed-in view of the first spatial frequency peak. The inset shows a second order polynomial fitting to the peak. All scale bars shown are 10 μm.
Fig. 5
Fig. 5 Real-time monitoring of the refractive index changes of Ar gas under different pressures. (a) Recorded interferograms under different Ar pressures imaged at a distance of 50 μm from the TH sources. The scale bar is 10 μm. (b) Normalized spatial frequency profiles of the interference patterns under different argon pressures. (c) Polynomial fitting of the data points near peaks in Fig. 5(b). (d) Pressure dependence of the spatial frequency of interferogram.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P x (THG) = ε 0 χ xxxx (3) E x ( E x 2 + E y 2 )
P y (THG) = ε 0 χ yyyy (3) E y ( E x 2 + E y 2 )
Δx= λD nd
Δn= K GD RT ΔP

Metrics