Abstract

We present the first demonstration of integrated waveguides in planar silica devices fabricated using direct UV writing with 213 nm laser light. Waveguides were produced with different writing fluences and the NA and MFD of each were measured. Single mode waveguides were achieved at fluence values one-tenth that typically required when operating with a 244 nm laser, allowing for more rapid fabrication. A maximum in-plane index change of 2.4 ×10−3 for a writing fluence of 5 kJ cm−2 was estimated from NA measurements. Finally cutback measurements were performed and a propagation loss of 0.42 ± 0.07 dB cm−1 was directly measured, though losses as low as 0.2 ± 0.03 dB/cm are indicated through calculations.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
High-birefringence direct UV-written waveguides for use as heralded single-photon sources at telecommunication wavelengths

Matthew T. Posner, T. Hiemstra, Paolo L. Mennea, Rex H. S. Bannerman, Ulrich B. Hoff, Andreas Eckstein, W. Steven Kolthammer, Ian A. Walmsley, Devin H. Smith, James C. Gates, and Peter G. R. Smith
Opt. Express 26(19) 24678-24686 (2018)

Single-mode direct-ultraviolet-written channel waveguide laser in neodymium-doped silica on silicon

D. A. Guilhot, G. D. Emmerson, C. B. E. Gawith, S. P. Watts, D. P. Shepherd, R. B. Williams, and P. G. R. Smith
Opt. Lett. 29(9) 947-949 (2004)

In situ loss measurement of direct UV-written waveguides using integrated Bragg gratings

Helen L. Rogers, Sumiaty Ambran, Christopher Holmes, Peter G. R. Smith, and James C. Gates
Opt. Lett. 35(17) 2849-2851 (2010)

References

  • View by:
  • |
  • |
  • |

  1. C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. M. Adikan, C. B. Gawith, and P. G. Smith, “Direct uv-written planar bragg grating sensors,” Meas. Sci. Technol. 26, 112001 (2015).
    [Crossref]
  2. M. Tabib-Azar and G. Beheim, “Modern trends in microstructures and integrated optics for communication, sensing, and actuation,” Opt. Eng. 36, 1307–1319 (1997).
    [Crossref]
  3. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
    [Crossref] [PubMed]
  4. M. J. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photonics Rev. 8, 667–686 (2014).
    [Crossref]
  5. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2, 737 (2008).
    [Crossref]
  6. Y. Duval, R. Kashyap, S. Fleming, and F. Ouellette, “Correlation between ultraviolet-induced refractive index change and photoluminescence in ge-doped fiber,” Appl. Phys. Lett. 61, 2955–2957 (1992).
    [Crossref]
  7. A. Bjarklev, C. Poulsen, O. Poulsen, and M. Svalgaard, “Direct UV writing of buried singlemode channel waveguides in Ge-doped silica films,” Electron. Lett. 30, 1401–1403 (1994).
    [Crossref]
  8. M. Svalgaard, “Direct writing of planar waveguide power splitters and directional couplers using a focused ultraviolet laser beam,” Electron. Lett. 33, 1694 (1997).
    [Crossref]
  9. M. T. Posner, N. Podoliak, D. H. Smith, P. L. Mennea, P. Horak, C. B. Gawith, P. G. Smith, and J. C. Gates, “Integrated polarizer based on 45° tilted gratings,” Opt. Express 27, 11174–11181 (2019).
    [Crossref] [PubMed]
  10. M. Fokine and W. Margulis, “Large increase in photosensitivity through massive hydroxyl formation,” Opt. Lett. 25, 302–304 (2000).
    [Crossref]
  11. M. Gagné and R. Kashyap, “New nanosecond Q-switched Nd:VO4 laser fifth harmonic for fast hydrogen-free fiber Bragg gratings fabrication,” Opt. Commun. 283, 5028–5032 (2010).
    [Crossref]
  12. B. Berrang, L. Polz, R. Kuttler, J. Bartschke, and J. Roths, “FBG inscription in non-hydrogenated SMF28 fiber with a ns Q-switched Nd:VO4 laser at 213 nm,” in 5th European Workshop on Optical Fibre Sensors, vol. 8794 (EWOFS, 2013), pp. 28–31.
  13. L. G. Carpenter, H. L. Rogers, P. A. Cooper, C. Holmes, J. C. Gates, and P. G. Smith, “Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime,” J. Phys. D: Appl. Phys. 46, 475103 (2013).
    [Crossref]
  14. ISO11146, “Lasers and laser-related equipment - Test methods for laser beam parameters - Beam width, divergence, angle and beam propagation factor,” Standard, International Organization for Standardization, Geneva, CH (1999).
  15. S. A. Slattery, D. N. Nikogosyan, and G. Brambilla, “Fiber bragg grating inscription by high-intensity femtosecond uv laser light: comparison with other existing methods of fabrication,” J. Opt. Soc. Am. B 22, 354–361 (2005).
    [Crossref]
  16. H. L. Rogers, S. Ambran, C. Holmes, P. G. Smith, and J. C. Gates, “In situ loss measurement of direct uv-written waveguides using integrated bragg gratings,” Opt. Lett. 35, 2849–2851 (2010).
    [Crossref] [PubMed]

2019 (1)

2015 (1)

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. M. Adikan, C. B. Gawith, and P. G. Smith, “Direct uv-written planar bragg grating sensors,” Meas. Sci. Technol. 26, 112001 (2015).
[Crossref]

2014 (1)

M. J. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photonics Rev. 8, 667–686 (2014).
[Crossref]

2013 (1)

L. G. Carpenter, H. L. Rogers, P. A. Cooper, C. Holmes, J. C. Gates, and P. G. Smith, “Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime,” J. Phys. D: Appl. Phys. 46, 475103 (2013).
[Crossref]

2010 (2)

H. L. Rogers, S. Ambran, C. Holmes, P. G. Smith, and J. C. Gates, “In situ loss measurement of direct uv-written waveguides using integrated bragg gratings,” Opt. Lett. 35, 2849–2851 (2010).
[Crossref] [PubMed]

M. Gagné and R. Kashyap, “New nanosecond Q-switched Nd:VO4 laser fifth harmonic for fast hydrogen-free fiber Bragg gratings fabrication,” Opt. Commun. 283, 5028–5032 (2010).
[Crossref]

2008 (2)

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref] [PubMed]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2, 737 (2008).
[Crossref]

2005 (1)

2000 (1)

1997 (2)

M. Tabib-Azar and G. Beheim, “Modern trends in microstructures and integrated optics for communication, sensing, and actuation,” Opt. Eng. 36, 1307–1319 (1997).
[Crossref]

M. Svalgaard, “Direct writing of planar waveguide power splitters and directional couplers using a focused ultraviolet laser beam,” Electron. Lett. 33, 1694 (1997).
[Crossref]

1994 (1)

A. Bjarklev, C. Poulsen, O. Poulsen, and M. Svalgaard, “Direct UV writing of buried singlemode channel waveguides in Ge-doped silica films,” Electron. Lett. 30, 1401–1403 (1994).
[Crossref]

1992 (1)

Y. Duval, R. Kashyap, S. Fleming, and F. Ouellette, “Correlation between ultraviolet-induced refractive index change and photoluminescence in ge-doped fiber,” Appl. Phys. Lett. 61, 2955–2957 (1992).
[Crossref]

Adikan, F. R. M.

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. M. Adikan, C. B. Gawith, and P. G. Smith, “Direct uv-written planar bragg grating sensors,” Meas. Sci. Technol. 26, 112001 (2015).
[Crossref]

Ambran, S.

Bartschke, J.

B. Berrang, L. Polz, R. Kuttler, J. Bartschke, and J. Roths, “FBG inscription in non-hydrogenated SMF28 fiber with a ns Q-switched Nd:VO4 laser at 213 nm,” in 5th European Workshop on Optical Fibre Sensors, vol. 8794 (EWOFS, 2013), pp. 28–31.

Bauters, J. F.

M. J. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photonics Rev. 8, 667–686 (2014).
[Crossref]

Beheim, G.

M. Tabib-Azar and G. Beheim, “Modern trends in microstructures and integrated optics for communication, sensing, and actuation,” Opt. Eng. 36, 1307–1319 (1997).
[Crossref]

Berrang, B.

B. Berrang, L. Polz, R. Kuttler, J. Bartschke, and J. Roths, “FBG inscription in non-hydrogenated SMF28 fiber with a ns Q-switched Nd:VO4 laser at 213 nm,” in 5th European Workshop on Optical Fibre Sensors, vol. 8794 (EWOFS, 2013), pp. 28–31.

Bjarklev, A.

A. Bjarklev, C. Poulsen, O. Poulsen, and M. Svalgaard, “Direct UV writing of buried singlemode channel waveguides in Ge-doped silica films,” Electron. Lett. 30, 1401–1403 (1994).
[Crossref]

Bowers, J. E.

M. J. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photonics Rev. 8, 667–686 (2014).
[Crossref]

Brambilla, G.

Carpenter, L. G.

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. M. Adikan, C. B. Gawith, and P. G. Smith, “Direct uv-written planar bragg grating sensors,” Meas. Sci. Technol. 26, 112001 (2015).
[Crossref]

L. G. Carpenter, H. L. Rogers, P. A. Cooper, C. Holmes, J. C. Gates, and P. G. Smith, “Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime,” J. Phys. D: Appl. Phys. 46, 475103 (2013).
[Crossref]

Chaotan, S.

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. M. Adikan, C. B. Gawith, and P. G. Smith, “Direct uv-written planar bragg grating sensors,” Meas. Sci. Technol. 26, 112001 (2015).
[Crossref]

Chu, S.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2, 737 (2008).
[Crossref]

Cooper, P. A.

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. M. Adikan, C. B. Gawith, and P. G. Smith, “Direct uv-written planar bragg grating sensors,” Meas. Sci. Technol. 26, 112001 (2015).
[Crossref]

L. G. Carpenter, H. L. Rogers, P. A. Cooper, C. Holmes, J. C. Gates, and P. G. Smith, “Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime,” J. Phys. D: Appl. Phys. 46, 475103 (2013).
[Crossref]

Cryan, M. J.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref] [PubMed]

Davenport, M. L.

M. J. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photonics Rev. 8, 667–686 (2014).
[Crossref]

Duchesne, D.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2, 737 (2008).
[Crossref]

Duval, Y.

Y. Duval, R. Kashyap, S. Fleming, and F. Ouellette, “Correlation between ultraviolet-induced refractive index change and photoluminescence in ge-doped fiber,” Appl. Phys. Lett. 61, 2955–2957 (1992).
[Crossref]

Ferrera, M.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2, 737 (2008).
[Crossref]

Fleming, S.

Y. Duval, R. Kashyap, S. Fleming, and F. Ouellette, “Correlation between ultraviolet-induced refractive index change and photoluminescence in ge-doped fiber,” Appl. Phys. Lett. 61, 2955–2957 (1992).
[Crossref]

Fokine, M.

Gagné, M.

M. Gagné and R. Kashyap, “New nanosecond Q-switched Nd:VO4 laser fifth harmonic for fast hydrogen-free fiber Bragg gratings fabrication,” Opt. Commun. 283, 5028–5032 (2010).
[Crossref]

Gates, J. C.

M. T. Posner, N. Podoliak, D. H. Smith, P. L. Mennea, P. Horak, C. B. Gawith, P. G. Smith, and J. C. Gates, “Integrated polarizer based on 45° tilted gratings,” Opt. Express 27, 11174–11181 (2019).
[Crossref] [PubMed]

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. M. Adikan, C. B. Gawith, and P. G. Smith, “Direct uv-written planar bragg grating sensors,” Meas. Sci. Technol. 26, 112001 (2015).
[Crossref]

L. G. Carpenter, H. L. Rogers, P. A. Cooper, C. Holmes, J. C. Gates, and P. G. Smith, “Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime,” J. Phys. D: Appl. Phys. 46, 475103 (2013).
[Crossref]

H. L. Rogers, S. Ambran, C. Holmes, P. G. Smith, and J. C. Gates, “In situ loss measurement of direct uv-written waveguides using integrated bragg gratings,” Opt. Lett. 35, 2849–2851 (2010).
[Crossref] [PubMed]

Gawith, C. B.

M. T. Posner, N. Podoliak, D. H. Smith, P. L. Mennea, P. Horak, C. B. Gawith, P. G. Smith, and J. C. Gates, “Integrated polarizer based on 45° tilted gratings,” Opt. Express 27, 11174–11181 (2019).
[Crossref] [PubMed]

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. M. Adikan, C. B. Gawith, and P. G. Smith, “Direct uv-written planar bragg grating sensors,” Meas. Sci. Technol. 26, 112001 (2015).
[Crossref]

Heck, M. J.

M. J. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photonics Rev. 8, 667–686 (2014).
[Crossref]

Holmes, C.

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. M. Adikan, C. B. Gawith, and P. G. Smith, “Direct uv-written planar bragg grating sensors,” Meas. Sci. Technol. 26, 112001 (2015).
[Crossref]

L. G. Carpenter, H. L. Rogers, P. A. Cooper, C. Holmes, J. C. Gates, and P. G. Smith, “Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime,” J. Phys. D: Appl. Phys. 46, 475103 (2013).
[Crossref]

H. L. Rogers, S. Ambran, C. Holmes, P. G. Smith, and J. C. Gates, “In situ loss measurement of direct uv-written waveguides using integrated bragg gratings,” Opt. Lett. 35, 2849–2851 (2010).
[Crossref] [PubMed]

Horak, P.

Kashyap, R.

M. Gagné and R. Kashyap, “New nanosecond Q-switched Nd:VO4 laser fifth harmonic for fast hydrogen-free fiber Bragg gratings fabrication,” Opt. Commun. 283, 5028–5032 (2010).
[Crossref]

Y. Duval, R. Kashyap, S. Fleming, and F. Ouellette, “Correlation between ultraviolet-induced refractive index change and photoluminescence in ge-doped fiber,” Appl. Phys. Lett. 61, 2955–2957 (1992).
[Crossref]

Kuttler, R.

B. Berrang, L. Polz, R. Kuttler, J. Bartschke, and J. Roths, “FBG inscription in non-hydrogenated SMF28 fiber with a ns Q-switched Nd:VO4 laser at 213 nm,” in 5th European Workshop on Optical Fibre Sensors, vol. 8794 (EWOFS, 2013), pp. 28–31.

Liscidini, M.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2, 737 (2008).
[Crossref]

Little, B.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2, 737 (2008).
[Crossref]

Margulis, W.

Mennea, P. L.

Morandotti, R.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2, 737 (2008).
[Crossref]

Moss, D.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2, 737 (2008).
[Crossref]

Nikogosyan, D. N.

O’brien, J. L.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref] [PubMed]

Ouellette, F.

Y. Duval, R. Kashyap, S. Fleming, and F. Ouellette, “Correlation between ultraviolet-induced refractive index change and photoluminescence in ge-doped fiber,” Appl. Phys. Lett. 61, 2955–2957 (1992).
[Crossref]

Parker, R. M.

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. M. Adikan, C. B. Gawith, and P. G. Smith, “Direct uv-written planar bragg grating sensors,” Meas. Sci. Technol. 26, 112001 (2015).
[Crossref]

Podoliak, N.

Politi, A.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref] [PubMed]

Polz, L.

B. Berrang, L. Polz, R. Kuttler, J. Bartschke, and J. Roths, “FBG inscription in non-hydrogenated SMF28 fiber with a ns Q-switched Nd:VO4 laser at 213 nm,” in 5th European Workshop on Optical Fibre Sensors, vol. 8794 (EWOFS, 2013), pp. 28–31.

Posner, M. T.

Poulsen, C.

A. Bjarklev, C. Poulsen, O. Poulsen, and M. Svalgaard, “Direct UV writing of buried singlemode channel waveguides in Ge-doped silica films,” Electron. Lett. 30, 1401–1403 (1994).
[Crossref]

Poulsen, O.

A. Bjarklev, C. Poulsen, O. Poulsen, and M. Svalgaard, “Direct UV writing of buried singlemode channel waveguides in Ge-doped silica films,” Electron. Lett. 30, 1401–1403 (1994).
[Crossref]

Rarity, J. G.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref] [PubMed]

Razzari, L.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2, 737 (2008).
[Crossref]

Rogers, H. L.

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. M. Adikan, C. B. Gawith, and P. G. Smith, “Direct uv-written planar bragg grating sensors,” Meas. Sci. Technol. 26, 112001 (2015).
[Crossref]

L. G. Carpenter, H. L. Rogers, P. A. Cooper, C. Holmes, J. C. Gates, and P. G. Smith, “Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime,” J. Phys. D: Appl. Phys. 46, 475103 (2013).
[Crossref]

H. L. Rogers, S. Ambran, C. Holmes, P. G. Smith, and J. C. Gates, “In situ loss measurement of direct uv-written waveguides using integrated bragg gratings,” Opt. Lett. 35, 2849–2851 (2010).
[Crossref] [PubMed]

Roths, J.

B. Berrang, L. Polz, R. Kuttler, J. Bartschke, and J. Roths, “FBG inscription in non-hydrogenated SMF28 fiber with a ns Q-switched Nd:VO4 laser at 213 nm,” in 5th European Workshop on Optical Fibre Sensors, vol. 8794 (EWOFS, 2013), pp. 28–31.

Sipe, J.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2, 737 (2008).
[Crossref]

Slattery, S. A.

Smith, D. H.

Smith, P. G.

M. T. Posner, N. Podoliak, D. H. Smith, P. L. Mennea, P. Horak, C. B. Gawith, P. G. Smith, and J. C. Gates, “Integrated polarizer based on 45° tilted gratings,” Opt. Express 27, 11174–11181 (2019).
[Crossref] [PubMed]

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. M. Adikan, C. B. Gawith, and P. G. Smith, “Direct uv-written planar bragg grating sensors,” Meas. Sci. Technol. 26, 112001 (2015).
[Crossref]

L. G. Carpenter, H. L. Rogers, P. A. Cooper, C. Holmes, J. C. Gates, and P. G. Smith, “Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime,” J. Phys. D: Appl. Phys. 46, 475103 (2013).
[Crossref]

H. L. Rogers, S. Ambran, C. Holmes, P. G. Smith, and J. C. Gates, “In situ loss measurement of direct uv-written waveguides using integrated bragg gratings,” Opt. Lett. 35, 2849–2851 (2010).
[Crossref] [PubMed]

Spencer, D. T.

M. J. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photonics Rev. 8, 667–686 (2014).
[Crossref]

Svalgaard, M.

M. Svalgaard, “Direct writing of planar waveguide power splitters and directional couplers using a focused ultraviolet laser beam,” Electron. Lett. 33, 1694 (1997).
[Crossref]

A. Bjarklev, C. Poulsen, O. Poulsen, and M. Svalgaard, “Direct UV writing of buried singlemode channel waveguides in Ge-doped silica films,” Electron. Lett. 30, 1401–1403 (1994).
[Crossref]

Tabib-Azar, M.

M. Tabib-Azar and G. Beheim, “Modern trends in microstructures and integrated optics for communication, sensing, and actuation,” Opt. Eng. 36, 1307–1319 (1997).
[Crossref]

Yang, Z.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2, 737 (2008).
[Crossref]

Yu, S.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

Y. Duval, R. Kashyap, S. Fleming, and F. Ouellette, “Correlation between ultraviolet-induced refractive index change and photoluminescence in ge-doped fiber,” Appl. Phys. Lett. 61, 2955–2957 (1992).
[Crossref]

Electron. Lett. (2)

A. Bjarklev, C. Poulsen, O. Poulsen, and M. Svalgaard, “Direct UV writing of buried singlemode channel waveguides in Ge-doped silica films,” Electron. Lett. 30, 1401–1403 (1994).
[Crossref]

M. Svalgaard, “Direct writing of planar waveguide power splitters and directional couplers using a focused ultraviolet laser beam,” Electron. Lett. 33, 1694 (1997).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (1)

L. G. Carpenter, H. L. Rogers, P. A. Cooper, C. Holmes, J. C. Gates, and P. G. Smith, “Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime,” J. Phys. D: Appl. Phys. 46, 475103 (2013).
[Crossref]

Laser Photonics Rev. (1)

M. J. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photonics Rev. 8, 667–686 (2014).
[Crossref]

Meas. Sci. Technol. (1)

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. M. Adikan, C. B. Gawith, and P. G. Smith, “Direct uv-written planar bragg grating sensors,” Meas. Sci. Technol. 26, 112001 (2015).
[Crossref]

Nat. Photonics (1)

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2, 737 (2008).
[Crossref]

Opt. Commun. (1)

M. Gagné and R. Kashyap, “New nanosecond Q-switched Nd:VO4 laser fifth harmonic for fast hydrogen-free fiber Bragg gratings fabrication,” Opt. Commun. 283, 5028–5032 (2010).
[Crossref]

Opt. Eng. (1)

M. Tabib-Azar and G. Beheim, “Modern trends in microstructures and integrated optics for communication, sensing, and actuation,” Opt. Eng. 36, 1307–1319 (1997).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Science (1)

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref] [PubMed]

Other (2)

B. Berrang, L. Polz, R. Kuttler, J. Bartschke, and J. Roths, “FBG inscription in non-hydrogenated SMF28 fiber with a ns Q-switched Nd:VO4 laser at 213 nm,” in 5th European Workshop on Optical Fibre Sensors, vol. 8794 (EWOFS, 2013), pp. 28–31.

ISO11146, “Lasers and laser-related equipment - Test methods for laser beam parameters - Beam width, divergence, angle and beam propagation factor,” Standard, International Organization for Standardization, Geneva, CH (1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) 213 nm wavelength light from a fifth harmonic laser is focused onto a planar silica-on-silicon chip. A set of precision air-bearing stages translate the chip through the beam focus to write waveguides into the Ge-doped silica core layer. Fluence is manipulated through translation speed. This is a measure of photon exposure and thus directly relates to refractive index change. (b) broadband light from an erbium-doped fiber ASE source was coupled into the waveguides via a fiber V-groove assembly. The waveguide facets were imaged directly onto an InGaAs camera interfaced with computer software. The camera and imaging lens were translated away from the waveguide facet and the software measured the divergence of the beam. The data were fitted using a second moment technique (ISO11146) allowing the extraction of NA, beam waist and M2 parameters.
Fig. 2
Fig. 2 (a) shows the resulting MFD of the waveguides in relation to the fluence they were written with. Higher fluences induce a larger index change and so better confine the mode. Inset: An image of the mode of the waveguide written with 10 kJ cm−2. (b) shows the measured NA of the waveguides in relation to writing fluence. Higher fluences cause a greater index difference between the written core and surrounding material, leading to higher waveguide NA. The light was not well confined for the waveguide written with a fluence of 0.1 kJ cm−2 and gave an anomalous NA result. For this reason the data point has been excluded from the plot. Dashed lines are provided to guide the eye.
Fig. 3
Fig. 3 (a) The characterisation setup for the cutback measurements is shown. A fiber pigtail is attached to a long waveguide chip with UV curing glue. The chip is aligned against a glass coverslip with refractive index matched oil to ensure consistent alignment position. Transmitted light is collimated and passed through an iris, to remove stray and scattered light, onto a detector to determine transmitted power. (b) Transmitted power measured against chip length for cutback measurements performed on the 9 cm long chip written with 5 kJ cm−2. The standard deviations of the measurements are plotted as error bars. The loss of 0.42 ± 0.07 dB cm−1 is taken from the gradient and error in the gradient of the weighted fit.

Metrics