Abstract

We perform a theoretical and experimental study of the two-pulse photon echo area conservation law in an optically dense medium. The experimental properties of the echo signal are studied at 4K on the optical transition  3H 6(1)3H 4(1) (793 nm) of Tm 3+ in a YAG crystal for a wide range of pulse areas of the two incoming light pulses, up to θ1rox4π and θ27π respectively, with optical depth 1.5. We analyze the experimental data by using the analytic solution of the photon echo area theorem for plane waves. We find that the transverse Gaussian spatial profile of the beam leads to an attenuation of the echo area nutation as function of θ1 and θ2. Additional spatial filtering of the photon echo beam allows to recover this nutation. The experimental data are in good agreement with the solution of photon echo pulse area theorem for weak incoming pulse areas θ1,2π. However at higher pulse areas, the observations diverge from the analytic solution requiring further theoretical and experimental studies.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Measurement of excited-state lifetime using two-pulse photon echoes in rubidium vapor

E. A. Rotberg, B. Barrett, S. Beattie, S. Chudasama, M. Weel, I. Chan, and A. Kumarakrishnan
J. Opt. Soc. Am. B 24(3) 671-680 (2007)

Photon echoes using double-resonance optical pulses

Ning Lu and P. R. Berman
J. Opt. Soc. Am. B 2(12) 1883-1893 (1985)

References

  • View by:
  • |
  • |
  • |

  1. E. L. Hahn, “Spin echoes,” Phys. Rev. 80, 580–594 (1950).
    [Crossref]
  2. U. K. Kopvillem and V. R. Nagibarov, “Luminous echo of paramagnetic crystals,” Fiz. Metal. i Metalloved. 15, 313–315 (1963).
  3. N. A. Kurnit, I. D. Abella, and S. R. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett. 13, 567–568 (1964).
    [Crossref]
  4. E. A. Rotberg, B. Barrett, S. Beattie, S. Chudasama, M. Weel, I. Chan, and A. Kumarakrishnan, “Measurement of excited-state lifetime using two-pulse photon echoes in rubidium vapor,” J. Opt. Soc. Am. B 24, 671–680 (2007).
    [Crossref]
  5. K. E. Dorfman, F. Schlawin, and S. Mukamel, “Nonlinear optical signals and spectroscopy with quantum light,” Rev. Mod. Phys. 88, 045008 (2016).
    [Crossref]
  6. M. S. Pshenichnikov, K. Duppen, and D. A. Wiersma, “Time-resolved femtosecond photon echo probes bimodal solvent dynamics,” Phys. Rev. Lett. 74, 674–677 (1995).
    [Crossref] [PubMed]
  7. N. Morita and T. Yajima, “Ultrahigh-time-resolution coherent transient spectroscopy with incoherent light,” Phys. Rev. A 30, 2525–2536 (1984).
    [Crossref]
  8. P. C. Becker, H. L. Fragnito, J. Y. Bigot, C. H. Brito Cruz, R. L. Fork, and C. V. Shank, “Femtosecond photon echoes from molecules in solution,” Phys. Rev. Lett. 63, 505–507 (1989).
    [Crossref] [PubMed]
  9. E. T. J. Nibbering, D. A. Wiersma, and K. Duppen, “Femtosecond non-markovian optical dynamics in solution,” Phys. Rev. Lett. 66, 2464–2467 (1991).
    [Crossref] [PubMed]
  10. S. V. Konturov, V. S. Lobkov, K. M. Salikhov, V. V. Samartsev, G. M. Safiullin, and V. A. Zuikov, “Femtosecond photon echo in dye-doped polymer film at liquid nitrogen temperature,” Laser Phys. Lett. 2, 21–24 (2005).
    [Crossref]
  11. E. I. Shtyrkov and V. V. Samartsev, “Imaging properties of dynamic echo-holograms in resonant media,” Optika i Spektroskopiia 40, 392–393 (1976).
  12. C. V. Heer and P. F. McManamon, “Wavefront correction with photon echoes,” Opt. Commun. 23, 49 – 50 (1977).
    [Crossref]
  13. N. S. Shiren, “Generation of time-reversed optical wave fronts by backward-wave photon echoes,” Appl. Phys. Lett. 33, 299–300 (1978).
    [Crossref]
  14. E. I. Shtyrkov, V. S. Lobkov, S. A. Moiseev, and N. G. Yarmukhametov, “Characteristics of reversed photon echo resulting from nonsimultaneous four-wave interaction in ruby,” Zh. Eksp. Teor. Fiz. 81, 1041–1046 (1981).
  15. T. W. Mossberg, “Time-domain frequency-selective optical data storage,” Opt. Lett. 7, 77–79 (1982).
    [Crossref] [PubMed]
  16. N. W. Carlson, L. J. Rothberg, A. G. Yodh, W. R. Babbitt, and T. W. Mossberg, “Storage and time reversal of light pulses using photon echoes,” Opt. Lett. 8, 483–485 (1983).
    [Crossref] [PubMed]
  17. S. A. Moiseev and S. Kröll, “Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a doppler-broadened transition,” Phys. Rev. Lett. 87, 173601 (2001).
    [Crossref] [PubMed]
  18. M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
    [Crossref] [PubMed]
  19. W. Tittel, M. Afzelius, T. Chanelière, R. Cone, S. Kröll, S. Moiseev, and M. Sellars, “Photon-echo quantum memory in solid state systems,” Laser & Photonics Rev. 4, 244–267 (2009).
    [Crossref]
  20. M. Hosseini, B. Sparkes, G. Campbell, P. Lam, and B. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
    [Crossref] [PubMed]
  21. M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7, 794 (2011).
    [Crossref]
  22. M. Sabooni, Q. Li, S. Kröll, and L. Rippe, “Efficient quantum memory using a weakly absorbing sample,” Phys. Rev. Lett. 110, 133604 (2013).
    [Crossref] [PubMed]
  23. V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, and J.-L. L. Gouët, “Revival of silenced echo and quantum memory for light,” New J. Phys. 13, 093031 (2011).
    [Crossref]
  24. Y. Rostovtsev, Z. Sariyianni, and M. Scully, “Photon echo pulse shape storage,” Laser physics 12, 1148–1154 (2002).
  25. J. Ruggiero, J.-L. Le Gouët, C. Simon, and T. Chanelière, “Why the two-pulse photon echo is not a good quantum memory protocol,” Phys. Rev. A 79, 053851 (2009).
    [Crossref]
  26. S. L. McCall and E. L. Hahn, “Self-induced transparency,” Phys. Rev. 183, 457–485 (1969).
    [Crossref]
  27. J. Eberly, “Area theorem rederived,” Opt. Express 2, 173–176 (1998).
    [Crossref] [PubMed]
  28. J. H. Eberly and V. V. Kozlov, “Wave equation for dark coherence in three-level media,” Phys. Rev. Lett. 88, 243604 (2002).
    [Crossref] [PubMed]
  29. J.-C. Delagnes and M. Bouchene, “Beyond the pulse-area theorem: Role of the absorption and the dispersion in the propagation of weak ultrashort resonant pulses,” Opt. Commun. 281, 5824–5829 (2008).
    [Crossref]
  30. J. Ruggiero, T. Chanelière, and J.-L. Le Gouët, “Coherent response to optical excitation in a strongly absorbing rare-earth ion-doped crystal,” J. Opt. Soc. Am. B 27, 32–37 (2010).
    [Crossref]
  31. X.-y. Yu, W. Liu, and C. Li, “Near-resonant propagation of short pulses in a two-level medium,” Phys. Rev. A 84, 033811 (2011).
    [Crossref]
  32. T. Chanelière, “Strong excitation of emitters in an impedance matched cavity: the area theorem, π-pulse and self-induced transparency,” Opt. Express 22, 4423–4436 (2014).
    [Crossref]
  33. G. Shchedrin, C. O’Brien, Y. Rostovtsev, and M. O. Scully, “Analytic solution and pulse area theorem for three-level atoms,” Phys. Rev. A 92, 063815 (2015).
    [Crossref]
  34. R. Gutiérrez-Cuevas and J. H. Eberly, “Vector-soliton storage and three-pulse-area theorem,” Phys. Rev. A 94, 013820 (2016).
    [Crossref]
  35. T. Wang, C. Greiner, and T. Mossberg, “Photon echo signals: beyond unit efficiency,” Opt. Commun. 153, 309–313 (1998).
    [Crossref]
  36. T. Wang, C. Greiner, J. R. Bochinski, and T. W. Mossberg, “Experimental study of photon-echo size in optically thick media,” Phys. Rev. A 60, R757–R760 (1999).
    [Crossref]
  37. T. Chang, M. Tian, and W. Randall Babbitt, “Numerical modeling of optical coherent transient processes with complex configurations - I. Angled beam geometry,” J. Lumin. 107, 129–137 (2004).
    [Crossref]
  38. T. Chang, M. Tian, Z. W. Barber, and W. Randall Babbitt, “Numerical modeling of optical coherent transient processes with complex configurations-II. Angled beams with arbitrary phase modulations,” J. Lumin. 107, 138–145 (2004).
    [Crossref]
  39. T. Chang and M. Tian, “Numerical modeling of optical coherent transient processes with complex configurations-III: Noisy laser source,” J. Lumin. 127, 76–82 (2007).
    [Crossref]
  40. E. L. Hahn, N. S. Shiren, and S. L. McCall, “Application of the area theorem to phonon echoes,” Phys. Lett. A 37, 265 – 267 (1971).
    [Crossref]
  41. R. Friedberg and S. Hartmann, “Superradiant damping and absorption,” Phys. Lett. A 37, 285 – 286 (1971).
    [Crossref]
  42. L. Allen and J. Eberly, Optical Resonance and Two-level Atoms, Dover books on physics and chemistry (Dover, 1975).
  43. M. Azadeh, C. Sjaarda Cornish, W. R. Babbitt, and L. Tsang, “Efficient photon echoes in optically thick media,” Phys. Rev. A 57, 4662–4668 (1998).
    [Crossref]
  44. S. A. Moiseev, “Some general nonlinear properties of photon-echo radiation in optically dense media,” Opt. Spectrosc. (English translation of Optika i Spektroskopiya) 62, 180–185 (1987).
  45. S. A. Moiseev, “Quantum memory for intense light fields in the photon echo technique,” Izv. Ross. Akad. Nauk, Ser. Fiz. 68, 1260–1264 (2004).
  46. A. M. Dibos, M. Raha, C. M. Phenicie, and J. D. Thompson, “Atomic source of single photons in the telecom band,” Phys. Rev. Lett. 120, 243601 (2018).
    [Crossref] [PubMed]
  47. B. Casabone, J. Benedikter, T. Hümmer, F. Oehl, K. de Oliveira Lima, T. W. Hänsch, A. Ferrier, P. Goldner, H. de Riedmatten, and D. Hunger, “Cavity-enhanced spectroscopy of a few-ion ensemble in Eu3+:y2O3,” New J. Phys. 20, 095006 (2018).
    [Crossref]
  48. T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Optically addressing single rare-earth ions in a nanophotonic cavity,” Phys. Rev. Lett. 121, 183603 (2018).
    [Crossref] [PubMed]
  49. G. L. Lamb, “Analytical descriptions of ultrashort optical pulse propagation in a resonant medium,” Rev. Mod. Phys. 43, 99–124 (1971).
    [Crossref]
  50. T. Chanelière, G. Hétet, and N. Sangouard, “Chapter two - quantum optical memory protocols in atomic ensembles,” (Academic Press, 2018), pp. 77 – 150.
  51. C. S. Cornish, W. Babbitt, and L. Tsang, “Demonstration of highly efficient photon echoes,” Opt. letters 25, 1276–1278 (2000).
    [Crossref]
  52. A. E. Siegman, “Unstable optical resonators for laser applications,” Proc. IEEE 53, 277–287 (1965).
    [Crossref]
  53. T. Chanelière, M. Bonarota, V. Damon, R. Lauro, J. Ruggiero, I. Lorgeré, and J.-L. L. Gouët, “Light storage protocols in Tm:YAG,” J. Lumin. 130, 1572–1578 (2010).
  54. M. Bonarota, J.-L. L. Gouët, and T. Chanelière, “Highly multimode storage in a crystal,” New J. Phys. 13, 013013 (2011).
    [Crossref]
  55. K. Gerasimov, M. Minnegaliev, S. Moiseev, R. Urmancheev, T. Chanelière, and A. Louchet-Chauvet, “Quantum memory in an orthogonal geometry of silenced echo retrieval,” Opt. Spectrosc. (English translation of Optika i Spektroskopiya) 123, 211–216 (2017).
  56. J. Huang, J. M. Zhang, A. Lezama, and T. W. Mossberg, “Excess dephasing in photon-echo experiments arising from excitation-induced electronic level shifts,” Phys. Rev. Lett. 63, 78–81 (1989).
    [Crossref] [PubMed]
  57. G. K. Liu and R. L. Cone, “Laser-induced instantaneous spectral diffusion in Tb3+ compounds as observed in photon-echo experiments,” Phys. Rev. B 41, 6193–6200 (1990).
    [Crossref]
  58. C. W. Thiel, R. M. Macfarlane, Y. Sun, T. Böttger, N. Sinclair, W. Tittel, and R. L. Cone, “Measuring and analyzing excitation-induced decoherence in rare-earth-doped optical materials,” Laser Phys. 24, 106002 (2014).
    [Crossref]
  59. M. Fleischhauer and S. F. Yelin, “Radiative atom-atom interactions in optically dense media: Quantum corrections to the lorentz-lorenz formula,” Phys. Rev. A 59, 2427–2441 (1999).
    [Crossref]
  60. L. Corman, J. L. Ville, R. Saint-Jalm, M. Aidelsburger, T. Bienaimé, S. Nascimbène, J. Dalibard, and J. Beugnon, “Transmission of near-resonant light through a dense slab of cold atoms,” Phys. Rev. A 96, 053629 (2017).
    [Crossref]
  61. A. M. Basharov, “Stark interaction of identical particles with the vacuum electromagnetic field as quantum poisson process suppressing collective spontaneous emission,” Phys. Rev. A 84, 013801 (2011).
    [Crossref]
  62. A. M. Basharov, ““Trapping” of the radiation of an excited particle by its stark interaction with the nonresonant levels of surrounding particles,” JETP Lett. 107, 143–150 (2018).
    [Crossref]
  63. A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
    [Crossref]
  64. K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
    [Crossref]
  65. C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
    [Crossref]
  66. K. Heshami, D. G. England, P. C. Humphreys, P. J. Bustard, V. M. Acosta, J. Nunn, and B. J. Sussman, “Quantum memories: emerging applications and recent advances,” J. Mod. Opt. 63, 2005–2028 (2016).
    [Crossref] [PubMed]
  67. N. F. Ramsey, “A molecular beam resonance method with separated oscillating fields,” Phys. Rev. 78, 695–699 (1950).
    [Crossref]

2018 (4)

A. M. Dibos, M. Raha, C. M. Phenicie, and J. D. Thompson, “Atomic source of single photons in the telecom band,” Phys. Rev. Lett. 120, 243601 (2018).
[Crossref] [PubMed]

B. Casabone, J. Benedikter, T. Hümmer, F. Oehl, K. de Oliveira Lima, T. W. Hänsch, A. Ferrier, P. Goldner, H. de Riedmatten, and D. Hunger, “Cavity-enhanced spectroscopy of a few-ion ensemble in Eu3+:y2O3,” New J. Phys. 20, 095006 (2018).
[Crossref]

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Optically addressing single rare-earth ions in a nanophotonic cavity,” Phys. Rev. Lett. 121, 183603 (2018).
[Crossref] [PubMed]

A. M. Basharov, ““Trapping” of the radiation of an excited particle by its stark interaction with the nonresonant levels of surrounding particles,” JETP Lett. 107, 143–150 (2018).
[Crossref]

2017 (2)

K. Gerasimov, M. Minnegaliev, S. Moiseev, R. Urmancheev, T. Chanelière, and A. Louchet-Chauvet, “Quantum memory in an orthogonal geometry of silenced echo retrieval,” Opt. Spectrosc. (English translation of Optika i Spektroskopiya) 123, 211–216 (2017).

L. Corman, J. L. Ville, R. Saint-Jalm, M. Aidelsburger, T. Bienaimé, S. Nascimbène, J. Dalibard, and J. Beugnon, “Transmission of near-resonant light through a dense slab of cold atoms,” Phys. Rev. A 96, 053629 (2017).
[Crossref]

2016 (3)

K. Heshami, D. G. England, P. C. Humphreys, P. J. Bustard, V. M. Acosta, J. Nunn, and B. J. Sussman, “Quantum memories: emerging applications and recent advances,” J. Mod. Opt. 63, 2005–2028 (2016).
[Crossref] [PubMed]

K. E. Dorfman, F. Schlawin, and S. Mukamel, “Nonlinear optical signals and spectroscopy with quantum light,” Rev. Mod. Phys. 88, 045008 (2016).
[Crossref]

R. Gutiérrez-Cuevas and J. H. Eberly, “Vector-soliton storage and three-pulse-area theorem,” Phys. Rev. A 94, 013820 (2016).
[Crossref]

2015 (1)

G. Shchedrin, C. O’Brien, Y. Rostovtsev, and M. O. Scully, “Analytic solution and pulse area theorem for three-level atoms,” Phys. Rev. A 92, 063815 (2015).
[Crossref]

2014 (2)

C. W. Thiel, R. M. Macfarlane, Y. Sun, T. Böttger, N. Sinclair, W. Tittel, and R. L. Cone, “Measuring and analyzing excitation-induced decoherence in rare-earth-doped optical materials,” Laser Phys. 24, 106002 (2014).
[Crossref]

T. Chanelière, “Strong excitation of emitters in an impedance matched cavity: the area theorem, π-pulse and self-induced transparency,” Opt. Express 22, 4423–4436 (2014).
[Crossref]

2013 (1)

M. Sabooni, Q. Li, S. Kröll, and L. Rippe, “Efficient quantum memory using a weakly absorbing sample,” Phys. Rev. Lett. 110, 133604 (2013).
[Crossref] [PubMed]

2011 (6)

V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, and J.-L. L. Gouët, “Revival of silenced echo and quantum memory for light,” New J. Phys. 13, 093031 (2011).
[Crossref]

M. Hosseini, B. Sparkes, G. Campbell, P. Lam, and B. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref] [PubMed]

M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7, 794 (2011).
[Crossref]

X.-y. Yu, W. Liu, and C. Li, “Near-resonant propagation of short pulses in a two-level medium,” Phys. Rev. A 84, 033811 (2011).
[Crossref]

A. M. Basharov, “Stark interaction of identical particles with the vacuum electromagnetic field as quantum poisson process suppressing collective spontaneous emission,” Phys. Rev. A 84, 013801 (2011).
[Crossref]

M. Bonarota, J.-L. L. Gouët, and T. Chanelière, “Highly multimode storage in a crystal,” New J. Phys. 13, 013013 (2011).
[Crossref]

2010 (5)

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
[Crossref]

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

T. Chanelière, M. Bonarota, V. Damon, R. Lauro, J. Ruggiero, I. Lorgeré, and J.-L. L. Gouët, “Light storage protocols in Tm:YAG,” J. Lumin. 130, 1572–1578 (2010).

J. Ruggiero, T. Chanelière, and J.-L. Le Gouët, “Coherent response to optical excitation in a strongly absorbing rare-earth ion-doped crystal,” J. Opt. Soc. Am. B 27, 32–37 (2010).
[Crossref]

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[Crossref] [PubMed]

2009 (3)

W. Tittel, M. Afzelius, T. Chanelière, R. Cone, S. Kröll, S. Moiseev, and M. Sellars, “Photon-echo quantum memory in solid state systems,” Laser & Photonics Rev. 4, 244–267 (2009).
[Crossref]

J. Ruggiero, J.-L. Le Gouët, C. Simon, and T. Chanelière, “Why the two-pulse photon echo is not a good quantum memory protocol,” Phys. Rev. A 79, 053851 (2009).
[Crossref]

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

2008 (1)

J.-C. Delagnes and M. Bouchene, “Beyond the pulse-area theorem: Role of the absorption and the dispersion in the propagation of weak ultrashort resonant pulses,” Opt. Commun. 281, 5824–5829 (2008).
[Crossref]

2007 (2)

E. A. Rotberg, B. Barrett, S. Beattie, S. Chudasama, M. Weel, I. Chan, and A. Kumarakrishnan, “Measurement of excited-state lifetime using two-pulse photon echoes in rubidium vapor,” J. Opt. Soc. Am. B 24, 671–680 (2007).
[Crossref]

T. Chang and M. Tian, “Numerical modeling of optical coherent transient processes with complex configurations-III: Noisy laser source,” J. Lumin. 127, 76–82 (2007).
[Crossref]

2005 (1)

S. V. Konturov, V. S. Lobkov, K. M. Salikhov, V. V. Samartsev, G. M. Safiullin, and V. A. Zuikov, “Femtosecond photon echo in dye-doped polymer film at liquid nitrogen temperature,” Laser Phys. Lett. 2, 21–24 (2005).
[Crossref]

2004 (3)

T. Chang, M. Tian, and W. Randall Babbitt, “Numerical modeling of optical coherent transient processes with complex configurations - I. Angled beam geometry,” J. Lumin. 107, 129–137 (2004).
[Crossref]

T. Chang, M. Tian, Z. W. Barber, and W. Randall Babbitt, “Numerical modeling of optical coherent transient processes with complex configurations-II. Angled beams with arbitrary phase modulations,” J. Lumin. 107, 138–145 (2004).
[Crossref]

S. A. Moiseev, “Quantum memory for intense light fields in the photon echo technique,” Izv. Ross. Akad. Nauk, Ser. Fiz. 68, 1260–1264 (2004).

2002 (2)

J. H. Eberly and V. V. Kozlov, “Wave equation for dark coherence in three-level media,” Phys. Rev. Lett. 88, 243604 (2002).
[Crossref] [PubMed]

Y. Rostovtsev, Z. Sariyianni, and M. Scully, “Photon echo pulse shape storage,” Laser physics 12, 1148–1154 (2002).

2001 (1)

S. A. Moiseev and S. Kröll, “Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a doppler-broadened transition,” Phys. Rev. Lett. 87, 173601 (2001).
[Crossref] [PubMed]

2000 (1)

C. S. Cornish, W. Babbitt, and L. Tsang, “Demonstration of highly efficient photon echoes,” Opt. letters 25, 1276–1278 (2000).
[Crossref]

1999 (2)

T. Wang, C. Greiner, J. R. Bochinski, and T. W. Mossberg, “Experimental study of photon-echo size in optically thick media,” Phys. Rev. A 60, R757–R760 (1999).
[Crossref]

M. Fleischhauer and S. F. Yelin, “Radiative atom-atom interactions in optically dense media: Quantum corrections to the lorentz-lorenz formula,” Phys. Rev. A 59, 2427–2441 (1999).
[Crossref]

1998 (3)

M. Azadeh, C. Sjaarda Cornish, W. R. Babbitt, and L. Tsang, “Efficient photon echoes in optically thick media,” Phys. Rev. A 57, 4662–4668 (1998).
[Crossref]

J. Eberly, “Area theorem rederived,” Opt. Express 2, 173–176 (1998).
[Crossref] [PubMed]

T. Wang, C. Greiner, and T. Mossberg, “Photon echo signals: beyond unit efficiency,” Opt. Commun. 153, 309–313 (1998).
[Crossref]

1995 (1)

M. S. Pshenichnikov, K. Duppen, and D. A. Wiersma, “Time-resolved femtosecond photon echo probes bimodal solvent dynamics,” Phys. Rev. Lett. 74, 674–677 (1995).
[Crossref] [PubMed]

1991 (1)

E. T. J. Nibbering, D. A. Wiersma, and K. Duppen, “Femtosecond non-markovian optical dynamics in solution,” Phys. Rev. Lett. 66, 2464–2467 (1991).
[Crossref] [PubMed]

1990 (1)

G. K. Liu and R. L. Cone, “Laser-induced instantaneous spectral diffusion in Tb3+ compounds as observed in photon-echo experiments,” Phys. Rev. B 41, 6193–6200 (1990).
[Crossref]

1989 (2)

J. Huang, J. M. Zhang, A. Lezama, and T. W. Mossberg, “Excess dephasing in photon-echo experiments arising from excitation-induced electronic level shifts,” Phys. Rev. Lett. 63, 78–81 (1989).
[Crossref] [PubMed]

P. C. Becker, H. L. Fragnito, J. Y. Bigot, C. H. Brito Cruz, R. L. Fork, and C. V. Shank, “Femtosecond photon echoes from molecules in solution,” Phys. Rev. Lett. 63, 505–507 (1989).
[Crossref] [PubMed]

1987 (1)

S. A. Moiseev, “Some general nonlinear properties of photon-echo radiation in optically dense media,” Opt. Spectrosc. (English translation of Optika i Spektroskopiya) 62, 180–185 (1987).

1984 (1)

N. Morita and T. Yajima, “Ultrahigh-time-resolution coherent transient spectroscopy with incoherent light,” Phys. Rev. A 30, 2525–2536 (1984).
[Crossref]

1983 (1)

1982 (1)

1981 (1)

E. I. Shtyrkov, V. S. Lobkov, S. A. Moiseev, and N. G. Yarmukhametov, “Characteristics of reversed photon echo resulting from nonsimultaneous four-wave interaction in ruby,” Zh. Eksp. Teor. Fiz. 81, 1041–1046 (1981).

1978 (1)

N. S. Shiren, “Generation of time-reversed optical wave fronts by backward-wave photon echoes,” Appl. Phys. Lett. 33, 299–300 (1978).
[Crossref]

1977 (1)

C. V. Heer and P. F. McManamon, “Wavefront correction with photon echoes,” Opt. Commun. 23, 49 – 50 (1977).
[Crossref]

1976 (1)

E. I. Shtyrkov and V. V. Samartsev, “Imaging properties of dynamic echo-holograms in resonant media,” Optika i Spektroskopiia 40, 392–393 (1976).

1971 (3)

E. L. Hahn, N. S. Shiren, and S. L. McCall, “Application of the area theorem to phonon echoes,” Phys. Lett. A 37, 265 – 267 (1971).
[Crossref]

R. Friedberg and S. Hartmann, “Superradiant damping and absorption,” Phys. Lett. A 37, 285 – 286 (1971).
[Crossref]

G. L. Lamb, “Analytical descriptions of ultrashort optical pulse propagation in a resonant medium,” Rev. Mod. Phys. 43, 99–124 (1971).
[Crossref]

1969 (1)

S. L. McCall and E. L. Hahn, “Self-induced transparency,” Phys. Rev. 183, 457–485 (1969).
[Crossref]

1965 (1)

A. E. Siegman, “Unstable optical resonators for laser applications,” Proc. IEEE 53, 277–287 (1965).
[Crossref]

1964 (1)

N. A. Kurnit, I. D. Abella, and S. R. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett. 13, 567–568 (1964).
[Crossref]

1963 (1)

U. K. Kopvillem and V. R. Nagibarov, “Luminous echo of paramagnetic crystals,” Fiz. Metal. i Metalloved. 15, 313–315 (1963).

1950 (2)

E. L. Hahn, “Spin echoes,” Phys. Rev. 80, 580–594 (1950).
[Crossref]

N. F. Ramsey, “A molecular beam resonance method with separated oscillating fields,” Phys. Rev. 78, 695–699 (1950).
[Crossref]

Abella, I. D.

N. A. Kurnit, I. D. Abella, and S. R. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett. 13, 567–568 (1964).
[Crossref]

Acosta, V. M.

K. Heshami, D. G. England, P. C. Humphreys, P. J. Bustard, V. M. Acosta, J. Nunn, and B. J. Sussman, “Quantum memories: emerging applications and recent advances,” J. Mod. Opt. 63, 2005–2028 (2016).
[Crossref] [PubMed]

Afzelius, M.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

W. Tittel, M. Afzelius, T. Chanelière, R. Cone, S. Kröll, S. Moiseev, and M. Sellars, “Photon-echo quantum memory in solid state systems,” Laser & Photonics Rev. 4, 244–267 (2009).
[Crossref]

Aidelsburger, M.

L. Corman, J. L. Ville, R. Saint-Jalm, M. Aidelsburger, T. Bienaimé, S. Nascimbène, J. Dalibard, and J. Beugnon, “Transmission of near-resonant light through a dense slab of cold atoms,” Phys. Rev. A 96, 053629 (2017).
[Crossref]

Allen, L.

L. Allen and J. Eberly, Optical Resonance and Two-level Atoms, Dover books on physics and chemistry (Dover, 1975).

Appel, J.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Azadeh, M.

M. Azadeh, C. Sjaarda Cornish, W. R. Babbitt, and L. Tsang, “Efficient photon echoes in optically thick media,” Phys. Rev. A 57, 4662–4668 (1998).
[Crossref]

Babbitt, W.

C. S. Cornish, W. Babbitt, and L. Tsang, “Demonstration of highly efficient photon echoes,” Opt. letters 25, 1276–1278 (2000).
[Crossref]

Babbitt, W. R.

M. Azadeh, C. Sjaarda Cornish, W. R. Babbitt, and L. Tsang, “Efficient photon echoes in optically thick media,” Phys. Rev. A 57, 4662–4668 (1998).
[Crossref]

N. W. Carlson, L. J. Rothberg, A. G. Yodh, W. R. Babbitt, and T. W. Mossberg, “Storage and time reversal of light pulses using photon echoes,” Opt. Lett. 8, 483–485 (1983).
[Crossref] [PubMed]

Barber, Z. W.

T. Chang, M. Tian, Z. W. Barber, and W. Randall Babbitt, “Numerical modeling of optical coherent transient processes with complex configurations-II. Angled beams with arbitrary phase modulations,” J. Lumin. 107, 138–145 (2004).
[Crossref]

Barrett, B.

Bartholomew, J. G.

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Optically addressing single rare-earth ions in a nanophotonic cavity,” Phys. Rev. Lett. 121, 183603 (2018).
[Crossref] [PubMed]

Basharov, A. M.

A. M. Basharov, ““Trapping” of the radiation of an excited particle by its stark interaction with the nonresonant levels of surrounding particles,” JETP Lett. 107, 143–150 (2018).
[Crossref]

A. M. Basharov, “Stark interaction of identical particles with the vacuum electromagnetic field as quantum poisson process suppressing collective spontaneous emission,” Phys. Rev. A 84, 013801 (2011).
[Crossref]

Beattie, S.

Becker, P. C.

P. C. Becker, H. L. Fragnito, J. Y. Bigot, C. H. Brito Cruz, R. L. Fork, and C. V. Shank, “Femtosecond photon echoes from molecules in solution,” Phys. Rev. Lett. 63, 505–507 (1989).
[Crossref] [PubMed]

Benedikter, J.

B. Casabone, J. Benedikter, T. Hümmer, F. Oehl, K. de Oliveira Lima, T. W. Hänsch, A. Ferrier, P. Goldner, H. de Riedmatten, and D. Hunger, “Cavity-enhanced spectroscopy of a few-ion ensemble in Eu3+:y2O3,” New J. Phys. 20, 095006 (2018).
[Crossref]

Beugnon, J.

L. Corman, J. L. Ville, R. Saint-Jalm, M. Aidelsburger, T. Bienaimé, S. Nascimbène, J. Dalibard, and J. Beugnon, “Transmission of near-resonant light through a dense slab of cold atoms,” Phys. Rev. A 96, 053629 (2017).
[Crossref]

Beyer, A. D.

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Optically addressing single rare-earth ions in a nanophotonic cavity,” Phys. Rev. Lett. 121, 183603 (2018).
[Crossref] [PubMed]

Bienaimé, T.

L. Corman, J. L. Ville, R. Saint-Jalm, M. Aidelsburger, T. Bienaimé, S. Nascimbène, J. Dalibard, and J. Beugnon, “Transmission of near-resonant light through a dense slab of cold atoms,” Phys. Rev. A 96, 053629 (2017).
[Crossref]

Bigot, J. Y.

P. C. Becker, H. L. Fragnito, J. Y. Bigot, C. H. Brito Cruz, R. L. Fork, and C. V. Shank, “Femtosecond photon echoes from molecules in solution,” Phys. Rev. Lett. 63, 505–507 (1989).
[Crossref] [PubMed]

Bochinski, J. R.

T. Wang, C. Greiner, J. R. Bochinski, and T. W. Mossberg, “Experimental study of photon-echo size in optically thick media,” Phys. Rev. A 60, R757–R760 (1999).
[Crossref]

Bonarota, M.

V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, and J.-L. L. Gouët, “Revival of silenced echo and quantum memory for light,” New J. Phys. 13, 093031 (2011).
[Crossref]

M. Bonarota, J.-L. L. Gouët, and T. Chanelière, “Highly multimode storage in a crystal,” New J. Phys. 13, 013013 (2011).
[Crossref]

T. Chanelière, M. Bonarota, V. Damon, R. Lauro, J. Ruggiero, I. Lorgeré, and J.-L. L. Gouët, “Light storage protocols in Tm:YAG,” J. Lumin. 130, 1572–1578 (2010).

Böttger, T.

C. W. Thiel, R. M. Macfarlane, Y. Sun, T. Böttger, N. Sinclair, W. Tittel, and R. L. Cone, “Measuring and analyzing excitation-induced decoherence in rare-earth-doped optical materials,” Laser Phys. 24, 106002 (2014).
[Crossref]

Bouchene, M.

J.-C. Delagnes and M. Bouchene, “Beyond the pulse-area theorem: Role of the absorption and the dispersion in the propagation of weak ultrashort resonant pulses,” Opt. Commun. 281, 5824–5829 (2008).
[Crossref]

Boyer De La Giroday, A.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Brito Cruz, C. H.

P. C. Becker, H. L. Fragnito, J. Y. Bigot, C. H. Brito Cruz, R. L. Fork, and C. V. Shank, “Femtosecond photon echoes from molecules in solution,” Phys. Rev. Lett. 63, 505–507 (1989).
[Crossref] [PubMed]

Buchler, B.

M. Hosseini, B. Sparkes, G. Campbell, P. Lam, and B. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref] [PubMed]

Buchler, B. C.

M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7, 794 (2011).
[Crossref]

Bustard, P. J.

K. Heshami, D. G. England, P. C. Humphreys, P. J. Bustard, V. M. Acosta, J. Nunn, and B. J. Sussman, “Quantum memories: emerging applications and recent advances,” J. Mod. Opt. 63, 2005–2028 (2016).
[Crossref] [PubMed]

Campbell, G.

M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7, 794 (2011).
[Crossref]

M. Hosseini, B. Sparkes, G. Campbell, P. Lam, and B. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref] [PubMed]

Carlson, N. W.

Casabone, B.

B. Casabone, J. Benedikter, T. Hümmer, F. Oehl, K. de Oliveira Lima, T. W. Hänsch, A. Ferrier, P. Goldner, H. de Riedmatten, and D. Hunger, “Cavity-enhanced spectroscopy of a few-ion ensemble in Eu3+:y2O3,” New J. Phys. 20, 095006 (2018).
[Crossref]

Chan, I.

Chanelière, T.

K. Gerasimov, M. Minnegaliev, S. Moiseev, R. Urmancheev, T. Chanelière, and A. Louchet-Chauvet, “Quantum memory in an orthogonal geometry of silenced echo retrieval,” Opt. Spectrosc. (English translation of Optika i Spektroskopiya) 123, 211–216 (2017).

T. Chanelière, “Strong excitation of emitters in an impedance matched cavity: the area theorem, π-pulse and self-induced transparency,” Opt. Express 22, 4423–4436 (2014).
[Crossref]

V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, and J.-L. L. Gouët, “Revival of silenced echo and quantum memory for light,” New J. Phys. 13, 093031 (2011).
[Crossref]

M. Bonarota, J.-L. L. Gouët, and T. Chanelière, “Highly multimode storage in a crystal,” New J. Phys. 13, 013013 (2011).
[Crossref]

T. Chanelière, M. Bonarota, V. Damon, R. Lauro, J. Ruggiero, I. Lorgeré, and J.-L. L. Gouët, “Light storage protocols in Tm:YAG,” J. Lumin. 130, 1572–1578 (2010).

J. Ruggiero, T. Chanelière, and J.-L. Le Gouët, “Coherent response to optical excitation in a strongly absorbing rare-earth ion-doped crystal,” J. Opt. Soc. Am. B 27, 32–37 (2010).
[Crossref]

J. Ruggiero, J.-L. Le Gouët, C. Simon, and T. Chanelière, “Why the two-pulse photon echo is not a good quantum memory protocol,” Phys. Rev. A 79, 053851 (2009).
[Crossref]

W. Tittel, M. Afzelius, T. Chanelière, R. Cone, S. Kröll, S. Moiseev, and M. Sellars, “Photon-echo quantum memory in solid state systems,” Laser & Photonics Rev. 4, 244–267 (2009).
[Crossref]

T. Chanelière, G. Hétet, and N. Sangouard, “Chapter two - quantum optical memory protocols in atomic ensembles,” (Academic Press, 2018), pp. 77 – 150.

Chang, T.

T. Chang and M. Tian, “Numerical modeling of optical coherent transient processes with complex configurations-III: Noisy laser source,” J. Lumin. 127, 76–82 (2007).
[Crossref]

T. Chang, M. Tian, and W. Randall Babbitt, “Numerical modeling of optical coherent transient processes with complex configurations - I. Angled beam geometry,” J. Lumin. 107, 129–137 (2004).
[Crossref]

T. Chang, M. Tian, Z. W. Barber, and W. Randall Babbitt, “Numerical modeling of optical coherent transient processes with complex configurations-II. Angled beams with arbitrary phase modulations,” J. Lumin. 107, 138–145 (2004).
[Crossref]

Chudasama, S.

Cone, R.

W. Tittel, M. Afzelius, T. Chanelière, R. Cone, S. Kröll, S. Moiseev, and M. Sellars, “Photon-echo quantum memory in solid state systems,” Laser & Photonics Rev. 4, 244–267 (2009).
[Crossref]

Cone, R. L.

C. W. Thiel, R. M. Macfarlane, Y. Sun, T. Böttger, N. Sinclair, W. Tittel, and R. L. Cone, “Measuring and analyzing excitation-induced decoherence in rare-earth-doped optical materials,” Laser Phys. 24, 106002 (2014).
[Crossref]

G. K. Liu and R. L. Cone, “Laser-induced instantaneous spectral diffusion in Tb3+ compounds as observed in photon-echo experiments,” Phys. Rev. B 41, 6193–6200 (1990).
[Crossref]

Corman, L.

L. Corman, J. L. Ville, R. Saint-Jalm, M. Aidelsburger, T. Bienaimé, S. Nascimbène, J. Dalibard, and J. Beugnon, “Transmission of near-resonant light through a dense slab of cold atoms,” Phys. Rev. A 96, 053629 (2017).
[Crossref]

Cornish, C. S.

C. S. Cornish, W. Babbitt, and L. Tsang, “Demonstration of highly efficient photon echoes,” Opt. letters 25, 1276–1278 (2000).
[Crossref]

Craiciu, I.

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Optically addressing single rare-earth ions in a nanophotonic cavity,” Phys. Rev. Lett. 121, 183603 (2018).
[Crossref] [PubMed]

Dalibard, J.

L. Corman, J. L. Ville, R. Saint-Jalm, M. Aidelsburger, T. Bienaimé, S. Nascimbène, J. Dalibard, and J. Beugnon, “Transmission of near-resonant light through a dense slab of cold atoms,” Phys. Rev. A 96, 053629 (2017).
[Crossref]

Damon, V.

V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, and J.-L. L. Gouët, “Revival of silenced echo and quantum memory for light,” New J. Phys. 13, 093031 (2011).
[Crossref]

T. Chanelière, M. Bonarota, V. Damon, R. Lauro, J. Ruggiero, I. Lorgeré, and J.-L. L. Gouët, “Light storage protocols in Tm:YAG,” J. Lumin. 130, 1572–1578 (2010).

de Oliveira Lima, K.

B. Casabone, J. Benedikter, T. Hümmer, F. Oehl, K. de Oliveira Lima, T. W. Hänsch, A. Ferrier, P. Goldner, H. de Riedmatten, and D. Hunger, “Cavity-enhanced spectroscopy of a few-ion ensemble in Eu3+:y2O3,” New J. Phys. 20, 095006 (2018).
[Crossref]

de Riedmatten, H.

B. Casabone, J. Benedikter, T. Hümmer, F. Oehl, K. de Oliveira Lima, T. W. Hänsch, A. Ferrier, P. Goldner, H. de Riedmatten, and D. Hunger, “Cavity-enhanced spectroscopy of a few-ion ensemble in Eu3+:y2O3,” New J. Phys. 20, 095006 (2018).
[Crossref]

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Delagnes, J.-C.

J.-C. Delagnes and M. Bouchene, “Beyond the pulse-area theorem: Role of the absorption and the dispersion in the propagation of weak ultrashort resonant pulses,” Opt. Commun. 281, 5824–5829 (2008).
[Crossref]

Dewhurst, S. J.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Dibos, A. M.

A. M. Dibos, M. Raha, C. M. Phenicie, and J. D. Thompson, “Atomic source of single photons in the telecom band,” Phys. Rev. Lett. 120, 243601 (2018).
[Crossref] [PubMed]

Dorfman, K. E.

K. E. Dorfman, F. Schlawin, and S. Mukamel, “Nonlinear optical signals and spectroscopy with quantum light,” Rev. Mod. Phys. 88, 045008 (2016).
[Crossref]

Duppen, K.

M. S. Pshenichnikov, K. Duppen, and D. A. Wiersma, “Time-resolved femtosecond photon echo probes bimodal solvent dynamics,” Phys. Rev. Lett. 74, 674–677 (1995).
[Crossref] [PubMed]

E. T. J. Nibbering, D. A. Wiersma, and K. Duppen, “Femtosecond non-markovian optical dynamics in solution,” Phys. Rev. Lett. 66, 2464–2467 (1991).
[Crossref] [PubMed]

Eberly, J.

J. Eberly, “Area theorem rederived,” Opt. Express 2, 173–176 (1998).
[Crossref] [PubMed]

L. Allen and J. Eberly, Optical Resonance and Two-level Atoms, Dover books on physics and chemistry (Dover, 1975).

Eberly, J. H.

R. Gutiérrez-Cuevas and J. H. Eberly, “Vector-soliton storage and three-pulse-area theorem,” Phys. Rev. A 94, 013820 (2016).
[Crossref]

J. H. Eberly and V. V. Kozlov, “Wave equation for dark coherence in three-level media,” Phys. Rev. Lett. 88, 243604 (2002).
[Crossref] [PubMed]

England, D. G.

K. Heshami, D. G. England, P. C. Humphreys, P. J. Bustard, V. M. Acosta, J. Nunn, and B. J. Sussman, “Quantum memories: emerging applications and recent advances,” J. Mod. Opt. 63, 2005–2028 (2016).
[Crossref] [PubMed]

Faraon, A.

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Optically addressing single rare-earth ions in a nanophotonic cavity,” Phys. Rev. Lett. 121, 183603 (2018).
[Crossref] [PubMed]

Ferrier, A.

B. Casabone, J. Benedikter, T. Hümmer, F. Oehl, K. de Oliveira Lima, T. W. Hänsch, A. Ferrier, P. Goldner, H. de Riedmatten, and D. Hunger, “Cavity-enhanced spectroscopy of a few-ion ensemble in Eu3+:y2O3,” New J. Phys. 20, 095006 (2018).
[Crossref]

Fleischhauer, M.

M. Fleischhauer and S. F. Yelin, “Radiative atom-atom interactions in optically dense media: Quantum corrections to the lorentz-lorenz formula,” Phys. Rev. A 59, 2427–2441 (1999).
[Crossref]

Fork, R. L.

P. C. Becker, H. L. Fragnito, J. Y. Bigot, C. H. Brito Cruz, R. L. Fork, and C. V. Shank, “Femtosecond photon echoes from molecules in solution,” Phys. Rev. Lett. 63, 505–507 (1989).
[Crossref] [PubMed]

Fragnito, H. L.

P. C. Becker, H. L. Fragnito, J. Y. Bigot, C. H. Brito Cruz, R. L. Fork, and C. V. Shank, “Femtosecond photon echoes from molecules in solution,” Phys. Rev. Lett. 63, 505–507 (1989).
[Crossref] [PubMed]

Friedberg, R.

R. Friedberg and S. Hartmann, “Superradiant damping and absorption,” Phys. Lett. A 37, 285 – 286 (1971).
[Crossref]

Gerasimov, K.

K. Gerasimov, M. Minnegaliev, S. Moiseev, R. Urmancheev, T. Chanelière, and A. Louchet-Chauvet, “Quantum memory in an orthogonal geometry of silenced echo retrieval,” Opt. Spectrosc. (English translation of Optika i Spektroskopiya) 123, 211–216 (2017).

Gisin, N.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Goldner, P.

B. Casabone, J. Benedikter, T. Hümmer, F. Oehl, K. de Oliveira Lima, T. W. Hänsch, A. Ferrier, P. Goldner, H. de Riedmatten, and D. Hunger, “Cavity-enhanced spectroscopy of a few-ion ensemble in Eu3+:y2O3,” New J. Phys. 20, 095006 (2018).
[Crossref]

Gouët, J.-L. L.

M. Bonarota, J.-L. L. Gouët, and T. Chanelière, “Highly multimode storage in a crystal,” New J. Phys. 13, 013013 (2011).
[Crossref]

V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, and J.-L. L. Gouët, “Revival of silenced echo and quantum memory for light,” New J. Phys. 13, 093031 (2011).
[Crossref]

T. Chanelière, M. Bonarota, V. Damon, R. Lauro, J. Ruggiero, I. Lorgeré, and J.-L. L. Gouët, “Light storage protocols in Tm:YAG,” J. Lumin. 130, 1572–1578 (2010).

Greiner, C.

T. Wang, C. Greiner, J. R. Bochinski, and T. W. Mossberg, “Experimental study of photon-echo size in optically thick media,” Phys. Rev. A 60, R757–R760 (1999).
[Crossref]

T. Wang, C. Greiner, and T. Mossberg, “Photon echo signals: beyond unit efficiency,” Opt. Commun. 153, 309–313 (1998).
[Crossref]

Gutiérrez-Cuevas, R.

R. Gutiérrez-Cuevas and J. H. Eberly, “Vector-soliton storage and three-pulse-area theorem,” Phys. Rev. A 94, 013820 (2016).
[Crossref]

Hahn, E. L.

E. L. Hahn, N. S. Shiren, and S. L. McCall, “Application of the area theorem to phonon echoes,” Phys. Lett. A 37, 265 – 267 (1971).
[Crossref]

S. L. McCall and E. L. Hahn, “Self-induced transparency,” Phys. Rev. 183, 457–485 (1969).
[Crossref]

E. L. Hahn, “Spin echoes,” Phys. Rev. 80, 580–594 (1950).
[Crossref]

Hammerer, K.

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
[Crossref]

Hänsch, T. W.

B. Casabone, J. Benedikter, T. Hümmer, F. Oehl, K. de Oliveira Lima, T. W. Hänsch, A. Ferrier, P. Goldner, H. de Riedmatten, and D. Hunger, “Cavity-enhanced spectroscopy of a few-ion ensemble in Eu3+:y2O3,” New J. Phys. 20, 095006 (2018).
[Crossref]

Hartmann, S.

R. Friedberg and S. Hartmann, “Superradiant damping and absorption,” Phys. Lett. A 37, 285 – 286 (1971).
[Crossref]

Hartmann, S. R.

N. A. Kurnit, I. D. Abella, and S. R. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett. 13, 567–568 (1964).
[Crossref]

Hedges, M. P.

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[Crossref] [PubMed]

Heer, C. V.

C. V. Heer and P. F. McManamon, “Wavefront correction with photon echoes,” Opt. Commun. 23, 49 – 50 (1977).
[Crossref]

Heshami, K.

K. Heshami, D. G. England, P. C. Humphreys, P. J. Bustard, V. M. Acosta, J. Nunn, and B. J. Sussman, “Quantum memories: emerging applications and recent advances,” J. Mod. Opt. 63, 2005–2028 (2016).
[Crossref] [PubMed]

Hétet, G.

T. Chanelière, G. Hétet, and N. Sangouard, “Chapter two - quantum optical memory protocols in atomic ensembles,” (Academic Press, 2018), pp. 77 – 150.

Hosseini, M.

M. Hosseini, B. Sparkes, G. Campbell, P. Lam, and B. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref] [PubMed]

M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7, 794 (2011).
[Crossref]

Hu, C. Y.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Huang, J.

J. Huang, J. M. Zhang, A. Lezama, and T. W. Mossberg, “Excess dephasing in photon-echo experiments arising from excitation-induced electronic level shifts,” Phys. Rev. Lett. 63, 78–81 (1989).
[Crossref] [PubMed]

Hümmer, T.

B. Casabone, J. Benedikter, T. Hümmer, F. Oehl, K. de Oliveira Lima, T. W. Hänsch, A. Ferrier, P. Goldner, H. de Riedmatten, and D. Hunger, “Cavity-enhanced spectroscopy of a few-ion ensemble in Eu3+:y2O3,” New J. Phys. 20, 095006 (2018).
[Crossref]

Humphreys, P. C.

K. Heshami, D. G. England, P. C. Humphreys, P. J. Bustard, V. M. Acosta, J. Nunn, and B. J. Sussman, “Quantum memories: emerging applications and recent advances,” J. Mod. Opt. 63, 2005–2028 (2016).
[Crossref] [PubMed]

Hunger, D.

B. Casabone, J. Benedikter, T. Hümmer, F. Oehl, K. de Oliveira Lima, T. W. Hänsch, A. Ferrier, P. Goldner, H. de Riedmatten, and D. Hunger, “Cavity-enhanced spectroscopy of a few-ion ensemble in Eu3+:y2O3,” New J. Phys. 20, 095006 (2018).
[Crossref]

Jelezko, F.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Kindem, J. M.

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Optically addressing single rare-earth ions in a nanophotonic cavity,” Phys. Rev. Lett. 121, 183603 (2018).
[Crossref] [PubMed]

Konturov, S. V.

S. V. Konturov, V. S. Lobkov, K. M. Salikhov, V. V. Samartsev, G. M. Safiullin, and V. A. Zuikov, “Femtosecond photon echo in dye-doped polymer film at liquid nitrogen temperature,” Laser Phys. Lett. 2, 21–24 (2005).
[Crossref]

Kopvillem, U. K.

U. K. Kopvillem and V. R. Nagibarov, “Luminous echo of paramagnetic crystals,” Fiz. Metal. i Metalloved. 15, 313–315 (1963).

Kozlov, V. V.

J. H. Eberly and V. V. Kozlov, “Wave equation for dark coherence in three-level media,” Phys. Rev. Lett. 88, 243604 (2002).
[Crossref] [PubMed]

Kröll, S.

M. Sabooni, Q. Li, S. Kröll, and L. Rippe, “Efficient quantum memory using a weakly absorbing sample,” Phys. Rev. Lett. 110, 133604 (2013).
[Crossref] [PubMed]

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

W. Tittel, M. Afzelius, T. Chanelière, R. Cone, S. Kröll, S. Moiseev, and M. Sellars, “Photon-echo quantum memory in solid state systems,” Laser & Photonics Rev. 4, 244–267 (2009).
[Crossref]

S. A. Moiseev and S. Kröll, “Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a doppler-broadened transition,” Phys. Rev. Lett. 87, 173601 (2001).
[Crossref] [PubMed]

Kumarakrishnan, A.

Kurnit, N. A.

N. A. Kurnit, I. D. Abella, and S. R. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett. 13, 567–568 (1964).
[Crossref]

Lam, P.

M. Hosseini, B. Sparkes, G. Campbell, P. Lam, and B. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref] [PubMed]

Lam, P. K.

M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7, 794 (2011).
[Crossref]

Lamb, G. L.

G. L. Lamb, “Analytical descriptions of ultrashort optical pulse propagation in a resonant medium,” Rev. Mod. Phys. 43, 99–124 (1971).
[Crossref]

Lauro, R.

T. Chanelière, M. Bonarota, V. Damon, R. Lauro, J. Ruggiero, I. Lorgeré, and J.-L. L. Gouët, “Light storage protocols in Tm:YAG,” J. Lumin. 130, 1572–1578 (2010).

Le Gouët, J.-L.

J. Ruggiero, T. Chanelière, and J.-L. Le Gouët, “Coherent response to optical excitation in a strongly absorbing rare-earth ion-doped crystal,” J. Opt. Soc. Am. B 27, 32–37 (2010).
[Crossref]

J. Ruggiero, J.-L. Le Gouët, C. Simon, and T. Chanelière, “Why the two-pulse photon echo is not a good quantum memory protocol,” Phys. Rev. A 79, 053851 (2009).
[Crossref]

Lezama, A.

J. Huang, J. M. Zhang, A. Lezama, and T. W. Mossberg, “Excess dephasing in photon-echo experiments arising from excitation-induced electronic level shifts,” Phys. Rev. Lett. 63, 78–81 (1989).
[Crossref] [PubMed]

Li, C.

X.-y. Yu, W. Liu, and C. Li, “Near-resonant propagation of short pulses in a two-level medium,” Phys. Rev. A 84, 033811 (2011).
[Crossref]

Li, Q.

M. Sabooni, Q. Li, S. Kröll, and L. Rippe, “Efficient quantum memory using a weakly absorbing sample,” Phys. Rev. Lett. 110, 133604 (2013).
[Crossref] [PubMed]

Li, Y.

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[Crossref] [PubMed]

Liu, G. K.

G. K. Liu and R. L. Cone, “Laser-induced instantaneous spectral diffusion in Tb3+ compounds as observed in photon-echo experiments,” Phys. Rev. B 41, 6193–6200 (1990).
[Crossref]

Liu, W.

X.-y. Yu, W. Liu, and C. Li, “Near-resonant propagation of short pulses in a two-level medium,” Phys. Rev. A 84, 033811 (2011).
[Crossref]

Lobkov, V. S.

S. V. Konturov, V. S. Lobkov, K. M. Salikhov, V. V. Samartsev, G. M. Safiullin, and V. A. Zuikov, “Femtosecond photon echo in dye-doped polymer film at liquid nitrogen temperature,” Laser Phys. Lett. 2, 21–24 (2005).
[Crossref]

E. I. Shtyrkov, V. S. Lobkov, S. A. Moiseev, and N. G. Yarmukhametov, “Characteristics of reversed photon echo resulting from nonsimultaneous four-wave interaction in ruby,” Zh. Eksp. Teor. Fiz. 81, 1041–1046 (1981).

Longdell, J. J.

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[Crossref] [PubMed]

Lorgeré, I.

T. Chanelière, M. Bonarota, V. Damon, R. Lauro, J. Ruggiero, I. Lorgeré, and J.-L. L. Gouët, “Light storage protocols in Tm:YAG,” J. Lumin. 130, 1572–1578 (2010).

Louchet-Chauvet, A.

K. Gerasimov, M. Minnegaliev, S. Moiseev, R. Urmancheev, T. Chanelière, and A. Louchet-Chauvet, “Quantum memory in an orthogonal geometry of silenced echo retrieval,” Opt. Spectrosc. (English translation of Optika i Spektroskopiya) 123, 211–216 (2017).

V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, and J.-L. L. Gouët, “Revival of silenced echo and quantum memory for light,” New J. Phys. 13, 093031 (2011).
[Crossref]

Lvovsky, A. I.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

Macfarlane, R. M.

C. W. Thiel, R. M. Macfarlane, Y. Sun, T. Böttger, N. Sinclair, W. Tittel, and R. L. Cone, “Measuring and analyzing excitation-induced decoherence in rare-earth-doped optical materials,” Laser Phys. 24, 106002 (2014).
[Crossref]

Marsili, F.

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Optically addressing single rare-earth ions in a nanophotonic cavity,” Phys. Rev. Lett. 121, 183603 (2018).
[Crossref] [PubMed]

McCall, S. L.

E. L. Hahn, N. S. Shiren, and S. L. McCall, “Application of the area theorem to phonon echoes,” Phys. Lett. A 37, 265 – 267 (1971).
[Crossref]

S. L. McCall and E. L. Hahn, “Self-induced transparency,” Phys. Rev. 183, 457–485 (1969).
[Crossref]

McManamon, P. F.

C. V. Heer and P. F. McManamon, “Wavefront correction with photon echoes,” Opt. Commun. 23, 49 – 50 (1977).
[Crossref]

Minnegaliev, M.

K. Gerasimov, M. Minnegaliev, S. Moiseev, R. Urmancheev, T. Chanelière, and A. Louchet-Chauvet, “Quantum memory in an orthogonal geometry of silenced echo retrieval,” Opt. Spectrosc. (English translation of Optika i Spektroskopiya) 123, 211–216 (2017).

Moiseev, S.

K. Gerasimov, M. Minnegaliev, S. Moiseev, R. Urmancheev, T. Chanelière, and A. Louchet-Chauvet, “Quantum memory in an orthogonal geometry of silenced echo retrieval,” Opt. Spectrosc. (English translation of Optika i Spektroskopiya) 123, 211–216 (2017).

W. Tittel, M. Afzelius, T. Chanelière, R. Cone, S. Kröll, S. Moiseev, and M. Sellars, “Photon-echo quantum memory in solid state systems,” Laser & Photonics Rev. 4, 244–267 (2009).
[Crossref]

Moiseev, S. A.

S. A. Moiseev, “Quantum memory for intense light fields in the photon echo technique,” Izv. Ross. Akad. Nauk, Ser. Fiz. 68, 1260–1264 (2004).

S. A. Moiseev and S. Kröll, “Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a doppler-broadened transition,” Phys. Rev. Lett. 87, 173601 (2001).
[Crossref] [PubMed]

S. A. Moiseev, “Some general nonlinear properties of photon-echo radiation in optically dense media,” Opt. Spectrosc. (English translation of Optika i Spektroskopiya) 62, 180–185 (1987).

E. I. Shtyrkov, V. S. Lobkov, S. A. Moiseev, and N. G. Yarmukhametov, “Characteristics of reversed photon echo resulting from nonsimultaneous four-wave interaction in ruby,” Zh. Eksp. Teor. Fiz. 81, 1041–1046 (1981).

Morita, N.

N. Morita and T. Yajima, “Ultrahigh-time-resolution coherent transient spectroscopy with incoherent light,” Phys. Rev. A 30, 2525–2536 (1984).
[Crossref]

Mossberg, T.

T. Wang, C. Greiner, and T. Mossberg, “Photon echo signals: beyond unit efficiency,” Opt. Commun. 153, 309–313 (1998).
[Crossref]

Mossberg, T. W.

T. Wang, C. Greiner, J. R. Bochinski, and T. W. Mossberg, “Experimental study of photon-echo size in optically thick media,” Phys. Rev. A 60, R757–R760 (1999).
[Crossref]

J. Huang, J. M. Zhang, A. Lezama, and T. W. Mossberg, “Excess dephasing in photon-echo experiments arising from excitation-induced electronic level shifts,” Phys. Rev. Lett. 63, 78–81 (1989).
[Crossref] [PubMed]

N. W. Carlson, L. J. Rothberg, A. G. Yodh, W. R. Babbitt, and T. W. Mossberg, “Storage and time reversal of light pulses using photon echoes,” Opt. Lett. 8, 483–485 (1983).
[Crossref] [PubMed]

T. W. Mossberg, “Time-domain frequency-selective optical data storage,” Opt. Lett. 7, 77–79 (1982).
[Crossref] [PubMed]

Mukamel, S.

K. E. Dorfman, F. Schlawin, and S. Mukamel, “Nonlinear optical signals and spectroscopy with quantum light,” Rev. Mod. Phys. 88, 045008 (2016).
[Crossref]

Müller, J. H.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Nagibarov, V. R.

U. K. Kopvillem and V. R. Nagibarov, “Luminous echo of paramagnetic crystals,” Fiz. Metal. i Metalloved. 15, 313–315 (1963).

Nam, S. W.

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Optically addressing single rare-earth ions in a nanophotonic cavity,” Phys. Rev. Lett. 121, 183603 (2018).
[Crossref] [PubMed]

Nascimbène, S.

L. Corman, J. L. Ville, R. Saint-Jalm, M. Aidelsburger, T. Bienaimé, S. Nascimbène, J. Dalibard, and J. Beugnon, “Transmission of near-resonant light through a dense slab of cold atoms,” Phys. Rev. A 96, 053629 (2017).
[Crossref]

Nibbering, E. T. J.

E. T. J. Nibbering, D. A. Wiersma, and K. Duppen, “Femtosecond non-markovian optical dynamics in solution,” Phys. Rev. Lett. 66, 2464–2467 (1991).
[Crossref] [PubMed]

Nunn, J.

K. Heshami, D. G. England, P. C. Humphreys, P. J. Bustard, V. M. Acosta, J. Nunn, and B. J. Sussman, “Quantum memories: emerging applications and recent advances,” J. Mod. Opt. 63, 2005–2028 (2016).
[Crossref] [PubMed]

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

O’Brien, C.

G. Shchedrin, C. O’Brien, Y. Rostovtsev, and M. O. Scully, “Analytic solution and pulse area theorem for three-level atoms,” Phys. Rev. A 92, 063815 (2015).
[Crossref]

Oehl, F.

B. Casabone, J. Benedikter, T. Hümmer, F. Oehl, K. de Oliveira Lima, T. W. Hänsch, A. Ferrier, P. Goldner, H. de Riedmatten, and D. Hunger, “Cavity-enhanced spectroscopy of a few-ion ensemble in Eu3+:y2O3,” New J. Phys. 20, 095006 (2018).
[Crossref]

Phenicie, C. M.

A. M. Dibos, M. Raha, C. M. Phenicie, and J. D. Thompson, “Atomic source of single photons in the telecom band,” Phys. Rev. Lett. 120, 243601 (2018).
[Crossref] [PubMed]

Polzik, E. S.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
[Crossref]

Pshenichnikov, M. S.

M. S. Pshenichnikov, K. Duppen, and D. A. Wiersma, “Time-resolved femtosecond photon echo probes bimodal solvent dynamics,” Phys. Rev. Lett. 74, 674–677 (1995).
[Crossref] [PubMed]

Raha, M.

A. M. Dibos, M. Raha, C. M. Phenicie, and J. D. Thompson, “Atomic source of single photons in the telecom band,” Phys. Rev. Lett. 120, 243601 (2018).
[Crossref] [PubMed]

Ramsey, N. F.

N. F. Ramsey, “A molecular beam resonance method with separated oscillating fields,” Phys. Rev. 78, 695–699 (1950).
[Crossref]

Randall Babbitt, W.

T. Chang, M. Tian, and W. Randall Babbitt, “Numerical modeling of optical coherent transient processes with complex configurations - I. Angled beam geometry,” J. Lumin. 107, 129–137 (2004).
[Crossref]

T. Chang, M. Tian, Z. W. Barber, and W. Randall Babbitt, “Numerical modeling of optical coherent transient processes with complex configurations-II. Angled beams with arbitrary phase modulations,” J. Lumin. 107, 138–145 (2004).
[Crossref]

Rarity, J. G.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Rippe, L.

M. Sabooni, Q. Li, S. Kröll, and L. Rippe, “Efficient quantum memory using a weakly absorbing sample,” Phys. Rev. Lett. 110, 133604 (2013).
[Crossref] [PubMed]

Rochman, J.

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Optically addressing single rare-earth ions in a nanophotonic cavity,” Phys. Rev. Lett. 121, 183603 (2018).
[Crossref] [PubMed]

Rosenfeld, W.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Rostovtsev, Y.

G. Shchedrin, C. O’Brien, Y. Rostovtsev, and M. O. Scully, “Analytic solution and pulse area theorem for three-level atoms,” Phys. Rev. A 92, 063815 (2015).
[Crossref]

Y. Rostovtsev, Z. Sariyianni, and M. Scully, “Photon echo pulse shape storage,” Laser physics 12, 1148–1154 (2002).

Rotberg, E. A.

Rothberg, L. J.

Ruggiero, J.

J. Ruggiero, T. Chanelière, and J.-L. Le Gouët, “Coherent response to optical excitation in a strongly absorbing rare-earth ion-doped crystal,” J. Opt. Soc. Am. B 27, 32–37 (2010).
[Crossref]

T. Chanelière, M. Bonarota, V. Damon, R. Lauro, J. Ruggiero, I. Lorgeré, and J.-L. L. Gouët, “Light storage protocols in Tm:YAG,” J. Lumin. 130, 1572–1578 (2010).

J. Ruggiero, J.-L. Le Gouët, C. Simon, and T. Chanelière, “Why the two-pulse photon echo is not a good quantum memory protocol,” Phys. Rev. A 79, 053851 (2009).
[Crossref]

Sabooni, M.

M. Sabooni, Q. Li, S. Kröll, and L. Rippe, “Efficient quantum memory using a weakly absorbing sample,” Phys. Rev. Lett. 110, 133604 (2013).
[Crossref] [PubMed]

Safiullin, G. M.

S. V. Konturov, V. S. Lobkov, K. M. Salikhov, V. V. Samartsev, G. M. Safiullin, and V. A. Zuikov, “Femtosecond photon echo in dye-doped polymer film at liquid nitrogen temperature,” Laser Phys. Lett. 2, 21–24 (2005).
[Crossref]

Saint-Jalm, R.

L. Corman, J. L. Ville, R. Saint-Jalm, M. Aidelsburger, T. Bienaimé, S. Nascimbène, J. Dalibard, and J. Beugnon, “Transmission of near-resonant light through a dense slab of cold atoms,” Phys. Rev. A 96, 053629 (2017).
[Crossref]

Salikhov, K. M.

S. V. Konturov, V. S. Lobkov, K. M. Salikhov, V. V. Samartsev, G. M. Safiullin, and V. A. Zuikov, “Femtosecond photon echo in dye-doped polymer film at liquid nitrogen temperature,” Laser Phys. Lett. 2, 21–24 (2005).
[Crossref]

Samartsev, V. V.

S. V. Konturov, V. S. Lobkov, K. M. Salikhov, V. V. Samartsev, G. M. Safiullin, and V. A. Zuikov, “Femtosecond photon echo in dye-doped polymer film at liquid nitrogen temperature,” Laser Phys. Lett. 2, 21–24 (2005).
[Crossref]

E. I. Shtyrkov and V. V. Samartsev, “Imaging properties of dynamic echo-holograms in resonant media,” Optika i Spektroskopiia 40, 392–393 (1976).

Sanders, B. C.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

Sangouard, N.

T. Chanelière, G. Hétet, and N. Sangouard, “Chapter two - quantum optical memory protocols in atomic ensembles,” (Academic Press, 2018), pp. 77 – 150.

Sariyianni, Z.

Y. Rostovtsev, Z. Sariyianni, and M. Scully, “Photon echo pulse shape storage,” Laser physics 12, 1148–1154 (2002).

Schlawin, F.

K. E. Dorfman, F. Schlawin, and S. Mukamel, “Nonlinear optical signals and spectroscopy with quantum light,” Rev. Mod. Phys. 88, 045008 (2016).
[Crossref]

Scully, M.

Y. Rostovtsev, Z. Sariyianni, and M. Scully, “Photon echo pulse shape storage,” Laser physics 12, 1148–1154 (2002).

Scully, M. O.

G. Shchedrin, C. O’Brien, Y. Rostovtsev, and M. O. Scully, “Analytic solution and pulse area theorem for three-level atoms,” Phys. Rev. A 92, 063815 (2015).
[Crossref]

Sellars, M.

W. Tittel, M. Afzelius, T. Chanelière, R. Cone, S. Kröll, S. Moiseev, and M. Sellars, “Photon-echo quantum memory in solid state systems,” Laser & Photonics Rev. 4, 244–267 (2009).
[Crossref]

Sellars, M. J.

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[Crossref] [PubMed]

Shank, C. V.

P. C. Becker, H. L. Fragnito, J. Y. Bigot, C. H. Brito Cruz, R. L. Fork, and C. V. Shank, “Femtosecond photon echoes from molecules in solution,” Phys. Rev. Lett. 63, 505–507 (1989).
[Crossref] [PubMed]

Shaw, M. D.

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Optically addressing single rare-earth ions in a nanophotonic cavity,” Phys. Rev. Lett. 121, 183603 (2018).
[Crossref] [PubMed]

Shchedrin, G.

G. Shchedrin, C. O’Brien, Y. Rostovtsev, and M. O. Scully, “Analytic solution and pulse area theorem for three-level atoms,” Phys. Rev. A 92, 063815 (2015).
[Crossref]

Shields, A. J.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Shiren, N. S.

N. S. Shiren, “Generation of time-reversed optical wave fronts by backward-wave photon echoes,” Appl. Phys. Lett. 33, 299–300 (1978).
[Crossref]

E. L. Hahn, N. S. Shiren, and S. L. McCall, “Application of the area theorem to phonon echoes,” Phys. Lett. A 37, 265 – 267 (1971).
[Crossref]

Shtyrkov, E. I.

E. I. Shtyrkov, V. S. Lobkov, S. A. Moiseev, and N. G. Yarmukhametov, “Characteristics of reversed photon echo resulting from nonsimultaneous four-wave interaction in ruby,” Zh. Eksp. Teor. Fiz. 81, 1041–1046 (1981).

E. I. Shtyrkov and V. V. Samartsev, “Imaging properties of dynamic echo-holograms in resonant media,” Optika i Spektroskopiia 40, 392–393 (1976).

Siegman, A. E.

A. E. Siegman, “Unstable optical resonators for laser applications,” Proc. IEEE 53, 277–287 (1965).
[Crossref]

Simon, C.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

J. Ruggiero, J.-L. Le Gouët, C. Simon, and T. Chanelière, “Why the two-pulse photon echo is not a good quantum memory protocol,” Phys. Rev. A 79, 053851 (2009).
[Crossref]

Sinclair, N.

C. W. Thiel, R. M. Macfarlane, Y. Sun, T. Böttger, N. Sinclair, W. Tittel, and R. L. Cone, “Measuring and analyzing excitation-induced decoherence in rare-earth-doped optical materials,” Laser Phys. 24, 106002 (2014).
[Crossref]

Sjaarda Cornish, C.

M. Azadeh, C. Sjaarda Cornish, W. R. Babbitt, and L. Tsang, “Efficient photon echoes in optically thick media,” Phys. Rev. A 57, 4662–4668 (1998).
[Crossref]

Sköld, N.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Sørensen, A. S.

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
[Crossref]

Sparkes, B.

M. Hosseini, B. Sparkes, G. Campbell, P. Lam, and B. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref] [PubMed]

Sparkes, B. M.

M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7, 794 (2011).
[Crossref]

Stevenson, R. M.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Sun, Y.

C. W. Thiel, R. M. Macfarlane, Y. Sun, T. Böttger, N. Sinclair, W. Tittel, and R. L. Cone, “Measuring and analyzing excitation-induced decoherence in rare-earth-doped optical materials,” Laser Phys. 24, 106002 (2014).
[Crossref]

Sussman, B. J.

K. Heshami, D. G. England, P. C. Humphreys, P. J. Bustard, V. M. Acosta, J. Nunn, and B. J. Sussman, “Quantum memories: emerging applications and recent advances,” J. Mod. Opt. 63, 2005–2028 (2016).
[Crossref] [PubMed]

Thew, R.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Thiel, C. W.

C. W. Thiel, R. M. Macfarlane, Y. Sun, T. Böttger, N. Sinclair, W. Tittel, and R. L. Cone, “Measuring and analyzing excitation-induced decoherence in rare-earth-doped optical materials,” Laser Phys. 24, 106002 (2014).
[Crossref]

Thompson, J. D.

A. M. Dibos, M. Raha, C. M. Phenicie, and J. D. Thompson, “Atomic source of single photons in the telecom band,” Phys. Rev. Lett. 120, 243601 (2018).
[Crossref] [PubMed]

Tian, M.

T. Chang and M. Tian, “Numerical modeling of optical coherent transient processes with complex configurations-III: Noisy laser source,” J. Lumin. 127, 76–82 (2007).
[Crossref]

T. Chang, M. Tian, Z. W. Barber, and W. Randall Babbitt, “Numerical modeling of optical coherent transient processes with complex configurations-II. Angled beams with arbitrary phase modulations,” J. Lumin. 107, 138–145 (2004).
[Crossref]

T. Chang, M. Tian, and W. Randall Babbitt, “Numerical modeling of optical coherent transient processes with complex configurations - I. Angled beam geometry,” J. Lumin. 107, 129–137 (2004).
[Crossref]

Tittel, W.

C. W. Thiel, R. M. Macfarlane, Y. Sun, T. Böttger, N. Sinclair, W. Tittel, and R. L. Cone, “Measuring and analyzing excitation-induced decoherence in rare-earth-doped optical materials,” Laser Phys. 24, 106002 (2014).
[Crossref]

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

W. Tittel, M. Afzelius, T. Chanelière, R. Cone, S. Kröll, S. Moiseev, and M. Sellars, “Photon-echo quantum memory in solid state systems,” Laser & Photonics Rev. 4, 244–267 (2009).
[Crossref]

Tsang, L.

C. S. Cornish, W. Babbitt, and L. Tsang, “Demonstration of highly efficient photon echoes,” Opt. letters 25, 1276–1278 (2000).
[Crossref]

M. Azadeh, C. Sjaarda Cornish, W. R. Babbitt, and L. Tsang, “Efficient photon echoes in optically thick media,” Phys. Rev. A 57, 4662–4668 (1998).
[Crossref]

Urmancheev, R.

K. Gerasimov, M. Minnegaliev, S. Moiseev, R. Urmancheev, T. Chanelière, and A. Louchet-Chauvet, “Quantum memory in an orthogonal geometry of silenced echo retrieval,” Opt. Spectrosc. (English translation of Optika i Spektroskopiya) 123, 211–216 (2017).

Verma, V.

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Optically addressing single rare-earth ions in a nanophotonic cavity,” Phys. Rev. Lett. 121, 183603 (2018).
[Crossref] [PubMed]

Ville, J. L.

L. Corman, J. L. Ville, R. Saint-Jalm, M. Aidelsburger, T. Bienaimé, S. Nascimbène, J. Dalibard, and J. Beugnon, “Transmission of near-resonant light through a dense slab of cold atoms,” Phys. Rev. A 96, 053629 (2017).
[Crossref]

Walmsley, I. A.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Wang, T.

T. Wang, C. Greiner, J. R. Bochinski, and T. W. Mossberg, “Experimental study of photon-echo size in optically thick media,” Phys. Rev. A 60, R757–R760 (1999).
[Crossref]

T. Wang, C. Greiner, and T. Mossberg, “Photon echo signals: beyond unit efficiency,” Opt. Commun. 153, 309–313 (1998).
[Crossref]

Weber, M. C.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Weel, M.

Weinfurter, H.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Wiersma, D. A.

M. S. Pshenichnikov, K. Duppen, and D. A. Wiersma, “Time-resolved femtosecond photon echo probes bimodal solvent dynamics,” Phys. Rev. Lett. 74, 674–677 (1995).
[Crossref] [PubMed]

E. T. J. Nibbering, D. A. Wiersma, and K. Duppen, “Femtosecond non-markovian optical dynamics in solution,” Phys. Rev. Lett. 66, 2464–2467 (1991).
[Crossref] [PubMed]

Wrachtrup, J.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Yajima, T.

N. Morita and T. Yajima, “Ultrahigh-time-resolution coherent transient spectroscopy with incoherent light,” Phys. Rev. A 30, 2525–2536 (1984).
[Crossref]

Yarmukhametov, N. G.

E. I. Shtyrkov, V. S. Lobkov, S. A. Moiseev, and N. G. Yarmukhametov, “Characteristics of reversed photon echo resulting from nonsimultaneous four-wave interaction in ruby,” Zh. Eksp. Teor. Fiz. 81, 1041–1046 (1981).

Yelin, S. F.

M. Fleischhauer and S. F. Yelin, “Radiative atom-atom interactions in optically dense media: Quantum corrections to the lorentz-lorenz formula,” Phys. Rev. A 59, 2427–2441 (1999).
[Crossref]

Yodh, A. G.

Young, R. J.

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Yu, X.-y.

X.-y. Yu, W. Liu, and C. Li, “Near-resonant propagation of short pulses in a two-level medium,” Phys. Rev. A 84, 033811 (2011).
[Crossref]

Zhang, J. M.

J. Huang, J. M. Zhang, A. Lezama, and T. W. Mossberg, “Excess dephasing in photon-echo experiments arising from excitation-induced electronic level shifts,” Phys. Rev. Lett. 63, 78–81 (1989).
[Crossref] [PubMed]

Zhong, T.

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Optically addressing single rare-earth ions in a nanophotonic cavity,” Phys. Rev. Lett. 121, 183603 (2018).
[Crossref] [PubMed]

Zuikov, V. A.

S. V. Konturov, V. S. Lobkov, K. M. Salikhov, V. V. Samartsev, G. M. Safiullin, and V. A. Zuikov, “Femtosecond photon echo in dye-doped polymer film at liquid nitrogen temperature,” Laser Phys. Lett. 2, 21–24 (2005).
[Crossref]

Appl. Phys. Lett. (1)

N. S. Shiren, “Generation of time-reversed optical wave fronts by backward-wave photon echoes,” Appl. Phys. Lett. 33, 299–300 (1978).
[Crossref]

Eur. Phys. J. D (1)

C. Simon, M. Afzelius, J. Appel, A. Boyer De La Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Fiz. Metal. i Metalloved. (1)

U. K. Kopvillem and V. R. Nagibarov, “Luminous echo of paramagnetic crystals,” Fiz. Metal. i Metalloved. 15, 313–315 (1963).

Izv. Ross. Akad. Nauk, Ser. Fiz. (1)

S. A. Moiseev, “Quantum memory for intense light fields in the photon echo technique,” Izv. Ross. Akad. Nauk, Ser. Fiz. 68, 1260–1264 (2004).

J. Lumin. (4)

T. Chang, M. Tian, and W. Randall Babbitt, “Numerical modeling of optical coherent transient processes with complex configurations - I. Angled beam geometry,” J. Lumin. 107, 129–137 (2004).
[Crossref]

T. Chang, M. Tian, Z. W. Barber, and W. Randall Babbitt, “Numerical modeling of optical coherent transient processes with complex configurations-II. Angled beams with arbitrary phase modulations,” J. Lumin. 107, 138–145 (2004).
[Crossref]

T. Chang and M. Tian, “Numerical modeling of optical coherent transient processes with complex configurations-III: Noisy laser source,” J. Lumin. 127, 76–82 (2007).
[Crossref]

T. Chanelière, M. Bonarota, V. Damon, R. Lauro, J. Ruggiero, I. Lorgeré, and J.-L. L. Gouët, “Light storage protocols in Tm:YAG,” J. Lumin. 130, 1572–1578 (2010).

J. Mod. Opt. (1)

K. Heshami, D. G. England, P. C. Humphreys, P. J. Bustard, V. M. Acosta, J. Nunn, and B. J. Sussman, “Quantum memories: emerging applications and recent advances,” J. Mod. Opt. 63, 2005–2028 (2016).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (2)

JETP Lett. (1)

A. M. Basharov, ““Trapping” of the radiation of an excited particle by its stark interaction with the nonresonant levels of surrounding particles,” JETP Lett. 107, 143–150 (2018).
[Crossref]

Laser & Photonics Rev. (1)

W. Tittel, M. Afzelius, T. Chanelière, R. Cone, S. Kröll, S. Moiseev, and M. Sellars, “Photon-echo quantum memory in solid state systems,” Laser & Photonics Rev. 4, 244–267 (2009).
[Crossref]

Laser Phys. (1)

C. W. Thiel, R. M. Macfarlane, Y. Sun, T. Böttger, N. Sinclair, W. Tittel, and R. L. Cone, “Measuring and analyzing excitation-induced decoherence in rare-earth-doped optical materials,” Laser Phys. 24, 106002 (2014).
[Crossref]

Laser Phys. Lett. (1)

S. V. Konturov, V. S. Lobkov, K. M. Salikhov, V. V. Samartsev, G. M. Safiullin, and V. A. Zuikov, “Femtosecond photon echo in dye-doped polymer film at liquid nitrogen temperature,” Laser Phys. Lett. 2, 21–24 (2005).
[Crossref]

Laser physics (1)

Y. Rostovtsev, Z. Sariyianni, and M. Scully, “Photon echo pulse shape storage,” Laser physics 12, 1148–1154 (2002).

Nat. Commun. (1)

M. Hosseini, B. Sparkes, G. Campbell, P. Lam, and B. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

Nat. Phys. (1)

M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7, 794 (2011).
[Crossref]

Nature (1)

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[Crossref] [PubMed]

New J. Phys. (3)

V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, and J.-L. L. Gouët, “Revival of silenced echo and quantum memory for light,” New J. Phys. 13, 093031 (2011).
[Crossref]

M. Bonarota, J.-L. L. Gouët, and T. Chanelière, “Highly multimode storage in a crystal,” New J. Phys. 13, 013013 (2011).
[Crossref]

B. Casabone, J. Benedikter, T. Hümmer, F. Oehl, K. de Oliveira Lima, T. W. Hänsch, A. Ferrier, P. Goldner, H. de Riedmatten, and D. Hunger, “Cavity-enhanced spectroscopy of a few-ion ensemble in Eu3+:y2O3,” New J. Phys. 20, 095006 (2018).
[Crossref]

Opt. Commun. (3)

J.-C. Delagnes and M. Bouchene, “Beyond the pulse-area theorem: Role of the absorption and the dispersion in the propagation of weak ultrashort resonant pulses,” Opt. Commun. 281, 5824–5829 (2008).
[Crossref]

T. Wang, C. Greiner, and T. Mossberg, “Photon echo signals: beyond unit efficiency,” Opt. Commun. 153, 309–313 (1998).
[Crossref]

C. V. Heer and P. F. McManamon, “Wavefront correction with photon echoes,” Opt. Commun. 23, 49 – 50 (1977).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt. letters (1)

C. S. Cornish, W. Babbitt, and L. Tsang, “Demonstration of highly efficient photon echoes,” Opt. letters 25, 1276–1278 (2000).
[Crossref]

Opt. Spectrosc. (English translation of Optika i Spektroskopiya) (2)

S. A. Moiseev, “Some general nonlinear properties of photon-echo radiation in optically dense media,” Opt. Spectrosc. (English translation of Optika i Spektroskopiya) 62, 180–185 (1987).

K. Gerasimov, M. Minnegaliev, S. Moiseev, R. Urmancheev, T. Chanelière, and A. Louchet-Chauvet, “Quantum memory in an orthogonal geometry of silenced echo retrieval,” Opt. Spectrosc. (English translation of Optika i Spektroskopiya) 123, 211–216 (2017).

Optika i Spektroskopiia (1)

E. I. Shtyrkov and V. V. Samartsev, “Imaging properties of dynamic echo-holograms in resonant media,” Optika i Spektroskopiia 40, 392–393 (1976).

Phys. Lett. A (2)

E. L. Hahn, N. S. Shiren, and S. L. McCall, “Application of the area theorem to phonon echoes,” Phys. Lett. A 37, 265 – 267 (1971).
[Crossref]

R. Friedberg and S. Hartmann, “Superradiant damping and absorption,” Phys. Lett. A 37, 285 – 286 (1971).
[Crossref]

Phys. Rev. (3)

N. F. Ramsey, “A molecular beam resonance method with separated oscillating fields,” Phys. Rev. 78, 695–699 (1950).
[Crossref]

E. L. Hahn, “Spin echoes,” Phys. Rev. 80, 580–594 (1950).
[Crossref]

S. L. McCall and E. L. Hahn, “Self-induced transparency,” Phys. Rev. 183, 457–485 (1969).
[Crossref]

Phys. Rev. A (10)

J. Ruggiero, J.-L. Le Gouët, C. Simon, and T. Chanelière, “Why the two-pulse photon echo is not a good quantum memory protocol,” Phys. Rev. A 79, 053851 (2009).
[Crossref]

X.-y. Yu, W. Liu, and C. Li, “Near-resonant propagation of short pulses in a two-level medium,” Phys. Rev. A 84, 033811 (2011).
[Crossref]

G. Shchedrin, C. O’Brien, Y. Rostovtsev, and M. O. Scully, “Analytic solution and pulse area theorem for three-level atoms,” Phys. Rev. A 92, 063815 (2015).
[Crossref]

R. Gutiérrez-Cuevas and J. H. Eberly, “Vector-soliton storage and three-pulse-area theorem,” Phys. Rev. A 94, 013820 (2016).
[Crossref]

T. Wang, C. Greiner, J. R. Bochinski, and T. W. Mossberg, “Experimental study of photon-echo size in optically thick media,” Phys. Rev. A 60, R757–R760 (1999).
[Crossref]

N. Morita and T. Yajima, “Ultrahigh-time-resolution coherent transient spectroscopy with incoherent light,” Phys. Rev. A 30, 2525–2536 (1984).
[Crossref]

M. Fleischhauer and S. F. Yelin, “Radiative atom-atom interactions in optically dense media: Quantum corrections to the lorentz-lorenz formula,” Phys. Rev. A 59, 2427–2441 (1999).
[Crossref]

L. Corman, J. L. Ville, R. Saint-Jalm, M. Aidelsburger, T. Bienaimé, S. Nascimbène, J. Dalibard, and J. Beugnon, “Transmission of near-resonant light through a dense slab of cold atoms,” Phys. Rev. A 96, 053629 (2017).
[Crossref]

A. M. Basharov, “Stark interaction of identical particles with the vacuum electromagnetic field as quantum poisson process suppressing collective spontaneous emission,” Phys. Rev. A 84, 013801 (2011).
[Crossref]

M. Azadeh, C. Sjaarda Cornish, W. R. Babbitt, and L. Tsang, “Efficient photon echoes in optically thick media,” Phys. Rev. A 57, 4662–4668 (1998).
[Crossref]

Phys. Rev. B (1)

G. K. Liu and R. L. Cone, “Laser-induced instantaneous spectral diffusion in Tb3+ compounds as observed in photon-echo experiments,” Phys. Rev. B 41, 6193–6200 (1990).
[Crossref]

Phys. Rev. Lett. (10)

A. M. Dibos, M. Raha, C. M. Phenicie, and J. D. Thompson, “Atomic source of single photons in the telecom band,” Phys. Rev. Lett. 120, 243601 (2018).
[Crossref] [PubMed]

J. Huang, J. M. Zhang, A. Lezama, and T. W. Mossberg, “Excess dephasing in photon-echo experiments arising from excitation-induced electronic level shifts,” Phys. Rev. Lett. 63, 78–81 (1989).
[Crossref] [PubMed]

T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, “Optically addressing single rare-earth ions in a nanophotonic cavity,” Phys. Rev. Lett. 121, 183603 (2018).
[Crossref] [PubMed]

P. C. Becker, H. L. Fragnito, J. Y. Bigot, C. H. Brito Cruz, R. L. Fork, and C. V. Shank, “Femtosecond photon echoes from molecules in solution,” Phys. Rev. Lett. 63, 505–507 (1989).
[Crossref] [PubMed]

E. T. J. Nibbering, D. A. Wiersma, and K. Duppen, “Femtosecond non-markovian optical dynamics in solution,” Phys. Rev. Lett. 66, 2464–2467 (1991).
[Crossref] [PubMed]

M. S. Pshenichnikov, K. Duppen, and D. A. Wiersma, “Time-resolved femtosecond photon echo probes bimodal solvent dynamics,” Phys. Rev. Lett. 74, 674–677 (1995).
[Crossref] [PubMed]

N. A. Kurnit, I. D. Abella, and S. R. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett. 13, 567–568 (1964).
[Crossref]

S. A. Moiseev and S. Kröll, “Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a doppler-broadened transition,” Phys. Rev. Lett. 87, 173601 (2001).
[Crossref] [PubMed]

J. H. Eberly and V. V. Kozlov, “Wave equation for dark coherence in three-level media,” Phys. Rev. Lett. 88, 243604 (2002).
[Crossref] [PubMed]

M. Sabooni, Q. Li, S. Kröll, and L. Rippe, “Efficient quantum memory using a weakly absorbing sample,” Phys. Rev. Lett. 110, 133604 (2013).
[Crossref] [PubMed]

Proc. IEEE (1)

A. E. Siegman, “Unstable optical resonators for laser applications,” Proc. IEEE 53, 277–287 (1965).
[Crossref]

Rev. Mod. Phys. (3)

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
[Crossref]

G. L. Lamb, “Analytical descriptions of ultrashort optical pulse propagation in a resonant medium,” Rev. Mod. Phys. 43, 99–124 (1971).
[Crossref]

K. E. Dorfman, F. Schlawin, and S. Mukamel, “Nonlinear optical signals and spectroscopy with quantum light,” Rev. Mod. Phys. 88, 045008 (2016).
[Crossref]

Zh. Eksp. Teor. Fiz. (1)

E. I. Shtyrkov, V. S. Lobkov, S. A. Moiseev, and N. G. Yarmukhametov, “Characteristics of reversed photon echo resulting from nonsimultaneous four-wave interaction in ruby,” Zh. Eksp. Teor. Fiz. 81, 1041–1046 (1981).

Other (2)

T. Chanelière, G. Hétet, and N. Sangouard, “Chapter two - quantum optical memory protocols in atomic ensembles,” (Academic Press, 2018), pp. 77 – 150.

L. Allen and J. Eberly, Optical Resonance and Two-level Atoms, Dover books on physics and chemistry (Dover, 1975).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The classic two pulse echo sequence propagation through the Tm3+ doped crystal. k is the common wave vector of three pulses parallel to the external magnetic field. The first signal pulse is partly absorbed by the medium, the secondpulse triggers the rephasing process which results in the photon echo emission.
Fig. 2
Fig. 2 An area counterpart of the Fig. 2 of [36], plotting the energy efficiency of the echo pulse θ e 2 / θ 1 2 ( 0 ) without relaxation, i.e. T 2 = . The incoming pulses’ areas are θ 1 ( 0 ) = 0.27 π , θ 2 ( 0 ) = π for the solid black curve and θ 1 ( 0 ) = 0.27 π / 2 , θ 2 ( 0 ) = π / 2 for the red dashed curve.
Fig. 3
Fig. 3 3D plot of the photon echo area theorem solution Eq. (6) θ e ( θ 2 ( 0 ) , α L ) for (a) θ 1 ( 0 ) = 0.1 π (weak first pulse case) and (b) θ 1 ( 0 ) = π / 2 as function of the incoming second pulse area θ 2 ( 0 ) (in the units of π) and optical density α L of the medium. The insets in (a) and (b) show the cross sections at α L = 2 (red dashed curve) and α L = 10 (blue solid curve).
Fig. 4
Fig. 4 Scheme of the experimental setup when spatial filtering is used (SF-experiment). Single frequency continuous Ti:Sp laser emits light at 793 nm wavelength (   3H   4 3H   6 transition). The 0.1 at.%Tm   3 +:YAG crystal is placedinside the cryostat at 4K. The incoming pulses are detected before the crystal by a reference detector Thorlabs DET10A and the photon echo is detected by avalanche photodetector Thorlabs APD120A. Acousto-optic modulators AOM1 and AOM2 are driven by an arbitrary waveform generator RIGOL DG5352. The lenses L1-L6 have the following focal lengths (in mm) f 1 = 75 , f 2 = 75 , f 3 = 35 , f 4 = 200 , f 5 = 200 and f 6 = 25.4.
Fig. 5
Fig. 5 Experimental (squares, normalized value A D d t U D ( t ) where U D ( t ) is the detector signal) and theoretical (red line, θ e 2 ( r m ) 1 / 2 from Eq. (14)) dependences of a single pulse area after the resonant medium as a function of the incoming pulse area, corresponding to the McCall-Hahn area theorem.
Fig. 6
Fig. 6 Three experimental (symbols, normalized value A D d t U D ( t ) where U D ( t ) is the detector signal) and the corresponding theoretical (lines, normalized value θ e 2 ( r m ) 1 / 2 from Eq. (14))dependencies of the photon echo pulse signal as a function of the incoming area of the second pulse. Each set corresponds to a different initial area of the first incoming pulse. Black squares and black line correspond to θ 1 ( r = 0 , z = 0 ) = θ 1 ( 0 , 0 ) 0.3 π , red circles and red line to θ 1 ( 0 , 0 ) 0.7 π , blue triangles and blue line to θ 1 ( 0 , 0 ) 1.4 π .
Fig. 7
Fig. 7 Experimental (symbols, normalized value A D U D d t) and theoretical (lines, normalized value θ e 2 ( r m ) 1 / 2 from Eq. (14) with r 0 = 97 μm, r m = 25 μm) dependencies of the primary photon echo signal on the incoming area of the second pulse. Black squares and black solid line correspond to θ 1 ( 0 , 0 ) = 0.25 π, red circles and red dashed line correspond to θ 1 ( 0 , 0 ) = 0.4 π. See text for details.
Fig. 8
Fig. 8 Experimental (squares, normalized A D U D d t ) and theoretical ( θ e 2 ( r m ) 1 / 2 from Eq. (14) with r 0 = 97 μ m, r m = 25 μ m) dependencies of primary photon echo signal on the first incoming pulse area θ 1 0 , 0 with constant θ 2 ( 0 , 0 ) = 1.1 π . See text for details.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

θ 1 ( z ) z = 1 2 α sin  θ 1 ( z ) ,
θ 1 ( z ) = 2 arctan  [ e α z / 2 tan  θ 1 ( 0 ) 2 ] .
θ 2 ( z ) z = 1 2 α cos  θ 1 ( z ) sin  θ 2 ( z ) ,
θ e ( z ) z = 1 2 α [ 2 e 2 τ 12 / T 2 sin  θ 1 ( z ) sin 2 θ 2 ( z ) 2 cos 2 θ e ( z ) 2 cos  θ 1 ( z ) cos  θ 2 ( z ) sin  θ e ( z ) ] ,
θ 2 ( z ) = 2 arctan  [ γ  sech ( β α 2 z ) ] ,
θ e ( z ) = 2 arctan  [ e 2 τ 12 / T 2 sin  θ 1 ( 0 ) sin 2 θ 2 ( z ) 2 sinh  α z 2 ] ,
θ e ( z ) = e 2 τ 12 / T 2 α z sin  θ 1 ( 0 ) sin 2 θ 2 ( 0 ) 2 .
θ e ( z ) = 2 arctan  [ e 2 τ 12 / T 2 sinh  α z 2 ] .
θ e ( z ) = 2 arctan  [ e 2 τ 12 / T 2 θ 1 ( 0 ) sin 2 θ 2 ( z ) 2 sinh  α z 2 ] ,
θ e ( z ) = 2 arctan  [ e 2 τ 12 / T 2 θ 1 ( 0 ) sinh  α z 2 ] .
θ e ( z ) = 2 e 2 τ 12 / T 2 θ 1 ( 0 ) sin 2 θ 2 ( z ) 2 sinh  α z 2 .
θ e ( z ) = 2 arctan  [ e 2 τ 12 / T 2 sin  θ 1 ( 0 ) γ 2 sinh  α z 2 [ γ 2 + cosh 2 ( β α z 2 ) ] ] α z 1 2 arctan  [ 2 exp  ( 2 τ 12 / T 2 + 2 β ) tan 2 [ θ 2 ( 0 ) 2 ] sin  [ θ 1 ( 0 ) ] exp  ( α z 2 ) ] .
θ e ( r , z ) = 2 arctan  [ e 2 τ 12 / T 2 sin  θ 1 ( r , 0 ) sin 2 θ 2 ( r , z ) 2 sinh  α z 2 ] .
θ e 2 ( L ) r m = 2 π S 0 r m r d r | θ e ( r , L ) | 2 ,
( z + c   t ) Ω ( t , z ) = i μ 2 P 12 ( t , z , Δ ) ,
t u ( t , z , Δ ) = Δ v ( t , z , Δ ) γ u ( t , z , Δ ) ,
t v ( t , z , Δ ) = Δ u ( t , z , Δ ) γ v ( t , z , Δ ) Ω ( t , z ) w ( t , z , Δ ) ,
t w ( t , z , Δ ) = Ω ( t , z ) v ( t , z , Δ ) ,
P 12 ( t , z , Δ ) = [ u ( t , z , Δ ) i v ( t , z , Δ ) ] = P 12 ( t 0 , z , Δ ) e ( i Δ + γ ) ( t t 0 ) i t 0 t d t Ω ( t , z ) w ( t , z , Δ ) e ( i Δ + γ ) ( t t ) .
z θ ( z ) = i μ 2 [ t 0 t 0 + τ 12 d t P 12 ( t 0 , z , Δ ) e ( i Δ + γ ) ( t t 0 ) i t 0 t 0 + τ 12 d t t 0 t d t Ω ( t , z ) w ( t , z , Δ ) e ( i Δ + γ ) ( t t ) ]
P 12 ( t 0 , z , Δ ) e ( i Δ + γ ) ( t t 0 ) | e c h o e 2 γ τ 12 P 3 ( t 0 , z , Δ ) e i Δ ( t 2 τ 12 ) ,
w ( t 0 , z , Δ ) w 1 ( t 0 , z , Δ ) .

Metrics