Abstract

We demonstrate a tunable, high order cascaded random Raman fiber laser (RRFL) with high purity at 1.7 µm band by using a high power amplified spontaneous emission source (ASE) with both wavelength and linewidth tunability as pump source. The influence of the spectral bandwidth of the ASE source on the spectral purity of the output at 1.7 µm band is investigated. By adjusting the spectral bandwidth of the ASE source to the optimized 20 nm, output power >14 W with spectral purity up to 98.29% at 1715 nm is achieved. As far as we know, this is the highest spectral purity ever reported for a RRFL at 1.7 µm region. Furthermore, by adjusting the central wavelength of ASE source, the output of the RRFL can be tuned from 1695 to 1725 nm with >10 W output power. What’s more, the spectral purity is above 92% over a tuning range from 1705 to 1725 nm.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High order cascaded Raman random fiber laser with high spectral purity

Jinyan Dong, Lei Zhang, Huawei Jiang, Xuezong Yang, Weiwei Pan, Shuzhen Cui, Xijia Gu, and Yan Feng
Opt. Express 26(5) 5275-5280 (2018)

All-fiberized cascaded random Raman fiber laser with high spectral purity based on filtering feedback

Tianfu Yao, Yizhu Chen, Yang Zhang, Liangjin Huang, Jinyong Leng, Hu Xiao, Jiangming Xu, and Pu Zhou
Appl. Opt. 58(35) 9728-9733 (2019)

High-power, cascaded random Raman fiber laser with near complete conversion over wide wavelength and power tuning

V. Balaswamy, Siddharth Ramachandran, and V. R. Supradeepa
Opt. Express 27(7) 9725-9732 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. Tanaka, M. Hirano, K. Murashima, H. Obi, R. Yamaguchi, and T. Hasegawa, “1.7-µm spectroscopic spectral-domain optical coherence tomography for imaging lipid distribution within blood vessel,” Opt. Express 23(5), 6645–6655 (2015).
    [Crossref]
  2. T. N. Nguyen, K. Kieu, D. Churin, T. Ota, M. Miyawaki, and N. Peyghambarian, “High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 µm,” IEEE Photonics Technol. Lett. 25(19), 1893–1896 (2013).
    [Crossref]
  3. N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
    [Crossref]
  4. P. Chambers, E. Austin, and J. P. Dakin, “Theoretical analysis of a methane gas detection system, using the complementary source modulation method of correlation spectroscopy,” Meas. Sci. Technol. 15(8), 1629–1636 (2004).
    [Crossref]
  5. J. Ono, M. C. Hsu, Y. Honda, A. Maeda, F. Hanafuji, X. Du, H. Mori, T. Nakayama, O. Koyama, T. Endo, and M. Yamada, “Newly developed 1.7 µm band external cavity laser and its application to evaluation of ethanol concentration in distilled spirits,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Pacific Rim (IEEE, 2017), pp. 1–4.
  6. R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in dy:chalcogenide glass fiber laser with efficient output at 4.5µm,” IEEE Photonics Technol. Lett. 20(2), 123–125 (2008).
    [Crossref]
  7. R. S. Quimby and M. Saad, “Dy:fluoroindate Fiber Laser at 4.5 µm with Cascade Lasing,” in Advanced Solid-State Lasers Congress, G. Huber and P. Moulton, eds., OSA Technical Digest (online) (Optical Society of America), paper AM2A.7 (2013).
  8. S. D. Emami, A. Khodaei, S. Gandan, R. Penny, K. Lim, H. A. Abdul-Rashid, and H. Ahmad, “Thulium-doped fiber laser utilizing a photonic crystal fiber-based optical low-pass filter with application in 1.7 µm and 1.8 µm band,” Opt. Express 23(15), 19681–19688 (2015).
    [Crossref]
  9. S. V. Firstov, S. V. Alyshev, K. E. Riumkin, M. A. Melkumov, O. I. Medvedkov, and E. M. Dianov, “Watt-level, continuous-wave bismuth-doped all-fiber laser operating at 1.7 µm,” Opt. Lett. 40(18), 4360–4363 (2015).
    [Crossref]
  10. M. Yamada, K. Senda, T. Tanaka, Y. Maeda, S. Aozasa, H. Ono, K. Ota, O. Koyama, and J. Ono, “Tm3+-Tb3+-doped tunable fibre ring laser for 1700 nm wavelength region,” Electron. Lett. 49(20), 1287–1288 (2013).
    [Crossref]
  11. M. Yamada, H. Ono, K. Ohta, S. Aozasa, T. Tanaka, K. Senda, Y. Maeda, O. Koyama, and J. Ono, “1.7 µm band optical fiber amplifier,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America), paper Tu2D.3 (2014).
  12. H. Zhu, J. Guo, Y. Duan, J. Zhang, Y. Zhang, C. Xu, H. Wang, and D. Fan, “Efficient 1.7  µm light source based on KTA-OPO derived by Nd:YVO4 self-Raman laser,” Opt. Lett. 43(2), 345–348 (2018).
    [Crossref]
  13. P. Zhang, D. Wu, Q. Du, X. Li, K. Han, L. Zhang, T. Wang, and H. Jiang, “1.7  µm band narrow-linewidth tunable Raman fiber lasers pumped by spectrum-sliced amplified spontaneous emission,” Appl. Opt. 56(35), 9742–9748 (2017).
    [Crossref]
  14. H. Chung, W. Liu, Q. Cao, F. X. Kärtner, and G. Chang, “Er-fiber laser enabled, energy scalable femtosecond source tunable from 1.3 to 1.7 µm,” Opt. Express 25(14), 15760–15771 (2017).
    [Crossref]
  15. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
    [Crossref]
  16. Y. Feng, Raman fiber lasers (Springer, 2017).
  17. W. Zhang, S. Li, R. Ma, Y. Rao, Y. Zhu, Z. Wang, X. Jia, and J. Li, “Random distributed feedback fiber laser based on combination of er-doped fiber and single-mode fiber,” IEEE J. Sel. Top. Quantum Electron. 21(1), 44–49 (2015).
    [Crossref]
  18. X. Du, H. Zhang, X. Wang, P. Zhou, and Z. Liu, “Short cavity-length random fiber laser with record power and ultrahigh efficiency,” Opt. Lett. 41(3), 571–574 (2016).
    [Crossref]
  19. H. Zhang, L. Huang, J. Song, H. Wu, P. Zhou, X. Wang, J. Wu, J. Xu, Z. Wang, X. Xu, and Y. Rao, “Quasi-kilowatt random fiber laser,” Opt. Lett. 44(11), 2613–2616 (2019).
    [Crossref]
  20. S. Sugavanam, N. Tarasov, X. Shu, and D. V. Churkin, “Narrow-band generation in random distributed feedback fiber laser,” Opt. Express 21(14), 16466–16472 (2013).
    [Crossref]
  21. J. Ye, J. Xu, H. Zhang, and P. Zhou, “Powerful narrow linewidth random fiber laser,” Photonic Sens. 7(1), 82–87 (2017).
    [Crossref]
  22. S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A 84(2), 021805 (2011).
    [Crossref]
  23. V. Balaswamy, S. Aparanji, S. Arun, S. Ramachandran, and V. R. Supradeepa, “High-power, widely wavelength tunable, grating-free Raman fiber laser based on filtered feedback,” Opt. Lett. 44(2), 279–282 (2019).
    [Crossref]
  24. L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, and Y. Feng, “Nearly-octave wavelength tuning of a continuous wave fiber laser,” Sci. Rep. 7(1), 42611 (2017).
    [Crossref]
  25. I. A. Lobach, S. I. Kablukov, and S. A. Babin, “Linearly polarized cascaded Raman fiber laser with random distributed feedback operating beyond 1.5 µm,” Opt. Lett. 42(18), 3526–3529 (2017).
    [Crossref]
  26. S. A. Babin, E. A. Zlobina, S. I. Kablukov, and E. V. Podivilov, “High-order random Raman lasing in a PM fiber with ultimate efficiency and narrow bandwidth,” Sci. Rep. 6(1), 22625 (2016).
    [Crossref]
  27. J. Xu, Z. Lou, J. Ye, J. Wu, J. Leng, H. Xiao, H. Zhang, and P. Zhou, “Incoherently pumped high-power linearly-polarized single-mode random fiber laser: experimental investigations and theoretical prospects,” Opt. Express 25(5), 5609–5617 (2017).
    [Crossref]
  28. E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Linearly polarized random fiber laser with ultimate efficiency,” Opt. Lett. 40(17), 4074–4077 (2015).
    [Crossref]
  29. S. Arun, V. Choudhury, V. Balaswamy, and V. R. Supradeepa, “Power combined, octave-spanning, CW supercontinuum using standard telecom fiber with output power of 70W,” in Proceedings of IEEE Conference on Lasers and Electro-Optics (IEEE), 1–2 (2018).
  30. M. Bravo, M. Fernandez-Vallejo, and M. Lopez-Amo, “Internal modulation of a random fiber laser,” Opt. Lett. 38(9), 1542–1544 (2013).
    [Crossref]
  31. A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36(2), 130–132 (2011).
    [Crossref]
  32. J. Xu, J. Ye, W. Liu, J. Wu, H. Zhang, J. Leng, and P. Zhou, “Passively spatiotemporal gain-modulation-induced stable pulsing operation of a random fiber laser,” Photonics Res. 5(6), 598–603 (2017).
    [Crossref]
  33. L. Conti, M. D. Rosa, and F. Marin, “High-spectral-purity laser system for the AURIGA detector optical readout,” J. Opt. Soc. Am. B 20(3), 462–468 (2003).
    [Crossref]
  34. L. Zhang, J. Dong, and Y. Feng, “High-power and high-order random Raman fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–6 (2018).
    [Crossref]
  35. P. Wang and W. A. Clarkson, “High-power, single-mode, linearly polarized, ytterbium-doped fiber superfluorescent source,” Opt. Lett. 32(17), 2605–2607 (2007).
    [Crossref]
  36. J. Xu, L. Huang, J. Leng, H. Xiao, S. Guo, P. Zhou, and J. Chen, “1.01 kW superfluorescent source in allfiberized MOPA configuration,” Opt. Express 23(5), 5485–5490 (2015).
    [Crossref]
  37. J. Xu, J. Ye, P. Zhou, J. Leng, H. Xiao, H. Zhang, J. Wu, and J. Chen, “Tandem pumping architecture enabled high power random fiber laser with near-diffraction-limited beam quality,” Sci. China: Technol. Sci. 62(1), 80–86 (2019).
    [Crossref]
  38. J. Dong, L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, X. Gu, and Y. Feng, “High order cascaded Raman random fiber laser with high spectral purity,” Opt. Express 26(5), 5275–5280 (2018).
    [Crossref]
  39. V. Balaswamy, S. Ramachandran, and V. R. Supradeepa, “High-power, cascaded random Raman fiber laser with near complete conversion over wide wavelength and power tuning,” Opt. Express 27(7), 9725–9732 (2019).
    [Crossref]
  40. H. Wu, Z. Wang, M. Fan, L. Zhang, W. Zhang, and Y. Rao, “Role of the mirror’s reflectivity in forward-pumped random fiber laser,” Opt. Express 23(2), 1421–1427 (2015).
    [Crossref]
  41. J. Ye, J. Xu, Y. Zhang, J. Song, J. Leng, and P. Zhou, “Spectrum-manipulable hundred-watt-level high power superfluorescent fiber source,” J. Lightwave Technol. 37(13), 3113–3118 (2019).
    [Crossref]
  42. W. Liu, P. Ma, H. Lv, J. Xu, P. Zhou, and Z. Jiang, “Investigation of stimulated Raman scattering effect in high-power fiber amplifiers seeded by narrow-band filtered superfluorescent source,” Opt. Express 24(8), 8708–8717 (2016).
    [Crossref]
  43. B. N. Upadhyaya, A. Kuruvilla, U. Chakravarty, M. R. Shenoy, K. Thyagarajan, and S. M. Oak, “Effect of laser linewidth and fiber length on self-pulsing dynamics and output stabilization of single-mode Yb-doped double-clad fiber laser,” Appl. Opt. 49(12), 2316–2325 (2010).
    [Crossref]

2019 (5)

2018 (3)

2017 (7)

2016 (3)

2015 (7)

H. Wu, Z. Wang, M. Fan, L. Zhang, W. Zhang, and Y. Rao, “Role of the mirror’s reflectivity in forward-pumped random fiber laser,” Opt. Express 23(2), 1421–1427 (2015).
[Crossref]

J. Xu, L. Huang, J. Leng, H. Xiao, S. Guo, P. Zhou, and J. Chen, “1.01 kW superfluorescent source in allfiberized MOPA configuration,” Opt. Express 23(5), 5485–5490 (2015).
[Crossref]

E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Linearly polarized random fiber laser with ultimate efficiency,” Opt. Lett. 40(17), 4074–4077 (2015).
[Crossref]

S. D. Emami, A. Khodaei, S. Gandan, R. Penny, K. Lim, H. A. Abdul-Rashid, and H. Ahmad, “Thulium-doped fiber laser utilizing a photonic crystal fiber-based optical low-pass filter with application in 1.7 µm and 1.8 µm band,” Opt. Express 23(15), 19681–19688 (2015).
[Crossref]

S. V. Firstov, S. V. Alyshev, K. E. Riumkin, M. A. Melkumov, O. I. Medvedkov, and E. M. Dianov, “Watt-level, continuous-wave bismuth-doped all-fiber laser operating at 1.7 µm,” Opt. Lett. 40(18), 4360–4363 (2015).
[Crossref]

W. Zhang, S. Li, R. Ma, Y. Rao, Y. Zhu, Z. Wang, X. Jia, and J. Li, “Random distributed feedback fiber laser based on combination of er-doped fiber and single-mode fiber,” IEEE J. Sel. Top. Quantum Electron. 21(1), 44–49 (2015).
[Crossref]

M. Tanaka, M. Hirano, K. Murashima, H. Obi, R. Yamaguchi, and T. Hasegawa, “1.7-µm spectroscopic spectral-domain optical coherence tomography for imaging lipid distribution within blood vessel,” Opt. Express 23(5), 6645–6655 (2015).
[Crossref]

2013 (5)

T. N. Nguyen, K. Kieu, D. Churin, T. Ota, M. Miyawaki, and N. Peyghambarian, “High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 µm,” IEEE Photonics Technol. Lett. 25(19), 1893–1896 (2013).
[Crossref]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref]

M. Yamada, K. Senda, T. Tanaka, Y. Maeda, S. Aozasa, H. Ono, K. Ota, O. Koyama, and J. Ono, “Tm3+-Tb3+-doped tunable fibre ring laser for 1700 nm wavelength region,” Electron. Lett. 49(20), 1287–1288 (2013).
[Crossref]

S. Sugavanam, N. Tarasov, X. Shu, and D. V. Churkin, “Narrow-band generation in random distributed feedback fiber laser,” Opt. Express 21(14), 16466–16472 (2013).
[Crossref]

M. Bravo, M. Fernandez-Vallejo, and M. Lopez-Amo, “Internal modulation of a random fiber laser,” Opt. Lett. 38(9), 1542–1544 (2013).
[Crossref]

2011 (2)

2010 (2)

2008 (1)

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in dy:chalcogenide glass fiber laser with efficient output at 4.5µm,” IEEE Photonics Technol. Lett. 20(2), 123–125 (2008).
[Crossref]

2007 (1)

2004 (1)

P. Chambers, E. Austin, and J. P. Dakin, “Theoretical analysis of a methane gas detection system, using the complementary source modulation method of correlation spectroscopy,” Meas. Sci. Technol. 15(8), 1629–1636 (2004).
[Crossref]

2003 (1)

Abdul-Rashid, H. A.

Aggarwal, I. D.

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in dy:chalcogenide glass fiber laser with efficient output at 4.5µm,” IEEE Photonics Technol. Lett. 20(2), 123–125 (2008).
[Crossref]

Ahmad, H.

Alyshev, S. V.

Ania-Castanon, J. D.

Aozasa, S.

M. Yamada, K. Senda, T. Tanaka, Y. Maeda, S. Aozasa, H. Ono, K. Ota, O. Koyama, and J. Ono, “Tm3+-Tb3+-doped tunable fibre ring laser for 1700 nm wavelength region,” Electron. Lett. 49(20), 1287–1288 (2013).
[Crossref]

M. Yamada, H. Ono, K. Ohta, S. Aozasa, T. Tanaka, K. Senda, Y. Maeda, O. Koyama, and J. Ono, “1.7 µm band optical fiber amplifier,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America), paper Tu2D.3 (2014).

Aparanji, S.

Arun, S.

V. Balaswamy, S. Aparanji, S. Arun, S. Ramachandran, and V. R. Supradeepa, “High-power, widely wavelength tunable, grating-free Raman fiber laser based on filtered feedback,” Opt. Lett. 44(2), 279–282 (2019).
[Crossref]

S. Arun, V. Choudhury, V. Balaswamy, and V. R. Supradeepa, “Power combined, octave-spanning, CW supercontinuum using standard telecom fiber with output power of 70W,” in Proceedings of IEEE Conference on Lasers and Electro-Optics (IEEE), 1–2 (2018).

Austin, E.

P. Chambers, E. Austin, and J. P. Dakin, “Theoretical analysis of a methane gas detection system, using the complementary source modulation method of correlation spectroscopy,” Meas. Sci. Technol. 15(8), 1629–1636 (2004).
[Crossref]

Babin, S. A.

I. A. Lobach, S. I. Kablukov, and S. A. Babin, “Linearly polarized cascaded Raman fiber laser with random distributed feedback operating beyond 1.5 µm,” Opt. Lett. 42(18), 3526–3529 (2017).
[Crossref]

S. A. Babin, E. A. Zlobina, S. I. Kablukov, and E. V. Podivilov, “High-order random Raman lasing in a PM fiber with ultimate efficiency and narrow bandwidth,” Sci. Rep. 6(1), 22625 (2016).
[Crossref]

E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Linearly polarized random fiber laser with ultimate efficiency,” Opt. Lett. 40(17), 4074–4077 (2015).
[Crossref]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A 84(2), 021805 (2011).
[Crossref]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36(2), 130–132 (2011).
[Crossref]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Balaswamy, V.

Bravo, M.

Cao, Q.

Chakravarty, U.

Chambers, P.

P. Chambers, E. Austin, and J. P. Dakin, “Theoretical analysis of a methane gas detection system, using the complementary source modulation method of correlation spectroscopy,” Meas. Sci. Technol. 15(8), 1629–1636 (2004).
[Crossref]

Chang, G.

Chen, J.

J. Xu, J. Ye, P. Zhou, J. Leng, H. Xiao, H. Zhang, J. Wu, and J. Chen, “Tandem pumping architecture enabled high power random fiber laser with near-diffraction-limited beam quality,” Sci. China: Technol. Sci. 62(1), 80–86 (2019).
[Crossref]

J. Xu, L. Huang, J. Leng, H. Xiao, S. Guo, P. Zhou, and J. Chen, “1.01 kW superfluorescent source in allfiberized MOPA configuration,” Opt. Express 23(5), 5485–5490 (2015).
[Crossref]

Choudhury, V.

S. Arun, V. Choudhury, V. Balaswamy, and V. R. Supradeepa, “Power combined, octave-spanning, CW supercontinuum using standard telecom fiber with output power of 70W,” in Proceedings of IEEE Conference on Lasers and Electro-Optics (IEEE), 1–2 (2018).

Chung, H.

Churin, D.

T. N. Nguyen, K. Kieu, D. Churin, T. Ota, M. Miyawaki, and N. Peyghambarian, “High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 µm,” IEEE Photonics Technol. Lett. 25(19), 1893–1896 (2013).
[Crossref]

Churkin, D. V.

Clark, C. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref]

Clarkson, W. A.

Conti, L.

Cui, S.

J. Dong, L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, X. Gu, and Y. Feng, “High order cascaded Raman random fiber laser with high spectral purity,” Opt. Express 26(5), 5275–5280 (2018).
[Crossref]

L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, and Y. Feng, “Nearly-octave wavelength tuning of a continuous wave fiber laser,” Sci. Rep. 7(1), 42611 (2017).
[Crossref]

Dakin, J. P.

P. Chambers, E. Austin, and J. P. Dakin, “Theoretical analysis of a methane gas detection system, using the complementary source modulation method of correlation spectroscopy,” Meas. Sci. Technol. 15(8), 1629–1636 (2004).
[Crossref]

Dianov, E. M.

Dong, J.

J. Dong, L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, X. Gu, and Y. Feng, “High order cascaded Raman random fiber laser with high spectral purity,” Opt. Express 26(5), 5275–5280 (2018).
[Crossref]

L. Zhang, J. Dong, and Y. Feng, “High-power and high-order random Raman fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–6 (2018).
[Crossref]

Du, Q.

Du, X.

X. Du, H. Zhang, X. Wang, P. Zhou, and Z. Liu, “Short cavity-length random fiber laser with record power and ultrahigh efficiency,” Opt. Lett. 41(3), 571–574 (2016).
[Crossref]

J. Ono, M. C. Hsu, Y. Honda, A. Maeda, F. Hanafuji, X. Du, H. Mori, T. Nakayama, O. Koyama, T. Endo, and M. Yamada, “Newly developed 1.7 µm band external cavity laser and its application to evaluation of ethanol concentration in distilled spirits,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Pacific Rim (IEEE, 2017), pp. 1–4.

Duan, Y.

El-Taher, A. E.

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A 84(2), 021805 (2011).
[Crossref]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36(2), 130–132 (2011).
[Crossref]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Emami, S. D.

Endo, T.

J. Ono, M. C. Hsu, Y. Honda, A. Maeda, F. Hanafuji, X. Du, H. Mori, T. Nakayama, O. Koyama, T. Endo, and M. Yamada, “Newly developed 1.7 µm band external cavity laser and its application to evaluation of ethanol concentration in distilled spirits,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Pacific Rim (IEEE, 2017), pp. 1–4.

Fan, D.

Fan, M.

Feng, Y.

L. Zhang, J. Dong, and Y. Feng, “High-power and high-order random Raman fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–6 (2018).
[Crossref]

J. Dong, L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, X. Gu, and Y. Feng, “High order cascaded Raman random fiber laser with high spectral purity,” Opt. Express 26(5), 5275–5280 (2018).
[Crossref]

L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, and Y. Feng, “Nearly-octave wavelength tuning of a continuous wave fiber laser,” Sci. Rep. 7(1), 42611 (2017).
[Crossref]

Y. Feng, Raman fiber lasers (Springer, 2017).

Fernandez-Vallejo, M.

Firstov, S. V.

Gandan, S.

Gu, X.

Guo, J.

Guo, S.

Han, K.

Hanafuji, F.

J. Ono, M. C. Hsu, Y. Honda, A. Maeda, F. Hanafuji, X. Du, H. Mori, T. Nakayama, O. Koyama, T. Endo, and M. Yamada, “Newly developed 1.7 µm band external cavity laser and its application to evaluation of ethanol concentration in distilled spirits,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Pacific Rim (IEEE, 2017), pp. 1–4.

Harper, P.

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A 84(2), 021805 (2011).
[Crossref]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36(2), 130–132 (2011).
[Crossref]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Hasegawa, T.

Hirano, M.

Honda, Y.

J. Ono, M. C. Hsu, Y. Honda, A. Maeda, F. Hanafuji, X. Du, H. Mori, T. Nakayama, O. Koyama, T. Endo, and M. Yamada, “Newly developed 1.7 µm band external cavity laser and its application to evaluation of ethanol concentration in distilled spirits,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Pacific Rim (IEEE, 2017), pp. 1–4.

Horton, N. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref]

Hsu, M. C.

J. Ono, M. C. Hsu, Y. Honda, A. Maeda, F. Hanafuji, X. Du, H. Mori, T. Nakayama, O. Koyama, T. Endo, and M. Yamada, “Newly developed 1.7 µm band external cavity laser and its application to evaluation of ethanol concentration in distilled spirits,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Pacific Rim (IEEE, 2017), pp. 1–4.

Huang, L.

Jia, X.

W. Zhang, S. Li, R. Ma, Y. Rao, Y. Zhu, Z. Wang, X. Jia, and J. Li, “Random distributed feedback fiber laser based on combination of er-doped fiber and single-mode fiber,” IEEE J. Sel. Top. Quantum Electron. 21(1), 44–49 (2015).
[Crossref]

Jiang, H.

Jiang, Z.

Kablukov, S. I.

I. A. Lobach, S. I. Kablukov, and S. A. Babin, “Linearly polarized cascaded Raman fiber laser with random distributed feedback operating beyond 1.5 µm,” Opt. Lett. 42(18), 3526–3529 (2017).
[Crossref]

S. A. Babin, E. A. Zlobina, S. I. Kablukov, and E. V. Podivilov, “High-order random Raman lasing in a PM fiber with ultimate efficiency and narrow bandwidth,” Sci. Rep. 6(1), 22625 (2016).
[Crossref]

E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Linearly polarized random fiber laser with ultimate efficiency,” Opt. Lett. 40(17), 4074–4077 (2015).
[Crossref]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Kärtner, F. X.

Khodaei, A.

Kieu, K.

T. N. Nguyen, K. Kieu, D. Churin, T. Ota, M. Miyawaki, and N. Peyghambarian, “High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 µm,” IEEE Photonics Technol. Lett. 25(19), 1893–1896 (2013).
[Crossref]

Kobat, D.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref]

Koyama, O.

M. Yamada, K. Senda, T. Tanaka, Y. Maeda, S. Aozasa, H. Ono, K. Ota, O. Koyama, and J. Ono, “Tm3+-Tb3+-doped tunable fibre ring laser for 1700 nm wavelength region,” Electron. Lett. 49(20), 1287–1288 (2013).
[Crossref]

M. Yamada, H. Ono, K. Ohta, S. Aozasa, T. Tanaka, K. Senda, Y. Maeda, O. Koyama, and J. Ono, “1.7 µm band optical fiber amplifier,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America), paper Tu2D.3 (2014).

J. Ono, M. C. Hsu, Y. Honda, A. Maeda, F. Hanafuji, X. Du, H. Mori, T. Nakayama, O. Koyama, T. Endo, and M. Yamada, “Newly developed 1.7 µm band external cavity laser and its application to evaluation of ethanol concentration in distilled spirits,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Pacific Rim (IEEE, 2017), pp. 1–4.

Kuruvilla, A.

Leng, J.

Li, J.

W. Zhang, S. Li, R. Ma, Y. Rao, Y. Zhu, Z. Wang, X. Jia, and J. Li, “Random distributed feedback fiber laser based on combination of er-doped fiber and single-mode fiber,” IEEE J. Sel. Top. Quantum Electron. 21(1), 44–49 (2015).
[Crossref]

Li, S.

W. Zhang, S. Li, R. Ma, Y. Rao, Y. Zhu, Z. Wang, X. Jia, and J. Li, “Random distributed feedback fiber laser based on combination of er-doped fiber and single-mode fiber,” IEEE J. Sel. Top. Quantum Electron. 21(1), 44–49 (2015).
[Crossref]

Li, X.

Lim, K.

Liu, W.

Liu, Z.

Lobach, I. A.

Lopez-Amo, M.

Lou, Z.

Lv, H.

Ma, P.

Ma, R.

W. Zhang, S. Li, R. Ma, Y. Rao, Y. Zhu, Z. Wang, X. Jia, and J. Li, “Random distributed feedback fiber laser based on combination of er-doped fiber and single-mode fiber,” IEEE J. Sel. Top. Quantum Electron. 21(1), 44–49 (2015).
[Crossref]

Maeda, A.

J. Ono, M. C. Hsu, Y. Honda, A. Maeda, F. Hanafuji, X. Du, H. Mori, T. Nakayama, O. Koyama, T. Endo, and M. Yamada, “Newly developed 1.7 µm band external cavity laser and its application to evaluation of ethanol concentration in distilled spirits,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Pacific Rim (IEEE, 2017), pp. 1–4.

Maeda, Y.

M. Yamada, K. Senda, T. Tanaka, Y. Maeda, S. Aozasa, H. Ono, K. Ota, O. Koyama, and J. Ono, “Tm3+-Tb3+-doped tunable fibre ring laser for 1700 nm wavelength region,” Electron. Lett. 49(20), 1287–1288 (2013).
[Crossref]

M. Yamada, H. Ono, K. Ohta, S. Aozasa, T. Tanaka, K. Senda, Y. Maeda, O. Koyama, and J. Ono, “1.7 µm band optical fiber amplifier,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America), paper Tu2D.3 (2014).

Marin, F.

Medvedkov, O. I.

Melkumov, M. A.

Miyawaki, M.

T. N. Nguyen, K. Kieu, D. Churin, T. Ota, M. Miyawaki, and N. Peyghambarian, “High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 µm,” IEEE Photonics Technol. Lett. 25(19), 1893–1896 (2013).
[Crossref]

Mori, H.

J. Ono, M. C. Hsu, Y. Honda, A. Maeda, F. Hanafuji, X. Du, H. Mori, T. Nakayama, O. Koyama, T. Endo, and M. Yamada, “Newly developed 1.7 µm band external cavity laser and its application to evaluation of ethanol concentration in distilled spirits,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Pacific Rim (IEEE, 2017), pp. 1–4.

Murashima, K.

Nakayama, T.

J. Ono, M. C. Hsu, Y. Honda, A. Maeda, F. Hanafuji, X. Du, H. Mori, T. Nakayama, O. Koyama, T. Endo, and M. Yamada, “Newly developed 1.7 µm band external cavity laser and its application to evaluation of ethanol concentration in distilled spirits,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Pacific Rim (IEEE, 2017), pp. 1–4.

Nguyen, T. N.

T. N. Nguyen, K. Kieu, D. Churin, T. Ota, M. Miyawaki, and N. Peyghambarian, “High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 µm,” IEEE Photonics Technol. Lett. 25(19), 1893–1896 (2013).
[Crossref]

Oak, S. M.

Obi, H.

Ohta, K.

M. Yamada, H. Ono, K. Ohta, S. Aozasa, T. Tanaka, K. Senda, Y. Maeda, O. Koyama, and J. Ono, “1.7 µm band optical fiber amplifier,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America), paper Tu2D.3 (2014).

Ono, H.

M. Yamada, K. Senda, T. Tanaka, Y. Maeda, S. Aozasa, H. Ono, K. Ota, O. Koyama, and J. Ono, “Tm3+-Tb3+-doped tunable fibre ring laser for 1700 nm wavelength region,” Electron. Lett. 49(20), 1287–1288 (2013).
[Crossref]

M. Yamada, H. Ono, K. Ohta, S. Aozasa, T. Tanaka, K. Senda, Y. Maeda, O. Koyama, and J. Ono, “1.7 µm band optical fiber amplifier,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America), paper Tu2D.3 (2014).

Ono, J.

M. Yamada, K. Senda, T. Tanaka, Y. Maeda, S. Aozasa, H. Ono, K. Ota, O. Koyama, and J. Ono, “Tm3+-Tb3+-doped tunable fibre ring laser for 1700 nm wavelength region,” Electron. Lett. 49(20), 1287–1288 (2013).
[Crossref]

M. Yamada, H. Ono, K. Ohta, S. Aozasa, T. Tanaka, K. Senda, Y. Maeda, O. Koyama, and J. Ono, “1.7 µm band optical fiber amplifier,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America), paper Tu2D.3 (2014).

J. Ono, M. C. Hsu, Y. Honda, A. Maeda, F. Hanafuji, X. Du, H. Mori, T. Nakayama, O. Koyama, T. Endo, and M. Yamada, “Newly developed 1.7 µm band external cavity laser and its application to evaluation of ethanol concentration in distilled spirits,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Pacific Rim (IEEE, 2017), pp. 1–4.

Ota, K.

M. Yamada, K. Senda, T. Tanaka, Y. Maeda, S. Aozasa, H. Ono, K. Ota, O. Koyama, and J. Ono, “Tm3+-Tb3+-doped tunable fibre ring laser for 1700 nm wavelength region,” Electron. Lett. 49(20), 1287–1288 (2013).
[Crossref]

Ota, T.

T. N. Nguyen, K. Kieu, D. Churin, T. Ota, M. Miyawaki, and N. Peyghambarian, “High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 µm,” IEEE Photonics Technol. Lett. 25(19), 1893–1896 (2013).
[Crossref]

Pan, W.

J. Dong, L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, X. Gu, and Y. Feng, “High order cascaded Raman random fiber laser with high spectral purity,” Opt. Express 26(5), 5275–5280 (2018).
[Crossref]

L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, and Y. Feng, “Nearly-octave wavelength tuning of a continuous wave fiber laser,” Sci. Rep. 7(1), 42611 (2017).
[Crossref]

Penny, R.

Peyghambarian, N.

T. N. Nguyen, K. Kieu, D. Churin, T. Ota, M. Miyawaki, and N. Peyghambarian, “High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 µm,” IEEE Photonics Technol. Lett. 25(19), 1893–1896 (2013).
[Crossref]

Podivilov, E. V.

S. A. Babin, E. A. Zlobina, S. I. Kablukov, and E. V. Podivilov, “High-order random Raman lasing in a PM fiber with ultimate efficiency and narrow bandwidth,” Sci. Rep. 6(1), 22625 (2016).
[Crossref]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A 84(2), 021805 (2011).
[Crossref]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36(2), 130–132 (2011).
[Crossref]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Quimby, R. S.

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in dy:chalcogenide glass fiber laser with efficient output at 4.5µm,” IEEE Photonics Technol. Lett. 20(2), 123–125 (2008).
[Crossref]

R. S. Quimby and M. Saad, “Dy:fluoroindate Fiber Laser at 4.5 µm with Cascade Lasing,” in Advanced Solid-State Lasers Congress, G. Huber and P. Moulton, eds., OSA Technical Digest (online) (Optical Society of America), paper AM2A.7 (2013).

Ramachandran, S.

Rao, Y.

Riumkin, K. E.

Rosa, M. D.

Saad, M.

R. S. Quimby and M. Saad, “Dy:fluoroindate Fiber Laser at 4.5 µm with Cascade Lasing,” in Advanced Solid-State Lasers Congress, G. Huber and P. Moulton, eds., OSA Technical Digest (online) (Optical Society of America), paper AM2A.7 (2013).

Sanghera, J. S.

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in dy:chalcogenide glass fiber laser with efficient output at 4.5µm,” IEEE Photonics Technol. Lett. 20(2), 123–125 (2008).
[Crossref]

Schaffer, C. B.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref]

Senda, K.

M. Yamada, K. Senda, T. Tanaka, Y. Maeda, S. Aozasa, H. Ono, K. Ota, O. Koyama, and J. Ono, “Tm3+-Tb3+-doped tunable fibre ring laser for 1700 nm wavelength region,” Electron. Lett. 49(20), 1287–1288 (2013).
[Crossref]

M. Yamada, H. Ono, K. Ohta, S. Aozasa, T. Tanaka, K. Senda, Y. Maeda, O. Koyama, and J. Ono, “1.7 µm band optical fiber amplifier,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America), paper Tu2D.3 (2014).

Shaw, L. B.

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in dy:chalcogenide glass fiber laser with efficient output at 4.5µm,” IEEE Photonics Technol. Lett. 20(2), 123–125 (2008).
[Crossref]

Shenoy, M. R.

Shu, X.

Song, J.

Sugavanam, S.

Supradeepa, V. R.

Tanaka, M.

Tanaka, T.

M. Yamada, K. Senda, T. Tanaka, Y. Maeda, S. Aozasa, H. Ono, K. Ota, O. Koyama, and J. Ono, “Tm3+-Tb3+-doped tunable fibre ring laser for 1700 nm wavelength region,” Electron. Lett. 49(20), 1287–1288 (2013).
[Crossref]

M. Yamada, H. Ono, K. Ohta, S. Aozasa, T. Tanaka, K. Senda, Y. Maeda, O. Koyama, and J. Ono, “1.7 µm band optical fiber amplifier,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America), paper Tu2D.3 (2014).

Tarasov, N.

Thyagarajan, K.

Turitsyn, S. K.

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36(2), 130–132 (2011).
[Crossref]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A 84(2), 021805 (2011).
[Crossref]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Upadhyaya, B. N.

Wang, H.

Wang, K.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref]

Wang, P.

Wang, T.

Wang, X.

Wang, Z.

Wise, F. W.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref]

Wu, D.

Wu, H.

Wu, J.

J. Xu, J. Ye, P. Zhou, J. Leng, H. Xiao, H. Zhang, J. Wu, and J. Chen, “Tandem pumping architecture enabled high power random fiber laser with near-diffraction-limited beam quality,” Sci. China: Technol. Sci. 62(1), 80–86 (2019).
[Crossref]

H. Zhang, L. Huang, J. Song, H. Wu, P. Zhou, X. Wang, J. Wu, J. Xu, Z. Wang, X. Xu, and Y. Rao, “Quasi-kilowatt random fiber laser,” Opt. Lett. 44(11), 2613–2616 (2019).
[Crossref]

J. Xu, Z. Lou, J. Ye, J. Wu, J. Leng, H. Xiao, H. Zhang, and P. Zhou, “Incoherently pumped high-power linearly-polarized single-mode random fiber laser: experimental investigations and theoretical prospects,” Opt. Express 25(5), 5609–5617 (2017).
[Crossref]

J. Xu, J. Ye, W. Liu, J. Wu, H. Zhang, J. Leng, and P. Zhou, “Passively spatiotemporal gain-modulation-induced stable pulsing operation of a random fiber laser,” Photonics Res. 5(6), 598–603 (2017).
[Crossref]

Xiao, H.

Xu, C.

H. Zhu, J. Guo, Y. Duan, J. Zhang, Y. Zhang, C. Xu, H. Wang, and D. Fan, “Efficient 1.7  µm light source based on KTA-OPO derived by Nd:YVO4 self-Raman laser,” Opt. Lett. 43(2), 345–348 (2018).
[Crossref]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref]

Xu, J.

J. Xu, J. Ye, P. Zhou, J. Leng, H. Xiao, H. Zhang, J. Wu, and J. Chen, “Tandem pumping architecture enabled high power random fiber laser with near-diffraction-limited beam quality,” Sci. China: Technol. Sci. 62(1), 80–86 (2019).
[Crossref]

H. Zhang, L. Huang, J. Song, H. Wu, P. Zhou, X. Wang, J. Wu, J. Xu, Z. Wang, X. Xu, and Y. Rao, “Quasi-kilowatt random fiber laser,” Opt. Lett. 44(11), 2613–2616 (2019).
[Crossref]

J. Ye, J. Xu, Y. Zhang, J. Song, J. Leng, and P. Zhou, “Spectrum-manipulable hundred-watt-level high power superfluorescent fiber source,” J. Lightwave Technol. 37(13), 3113–3118 (2019).
[Crossref]

J. Xu, Z. Lou, J. Ye, J. Wu, J. Leng, H. Xiao, H. Zhang, and P. Zhou, “Incoherently pumped high-power linearly-polarized single-mode random fiber laser: experimental investigations and theoretical prospects,” Opt. Express 25(5), 5609–5617 (2017).
[Crossref]

J. Xu, J. Ye, W. Liu, J. Wu, H. Zhang, J. Leng, and P. Zhou, “Passively spatiotemporal gain-modulation-induced stable pulsing operation of a random fiber laser,” Photonics Res. 5(6), 598–603 (2017).
[Crossref]

J. Ye, J. Xu, H. Zhang, and P. Zhou, “Powerful narrow linewidth random fiber laser,” Photonic Sens. 7(1), 82–87 (2017).
[Crossref]

W. Liu, P. Ma, H. Lv, J. Xu, P. Zhou, and Z. Jiang, “Investigation of stimulated Raman scattering effect in high-power fiber amplifiers seeded by narrow-band filtered superfluorescent source,” Opt. Express 24(8), 8708–8717 (2016).
[Crossref]

J. Xu, L. Huang, J. Leng, H. Xiao, S. Guo, P. Zhou, and J. Chen, “1.01 kW superfluorescent source in allfiberized MOPA configuration,” Opt. Express 23(5), 5485–5490 (2015).
[Crossref]

Xu, X.

Yamada, M.

M. Yamada, K. Senda, T. Tanaka, Y. Maeda, S. Aozasa, H. Ono, K. Ota, O. Koyama, and J. Ono, “Tm3+-Tb3+-doped tunable fibre ring laser for 1700 nm wavelength region,” Electron. Lett. 49(20), 1287–1288 (2013).
[Crossref]

J. Ono, M. C. Hsu, Y. Honda, A. Maeda, F. Hanafuji, X. Du, H. Mori, T. Nakayama, O. Koyama, T. Endo, and M. Yamada, “Newly developed 1.7 µm band external cavity laser and its application to evaluation of ethanol concentration in distilled spirits,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Pacific Rim (IEEE, 2017), pp. 1–4.

M. Yamada, H. Ono, K. Ohta, S. Aozasa, T. Tanaka, K. Senda, Y. Maeda, O. Koyama, and J. Ono, “1.7 µm band optical fiber amplifier,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America), paper Tu2D.3 (2014).

Yamaguchi, R.

Yang, X.

J. Dong, L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, X. Gu, and Y. Feng, “High order cascaded Raman random fiber laser with high spectral purity,” Opt. Express 26(5), 5275–5280 (2018).
[Crossref]

L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, and Y. Feng, “Nearly-octave wavelength tuning of a continuous wave fiber laser,” Sci. Rep. 7(1), 42611 (2017).
[Crossref]

Ye, J.

J. Xu, J. Ye, P. Zhou, J. Leng, H. Xiao, H. Zhang, J. Wu, and J. Chen, “Tandem pumping architecture enabled high power random fiber laser with near-diffraction-limited beam quality,” Sci. China: Technol. Sci. 62(1), 80–86 (2019).
[Crossref]

J. Ye, J. Xu, Y. Zhang, J. Song, J. Leng, and P. Zhou, “Spectrum-manipulable hundred-watt-level high power superfluorescent fiber source,” J. Lightwave Technol. 37(13), 3113–3118 (2019).
[Crossref]

J. Xu, Z. Lou, J. Ye, J. Wu, J. Leng, H. Xiao, H. Zhang, and P. Zhou, “Incoherently pumped high-power linearly-polarized single-mode random fiber laser: experimental investigations and theoretical prospects,” Opt. Express 25(5), 5609–5617 (2017).
[Crossref]

J. Xu, J. Ye, W. Liu, J. Wu, H. Zhang, J. Leng, and P. Zhou, “Passively spatiotemporal gain-modulation-induced stable pulsing operation of a random fiber laser,” Photonics Res. 5(6), 598–603 (2017).
[Crossref]

J. Ye, J. Xu, H. Zhang, and P. Zhou, “Powerful narrow linewidth random fiber laser,” Photonic Sens. 7(1), 82–87 (2017).
[Crossref]

Zhang, H.

J. Xu, J. Ye, P. Zhou, J. Leng, H. Xiao, H. Zhang, J. Wu, and J. Chen, “Tandem pumping architecture enabled high power random fiber laser with near-diffraction-limited beam quality,” Sci. China: Technol. Sci. 62(1), 80–86 (2019).
[Crossref]

H. Zhang, L. Huang, J. Song, H. Wu, P. Zhou, X. Wang, J. Wu, J. Xu, Z. Wang, X. Xu, and Y. Rao, “Quasi-kilowatt random fiber laser,” Opt. Lett. 44(11), 2613–2616 (2019).
[Crossref]

J. Xu, Z. Lou, J. Ye, J. Wu, J. Leng, H. Xiao, H. Zhang, and P. Zhou, “Incoherently pumped high-power linearly-polarized single-mode random fiber laser: experimental investigations and theoretical prospects,” Opt. Express 25(5), 5609–5617 (2017).
[Crossref]

J. Xu, J. Ye, W. Liu, J. Wu, H. Zhang, J. Leng, and P. Zhou, “Passively spatiotemporal gain-modulation-induced stable pulsing operation of a random fiber laser,” Photonics Res. 5(6), 598–603 (2017).
[Crossref]

J. Ye, J. Xu, H. Zhang, and P. Zhou, “Powerful narrow linewidth random fiber laser,” Photonic Sens. 7(1), 82–87 (2017).
[Crossref]

X. Du, H. Zhang, X. Wang, P. Zhou, and Z. Liu, “Short cavity-length random fiber laser with record power and ultrahigh efficiency,” Opt. Lett. 41(3), 571–574 (2016).
[Crossref]

Zhang, J.

Zhang, L.

Zhang, P.

Zhang, W.

H. Wu, Z. Wang, M. Fan, L. Zhang, W. Zhang, and Y. Rao, “Role of the mirror’s reflectivity in forward-pumped random fiber laser,” Opt. Express 23(2), 1421–1427 (2015).
[Crossref]

W. Zhang, S. Li, R. Ma, Y. Rao, Y. Zhu, Z. Wang, X. Jia, and J. Li, “Random distributed feedback fiber laser based on combination of er-doped fiber and single-mode fiber,” IEEE J. Sel. Top. Quantum Electron. 21(1), 44–49 (2015).
[Crossref]

Zhang, Y.

Zhou, P.

J. Xu, J. Ye, P. Zhou, J. Leng, H. Xiao, H. Zhang, J. Wu, and J. Chen, “Tandem pumping architecture enabled high power random fiber laser with near-diffraction-limited beam quality,” Sci. China: Technol. Sci. 62(1), 80–86 (2019).
[Crossref]

J. Ye, J. Xu, Y. Zhang, J. Song, J. Leng, and P. Zhou, “Spectrum-manipulable hundred-watt-level high power superfluorescent fiber source,” J. Lightwave Technol. 37(13), 3113–3118 (2019).
[Crossref]

H. Zhang, L. Huang, J. Song, H. Wu, P. Zhou, X. Wang, J. Wu, J. Xu, Z. Wang, X. Xu, and Y. Rao, “Quasi-kilowatt random fiber laser,” Opt. Lett. 44(11), 2613–2616 (2019).
[Crossref]

J. Xu, Z. Lou, J. Ye, J. Wu, J. Leng, H. Xiao, H. Zhang, and P. Zhou, “Incoherently pumped high-power linearly-polarized single-mode random fiber laser: experimental investigations and theoretical prospects,” Opt. Express 25(5), 5609–5617 (2017).
[Crossref]

J. Xu, J. Ye, W. Liu, J. Wu, H. Zhang, J. Leng, and P. Zhou, “Passively spatiotemporal gain-modulation-induced stable pulsing operation of a random fiber laser,” Photonics Res. 5(6), 598–603 (2017).
[Crossref]

J. Ye, J. Xu, H. Zhang, and P. Zhou, “Powerful narrow linewidth random fiber laser,” Photonic Sens. 7(1), 82–87 (2017).
[Crossref]

X. Du, H. Zhang, X. Wang, P. Zhou, and Z. Liu, “Short cavity-length random fiber laser with record power and ultrahigh efficiency,” Opt. Lett. 41(3), 571–574 (2016).
[Crossref]

W. Liu, P. Ma, H. Lv, J. Xu, P. Zhou, and Z. Jiang, “Investigation of stimulated Raman scattering effect in high-power fiber amplifiers seeded by narrow-band filtered superfluorescent source,” Opt. Express 24(8), 8708–8717 (2016).
[Crossref]

J. Xu, L. Huang, J. Leng, H. Xiao, S. Guo, P. Zhou, and J. Chen, “1.01 kW superfluorescent source in allfiberized MOPA configuration,” Opt. Express 23(5), 5485–5490 (2015).
[Crossref]

Zhu, H.

Zhu, Y.

W. Zhang, S. Li, R. Ma, Y. Rao, Y. Zhu, Z. Wang, X. Jia, and J. Li, “Random distributed feedback fiber laser based on combination of er-doped fiber and single-mode fiber,” IEEE J. Sel. Top. Quantum Electron. 21(1), 44–49 (2015).
[Crossref]

Zlobina, E. A.

S. A. Babin, E. A. Zlobina, S. I. Kablukov, and E. V. Podivilov, “High-order random Raman lasing in a PM fiber with ultimate efficiency and narrow bandwidth,” Sci. Rep. 6(1), 22625 (2016).
[Crossref]

E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Linearly polarized random fiber laser with ultimate efficiency,” Opt. Lett. 40(17), 4074–4077 (2015).
[Crossref]

Appl. Opt. (2)

Electron. Lett. (1)

M. Yamada, K. Senda, T. Tanaka, Y. Maeda, S. Aozasa, H. Ono, K. Ota, O. Koyama, and J. Ono, “Tm3+-Tb3+-doped tunable fibre ring laser for 1700 nm wavelength region,” Electron. Lett. 49(20), 1287–1288 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

W. Zhang, S. Li, R. Ma, Y. Rao, Y. Zhu, Z. Wang, X. Jia, and J. Li, “Random distributed feedback fiber laser based on combination of er-doped fiber and single-mode fiber,” IEEE J. Sel. Top. Quantum Electron. 21(1), 44–49 (2015).
[Crossref]

L. Zhang, J. Dong, and Y. Feng, “High-power and high-order random Raman fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–6 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (2)

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in dy:chalcogenide glass fiber laser with efficient output at 4.5µm,” IEEE Photonics Technol. Lett. 20(2), 123–125 (2008).
[Crossref]

T. N. Nguyen, K. Kieu, D. Churin, T. Ota, M. Miyawaki, and N. Peyghambarian, “High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 µm,” IEEE Photonics Technol. Lett. 25(19), 1893–1896 (2013).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

P. Chambers, E. Austin, and J. P. Dakin, “Theoretical analysis of a methane gas detection system, using the complementary source modulation method of correlation spectroscopy,” Meas. Sci. Technol. 15(8), 1629–1636 (2004).
[Crossref]

Nat. Photonics (2)

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Opt. Express (10)

H. Chung, W. Liu, Q. Cao, F. X. Kärtner, and G. Chang, “Er-fiber laser enabled, energy scalable femtosecond source tunable from 1.3 to 1.7 µm,” Opt. Express 25(14), 15760–15771 (2017).
[Crossref]

J. Xu, L. Huang, J. Leng, H. Xiao, S. Guo, P. Zhou, and J. Chen, “1.01 kW superfluorescent source in allfiberized MOPA configuration,” Opt. Express 23(5), 5485–5490 (2015).
[Crossref]

M. Tanaka, M. Hirano, K. Murashima, H. Obi, R. Yamaguchi, and T. Hasegawa, “1.7-µm spectroscopic spectral-domain optical coherence tomography for imaging lipid distribution within blood vessel,” Opt. Express 23(5), 6645–6655 (2015).
[Crossref]

S. D. Emami, A. Khodaei, S. Gandan, R. Penny, K. Lim, H. A. Abdul-Rashid, and H. Ahmad, “Thulium-doped fiber laser utilizing a photonic crystal fiber-based optical low-pass filter with application in 1.7 µm and 1.8 µm band,” Opt. Express 23(15), 19681–19688 (2015).
[Crossref]

S. Sugavanam, N. Tarasov, X. Shu, and D. V. Churkin, “Narrow-band generation in random distributed feedback fiber laser,” Opt. Express 21(14), 16466–16472 (2013).
[Crossref]

H. Wu, Z. Wang, M. Fan, L. Zhang, W. Zhang, and Y. Rao, “Role of the mirror’s reflectivity in forward-pumped random fiber laser,” Opt. Express 23(2), 1421–1427 (2015).
[Crossref]

W. Liu, P. Ma, H. Lv, J. Xu, P. Zhou, and Z. Jiang, “Investigation of stimulated Raman scattering effect in high-power fiber amplifiers seeded by narrow-band filtered superfluorescent source,” Opt. Express 24(8), 8708–8717 (2016).
[Crossref]

J. Dong, L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, X. Gu, and Y. Feng, “High order cascaded Raman random fiber laser with high spectral purity,” Opt. Express 26(5), 5275–5280 (2018).
[Crossref]

V. Balaswamy, S. Ramachandran, and V. R. Supradeepa, “High-power, cascaded random Raman fiber laser with near complete conversion over wide wavelength and power tuning,” Opt. Express 27(7), 9725–9732 (2019).
[Crossref]

J. Xu, Z. Lou, J. Ye, J. Wu, J. Leng, H. Xiao, H. Zhang, and P. Zhou, “Incoherently pumped high-power linearly-polarized single-mode random fiber laser: experimental investigations and theoretical prospects,” Opt. Express 25(5), 5609–5617 (2017).
[Crossref]

Opt. Lett. (10)

I. A. Lobach, S. I. Kablukov, and S. A. Babin, “Linearly polarized cascaded Raman fiber laser with random distributed feedback operating beyond 1.5 µm,” Opt. Lett. 42(18), 3526–3529 (2017).
[Crossref]

V. Balaswamy, S. Aparanji, S. Arun, S. Ramachandran, and V. R. Supradeepa, “High-power, widely wavelength tunable, grating-free Raman fiber laser based on filtered feedback,” Opt. Lett. 44(2), 279–282 (2019).
[Crossref]

P. Wang and W. A. Clarkson, “High-power, single-mode, linearly polarized, ytterbium-doped fiber superfluorescent source,” Opt. Lett. 32(17), 2605–2607 (2007).
[Crossref]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36(2), 130–132 (2011).
[Crossref]

X. Du, H. Zhang, X. Wang, P. Zhou, and Z. Liu, “Short cavity-length random fiber laser with record power and ultrahigh efficiency,” Opt. Lett. 41(3), 571–574 (2016).
[Crossref]

H. Zhang, L. Huang, J. Song, H. Wu, P. Zhou, X. Wang, J. Wu, J. Xu, Z. Wang, X. Xu, and Y. Rao, “Quasi-kilowatt random fiber laser,” Opt. Lett. 44(11), 2613–2616 (2019).
[Crossref]

M. Bravo, M. Fernandez-Vallejo, and M. Lopez-Amo, “Internal modulation of a random fiber laser,” Opt. Lett. 38(9), 1542–1544 (2013).
[Crossref]

S. V. Firstov, S. V. Alyshev, K. E. Riumkin, M. A. Melkumov, O. I. Medvedkov, and E. M. Dianov, “Watt-level, continuous-wave bismuth-doped all-fiber laser operating at 1.7 µm,” Opt. Lett. 40(18), 4360–4363 (2015).
[Crossref]

E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Linearly polarized random fiber laser with ultimate efficiency,” Opt. Lett. 40(17), 4074–4077 (2015).
[Crossref]

H. Zhu, J. Guo, Y. Duan, J. Zhang, Y. Zhang, C. Xu, H. Wang, and D. Fan, “Efficient 1.7  µm light source based on KTA-OPO derived by Nd:YVO4 self-Raman laser,” Opt. Lett. 43(2), 345–348 (2018).
[Crossref]

Photonic Sens. (1)

J. Ye, J. Xu, H. Zhang, and P. Zhou, “Powerful narrow linewidth random fiber laser,” Photonic Sens. 7(1), 82–87 (2017).
[Crossref]

Photonics Res. (1)

J. Xu, J. Ye, W. Liu, J. Wu, H. Zhang, J. Leng, and P. Zhou, “Passively spatiotemporal gain-modulation-induced stable pulsing operation of a random fiber laser,” Photonics Res. 5(6), 598–603 (2017).
[Crossref]

Phys. Rev. A (1)

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A 84(2), 021805 (2011).
[Crossref]

Sci. China: Technol. Sci. (1)

J. Xu, J. Ye, P. Zhou, J. Leng, H. Xiao, H. Zhang, J. Wu, and J. Chen, “Tandem pumping architecture enabled high power random fiber laser with near-diffraction-limited beam quality,” Sci. China: Technol. Sci. 62(1), 80–86 (2019).
[Crossref]

Sci. Rep. (2)

L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, and Y. Feng, “Nearly-octave wavelength tuning of a continuous wave fiber laser,” Sci. Rep. 7(1), 42611 (2017).
[Crossref]

S. A. Babin, E. A. Zlobina, S. I. Kablukov, and E. V. Podivilov, “High-order random Raman lasing in a PM fiber with ultimate efficiency and narrow bandwidth,” Sci. Rep. 6(1), 22625 (2016).
[Crossref]

Other (5)

S. Arun, V. Choudhury, V. Balaswamy, and V. R. Supradeepa, “Power combined, octave-spanning, CW supercontinuum using standard telecom fiber with output power of 70W,” in Proceedings of IEEE Conference on Lasers and Electro-Optics (IEEE), 1–2 (2018).

Y. Feng, Raman fiber lasers (Springer, 2017).

J. Ono, M. C. Hsu, Y. Honda, A. Maeda, F. Hanafuji, X. Du, H. Mori, T. Nakayama, O. Koyama, T. Endo, and M. Yamada, “Newly developed 1.7 µm band external cavity laser and its application to evaluation of ethanol concentration in distilled spirits,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Pacific Rim (IEEE, 2017), pp. 1–4.

R. S. Quimby and M. Saad, “Dy:fluoroindate Fiber Laser at 4.5 µm with Cascade Lasing,” in Advanced Solid-State Lasers Congress, G. Huber and P. Moulton, eds., OSA Technical Digest (online) (Optical Society of America), paper AM2A.7 (2013).

M. Yamada, H. Ono, K. Ohta, S. Aozasa, T. Tanaka, K. Senda, Y. Maeda, O. Koyama, and J. Ono, “1.7 µm band optical fiber amplifier,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America), paper Tu2D.3 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Experimental setup of the tunable cascaded random Raman fiber laser. PM, power meter; OSA, optical spectrum analyzer.
Fig. 2.
Fig. 2. The output power and spectral purity at 1.7 µm band under different pump bandwidths.
Fig. 3.
Fig. 3. (a) The temporal behavior of the ASE source at a bandwidth of 40 nm and 0.6 nm. (b) The threshold power of the 9th order Stokes and the corresponding pump power under different bandwidths.
Fig. 4.
Fig. 4. (a) The SRS effect pumped by an ideal temporally stable ASE source. (b) The SRS effect pumped by an ASE source with big intensity fluctuation.
Fig. 5.
Fig. 5. (a) The normalized spectrum of each Raman Stokes with high spectral purity in linear scale when the bandwidth is 20 nm. (b) The output spectrum with highest spectral purity at 1.7 µm band.
Fig. 6.
Fig. 6. (a) The inband power of each Raman Stokes as a function of the pump power. (b) The power ratio of each Raman Stokes as a function of the pump power.
Fig. 7.
Fig. 7. (a) The normalized spectrum of each Raman Stokes of the tunable cascaded RRFL. (b) normalized spectrum of the tunable output from 1695 to 1725 nm. (c) The output power and linewidth at different wavelengths of 1.7 µm band.

Metrics