Abstract

In this paper, the time-resolved broadband sum frequency generation (BB-SFG) spectra from a bare Au surface with a distorted infrared (introduced with a 10 µm polyethylene film in the IR light path) and principal component generalized projection (PCGP) algorithm were used to investigate the bulk distortion on the measured BB-SFG spectra. Besides the SFG intensity reduction from the bulk absorption, the frequency dependent refraction of the bulk layer led to misleading SFG features at the positive delay times beyond the Au dephasing time. These results suggest that SFG spectroscopy is not entirely ‘bulk-free’ for the buried interfaces because of the bulk absorption and refraction of the incident pulses.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Frequency-domain nonlinear regression algorithm for spectral analysis of broadband SFG spectroscopy

Yuhan He, Ying Wang, Jingjing Wang, Wei Guo, and Zhaohui Wang
Opt. Lett. 41(5) 874-877 (2016)

Vibrational sum frequency generation spectroscopy using inverted visible pulses

Champika Weeraman, Steven A. Mitchell, Rune Lausten, Linda J. Johnston, and Albert Stolow
Opt. Express 18(11) 11483-11494 (2010)

References

  • View by:
  • |
  • |
  • |

  1. X. D. Zhu, H. Suhr, and Y. R. Shen, “Surface vibrational spectroscopy by infrared-visible sum frequency generation,” Phys. Rev. B 35(6), 3047–3050 (1987).
    [Crossref]
  2. C. Zhang, J. N. Myers, and Z. Chen, “Elucidation of molecular structures at buried polymer interfaces and biological interfaces using sum frequency generation vibrational spectroscopy,” Soft Matter 9(19), 4738–4761 (2013).
    [Crossref]
  3. C. Zhang, “Sum Frequency Generation Vibrational Spectroscopy for Characterization of Buried Polymer Interfaces,” Appl. Spectrosc. 71(8), 1717–1749 (2017).
    [Crossref]
  4. L. J. Richter, T. P. Petralli-Mallow, and J. C. Stephenson, “Vibrationally resolved sum-frequency generation with broad-bandwidth infrared pulses,” Opt. Lett. 23(20), 1594–1596 (1998).
    [Crossref]
  5. I. V. Stiopkin, H. D. Jayathilake, C. Weeraman, and A. V. Benderskii, “Temporal effects on spectroscopic line shapes, resolution, and sensitivity of the broad-band sum frequency generation,” J. Chem. Phys. 132(23), 234503 (2010).
    [Crossref]
  6. A. Tuladhar, S. M. Piontek, and E. Borguet, “Insights on Interfacial Structure, Dynamics, and Proton Transfer from Ultrafast Vibrational Sum Frequency Generation Spectroscopy of the Alumina(0001)/Water Interface,” J. Phys. Chem. C 121(9), 5168–5177 (2017).
    [Crossref]
  7. J. Tan, J. Zhang, C. Li, Y. Luo, and S. Ye, “Ultrafast energy relaxation dynamics of amide I vibrations coupled with protein-bound water molecules,” Nat. Commun. 10(1), 1010 (2019).
    [Crossref]
  8. E. H. Backus, A. Eichler, A. W. Kleyn, and M. Bonn, “Real-time observation of molecular motion on a surface,” Science 310(5755), 1790–1793 (2005).
    [Crossref]
  9. Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N. H. Seong, D. G. Cahill, and D. D. Dlott, “Ultrafast flash thermal conductance of molecular chains,” Science 317(5839), 787–790 (2007).
    [Crossref]
  10. A. D. Curtis, M. C. Asplund, and J. E. Patterson, “Use of Variable Time-Delay Sum-Frequency Generation for Improved Spectroscopic Analysis,” J. Phys. Chem. C 115(39), 19303–19310 (2011).
    [Crossref]
  11. Y. He, Y. Wang, J. Wang, W. Guo, and Z. Wang, “Frequency-domain nonlinear regression algorithm for spectral analysis of broadband SFG spectroscopy,” Opt. Lett. 41(5), 874–877 (2016).
    [Crossref]
  12. D. J. Kane, “Principal components generalized projections: a review [Invited],” J. Opt. Soc. Am. B 25(6), A120–A132 (2008).
    [Crossref]
  13. J. Liu, Y. Feng, H. Li, P. Lu, H. Pan, J. Wu, and H. Zeng, “Supercontinuum pulse measurement by molecular alignment based cross-correlation frequency resolved optical gating,” Opt. Express 19(1), 40–46 (2011).
    [Crossref]
  14. R. Itakura, T. Kumada, M. Nakano, and H. Akagi, “Frequency-resolved optical gating for characterization of VUV pulses using ultrafast plasma mirror switching,” Opt. Express 23(9), 10914–10924 (2015).
    [Crossref]
  15. P. Sidorenko, O. Lahav, Z. Avnat, and O. Cohen, “Ptychographic reconstruction algorithm for frequency-resolved optical gating: super-resolution and supreme robustness,” Optica 3(12), 1320–1330 (2016).
    [Crossref]
  16. R. Itakura, H. Akagi, and T. Otobe, “Characterization of 20-fs VUV pulses by plasma-mirror frequency-resolved optical gating,” Opt. Lett. 44(9), 2282–2285 (2019).
    [Crossref]
  17. L. Velarde, X. Y. Zhang, Z. Lu, A. G. Joly, Z. Wang, and H. F. Wang, “Spectroscopic phase and lineshapes in high-resolution broadband sum frequency vibrational spectroscopy: resolving interfacial inhomogeneities of “identical” molecular groups,” J. Chem. Phys. 135(24), 241102 (2011).
    [Crossref]
  18. A. D. Quast, A. D. Curtis, B. A. Horn, S. R. Goates, and J. E. Patterson, “Role of nonresonant sum-frequency generation in the investigation of model liquid chromatography systems,” Anal. Chem. 84(4), 1862–1870 (2012).
    [Crossref]
  19. A. D. Curtis, S. B. Reynolds, A. R. Calchera, and J. E. Patterson, “Understanding the Role of Nonresonant Sum-Frequency Generation from Polystyrene Thin Films,” J. Phys. Chem. Lett. 1(16), 2435–2439 (2010).
    [Crossref]
  20. M. Sovago, E. Vartiainen, and M. Bonn, “Observation of buried water molecules in phospholipid membranes by surface sum-frequency generation spectroscopy,” J. Chem. Phys. 131(16), 161107 (2009).
    [Crossref]
  21. S. C. Averett, S. K. Stanley, J. J. Hanson, S. J. Smith, and J. E. Patterson, “Surface Spectroscopic Signatures of Mechanical Deformation in High-Density Polyethylene (HDPE),” Appl. Spectrosc. 72(7), 1057–1068 (2018).
    [Crossref]
  22. Y. H. He, G. Q. Chen, M. Xu, Y. Q. Liu, and Z. H. Wang, “Vibrational dephasing of self-assembling monolayer on gold surface,” J. Lumin. 152, 244–246 (2014).
    [Crossref]
  23. A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant Background Suppression in Broadband Vibrational Sum-Frequency Generation Spectroscopy,” J. Phys. Chem. C 111(37), 13645–13647 (2007).
    [Crossref]
  24. G. A. Somorjai and K. R. McCrea, “Sum frequency generation: Surface vibrational spectroscopy studies of catalytic reactions on metal single-crystal surfaces,” Adv. Catal. 45, 385–438 (2000).
    [Crossref]
  25. Z. Chen, D. H. Gracias, and G. A. Somorjai, “Sum frequency generation (SFG) – surface vibrational spectroscopy studies of buried interfaces: catalytic reaction intermediates on transition metal crystal surfaces at high reactant pressures; polymer surface structures at the solid–gas and solid–li,” Appl. Phys. B 68(3), 549–557 (1999).
    [Crossref]
  26. X. C. Su, P. S. Cremer, Y. R. Shen, and G. A. Somorjai, “High-pressure CO oxidation on Pt(111) monitored with infrared-visible sum frequency generation (SFG),” J. Am. Chem. Soc. 119(17), 3994–4000 (1997).
    [Crossref]
  27. Y. Tong, F. Lapointe, M. Thamer, M. Wolf, and R. K. Campen, “Hydrophobic Water Probed Experimentally at the Gold Electrode/Aqueous Interface,” Angew. Chem., Int. Ed. 56(15), 4211–4214 (2017).
    [Crossref]
  28. A. M. Gardner, K. H. Saeed, and A. J. Cowan, “Vibrational sum-frequency generation spectroscopy of electrode surfaces: studying the mechanisms of sustainable fuel generation and utilisation,” Phys. Chem. Chem. Phys. 21(23), 12067–12086 (2019).
    [Crossref]
  29. J. Chen, M. A. Wang, Z. Even, and Chen, “Sum Frequency Generation Vibrational Spectroscopy Studies on “Buried” Polymer/Polymer Interfaces,” Macromolecules 35(21), 8093–8097 (2002).
    [Crossref]
  30. Z. Chen, “Investigating buried polymer interfaces using sum frequency generation vibrational spectroscopy,” Prog. Polym. Sci. 35(11), 1376–1402 (2010).
    [Crossref]
  31. X. Lu, B. Li, P. Zhu, G. Xue, and D. Li, “Illustrating consistency of different experimental approaches to probe the buried polymer/metal interface using sum frequency generation vibrational spectroscopy,” Soft Matter 10(29), 5390–5397 (2014).
    [Crossref]
  32. W. J. Tomlinson, R. H. Stolen, and C. V. Shank, “Compression of Optical Pulses Chirped by Self-Phase Modulation in Fibers,” J. Opt. Soc. Am. B 1(2), 139–149 (1984).
    [Crossref]
  33. S. Haroche and F. Hartmann, “Theory of Saturated-Absorption Line Shapes,” Phys. Rev. A 6(4), 1280–1300 (1972).
    [Crossref]
  34. P. T. Wilson, K. A. Briggman, W. E. Wallace, J. C. Stephenson, and L. J. Richter, “Selective study of polymer/dielectric interfaces with vibrationally resonant sum frequency generation via thin-film interference,” Appl. Phys. Lett. 80(17), 3084–3086 (2002).
    [Crossref]
  35. Y. Tong, Y. Zhao, N. Li, M. Osawa, P. B. Davies, and S. Ye, “Interference effects in the sum frequency generation spectra of thin organic films. I. Theoretical modeling and simulation,” J. Chem. Phys. 133(15), 154308 (2010).
    [Crossref]
  36. K. A. Briggman, J. C. Stephenson, W. E. Wallace, and L. J. Richter, “Absolute Molecular Orientational Distribution of the Polystyrene Surface,” J. Phys. Chem. B 105(14), 2785–2791 (2001).
    [Crossref]
  37. X. Wei, S.-C. Hong, A. I. Lvovsky, H. Held, and Y. R. Shen, “Evaluation of Surface vs Bulk Contributions in Sum-Frequency Vibrational Spectroscopy Using Reflection and Transmission Geometries,” J. Phys. Chem. B 104(14), 3349–3354 (2000).
    [Crossref]
  38. T. Joutsuka, T. Hirano, M. Sprik, and A. Morita, “Effects of third-order susceptibility in sum frequency generation spectra: a molecular dynamics study in liquid water,” Phys. Chem. Chem. Phys. 20(5), 3040–3053 (2018).
    [Crossref]
  39. J. C. Deàk, Y. Pang, T. D. Sechler, Z. Wang, and D. D. Dlott, “Vibrational Energy Transfer across a Reverse Micelle Surfactant Layer,” Science 306(5695), 473–476 (2004).
    [Crossref]
  40. S. Roke, W. G. Roeterdink, J. E. G. J. Wijnhoven, A. V. Petukhov, A. W. Kleyn, and M. Bonn, “Vibrational Sum Frequency Scattering from a Submicron Suspension,” Phys. Rev. Lett. 91(25), 258302 (2003).
    [Crossref]
  41. H. Arnolds and M. Bonn, “Ultrafast surface vibrational dynamics,” Surf. Sci. Rep. 65(2), 45–66 (2010).
    [Crossref]
  42. H.-F. Wang, W. Gan, R. Lu, Y. Rao, and B.-H. Wu, “Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS),” Int. Rev. Phys. Chem. 24(2), 191–256 (2005).
    [Crossref]
  43. Programm, example run and example data of PCGP algorithm. https://doi.org/10.6084/m9.figshare.9119666

2019 (3)

J. Tan, J. Zhang, C. Li, Y. Luo, and S. Ye, “Ultrafast energy relaxation dynamics of amide I vibrations coupled with protein-bound water molecules,” Nat. Commun. 10(1), 1010 (2019).
[Crossref]

R. Itakura, H. Akagi, and T. Otobe, “Characterization of 20-fs VUV pulses by plasma-mirror frequency-resolved optical gating,” Opt. Lett. 44(9), 2282–2285 (2019).
[Crossref]

A. M. Gardner, K. H. Saeed, and A. J. Cowan, “Vibrational sum-frequency generation spectroscopy of electrode surfaces: studying the mechanisms of sustainable fuel generation and utilisation,” Phys. Chem. Chem. Phys. 21(23), 12067–12086 (2019).
[Crossref]

2018 (2)

S. C. Averett, S. K. Stanley, J. J. Hanson, S. J. Smith, and J. E. Patterson, “Surface Spectroscopic Signatures of Mechanical Deformation in High-Density Polyethylene (HDPE),” Appl. Spectrosc. 72(7), 1057–1068 (2018).
[Crossref]

T. Joutsuka, T. Hirano, M. Sprik, and A. Morita, “Effects of third-order susceptibility in sum frequency generation spectra: a molecular dynamics study in liquid water,” Phys. Chem. Chem. Phys. 20(5), 3040–3053 (2018).
[Crossref]

2017 (3)

Y. Tong, F. Lapointe, M. Thamer, M. Wolf, and R. K. Campen, “Hydrophobic Water Probed Experimentally at the Gold Electrode/Aqueous Interface,” Angew. Chem., Int. Ed. 56(15), 4211–4214 (2017).
[Crossref]

A. Tuladhar, S. M. Piontek, and E. Borguet, “Insights on Interfacial Structure, Dynamics, and Proton Transfer from Ultrafast Vibrational Sum Frequency Generation Spectroscopy of the Alumina(0001)/Water Interface,” J. Phys. Chem. C 121(9), 5168–5177 (2017).
[Crossref]

C. Zhang, “Sum Frequency Generation Vibrational Spectroscopy for Characterization of Buried Polymer Interfaces,” Appl. Spectrosc. 71(8), 1717–1749 (2017).
[Crossref]

2016 (2)

2015 (1)

2014 (2)

Y. H. He, G. Q. Chen, M. Xu, Y. Q. Liu, and Z. H. Wang, “Vibrational dephasing of self-assembling monolayer on gold surface,” J. Lumin. 152, 244–246 (2014).
[Crossref]

X. Lu, B. Li, P. Zhu, G. Xue, and D. Li, “Illustrating consistency of different experimental approaches to probe the buried polymer/metal interface using sum frequency generation vibrational spectroscopy,” Soft Matter 10(29), 5390–5397 (2014).
[Crossref]

2013 (1)

C. Zhang, J. N. Myers, and Z. Chen, “Elucidation of molecular structures at buried polymer interfaces and biological interfaces using sum frequency generation vibrational spectroscopy,” Soft Matter 9(19), 4738–4761 (2013).
[Crossref]

2012 (1)

A. D. Quast, A. D. Curtis, B. A. Horn, S. R. Goates, and J. E. Patterson, “Role of nonresonant sum-frequency generation in the investigation of model liquid chromatography systems,” Anal. Chem. 84(4), 1862–1870 (2012).
[Crossref]

2011 (3)

J. Liu, Y. Feng, H. Li, P. Lu, H. Pan, J. Wu, and H. Zeng, “Supercontinuum pulse measurement by molecular alignment based cross-correlation frequency resolved optical gating,” Opt. Express 19(1), 40–46 (2011).
[Crossref]

L. Velarde, X. Y. Zhang, Z. Lu, A. G. Joly, Z. Wang, and H. F. Wang, “Spectroscopic phase and lineshapes in high-resolution broadband sum frequency vibrational spectroscopy: resolving interfacial inhomogeneities of “identical” molecular groups,” J. Chem. Phys. 135(24), 241102 (2011).
[Crossref]

A. D. Curtis, M. C. Asplund, and J. E. Patterson, “Use of Variable Time-Delay Sum-Frequency Generation for Improved Spectroscopic Analysis,” J. Phys. Chem. C 115(39), 19303–19310 (2011).
[Crossref]

2010 (5)

I. V. Stiopkin, H. D. Jayathilake, C. Weeraman, and A. V. Benderskii, “Temporal effects on spectroscopic line shapes, resolution, and sensitivity of the broad-band sum frequency generation,” J. Chem. Phys. 132(23), 234503 (2010).
[Crossref]

A. D. Curtis, S. B. Reynolds, A. R. Calchera, and J. E. Patterson, “Understanding the Role of Nonresonant Sum-Frequency Generation from Polystyrene Thin Films,” J. Phys. Chem. Lett. 1(16), 2435–2439 (2010).
[Crossref]

Z. Chen, “Investigating buried polymer interfaces using sum frequency generation vibrational spectroscopy,” Prog. Polym. Sci. 35(11), 1376–1402 (2010).
[Crossref]

Y. Tong, Y. Zhao, N. Li, M. Osawa, P. B. Davies, and S. Ye, “Interference effects in the sum frequency generation spectra of thin organic films. I. Theoretical modeling and simulation,” J. Chem. Phys. 133(15), 154308 (2010).
[Crossref]

H. Arnolds and M. Bonn, “Ultrafast surface vibrational dynamics,” Surf. Sci. Rep. 65(2), 45–66 (2010).
[Crossref]

2009 (1)

M. Sovago, E. Vartiainen, and M. Bonn, “Observation of buried water molecules in phospholipid membranes by surface sum-frequency generation spectroscopy,” J. Chem. Phys. 131(16), 161107 (2009).
[Crossref]

2008 (1)

2007 (2)

Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N. H. Seong, D. G. Cahill, and D. D. Dlott, “Ultrafast flash thermal conductance of molecular chains,” Science 317(5839), 787–790 (2007).
[Crossref]

A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant Background Suppression in Broadband Vibrational Sum-Frequency Generation Spectroscopy,” J. Phys. Chem. C 111(37), 13645–13647 (2007).
[Crossref]

2005 (2)

E. H. Backus, A. Eichler, A. W. Kleyn, and M. Bonn, “Real-time observation of molecular motion on a surface,” Science 310(5755), 1790–1793 (2005).
[Crossref]

H.-F. Wang, W. Gan, R. Lu, Y. Rao, and B.-H. Wu, “Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS),” Int. Rev. Phys. Chem. 24(2), 191–256 (2005).
[Crossref]

2004 (1)

J. C. Deàk, Y. Pang, T. D. Sechler, Z. Wang, and D. D. Dlott, “Vibrational Energy Transfer across a Reverse Micelle Surfactant Layer,” Science 306(5695), 473–476 (2004).
[Crossref]

2003 (1)

S. Roke, W. G. Roeterdink, J. E. G. J. Wijnhoven, A. V. Petukhov, A. W. Kleyn, and M. Bonn, “Vibrational Sum Frequency Scattering from a Submicron Suspension,” Phys. Rev. Lett. 91(25), 258302 (2003).
[Crossref]

2002 (2)

P. T. Wilson, K. A. Briggman, W. E. Wallace, J. C. Stephenson, and L. J. Richter, “Selective study of polymer/dielectric interfaces with vibrationally resonant sum frequency generation via thin-film interference,” Appl. Phys. Lett. 80(17), 3084–3086 (2002).
[Crossref]

J. Chen, M. A. Wang, Z. Even, and Chen, “Sum Frequency Generation Vibrational Spectroscopy Studies on “Buried” Polymer/Polymer Interfaces,” Macromolecules 35(21), 8093–8097 (2002).
[Crossref]

2001 (1)

K. A. Briggman, J. C. Stephenson, W. E. Wallace, and L. J. Richter, “Absolute Molecular Orientational Distribution of the Polystyrene Surface,” J. Phys. Chem. B 105(14), 2785–2791 (2001).
[Crossref]

2000 (2)

X. Wei, S.-C. Hong, A. I. Lvovsky, H. Held, and Y. R. Shen, “Evaluation of Surface vs Bulk Contributions in Sum-Frequency Vibrational Spectroscopy Using Reflection and Transmission Geometries,” J. Phys. Chem. B 104(14), 3349–3354 (2000).
[Crossref]

G. A. Somorjai and K. R. McCrea, “Sum frequency generation: Surface vibrational spectroscopy studies of catalytic reactions on metal single-crystal surfaces,” Adv. Catal. 45, 385–438 (2000).
[Crossref]

1999 (1)

Z. Chen, D. H. Gracias, and G. A. Somorjai, “Sum frequency generation (SFG) – surface vibrational spectroscopy studies of buried interfaces: catalytic reaction intermediates on transition metal crystal surfaces at high reactant pressures; polymer surface structures at the solid–gas and solid–li,” Appl. Phys. B 68(3), 549–557 (1999).
[Crossref]

1998 (1)

1997 (1)

X. C. Su, P. S. Cremer, Y. R. Shen, and G. A. Somorjai, “High-pressure CO oxidation on Pt(111) monitored with infrared-visible sum frequency generation (SFG),” J. Am. Chem. Soc. 119(17), 3994–4000 (1997).
[Crossref]

1987 (1)

X. D. Zhu, H. Suhr, and Y. R. Shen, “Surface vibrational spectroscopy by infrared-visible sum frequency generation,” Phys. Rev. B 35(6), 3047–3050 (1987).
[Crossref]

1984 (1)

1972 (1)

S. Haroche and F. Hartmann, “Theory of Saturated-Absorption Line Shapes,” Phys. Rev. A 6(4), 1280–1300 (1972).
[Crossref]

Akagi, H.

Arnolds, H.

H. Arnolds and M. Bonn, “Ultrafast surface vibrational dynamics,” Surf. Sci. Rep. 65(2), 45–66 (2010).
[Crossref]

Asplund, M. C.

A. D. Curtis, M. C. Asplund, and J. E. Patterson, “Use of Variable Time-Delay Sum-Frequency Generation for Improved Spectroscopic Analysis,” J. Phys. Chem. C 115(39), 19303–19310 (2011).
[Crossref]

Averett, S. C.

Avnat, Z.

Backus, E. H.

E. H. Backus, A. Eichler, A. W. Kleyn, and M. Bonn, “Real-time observation of molecular motion on a surface,” Science 310(5755), 1790–1793 (2005).
[Crossref]

Benderskii, A. V.

I. V. Stiopkin, H. D. Jayathilake, C. Weeraman, and A. V. Benderskii, “Temporal effects on spectroscopic line shapes, resolution, and sensitivity of the broad-band sum frequency generation,” J. Chem. Phys. 132(23), 234503 (2010).
[Crossref]

Bonn, M.

H. Arnolds and M. Bonn, “Ultrafast surface vibrational dynamics,” Surf. Sci. Rep. 65(2), 45–66 (2010).
[Crossref]

M. Sovago, E. Vartiainen, and M. Bonn, “Observation of buried water molecules in phospholipid membranes by surface sum-frequency generation spectroscopy,” J. Chem. Phys. 131(16), 161107 (2009).
[Crossref]

E. H. Backus, A. Eichler, A. W. Kleyn, and M. Bonn, “Real-time observation of molecular motion on a surface,” Science 310(5755), 1790–1793 (2005).
[Crossref]

S. Roke, W. G. Roeterdink, J. E. G. J. Wijnhoven, A. V. Petukhov, A. W. Kleyn, and M. Bonn, “Vibrational Sum Frequency Scattering from a Submicron Suspension,” Phys. Rev. Lett. 91(25), 258302 (2003).
[Crossref]

Borguet, E.

A. Tuladhar, S. M. Piontek, and E. Borguet, “Insights on Interfacial Structure, Dynamics, and Proton Transfer from Ultrafast Vibrational Sum Frequency Generation Spectroscopy of the Alumina(0001)/Water Interface,” J. Phys. Chem. C 121(9), 5168–5177 (2017).
[Crossref]

Briggman, K. A.

P. T. Wilson, K. A. Briggman, W. E. Wallace, J. C. Stephenson, and L. J. Richter, “Selective study of polymer/dielectric interfaces with vibrationally resonant sum frequency generation via thin-film interference,” Appl. Phys. Lett. 80(17), 3084–3086 (2002).
[Crossref]

K. A. Briggman, J. C. Stephenson, W. E. Wallace, and L. J. Richter, “Absolute Molecular Orientational Distribution of the Polystyrene Surface,” J. Phys. Chem. B 105(14), 2785–2791 (2001).
[Crossref]

Cahill, D. G.

Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N. H. Seong, D. G. Cahill, and D. D. Dlott, “Ultrafast flash thermal conductance of molecular chains,” Science 317(5839), 787–790 (2007).
[Crossref]

Calchera, A. R.

A. D. Curtis, S. B. Reynolds, A. R. Calchera, and J. E. Patterson, “Understanding the Role of Nonresonant Sum-Frequency Generation from Polystyrene Thin Films,” J. Phys. Chem. Lett. 1(16), 2435–2439 (2010).
[Crossref]

Campen, R. K.

Y. Tong, F. Lapointe, M. Thamer, M. Wolf, and R. K. Campen, “Hydrophobic Water Probed Experimentally at the Gold Electrode/Aqueous Interface,” Angew. Chem., Int. Ed. 56(15), 4211–4214 (2017).
[Crossref]

Carter, J. A.

Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N. H. Seong, D. G. Cahill, and D. D. Dlott, “Ultrafast flash thermal conductance of molecular chains,” Science 317(5839), 787–790 (2007).
[Crossref]

Chen,

J. Chen, M. A. Wang, Z. Even, and Chen, “Sum Frequency Generation Vibrational Spectroscopy Studies on “Buried” Polymer/Polymer Interfaces,” Macromolecules 35(21), 8093–8097 (2002).
[Crossref]

Chen, G. Q.

Y. H. He, G. Q. Chen, M. Xu, Y. Q. Liu, and Z. H. Wang, “Vibrational dephasing of self-assembling monolayer on gold surface,” J. Lumin. 152, 244–246 (2014).
[Crossref]

Chen, J.

J. Chen, M. A. Wang, Z. Even, and Chen, “Sum Frequency Generation Vibrational Spectroscopy Studies on “Buried” Polymer/Polymer Interfaces,” Macromolecules 35(21), 8093–8097 (2002).
[Crossref]

Chen, Z.

C. Zhang, J. N. Myers, and Z. Chen, “Elucidation of molecular structures at buried polymer interfaces and biological interfaces using sum frequency generation vibrational spectroscopy,” Soft Matter 9(19), 4738–4761 (2013).
[Crossref]

Z. Chen, “Investigating buried polymer interfaces using sum frequency generation vibrational spectroscopy,” Prog. Polym. Sci. 35(11), 1376–1402 (2010).
[Crossref]

Z. Chen, D. H. Gracias, and G. A. Somorjai, “Sum frequency generation (SFG) – surface vibrational spectroscopy studies of buried interfaces: catalytic reaction intermediates on transition metal crystal surfaces at high reactant pressures; polymer surface structures at the solid–gas and solid–li,” Appl. Phys. B 68(3), 549–557 (1999).
[Crossref]

Cohen, O.

Cowan, A. J.

A. M. Gardner, K. H. Saeed, and A. J. Cowan, “Vibrational sum-frequency generation spectroscopy of electrode surfaces: studying the mechanisms of sustainable fuel generation and utilisation,” Phys. Chem. Chem. Phys. 21(23), 12067–12086 (2019).
[Crossref]

Cremer, P. S.

X. C. Su, P. S. Cremer, Y. R. Shen, and G. A. Somorjai, “High-pressure CO oxidation on Pt(111) monitored with infrared-visible sum frequency generation (SFG),” J. Am. Chem. Soc. 119(17), 3994–4000 (1997).
[Crossref]

Curtis, A. D.

A. D. Quast, A. D. Curtis, B. A. Horn, S. R. Goates, and J. E. Patterson, “Role of nonresonant sum-frequency generation in the investigation of model liquid chromatography systems,” Anal. Chem. 84(4), 1862–1870 (2012).
[Crossref]

A. D. Curtis, M. C. Asplund, and J. E. Patterson, “Use of Variable Time-Delay Sum-Frequency Generation for Improved Spectroscopic Analysis,” J. Phys. Chem. C 115(39), 19303–19310 (2011).
[Crossref]

A. D. Curtis, S. B. Reynolds, A. R. Calchera, and J. E. Patterson, “Understanding the Role of Nonresonant Sum-Frequency Generation from Polystyrene Thin Films,” J. Phys. Chem. Lett. 1(16), 2435–2439 (2010).
[Crossref]

Davies, P. B.

Y. Tong, Y. Zhao, N. Li, M. Osawa, P. B. Davies, and S. Ye, “Interference effects in the sum frequency generation spectra of thin organic films. I. Theoretical modeling and simulation,” J. Chem. Phys. 133(15), 154308 (2010).
[Crossref]

Deàk, J. C.

J. C. Deàk, Y. Pang, T. D. Sechler, Z. Wang, and D. D. Dlott, “Vibrational Energy Transfer across a Reverse Micelle Surfactant Layer,” Science 306(5695), 473–476 (2004).
[Crossref]

Dlott, D. D.

Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N. H. Seong, D. G. Cahill, and D. D. Dlott, “Ultrafast flash thermal conductance of molecular chains,” Science 317(5839), 787–790 (2007).
[Crossref]

A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant Background Suppression in Broadband Vibrational Sum-Frequency Generation Spectroscopy,” J. Phys. Chem. C 111(37), 13645–13647 (2007).
[Crossref]

J. C. Deàk, Y. Pang, T. D. Sechler, Z. Wang, and D. D. Dlott, “Vibrational Energy Transfer across a Reverse Micelle Surfactant Layer,” Science 306(5695), 473–476 (2004).
[Crossref]

Eichler, A.

E. H. Backus, A. Eichler, A. W. Kleyn, and M. Bonn, “Real-time observation of molecular motion on a surface,” Science 310(5755), 1790–1793 (2005).
[Crossref]

Even, Z.

J. Chen, M. A. Wang, Z. Even, and Chen, “Sum Frequency Generation Vibrational Spectroscopy Studies on “Buried” Polymer/Polymer Interfaces,” Macromolecules 35(21), 8093–8097 (2002).
[Crossref]

Feng, Y.

Gan, W.

H.-F. Wang, W. Gan, R. Lu, Y. Rao, and B.-H. Wu, “Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS),” Int. Rev. Phys. Chem. 24(2), 191–256 (2005).
[Crossref]

Gardner, A. M.

A. M. Gardner, K. H. Saeed, and A. J. Cowan, “Vibrational sum-frequency generation spectroscopy of electrode surfaces: studying the mechanisms of sustainable fuel generation and utilisation,” Phys. Chem. Chem. Phys. 21(23), 12067–12086 (2019).
[Crossref]

Goates, S. R.

A. D. Quast, A. D. Curtis, B. A. Horn, S. R. Goates, and J. E. Patterson, “Role of nonresonant sum-frequency generation in the investigation of model liquid chromatography systems,” Anal. Chem. 84(4), 1862–1870 (2012).
[Crossref]

Gracias, D. H.

Z. Chen, D. H. Gracias, and G. A. Somorjai, “Sum frequency generation (SFG) – surface vibrational spectroscopy studies of buried interfaces: catalytic reaction intermediates on transition metal crystal surfaces at high reactant pressures; polymer surface structures at the solid–gas and solid–li,” Appl. Phys. B 68(3), 549–557 (1999).
[Crossref]

Guo, W.

Hambir, S. A.

A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant Background Suppression in Broadband Vibrational Sum-Frequency Generation Spectroscopy,” J. Phys. Chem. C 111(37), 13645–13647 (2007).
[Crossref]

Hanson, J. J.

Haroche, S.

S. Haroche and F. Hartmann, “Theory of Saturated-Absorption Line Shapes,” Phys. Rev. A 6(4), 1280–1300 (1972).
[Crossref]

Hartmann, F.

S. Haroche and F. Hartmann, “Theory of Saturated-Absorption Line Shapes,” Phys. Rev. A 6(4), 1280–1300 (1972).
[Crossref]

He, Y.

He, Y. H.

Y. H. He, G. Q. Chen, M. Xu, Y. Q. Liu, and Z. H. Wang, “Vibrational dephasing of self-assembling monolayer on gold surface,” J. Lumin. 152, 244–246 (2014).
[Crossref]

Held, H.

X. Wei, S.-C. Hong, A. I. Lvovsky, H. Held, and Y. R. Shen, “Evaluation of Surface vs Bulk Contributions in Sum-Frequency Vibrational Spectroscopy Using Reflection and Transmission Geometries,” J. Phys. Chem. B 104(14), 3349–3354 (2000).
[Crossref]

Hirano, T.

T. Joutsuka, T. Hirano, M. Sprik, and A. Morita, “Effects of third-order susceptibility in sum frequency generation spectra: a molecular dynamics study in liquid water,” Phys. Chem. Chem. Phys. 20(5), 3040–3053 (2018).
[Crossref]

Hong, S.-C.

X. Wei, S.-C. Hong, A. I. Lvovsky, H. Held, and Y. R. Shen, “Evaluation of Surface vs Bulk Contributions in Sum-Frequency Vibrational Spectroscopy Using Reflection and Transmission Geometries,” J. Phys. Chem. B 104(14), 3349–3354 (2000).
[Crossref]

Horn, B. A.

A. D. Quast, A. D. Curtis, B. A. Horn, S. R. Goates, and J. E. Patterson, “Role of nonresonant sum-frequency generation in the investigation of model liquid chromatography systems,” Anal. Chem. 84(4), 1862–1870 (2012).
[Crossref]

Itakura, R.

Jayathilake, H. D.

I. V. Stiopkin, H. D. Jayathilake, C. Weeraman, and A. V. Benderskii, “Temporal effects on spectroscopic line shapes, resolution, and sensitivity of the broad-band sum frequency generation,” J. Chem. Phys. 132(23), 234503 (2010).
[Crossref]

Joly, A. G.

L. Velarde, X. Y. Zhang, Z. Lu, A. G. Joly, Z. Wang, and H. F. Wang, “Spectroscopic phase and lineshapes in high-resolution broadband sum frequency vibrational spectroscopy: resolving interfacial inhomogeneities of “identical” molecular groups,” J. Chem. Phys. 135(24), 241102 (2011).
[Crossref]

Joutsuka, T.

T. Joutsuka, T. Hirano, M. Sprik, and A. Morita, “Effects of third-order susceptibility in sum frequency generation spectra: a molecular dynamics study in liquid water,” Phys. Chem. Chem. Phys. 20(5), 3040–3053 (2018).
[Crossref]

Kane, D. J.

Kleyn, A. W.

E. H. Backus, A. Eichler, A. W. Kleyn, and M. Bonn, “Real-time observation of molecular motion on a surface,” Science 310(5755), 1790–1793 (2005).
[Crossref]

S. Roke, W. G. Roeterdink, J. E. G. J. Wijnhoven, A. V. Petukhov, A. W. Kleyn, and M. Bonn, “Vibrational Sum Frequency Scattering from a Submicron Suspension,” Phys. Rev. Lett. 91(25), 258302 (2003).
[Crossref]

Koh, Y. K.

Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N. H. Seong, D. G. Cahill, and D. D. Dlott, “Ultrafast flash thermal conductance of molecular chains,” Science 317(5839), 787–790 (2007).
[Crossref]

Kumada, T.

Lagutchev, A.

A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant Background Suppression in Broadband Vibrational Sum-Frequency Generation Spectroscopy,” J. Phys. Chem. C 111(37), 13645–13647 (2007).
[Crossref]

Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N. H. Seong, D. G. Cahill, and D. D. Dlott, “Ultrafast flash thermal conductance of molecular chains,” Science 317(5839), 787–790 (2007).
[Crossref]

Lahav, O.

Lapointe, F.

Y. Tong, F. Lapointe, M. Thamer, M. Wolf, and R. K. Campen, “Hydrophobic Water Probed Experimentally at the Gold Electrode/Aqueous Interface,” Angew. Chem., Int. Ed. 56(15), 4211–4214 (2017).
[Crossref]

Li, B.

X. Lu, B. Li, P. Zhu, G. Xue, and D. Li, “Illustrating consistency of different experimental approaches to probe the buried polymer/metal interface using sum frequency generation vibrational spectroscopy,” Soft Matter 10(29), 5390–5397 (2014).
[Crossref]

Li, C.

J. Tan, J. Zhang, C. Li, Y. Luo, and S. Ye, “Ultrafast energy relaxation dynamics of amide I vibrations coupled with protein-bound water molecules,” Nat. Commun. 10(1), 1010 (2019).
[Crossref]

Li, D.

X. Lu, B. Li, P. Zhu, G. Xue, and D. Li, “Illustrating consistency of different experimental approaches to probe the buried polymer/metal interface using sum frequency generation vibrational spectroscopy,” Soft Matter 10(29), 5390–5397 (2014).
[Crossref]

Li, H.

Li, N.

Y. Tong, Y. Zhao, N. Li, M. Osawa, P. B. Davies, and S. Ye, “Interference effects in the sum frequency generation spectra of thin organic films. I. Theoretical modeling and simulation,” J. Chem. Phys. 133(15), 154308 (2010).
[Crossref]

Liu, J.

Liu, Y. Q.

Y. H. He, G. Q. Chen, M. Xu, Y. Q. Liu, and Z. H. Wang, “Vibrational dephasing of self-assembling monolayer on gold surface,” J. Lumin. 152, 244–246 (2014).
[Crossref]

Lu, P.

Lu, R.

H.-F. Wang, W. Gan, R. Lu, Y. Rao, and B.-H. Wu, “Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS),” Int. Rev. Phys. Chem. 24(2), 191–256 (2005).
[Crossref]

Lu, X.

X. Lu, B. Li, P. Zhu, G. Xue, and D. Li, “Illustrating consistency of different experimental approaches to probe the buried polymer/metal interface using sum frequency generation vibrational spectroscopy,” Soft Matter 10(29), 5390–5397 (2014).
[Crossref]

Lu, Z.

L. Velarde, X. Y. Zhang, Z. Lu, A. G. Joly, Z. Wang, and H. F. Wang, “Spectroscopic phase and lineshapes in high-resolution broadband sum frequency vibrational spectroscopy: resolving interfacial inhomogeneities of “identical” molecular groups,” J. Chem. Phys. 135(24), 241102 (2011).
[Crossref]

Luo, Y.

J. Tan, J. Zhang, C. Li, Y. Luo, and S. Ye, “Ultrafast energy relaxation dynamics of amide I vibrations coupled with protein-bound water molecules,” Nat. Commun. 10(1), 1010 (2019).
[Crossref]

Lvovsky, A. I.

X. Wei, S.-C. Hong, A. I. Lvovsky, H. Held, and Y. R. Shen, “Evaluation of Surface vs Bulk Contributions in Sum-Frequency Vibrational Spectroscopy Using Reflection and Transmission Geometries,” J. Phys. Chem. B 104(14), 3349–3354 (2000).
[Crossref]

McCrea, K. R.

G. A. Somorjai and K. R. McCrea, “Sum frequency generation: Surface vibrational spectroscopy studies of catalytic reactions on metal single-crystal surfaces,” Adv. Catal. 45, 385–438 (2000).
[Crossref]

Morita, A.

T. Joutsuka, T. Hirano, M. Sprik, and A. Morita, “Effects of third-order susceptibility in sum frequency generation spectra: a molecular dynamics study in liquid water,” Phys. Chem. Chem. Phys. 20(5), 3040–3053 (2018).
[Crossref]

Myers, J. N.

C. Zhang, J. N. Myers, and Z. Chen, “Elucidation of molecular structures at buried polymer interfaces and biological interfaces using sum frequency generation vibrational spectroscopy,” Soft Matter 9(19), 4738–4761 (2013).
[Crossref]

Nakano, M.

Osawa, M.

Y. Tong, Y. Zhao, N. Li, M. Osawa, P. B. Davies, and S. Ye, “Interference effects in the sum frequency generation spectra of thin organic films. I. Theoretical modeling and simulation,” J. Chem. Phys. 133(15), 154308 (2010).
[Crossref]

Otobe, T.

Pan, H.

Pang, Y.

J. C. Deàk, Y. Pang, T. D. Sechler, Z. Wang, and D. D. Dlott, “Vibrational Energy Transfer across a Reverse Micelle Surfactant Layer,” Science 306(5695), 473–476 (2004).
[Crossref]

Patterson, J. E.

S. C. Averett, S. K. Stanley, J. J. Hanson, S. J. Smith, and J. E. Patterson, “Surface Spectroscopic Signatures of Mechanical Deformation in High-Density Polyethylene (HDPE),” Appl. Spectrosc. 72(7), 1057–1068 (2018).
[Crossref]

A. D. Quast, A. D. Curtis, B. A. Horn, S. R. Goates, and J. E. Patterson, “Role of nonresonant sum-frequency generation in the investigation of model liquid chromatography systems,” Anal. Chem. 84(4), 1862–1870 (2012).
[Crossref]

A. D. Curtis, M. C. Asplund, and J. E. Patterson, “Use of Variable Time-Delay Sum-Frequency Generation for Improved Spectroscopic Analysis,” J. Phys. Chem. C 115(39), 19303–19310 (2011).
[Crossref]

A. D. Curtis, S. B. Reynolds, A. R. Calchera, and J. E. Patterson, “Understanding the Role of Nonresonant Sum-Frequency Generation from Polystyrene Thin Films,” J. Phys. Chem. Lett. 1(16), 2435–2439 (2010).
[Crossref]

Petralli-Mallow, T. P.

Petukhov, A. V.

S. Roke, W. G. Roeterdink, J. E. G. J. Wijnhoven, A. V. Petukhov, A. W. Kleyn, and M. Bonn, “Vibrational Sum Frequency Scattering from a Submicron Suspension,” Phys. Rev. Lett. 91(25), 258302 (2003).
[Crossref]

Piontek, S. M.

A. Tuladhar, S. M. Piontek, and E. Borguet, “Insights on Interfacial Structure, Dynamics, and Proton Transfer from Ultrafast Vibrational Sum Frequency Generation Spectroscopy of the Alumina(0001)/Water Interface,” J. Phys. Chem. C 121(9), 5168–5177 (2017).
[Crossref]

Quast, A. D.

A. D. Quast, A. D. Curtis, B. A. Horn, S. R. Goates, and J. E. Patterson, “Role of nonresonant sum-frequency generation in the investigation of model liquid chromatography systems,” Anal. Chem. 84(4), 1862–1870 (2012).
[Crossref]

Rao, Y.

H.-F. Wang, W. Gan, R. Lu, Y. Rao, and B.-H. Wu, “Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS),” Int. Rev. Phys. Chem. 24(2), 191–256 (2005).
[Crossref]

Reynolds, S. B.

A. D. Curtis, S. B. Reynolds, A. R. Calchera, and J. E. Patterson, “Understanding the Role of Nonresonant Sum-Frequency Generation from Polystyrene Thin Films,” J. Phys. Chem. Lett. 1(16), 2435–2439 (2010).
[Crossref]

Richter, L. J.

P. T. Wilson, K. A. Briggman, W. E. Wallace, J. C. Stephenson, and L. J. Richter, “Selective study of polymer/dielectric interfaces with vibrationally resonant sum frequency generation via thin-film interference,” Appl. Phys. Lett. 80(17), 3084–3086 (2002).
[Crossref]

K. A. Briggman, J. C. Stephenson, W. E. Wallace, and L. J. Richter, “Absolute Molecular Orientational Distribution of the Polystyrene Surface,” J. Phys. Chem. B 105(14), 2785–2791 (2001).
[Crossref]

L. J. Richter, T. P. Petralli-Mallow, and J. C. Stephenson, “Vibrationally resolved sum-frequency generation with broad-bandwidth infrared pulses,” Opt. Lett. 23(20), 1594–1596 (1998).
[Crossref]

Roeterdink, W. G.

S. Roke, W. G. Roeterdink, J. E. G. J. Wijnhoven, A. V. Petukhov, A. W. Kleyn, and M. Bonn, “Vibrational Sum Frequency Scattering from a Submicron Suspension,” Phys. Rev. Lett. 91(25), 258302 (2003).
[Crossref]

Roke, S.

S. Roke, W. G. Roeterdink, J. E. G. J. Wijnhoven, A. V. Petukhov, A. W. Kleyn, and M. Bonn, “Vibrational Sum Frequency Scattering from a Submicron Suspension,” Phys. Rev. Lett. 91(25), 258302 (2003).
[Crossref]

Saeed, K. H.

A. M. Gardner, K. H. Saeed, and A. J. Cowan, “Vibrational sum-frequency generation spectroscopy of electrode surfaces: studying the mechanisms of sustainable fuel generation and utilisation,” Phys. Chem. Chem. Phys. 21(23), 12067–12086 (2019).
[Crossref]

Sechler, T. D.

J. C. Deàk, Y. Pang, T. D. Sechler, Z. Wang, and D. D. Dlott, “Vibrational Energy Transfer across a Reverse Micelle Surfactant Layer,” Science 306(5695), 473–476 (2004).
[Crossref]

Seong, N. H.

Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N. H. Seong, D. G. Cahill, and D. D. Dlott, “Ultrafast flash thermal conductance of molecular chains,” Science 317(5839), 787–790 (2007).
[Crossref]

Shank, C. V.

Shen, Y. R.

X. Wei, S.-C. Hong, A. I. Lvovsky, H. Held, and Y. R. Shen, “Evaluation of Surface vs Bulk Contributions in Sum-Frequency Vibrational Spectroscopy Using Reflection and Transmission Geometries,” J. Phys. Chem. B 104(14), 3349–3354 (2000).
[Crossref]

X. C. Su, P. S. Cremer, Y. R. Shen, and G. A. Somorjai, “High-pressure CO oxidation on Pt(111) monitored with infrared-visible sum frequency generation (SFG),” J. Am. Chem. Soc. 119(17), 3994–4000 (1997).
[Crossref]

X. D. Zhu, H. Suhr, and Y. R. Shen, “Surface vibrational spectroscopy by infrared-visible sum frequency generation,” Phys. Rev. B 35(6), 3047–3050 (1987).
[Crossref]

Sidorenko, P.

Smith, S. J.

Somorjai, G. A.

G. A. Somorjai and K. R. McCrea, “Sum frequency generation: Surface vibrational spectroscopy studies of catalytic reactions on metal single-crystal surfaces,” Adv. Catal. 45, 385–438 (2000).
[Crossref]

Z. Chen, D. H. Gracias, and G. A. Somorjai, “Sum frequency generation (SFG) – surface vibrational spectroscopy studies of buried interfaces: catalytic reaction intermediates on transition metal crystal surfaces at high reactant pressures; polymer surface structures at the solid–gas and solid–li,” Appl. Phys. B 68(3), 549–557 (1999).
[Crossref]

X. C. Su, P. S. Cremer, Y. R. Shen, and G. A. Somorjai, “High-pressure CO oxidation on Pt(111) monitored with infrared-visible sum frequency generation (SFG),” J. Am. Chem. Soc. 119(17), 3994–4000 (1997).
[Crossref]

Sovago, M.

M. Sovago, E. Vartiainen, and M. Bonn, “Observation of buried water molecules in phospholipid membranes by surface sum-frequency generation spectroscopy,” J. Chem. Phys. 131(16), 161107 (2009).
[Crossref]

Sprik, M.

T. Joutsuka, T. Hirano, M. Sprik, and A. Morita, “Effects of third-order susceptibility in sum frequency generation spectra: a molecular dynamics study in liquid water,” Phys. Chem. Chem. Phys. 20(5), 3040–3053 (2018).
[Crossref]

Stanley, S. K.

Stephenson, J. C.

P. T. Wilson, K. A. Briggman, W. E. Wallace, J. C. Stephenson, and L. J. Richter, “Selective study of polymer/dielectric interfaces with vibrationally resonant sum frequency generation via thin-film interference,” Appl. Phys. Lett. 80(17), 3084–3086 (2002).
[Crossref]

K. A. Briggman, J. C. Stephenson, W. E. Wallace, and L. J. Richter, “Absolute Molecular Orientational Distribution of the Polystyrene Surface,” J. Phys. Chem. B 105(14), 2785–2791 (2001).
[Crossref]

L. J. Richter, T. P. Petralli-Mallow, and J. C. Stephenson, “Vibrationally resolved sum-frequency generation with broad-bandwidth infrared pulses,” Opt. Lett. 23(20), 1594–1596 (1998).
[Crossref]

Stiopkin, I. V.

I. V. Stiopkin, H. D. Jayathilake, C. Weeraman, and A. V. Benderskii, “Temporal effects on spectroscopic line shapes, resolution, and sensitivity of the broad-band sum frequency generation,” J. Chem. Phys. 132(23), 234503 (2010).
[Crossref]

Stolen, R. H.

Su, X. C.

X. C. Su, P. S. Cremer, Y. R. Shen, and G. A. Somorjai, “High-pressure CO oxidation on Pt(111) monitored with infrared-visible sum frequency generation (SFG),” J. Am. Chem. Soc. 119(17), 3994–4000 (1997).
[Crossref]

Suhr, H.

X. D. Zhu, H. Suhr, and Y. R. Shen, “Surface vibrational spectroscopy by infrared-visible sum frequency generation,” Phys. Rev. B 35(6), 3047–3050 (1987).
[Crossref]

Tan, J.

J. Tan, J. Zhang, C. Li, Y. Luo, and S. Ye, “Ultrafast energy relaxation dynamics of amide I vibrations coupled with protein-bound water molecules,” Nat. Commun. 10(1), 1010 (2019).
[Crossref]

Thamer, M.

Y. Tong, F. Lapointe, M. Thamer, M. Wolf, and R. K. Campen, “Hydrophobic Water Probed Experimentally at the Gold Electrode/Aqueous Interface,” Angew. Chem., Int. Ed. 56(15), 4211–4214 (2017).
[Crossref]

Tomlinson, W. J.

Tong, Y.

Y. Tong, F. Lapointe, M. Thamer, M. Wolf, and R. K. Campen, “Hydrophobic Water Probed Experimentally at the Gold Electrode/Aqueous Interface,” Angew. Chem., Int. Ed. 56(15), 4211–4214 (2017).
[Crossref]

Y. Tong, Y. Zhao, N. Li, M. Osawa, P. B. Davies, and S. Ye, “Interference effects in the sum frequency generation spectra of thin organic films. I. Theoretical modeling and simulation,” J. Chem. Phys. 133(15), 154308 (2010).
[Crossref]

Tuladhar, A.

A. Tuladhar, S. M. Piontek, and E. Borguet, “Insights on Interfacial Structure, Dynamics, and Proton Transfer from Ultrafast Vibrational Sum Frequency Generation Spectroscopy of the Alumina(0001)/Water Interface,” J. Phys. Chem. C 121(9), 5168–5177 (2017).
[Crossref]

Vartiainen, E.

M. Sovago, E. Vartiainen, and M. Bonn, “Observation of buried water molecules in phospholipid membranes by surface sum-frequency generation spectroscopy,” J. Chem. Phys. 131(16), 161107 (2009).
[Crossref]

Velarde, L.

L. Velarde, X. Y. Zhang, Z. Lu, A. G. Joly, Z. Wang, and H. F. Wang, “Spectroscopic phase and lineshapes in high-resolution broadband sum frequency vibrational spectroscopy: resolving interfacial inhomogeneities of “identical” molecular groups,” J. Chem. Phys. 135(24), 241102 (2011).
[Crossref]

Wallace, W. E.

P. T. Wilson, K. A. Briggman, W. E. Wallace, J. C. Stephenson, and L. J. Richter, “Selective study of polymer/dielectric interfaces with vibrationally resonant sum frequency generation via thin-film interference,” Appl. Phys. Lett. 80(17), 3084–3086 (2002).
[Crossref]

K. A. Briggman, J. C. Stephenson, W. E. Wallace, and L. J. Richter, “Absolute Molecular Orientational Distribution of the Polystyrene Surface,” J. Phys. Chem. B 105(14), 2785–2791 (2001).
[Crossref]

Wang, H. F.

L. Velarde, X. Y. Zhang, Z. Lu, A. G. Joly, Z. Wang, and H. F. Wang, “Spectroscopic phase and lineshapes in high-resolution broadband sum frequency vibrational spectroscopy: resolving interfacial inhomogeneities of “identical” molecular groups,” J. Chem. Phys. 135(24), 241102 (2011).
[Crossref]

Wang, H.-F.

H.-F. Wang, W. Gan, R. Lu, Y. Rao, and B.-H. Wu, “Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS),” Int. Rev. Phys. Chem. 24(2), 191–256 (2005).
[Crossref]

Wang, J.

Wang, M. A.

J. Chen, M. A. Wang, Z. Even, and Chen, “Sum Frequency Generation Vibrational Spectroscopy Studies on “Buried” Polymer/Polymer Interfaces,” Macromolecules 35(21), 8093–8097 (2002).
[Crossref]

Wang, Y.

Wang, Z.

Y. He, Y. Wang, J. Wang, W. Guo, and Z. Wang, “Frequency-domain nonlinear regression algorithm for spectral analysis of broadband SFG spectroscopy,” Opt. Lett. 41(5), 874–877 (2016).
[Crossref]

L. Velarde, X. Y. Zhang, Z. Lu, A. G. Joly, Z. Wang, and H. F. Wang, “Spectroscopic phase and lineshapes in high-resolution broadband sum frequency vibrational spectroscopy: resolving interfacial inhomogeneities of “identical” molecular groups,” J. Chem. Phys. 135(24), 241102 (2011).
[Crossref]

Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N. H. Seong, D. G. Cahill, and D. D. Dlott, “Ultrafast flash thermal conductance of molecular chains,” Science 317(5839), 787–790 (2007).
[Crossref]

J. C. Deàk, Y. Pang, T. D. Sechler, Z. Wang, and D. D. Dlott, “Vibrational Energy Transfer across a Reverse Micelle Surfactant Layer,” Science 306(5695), 473–476 (2004).
[Crossref]

Wang, Z. H.

Y. H. He, G. Q. Chen, M. Xu, Y. Q. Liu, and Z. H. Wang, “Vibrational dephasing of self-assembling monolayer on gold surface,” J. Lumin. 152, 244–246 (2014).
[Crossref]

Weeraman, C.

I. V. Stiopkin, H. D. Jayathilake, C. Weeraman, and A. V. Benderskii, “Temporal effects on spectroscopic line shapes, resolution, and sensitivity of the broad-band sum frequency generation,” J. Chem. Phys. 132(23), 234503 (2010).
[Crossref]

Wei, X.

X. Wei, S.-C. Hong, A. I. Lvovsky, H. Held, and Y. R. Shen, “Evaluation of Surface vs Bulk Contributions in Sum-Frequency Vibrational Spectroscopy Using Reflection and Transmission Geometries,” J. Phys. Chem. B 104(14), 3349–3354 (2000).
[Crossref]

Wijnhoven, J. E. G. J.

S. Roke, W. G. Roeterdink, J. E. G. J. Wijnhoven, A. V. Petukhov, A. W. Kleyn, and M. Bonn, “Vibrational Sum Frequency Scattering from a Submicron Suspension,” Phys. Rev. Lett. 91(25), 258302 (2003).
[Crossref]

Wilson, P. T.

P. T. Wilson, K. A. Briggman, W. E. Wallace, J. C. Stephenson, and L. J. Richter, “Selective study of polymer/dielectric interfaces with vibrationally resonant sum frequency generation via thin-film interference,” Appl. Phys. Lett. 80(17), 3084–3086 (2002).
[Crossref]

Wolf, M.

Y. Tong, F. Lapointe, M. Thamer, M. Wolf, and R. K. Campen, “Hydrophobic Water Probed Experimentally at the Gold Electrode/Aqueous Interface,” Angew. Chem., Int. Ed. 56(15), 4211–4214 (2017).
[Crossref]

Wu, B.-H.

H.-F. Wang, W. Gan, R. Lu, Y. Rao, and B.-H. Wu, “Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS),” Int. Rev. Phys. Chem. 24(2), 191–256 (2005).
[Crossref]

Wu, J.

Xu, M.

Y. H. He, G. Q. Chen, M. Xu, Y. Q. Liu, and Z. H. Wang, “Vibrational dephasing of self-assembling monolayer on gold surface,” J. Lumin. 152, 244–246 (2014).
[Crossref]

Xue, G.

X. Lu, B. Li, P. Zhu, G. Xue, and D. Li, “Illustrating consistency of different experimental approaches to probe the buried polymer/metal interface using sum frequency generation vibrational spectroscopy,” Soft Matter 10(29), 5390–5397 (2014).
[Crossref]

Ye, S.

J. Tan, J. Zhang, C. Li, Y. Luo, and S. Ye, “Ultrafast energy relaxation dynamics of amide I vibrations coupled with protein-bound water molecules,” Nat. Commun. 10(1), 1010 (2019).
[Crossref]

Y. Tong, Y. Zhao, N. Li, M. Osawa, P. B. Davies, and S. Ye, “Interference effects in the sum frequency generation spectra of thin organic films. I. Theoretical modeling and simulation,” J. Chem. Phys. 133(15), 154308 (2010).
[Crossref]

Zeng, H.

Zhang, C.

C. Zhang, “Sum Frequency Generation Vibrational Spectroscopy for Characterization of Buried Polymer Interfaces,” Appl. Spectrosc. 71(8), 1717–1749 (2017).
[Crossref]

C. Zhang, J. N. Myers, and Z. Chen, “Elucidation of molecular structures at buried polymer interfaces and biological interfaces using sum frequency generation vibrational spectroscopy,” Soft Matter 9(19), 4738–4761 (2013).
[Crossref]

Zhang, J.

J. Tan, J. Zhang, C. Li, Y. Luo, and S. Ye, “Ultrafast energy relaxation dynamics of amide I vibrations coupled with protein-bound water molecules,” Nat. Commun. 10(1), 1010 (2019).
[Crossref]

Zhang, X. Y.

L. Velarde, X. Y. Zhang, Z. Lu, A. G. Joly, Z. Wang, and H. F. Wang, “Spectroscopic phase and lineshapes in high-resolution broadband sum frequency vibrational spectroscopy: resolving interfacial inhomogeneities of “identical” molecular groups,” J. Chem. Phys. 135(24), 241102 (2011).
[Crossref]

Zhao, Y.

Y. Tong, Y. Zhao, N. Li, M. Osawa, P. B. Davies, and S. Ye, “Interference effects in the sum frequency generation spectra of thin organic films. I. Theoretical modeling and simulation,” J. Chem. Phys. 133(15), 154308 (2010).
[Crossref]

Zhu, P.

X. Lu, B. Li, P. Zhu, G. Xue, and D. Li, “Illustrating consistency of different experimental approaches to probe the buried polymer/metal interface using sum frequency generation vibrational spectroscopy,” Soft Matter 10(29), 5390–5397 (2014).
[Crossref]

Zhu, X. D.

X. D. Zhu, H. Suhr, and Y. R. Shen, “Surface vibrational spectroscopy by infrared-visible sum frequency generation,” Phys. Rev. B 35(6), 3047–3050 (1987).
[Crossref]

Adv. Catal. (1)

G. A. Somorjai and K. R. McCrea, “Sum frequency generation: Surface vibrational spectroscopy studies of catalytic reactions on metal single-crystal surfaces,” Adv. Catal. 45, 385–438 (2000).
[Crossref]

Anal. Chem. (1)

A. D. Quast, A. D. Curtis, B. A. Horn, S. R. Goates, and J. E. Patterson, “Role of nonresonant sum-frequency generation in the investigation of model liquid chromatography systems,” Anal. Chem. 84(4), 1862–1870 (2012).
[Crossref]

Angew. Chem., Int. Ed. (1)

Y. Tong, F. Lapointe, M. Thamer, M. Wolf, and R. K. Campen, “Hydrophobic Water Probed Experimentally at the Gold Electrode/Aqueous Interface,” Angew. Chem., Int. Ed. 56(15), 4211–4214 (2017).
[Crossref]

Appl. Phys. B (1)

Z. Chen, D. H. Gracias, and G. A. Somorjai, “Sum frequency generation (SFG) – surface vibrational spectroscopy studies of buried interfaces: catalytic reaction intermediates on transition metal crystal surfaces at high reactant pressures; polymer surface structures at the solid–gas and solid–li,” Appl. Phys. B 68(3), 549–557 (1999).
[Crossref]

Appl. Phys. Lett. (1)

P. T. Wilson, K. A. Briggman, W. E. Wallace, J. C. Stephenson, and L. J. Richter, “Selective study of polymer/dielectric interfaces with vibrationally resonant sum frequency generation via thin-film interference,” Appl. Phys. Lett. 80(17), 3084–3086 (2002).
[Crossref]

Appl. Spectrosc. (2)

Int. Rev. Phys. Chem. (1)

H.-F. Wang, W. Gan, R. Lu, Y. Rao, and B.-H. Wu, “Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS),” Int. Rev. Phys. Chem. 24(2), 191–256 (2005).
[Crossref]

J. Am. Chem. Soc. (1)

X. C. Su, P. S. Cremer, Y. R. Shen, and G. A. Somorjai, “High-pressure CO oxidation on Pt(111) monitored with infrared-visible sum frequency generation (SFG),” J. Am. Chem. Soc. 119(17), 3994–4000 (1997).
[Crossref]

J. Chem. Phys. (4)

Y. Tong, Y. Zhao, N. Li, M. Osawa, P. B. Davies, and S. Ye, “Interference effects in the sum frequency generation spectra of thin organic films. I. Theoretical modeling and simulation,” J. Chem. Phys. 133(15), 154308 (2010).
[Crossref]

I. V. Stiopkin, H. D. Jayathilake, C. Weeraman, and A. V. Benderskii, “Temporal effects on spectroscopic line shapes, resolution, and sensitivity of the broad-band sum frequency generation,” J. Chem. Phys. 132(23), 234503 (2010).
[Crossref]

L. Velarde, X. Y. Zhang, Z. Lu, A. G. Joly, Z. Wang, and H. F. Wang, “Spectroscopic phase and lineshapes in high-resolution broadband sum frequency vibrational spectroscopy: resolving interfacial inhomogeneities of “identical” molecular groups,” J. Chem. Phys. 135(24), 241102 (2011).
[Crossref]

M. Sovago, E. Vartiainen, and M. Bonn, “Observation of buried water molecules in phospholipid membranes by surface sum-frequency generation spectroscopy,” J. Chem. Phys. 131(16), 161107 (2009).
[Crossref]

J. Lumin. (1)

Y. H. He, G. Q. Chen, M. Xu, Y. Q. Liu, and Z. H. Wang, “Vibrational dephasing of self-assembling monolayer on gold surface,” J. Lumin. 152, 244–246 (2014).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. B (2)

K. A. Briggman, J. C. Stephenson, W. E. Wallace, and L. J. Richter, “Absolute Molecular Orientational Distribution of the Polystyrene Surface,” J. Phys. Chem. B 105(14), 2785–2791 (2001).
[Crossref]

X. Wei, S.-C. Hong, A. I. Lvovsky, H. Held, and Y. R. Shen, “Evaluation of Surface vs Bulk Contributions in Sum-Frequency Vibrational Spectroscopy Using Reflection and Transmission Geometries,” J. Phys. Chem. B 104(14), 3349–3354 (2000).
[Crossref]

J. Phys. Chem. C (3)

A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant Background Suppression in Broadband Vibrational Sum-Frequency Generation Spectroscopy,” J. Phys. Chem. C 111(37), 13645–13647 (2007).
[Crossref]

A. D. Curtis, M. C. Asplund, and J. E. Patterson, “Use of Variable Time-Delay Sum-Frequency Generation for Improved Spectroscopic Analysis,” J. Phys. Chem. C 115(39), 19303–19310 (2011).
[Crossref]

A. Tuladhar, S. M. Piontek, and E. Borguet, “Insights on Interfacial Structure, Dynamics, and Proton Transfer from Ultrafast Vibrational Sum Frequency Generation Spectroscopy of the Alumina(0001)/Water Interface,” J. Phys. Chem. C 121(9), 5168–5177 (2017).
[Crossref]

J. Phys. Chem. Lett. (1)

A. D. Curtis, S. B. Reynolds, A. R. Calchera, and J. E. Patterson, “Understanding the Role of Nonresonant Sum-Frequency Generation from Polystyrene Thin Films,” J. Phys. Chem. Lett. 1(16), 2435–2439 (2010).
[Crossref]

Macromolecules (1)

J. Chen, M. A. Wang, Z. Even, and Chen, “Sum Frequency Generation Vibrational Spectroscopy Studies on “Buried” Polymer/Polymer Interfaces,” Macromolecules 35(21), 8093–8097 (2002).
[Crossref]

Nat. Commun. (1)

J. Tan, J. Zhang, C. Li, Y. Luo, and S. Ye, “Ultrafast energy relaxation dynamics of amide I vibrations coupled with protein-bound water molecules,” Nat. Commun. 10(1), 1010 (2019).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Optica (1)

Phys. Chem. Chem. Phys. (2)

T. Joutsuka, T. Hirano, M. Sprik, and A. Morita, “Effects of third-order susceptibility in sum frequency generation spectra: a molecular dynamics study in liquid water,” Phys. Chem. Chem. Phys. 20(5), 3040–3053 (2018).
[Crossref]

A. M. Gardner, K. H. Saeed, and A. J. Cowan, “Vibrational sum-frequency generation spectroscopy of electrode surfaces: studying the mechanisms of sustainable fuel generation and utilisation,” Phys. Chem. Chem. Phys. 21(23), 12067–12086 (2019).
[Crossref]

Phys. Rev. A (1)

S. Haroche and F. Hartmann, “Theory of Saturated-Absorption Line Shapes,” Phys. Rev. A 6(4), 1280–1300 (1972).
[Crossref]

Phys. Rev. B (1)

X. D. Zhu, H. Suhr, and Y. R. Shen, “Surface vibrational spectroscopy by infrared-visible sum frequency generation,” Phys. Rev. B 35(6), 3047–3050 (1987).
[Crossref]

Phys. Rev. Lett. (1)

S. Roke, W. G. Roeterdink, J. E. G. J. Wijnhoven, A. V. Petukhov, A. W. Kleyn, and M. Bonn, “Vibrational Sum Frequency Scattering from a Submicron Suspension,” Phys. Rev. Lett. 91(25), 258302 (2003).
[Crossref]

Prog. Polym. Sci. (1)

Z. Chen, “Investigating buried polymer interfaces using sum frequency generation vibrational spectroscopy,” Prog. Polym. Sci. 35(11), 1376–1402 (2010).
[Crossref]

Science (3)

J. C. Deàk, Y. Pang, T. D. Sechler, Z. Wang, and D. D. Dlott, “Vibrational Energy Transfer across a Reverse Micelle Surfactant Layer,” Science 306(5695), 473–476 (2004).
[Crossref]

E. H. Backus, A. Eichler, A. W. Kleyn, and M. Bonn, “Real-time observation of molecular motion on a surface,” Science 310(5755), 1790–1793 (2005).
[Crossref]

Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N. H. Seong, D. G. Cahill, and D. D. Dlott, “Ultrafast flash thermal conductance of molecular chains,” Science 317(5839), 787–790 (2007).
[Crossref]

Soft Matter (2)

C. Zhang, J. N. Myers, and Z. Chen, “Elucidation of molecular structures at buried polymer interfaces and biological interfaces using sum frequency generation vibrational spectroscopy,” Soft Matter 9(19), 4738–4761 (2013).
[Crossref]

X. Lu, B. Li, P. Zhu, G. Xue, and D. Li, “Illustrating consistency of different experimental approaches to probe the buried polymer/metal interface using sum frequency generation vibrational spectroscopy,” Soft Matter 10(29), 5390–5397 (2014).
[Crossref]

Surf. Sci. Rep. (1)

H. Arnolds and M. Bonn, “Ultrafast surface vibrational dynamics,” Surf. Sci. Rep. 65(2), 45–66 (2010).
[Crossref]

Other (1)

Programm, example run and example data of PCGP algorithm. https://doi.org/10.6084/m9.figshare.9119666

Supplementary Material (1)

NameDescription
» Code 1       The interpolation (auto_pcgp.m) and the iteration (svdsfg.m) of the principal component generalized projection (PCGP) algorithm were coded with Matlab and included here. A sample run of the PCGP codes (command.m) for the measured BB-SFG spectra from

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. The schematic of BB-SFG setup.
Fig. 2.
Fig. 2. The BB-SFG spectra of the Au with (a) normal and (b) distorted IR pulse. Dash blue lines are the measured spectra, and the red solid lines are the reconstructed spectra from PCGP. Offset for comparison.
Fig. 3.
Fig. 3. The intensity of BB-SFG at (a) 2853 cm-1 (the resonant frequency of PE) and (b) 3020 cm-1 (out of the resonant range of PE).
Fig. 4.
Fig. 4. The retrieved results of the induced polarization (a) P(1)(t), (b) P(1)(ω), and (c) the phase of P(1)(ω).
Fig. 5.
Fig. 5. Comparison of calculated IR absorption from the retrieved |PNPE(ω)/PPE(ω)|2 (red solid line), the ratio of the measured spectra at τ = 0 ps (green dashed line), and FTIR spectrum of the PE film (blue solid line).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E S F G ( t ) P ( 1 ) ( t ) E V I S ( t , τ ) = ( R ( t ) E I R ( t ) ) E V I S ( t , τ )
E S F G ( ω S F G ) P ( 1 ) ( ω I R ) E V I S ( ω V I S , τ ) = ( χ ( 2 ) E I R ( ω I R ) ) E V I S ( ω V I S , 0 ) e i ω τ
E F R O G ( t , τ ) E P ( t ) G ( t , τ )
E F R O G ( ω , τ ) E P ( ω ) G ( ω , τ )
E ( k , ω ) = A exp ( i n k 0 x i ω t )
E SFG ( N , τ ) = P ( 1 ) ( N ) E VIS ( N , τ )
E VIS ( N , τ ) = E VIS ( N , M Δ t ) = E VIS ( N M , 0 )
M = [ P ( 1 ) E V I S ( 1 ) P ( 1 ) E V I S ( 2 ) P ( 1 ) E V I S ( 3 ) P ( 1 ) E V I S ( m ) P ( 2 ) E V I S ( 2 ) P ( 2 ) E V I S ( 3 ) P ( 2 ) E V I S ( 4 ) P ( 2 ) E V I S ( m + 1 ) P ( 3 ) E V I S ( 3 ) P ( 3 ) E V I S ( 4 ) P ( 3 ) E V I S ( 5 ) P ( 3 ) E V I S ( m + 2 ) P ( n ) E V I S ( n ) P ( n ) E V I S ( n + 1 ) P ( n ) E V I S ( n + 2 ) P ( n ) E V I S ( m + n 1 ) ]
M = [ P ( 1 ) E V I S ( 1 ) P ( 1 ) E V I S ( 2 ) P ( 1 ) E V I S ( 3 ) P ( 1 ) E V I S ( m ) P ( 2 ) E V I S ( 1 ) P ( 2 ) E V I S ( 2 ) P ( 2 ) E V I S ( 3 ) P ( 2 ) E V I S ( m ) P ( 3 ) E V I S ( 1 ) P ( 3 ) E V I S ( 2 ) P ( 3 ) E V I S ( 3 ) P ( 3 ) E V I S ( m ) P ( n ) E V I S ( 1 ) P ( n ) E V I S ( 2 ) P ( n ) E V I S ( 3 ) P ( n ) E V I S ( m ) ]
Δ τ = 100 / 3 F .
ERROR = norm ( I SFG ( ω , τ ) | E SFG,R ( ω , τ ) | 2 ) norm ( I SFG ( ω , τ ) )

Metrics