Abstract

In this paper, we propose an accurate high-compressed look-up-table method that uses less memory to generate the hologram. In precomputation, we separate the longitudinal modulation factors and only calculate the basic horizontal and vertical factors. Therefore, we obtain other horizontal and vertical modulation factors of object points by simply shifting the basic horizontal and vertical modulation factors while computing holograms. We perform numerical simulations and optical experiments to verify the proposed method. Numerical simulation results show that the proposed method has the least memory usage, the fastest computation time and no distortion. The optical experimental results are in accord with the numerical simulation results. The proposed method is simple and effective to calculate computer-generated holograms for color dynamic holographic display with high speed, less memory usage and high accuracy that could be applied in the holographic field in the future.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Reducing the memory usage for effectivecomputer-generated hologram calculation using compressed look-up table in full-color holographic display

Jia Jia, Yongtian Wang, Juan Liu, Xin Li, Yijie Pan, Zhumei Sun, Bin Zhang, Qing Zhao, and Wei Jiang
Appl. Opt. 52(7) 1404-1412 (2013)

Accelerating computation of CGH using symmetric compressed look-up-table in color holographic display

Tao Zhao, Juan Liu, Qiankun Gao, Pan He, Yu Han, and Youngtian Wang
Opt. Express 26(13) 16063-16073 (2018)

Accurate compressed look up table method for CGH in 3D holographic display

Chuan Gao, Juan Liu, Xin Li, Gaolei Xue, Jia Jia, and Yongtian Wang
Opt. Express 23(26) 33194-33204 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38(8), 46–53 (2005).
    [Crossref]
  2. J. Hahn, H. Kim, Y. Lim, G. Park, and B. Lee, “Wide viewing angle dynamic holographic stereogram with a curved array ofspatial light modulators,” Opt. Express 16(16), 12372–12386 (2008).
    [Crossref]
  3. T. Kozacki, M. Kujawińska, G. Finke, W. Zaperty, and B. Hennelly, “Holographic capture and display systems in circular configurations,” J. Disp. Technol. 8(4), 225–232 (2012).
    [Crossref]
  4. F. Yaraş, H. Kang, and L. Onural, “Circular holographic video display system,” Opt. Express 19(10), 9147–9156 (2011).
    [Crossref]
  5. A. D. Stein, Z. Wang, and J. J. S. Leigh, “Computer-generated holograms: a simplified ray-tracing approach,” Comput. Phys. 6(4), 389–392 (1992).
    [Crossref]
  6. M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
    [Crossref]
  7. S. C. Kim and E. S. Kim, “Effective generation of digital holograms of three-dimensional objects using a novel look-up table method,” Appl. Opt. 47(19), D55–D62 (2008).
    [Crossref]
  8. T. Shimobaba and T. Ito, “Random phase-free computer-generated hologram,” Opt. Express 23(7), 9549–9554 (2015).
    [Crossref]
  9. H. Pang, J. Wang, A. Cao, and Q. Deng, “High-accuracy method for holographic image projection with suppressed speckle noise,” Opt. Express 24(20), 22766–22776 (2016).
    [Crossref]
  10. Y. Pan, X. Xu, S. Solanki, X. Liang, R. B. Tanjung, C. Tan, and T. C. Chong, “Fast CGH computation using SLUT on GPU,” Opt. Express 17(21), 18543–18555 (2009).
    [Crossref]
  11. J. Jia, Y. Wang, J. Liu, X. Li, Y. Pan, Z. Sun, B. Zhang, Q. Zhao, and W. Jiang, “Reducing the memory usage for effective computer-generated hologram calculation using compressed look-up table in full-color holographic display,” Appl. Opt. 52(7), 1404–1412 (2013).
    [Crossref]
  12. S. C. Kim and E. S. Kim, “Fast computation of hologram patterns of a 3D object using run-length encoding and novel look-up table methods,” Appl. Opt. 48(6), 1030–1041 (2009).
    [Crossref]
  13. T. Shimobaba, H. Nakayama, N. Masuda, and T. Ito, “Rapid calculation algorithm of Fresnel computergenerated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display,” Opt. Express 18(19), 19504–19509 (2010).
    [Crossref]
  14. S. C. Kim, J. H. Yoon, and E. S. Kim, “Fast generation of three-dimensional video holograms by combined use of data compression and lookup table techniques,” Appl. Opt. 47(32), 5986–5995 (2008).
    [Crossref]
  15. Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Improved full analytical polygon-based method using Fourier analysis of the three-dimensional affine transformation,” Appl. Opt. 53(7), 1354–1362 (2014).
    [Crossref]
  16. Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Fast polygon-based method for calculating computer-generated holograms in three-dimensional display,” Appl. Opt. 52(1), A290–A299 (2013).
    [Crossref]
  17. Y. Pan, Y. Wang, J. Liu, X. Li, J. Jia, and Z. Zhang, “Analytical brightness compensation algorithm for traditional polygon-based method in computer-generated holography,” Appl. Opt. 52(18), 4391–4399 (2013).
    [Crossref]
  18. J. Park, S. Kim, H. Yeom, H. Kim, H. Zhang, B. Li, Y. Ji, S. Kim, and S. Ko, “Continuous shading and its fast update in fully analytic triangular-mesh-based computer generated hologram,” Opt. Express 23(26), 33893–33901 (2015).
    [Crossref]
  19. H. Nishi and K. Matsushima, “Rendering of specular curved objects in polygon-based computer holography,” Appl. Opt. 56(13), F37–F44 (2017).
    [Crossref]
  20. M. Bayraktar and M. Özcan, “Method to calculate the far field of threedimensional objects for computer-generated holography,” Appl. Opt. 49(24), 4647–4654 (2010).
    [Crossref]
  21. J. Chen and D. Chu, “Improved layer-based method for rapid hologram generation and real-time interactive holographic display applications,” Opt. Express 23(14), 18143–18155 (2015).
    [Crossref]
  22. H. Zhang, L. Cao, and G. Jin, “Computer-generated hologram with occlusion effect using layer-based processing,” Appl. Opt. 56(13), F138–F143 (2017).
    [Crossref]
  23. S. C. Kim, J. M. Kim, and E. S. Kim, “Effective memory reduction of the novel look-up table with onedimensional sub-principle fringe patterns in computer-generated holograms,” Opt. Express 20(11), 12021–12034 (2012).
    [Crossref]
  24. S. C. Kim, X. B. Dong, M. W. Kwon, and E. S. Kim, “Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table,” Opt. Express 21(9), 11568–11584 (2013).
    [Crossref]
  25. S. C. Kim, X. B. Dong, and E. S. Kim, “Accelerated one-step generation of full-color holographic videos using a color-tunable novel-look-up-table method for holographic three-dimensional television broadcasting,” Sci. Rep. 5(1), 14056 (2015).
    [Crossref]
  26. T. Nishitsuji, T. Shimobaba, T. Kakue, and T. Ito, “Fast calculation of computer-generated hologram using runlength encoding based recurrence relation,” Opt. Express 23(8), 9852–9857 (2015).
    [Crossref]
  27. S. Jiao, Z. Zhuang, and W. Zou, “Fast computer generated hologram calculation with a mini look-up table incorporated with radial symmetric interpolation,” Opt. Express 25(1), 112–123 (2017).
    [Crossref]
  28. Z. Zeng, H. Zheng, Y. Yu, and A. K. Asundic, “Off-axis phase-only holograms of 3D objects using accelerated point-based Fresnel diffraction algorithm,” Opt. Lasers Eng. 93, 47–54 (2017).
    [Crossref]
  29. H. Araki, N. Takada, S. Ikawa, H. Niwase, Y. Maeda, M. Fujiwara, H. Nakayama, M. Oikawa, T. Kakue, T. Shimobaba, and T. Ito, “Fast time-division color electroholography using a multiple-graphics processing unit cluster system with a single spatial light modulator,” Chin. Opt. Lett. 15(12), 120902 (2017).
    [Crossref]
  30. H. Niwase, N. Takada, H. Araki, Y. Maeda, M. Fujiwara, H. Nakayama, T. Kakue, T. Shimobaba, and T. Ito, “Real-time electroholography using a multiple-graphics processing unit cluster system with a single spatial light modulator and the InfiniBand network,” Opt. Eng. 55(9), 093108 (2016).
    [Crossref]
  31. H. Niwase, N. Takada, H. Araki, H. Nakayama, A. Sugiyama, T. Kakue, T. Shimobaba, and T. Ito, “Real-time spatiotemporal division multiplexing electroholography with a single graphics processing unit utilizing movie features,” Opt. Express 22(23), 28052–28057 (2014).
    [Crossref]
  32. N. Takada, T. Shimobaba, H. Nakayama, A. Shiraki, N. Okada, M. Oikawa, N. Masuda, and T. Ito, “Fast high-resolution computer-generated hologram computation using multiple graphics processing unit cluster system,” Appl. Opt. 51(30), 7303–7307 (2012).
    [Crossref]
  33. C. Gao, J. Liu, X. Li, G. Xue, J. Jia, and Y. Wang, “Accurate compressed look up table method for CGH in 3D holographic display,” Opt. Express 23(26), 33194–33204 (2015).
    [Crossref]
  34. H. Zhang, J. Xie, J. Liu, and Y. Wang, “Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection,” Appl. Opt. 48(30), 5834–5841 (2009).
    [Crossref]

2017 (5)

2016 (2)

H. Niwase, N. Takada, H. Araki, Y. Maeda, M. Fujiwara, H. Nakayama, T. Kakue, T. Shimobaba, and T. Ito, “Real-time electroholography using a multiple-graphics processing unit cluster system with a single spatial light modulator and the InfiniBand network,” Opt. Eng. 55(9), 093108 (2016).
[Crossref]

H. Pang, J. Wang, A. Cao, and Q. Deng, “High-accuracy method for holographic image projection with suppressed speckle noise,” Opt. Express 24(20), 22766–22776 (2016).
[Crossref]

2015 (6)

2014 (2)

2013 (4)

2012 (3)

2011 (1)

2010 (2)

2009 (3)

2008 (3)

2005 (1)

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38(8), 46–53 (2005).
[Crossref]

1993 (1)

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[Crossref]

1992 (1)

A. D. Stein, Z. Wang, and J. J. S. Leigh, “Computer-generated holograms: a simplified ray-tracing approach,” Comput. Phys. 6(4), 389–392 (1992).
[Crossref]

Araki, H.

Asundic, A. K.

Z. Zeng, H. Zheng, Y. Yu, and A. K. Asundic, “Off-axis phase-only holograms of 3D objects using accelerated point-based Fresnel diffraction algorithm,” Opt. Lasers Eng. 93, 47–54 (2017).
[Crossref]

Bayraktar, M.

Cameron, C.

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38(8), 46–53 (2005).
[Crossref]

Cao, A.

Cao, L.

Chen, J.

Chong, T. C.

Chu, D.

Deng, Q.

Dong, X. B.

S. C. Kim, X. B. Dong, and E. S. Kim, “Accelerated one-step generation of full-color holographic videos using a color-tunable novel-look-up-table method for holographic three-dimensional television broadcasting,” Sci. Rep. 5(1), 14056 (2015).
[Crossref]

S. C. Kim, X. B. Dong, M. W. Kwon, and E. S. Kim, “Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table,” Opt. Express 21(9), 11568–11584 (2013).
[Crossref]

Finke, G.

T. Kozacki, M. Kujawińska, G. Finke, W. Zaperty, and B. Hennelly, “Holographic capture and display systems in circular configurations,” J. Disp. Technol. 8(4), 225–232 (2012).
[Crossref]

Fujiwara, M.

H. Araki, N. Takada, S. Ikawa, H. Niwase, Y. Maeda, M. Fujiwara, H. Nakayama, M. Oikawa, T. Kakue, T. Shimobaba, and T. Ito, “Fast time-division color electroholography using a multiple-graphics processing unit cluster system with a single spatial light modulator,” Chin. Opt. Lett. 15(12), 120902 (2017).
[Crossref]

H. Niwase, N. Takada, H. Araki, Y. Maeda, M. Fujiwara, H. Nakayama, T. Kakue, T. Shimobaba, and T. Ito, “Real-time electroholography using a multiple-graphics processing unit cluster system with a single spatial light modulator and the InfiniBand network,” Opt. Eng. 55(9), 093108 (2016).
[Crossref]

Gao, C.

Hahn, J.

Hennelly, B.

T. Kozacki, M. Kujawińska, G. Finke, W. Zaperty, and B. Hennelly, “Holographic capture and display systems in circular configurations,” J. Disp. Technol. 8(4), 225–232 (2012).
[Crossref]

Ikawa, S.

Ito, T.

H. Araki, N. Takada, S. Ikawa, H. Niwase, Y. Maeda, M. Fujiwara, H. Nakayama, M. Oikawa, T. Kakue, T. Shimobaba, and T. Ito, “Fast time-division color electroholography using a multiple-graphics processing unit cluster system with a single spatial light modulator,” Chin. Opt. Lett. 15(12), 120902 (2017).
[Crossref]

H. Niwase, N. Takada, H. Araki, Y. Maeda, M. Fujiwara, H. Nakayama, T. Kakue, T. Shimobaba, and T. Ito, “Real-time electroholography using a multiple-graphics processing unit cluster system with a single spatial light modulator and the InfiniBand network,” Opt. Eng. 55(9), 093108 (2016).
[Crossref]

T. Nishitsuji, T. Shimobaba, T. Kakue, and T. Ito, “Fast calculation of computer-generated hologram using runlength encoding based recurrence relation,” Opt. Express 23(8), 9852–9857 (2015).
[Crossref]

T. Shimobaba and T. Ito, “Random phase-free computer-generated hologram,” Opt. Express 23(7), 9549–9554 (2015).
[Crossref]

H. Niwase, N. Takada, H. Araki, H. Nakayama, A. Sugiyama, T. Kakue, T. Shimobaba, and T. Ito, “Real-time spatiotemporal division multiplexing electroholography with a single graphics processing unit utilizing movie features,” Opt. Express 22(23), 28052–28057 (2014).
[Crossref]

N. Takada, T. Shimobaba, H. Nakayama, A. Shiraki, N. Okada, M. Oikawa, N. Masuda, and T. Ito, “Fast high-resolution computer-generated hologram computation using multiple graphics processing unit cluster system,” Appl. Opt. 51(30), 7303–7307 (2012).
[Crossref]

T. Shimobaba, H. Nakayama, N. Masuda, and T. Ito, “Rapid calculation algorithm of Fresnel computergenerated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display,” Opt. Express 18(19), 19504–19509 (2010).
[Crossref]

Ji, Y.

Jia, J.

Jiang, W.

Jiao, S.

Jin, G.

Kakue, T.

Kang, H.

Kim, E. S.

Kim, H.

Kim, J. M.

Kim, S.

Kim, S. C.

Ko, S.

Kozacki, T.

T. Kozacki, M. Kujawińska, G. Finke, W. Zaperty, and B. Hennelly, “Holographic capture and display systems in circular configurations,” J. Disp. Technol. 8(4), 225–232 (2012).
[Crossref]

Kujawinska, M.

T. Kozacki, M. Kujawińska, G. Finke, W. Zaperty, and B. Hennelly, “Holographic capture and display systems in circular configurations,” J. Disp. Technol. 8(4), 225–232 (2012).
[Crossref]

Kwon, M. W.

Lee, B.

Leigh, J. J. S.

A. D. Stein, Z. Wang, and J. J. S. Leigh, “Computer-generated holograms: a simplified ray-tracing approach,” Comput. Phys. 6(4), 389–392 (1992).
[Crossref]

Li, B.

Li, X.

Liang, X.

Lim, Y.

Liu, J.

Lucente, M.

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[Crossref]

Maeda, Y.

H. Araki, N. Takada, S. Ikawa, H. Niwase, Y. Maeda, M. Fujiwara, H. Nakayama, M. Oikawa, T. Kakue, T. Shimobaba, and T. Ito, “Fast time-division color electroholography using a multiple-graphics processing unit cluster system with a single spatial light modulator,” Chin. Opt. Lett. 15(12), 120902 (2017).
[Crossref]

H. Niwase, N. Takada, H. Araki, Y. Maeda, M. Fujiwara, H. Nakayama, T. Kakue, T. Shimobaba, and T. Ito, “Real-time electroholography using a multiple-graphics processing unit cluster system with a single spatial light modulator and the InfiniBand network,” Opt. Eng. 55(9), 093108 (2016).
[Crossref]

Masuda, N.

Matsushima, K.

Nakayama, H.

Nishi, H.

Nishitsuji, T.

Niwase, H.

Oikawa, M.

Okada, N.

Onural, L.

Özcan, M.

Pan, Y.

Pang, H.

Park, G.

Park, J.

Shimobaba, T.

H. Araki, N. Takada, S. Ikawa, H. Niwase, Y. Maeda, M. Fujiwara, H. Nakayama, M. Oikawa, T. Kakue, T. Shimobaba, and T. Ito, “Fast time-division color electroholography using a multiple-graphics processing unit cluster system with a single spatial light modulator,” Chin. Opt. Lett. 15(12), 120902 (2017).
[Crossref]

H. Niwase, N. Takada, H. Araki, Y. Maeda, M. Fujiwara, H. Nakayama, T. Kakue, T. Shimobaba, and T. Ito, “Real-time electroholography using a multiple-graphics processing unit cluster system with a single spatial light modulator and the InfiniBand network,” Opt. Eng. 55(9), 093108 (2016).
[Crossref]

T. Nishitsuji, T. Shimobaba, T. Kakue, and T. Ito, “Fast calculation of computer-generated hologram using runlength encoding based recurrence relation,” Opt. Express 23(8), 9852–9857 (2015).
[Crossref]

T. Shimobaba and T. Ito, “Random phase-free computer-generated hologram,” Opt. Express 23(7), 9549–9554 (2015).
[Crossref]

H. Niwase, N. Takada, H. Araki, H. Nakayama, A. Sugiyama, T. Kakue, T. Shimobaba, and T. Ito, “Real-time spatiotemporal division multiplexing electroholography with a single graphics processing unit utilizing movie features,” Opt. Express 22(23), 28052–28057 (2014).
[Crossref]

N. Takada, T. Shimobaba, H. Nakayama, A. Shiraki, N. Okada, M. Oikawa, N. Masuda, and T. Ito, “Fast high-resolution computer-generated hologram computation using multiple graphics processing unit cluster system,” Appl. Opt. 51(30), 7303–7307 (2012).
[Crossref]

T. Shimobaba, H. Nakayama, N. Masuda, and T. Ito, “Rapid calculation algorithm of Fresnel computergenerated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display,” Opt. Express 18(19), 19504–19509 (2010).
[Crossref]

Shiraki, A.

Slinger, C.

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38(8), 46–53 (2005).
[Crossref]

Solanki, S.

Stanley, M.

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38(8), 46–53 (2005).
[Crossref]

Stein, A. D.

A. D. Stein, Z. Wang, and J. J. S. Leigh, “Computer-generated holograms: a simplified ray-tracing approach,” Comput. Phys. 6(4), 389–392 (1992).
[Crossref]

Sugiyama, A.

Sun, Z.

Takada, N.

Tan, C.

Tanjung, R. B.

Wang, J.

Wang, Y.

Wang, Z.

A. D. Stein, Z. Wang, and J. J. S. Leigh, “Computer-generated holograms: a simplified ray-tracing approach,” Comput. Phys. 6(4), 389–392 (1992).
[Crossref]

Xie, J.

Xu, X.

Xue, G.

Yaras, F.

Yeom, H.

Yoon, J. H.

Yu, Y.

Z. Zeng, H. Zheng, Y. Yu, and A. K. Asundic, “Off-axis phase-only holograms of 3D objects using accelerated point-based Fresnel diffraction algorithm,” Opt. Lasers Eng. 93, 47–54 (2017).
[Crossref]

Zaperty, W.

T. Kozacki, M. Kujawińska, G. Finke, W. Zaperty, and B. Hennelly, “Holographic capture and display systems in circular configurations,” J. Disp. Technol. 8(4), 225–232 (2012).
[Crossref]

Zeng, Z.

Z. Zeng, H. Zheng, Y. Yu, and A. K. Asundic, “Off-axis phase-only holograms of 3D objects using accelerated point-based Fresnel diffraction algorithm,” Opt. Lasers Eng. 93, 47–54 (2017).
[Crossref]

Zhang, B.

Zhang, H.

Zhang, Z.

Zhao, Q.

Zheng, H.

Z. Zeng, H. Zheng, Y. Yu, and A. K. Asundic, “Off-axis phase-only holograms of 3D objects using accelerated point-based Fresnel diffraction algorithm,” Opt. Lasers Eng. 93, 47–54 (2017).
[Crossref]

Zhuang, Z.

Zou, W.

Appl. Opt. (12)

S. C. Kim and E. S. Kim, “Effective generation of digital holograms of three-dimensional objects using a novel look-up table method,” Appl. Opt. 47(19), D55–D62 (2008).
[Crossref]

J. Jia, Y. Wang, J. Liu, X. Li, Y. Pan, Z. Sun, B. Zhang, Q. Zhao, and W. Jiang, “Reducing the memory usage for effective computer-generated hologram calculation using compressed look-up table in full-color holographic display,” Appl. Opt. 52(7), 1404–1412 (2013).
[Crossref]

S. C. Kim and E. S. Kim, “Fast computation of hologram patterns of a 3D object using run-length encoding and novel look-up table methods,” Appl. Opt. 48(6), 1030–1041 (2009).
[Crossref]

S. C. Kim, J. H. Yoon, and E. S. Kim, “Fast generation of three-dimensional video holograms by combined use of data compression and lookup table techniques,” Appl. Opt. 47(32), 5986–5995 (2008).
[Crossref]

Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Improved full analytical polygon-based method using Fourier analysis of the three-dimensional affine transformation,” Appl. Opt. 53(7), 1354–1362 (2014).
[Crossref]

Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Fast polygon-based method for calculating computer-generated holograms in three-dimensional display,” Appl. Opt. 52(1), A290–A299 (2013).
[Crossref]

Y. Pan, Y. Wang, J. Liu, X. Li, J. Jia, and Z. Zhang, “Analytical brightness compensation algorithm for traditional polygon-based method in computer-generated holography,” Appl. Opt. 52(18), 4391–4399 (2013).
[Crossref]

H. Zhang, L. Cao, and G. Jin, “Computer-generated hologram with occlusion effect using layer-based processing,” Appl. Opt. 56(13), F138–F143 (2017).
[Crossref]

H. Nishi and K. Matsushima, “Rendering of specular curved objects in polygon-based computer holography,” Appl. Opt. 56(13), F37–F44 (2017).
[Crossref]

M. Bayraktar and M. Özcan, “Method to calculate the far field of threedimensional objects for computer-generated holography,” Appl. Opt. 49(24), 4647–4654 (2010).
[Crossref]

N. Takada, T. Shimobaba, H. Nakayama, A. Shiraki, N. Okada, M. Oikawa, N. Masuda, and T. Ito, “Fast high-resolution computer-generated hologram computation using multiple graphics processing unit cluster system,” Appl. Opt. 51(30), 7303–7307 (2012).
[Crossref]

H. Zhang, J. Xie, J. Liu, and Y. Wang, “Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection,” Appl. Opt. 48(30), 5834–5841 (2009).
[Crossref]

Chin. Opt. Lett. (1)

Comput. Phys. (1)

A. D. Stein, Z. Wang, and J. J. S. Leigh, “Computer-generated holograms: a simplified ray-tracing approach,” Comput. Phys. 6(4), 389–392 (1992).
[Crossref]

Computer (1)

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38(8), 46–53 (2005).
[Crossref]

J. Disp. Technol. (1)

T. Kozacki, M. Kujawińska, G. Finke, W. Zaperty, and B. Hennelly, “Holographic capture and display systems in circular configurations,” J. Disp. Technol. 8(4), 225–232 (2012).
[Crossref]

J. Electron. Imaging (1)

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[Crossref]

Opt. Eng. (1)

H. Niwase, N. Takada, H. Araki, Y. Maeda, M. Fujiwara, H. Nakayama, T. Kakue, T. Shimobaba, and T. Ito, “Real-time electroholography using a multiple-graphics processing unit cluster system with a single spatial light modulator and the InfiniBand network,” Opt. Eng. 55(9), 093108 (2016).
[Crossref]

Opt. Express (14)

H. Niwase, N. Takada, H. Araki, H. Nakayama, A. Sugiyama, T. Kakue, T. Shimobaba, and T. Ito, “Real-time spatiotemporal division multiplexing electroholography with a single graphics processing unit utilizing movie features,” Opt. Express 22(23), 28052–28057 (2014).
[Crossref]

C. Gao, J. Liu, X. Li, G. Xue, J. Jia, and Y. Wang, “Accurate compressed look up table method for CGH in 3D holographic display,” Opt. Express 23(26), 33194–33204 (2015).
[Crossref]

J. Chen and D. Chu, “Improved layer-based method for rapid hologram generation and real-time interactive holographic display applications,” Opt. Express 23(14), 18143–18155 (2015).
[Crossref]

T. Nishitsuji, T. Shimobaba, T. Kakue, and T. Ito, “Fast calculation of computer-generated hologram using runlength encoding based recurrence relation,” Opt. Express 23(8), 9852–9857 (2015).
[Crossref]

S. Jiao, Z. Zhuang, and W. Zou, “Fast computer generated hologram calculation with a mini look-up table incorporated with radial symmetric interpolation,” Opt. Express 25(1), 112–123 (2017).
[Crossref]

S. C. Kim, J. M. Kim, and E. S. Kim, “Effective memory reduction of the novel look-up table with onedimensional sub-principle fringe patterns in computer-generated holograms,” Opt. Express 20(11), 12021–12034 (2012).
[Crossref]

S. C. Kim, X. B. Dong, M. W. Kwon, and E. S. Kim, “Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table,” Opt. Express 21(9), 11568–11584 (2013).
[Crossref]

T. Shimobaba, H. Nakayama, N. Masuda, and T. Ito, “Rapid calculation algorithm of Fresnel computergenerated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display,” Opt. Express 18(19), 19504–19509 (2010).
[Crossref]

J. Park, S. Kim, H. Yeom, H. Kim, H. Zhang, B. Li, Y. Ji, S. Kim, and S. Ko, “Continuous shading and its fast update in fully analytic triangular-mesh-based computer generated hologram,” Opt. Express 23(26), 33893–33901 (2015).
[Crossref]

F. Yaraş, H. Kang, and L. Onural, “Circular holographic video display system,” Opt. Express 19(10), 9147–9156 (2011).
[Crossref]

J. Hahn, H. Kim, Y. Lim, G. Park, and B. Lee, “Wide viewing angle dynamic holographic stereogram with a curved array ofspatial light modulators,” Opt. Express 16(16), 12372–12386 (2008).
[Crossref]

T. Shimobaba and T. Ito, “Random phase-free computer-generated hologram,” Opt. Express 23(7), 9549–9554 (2015).
[Crossref]

H. Pang, J. Wang, A. Cao, and Q. Deng, “High-accuracy method for holographic image projection with suppressed speckle noise,” Opt. Express 24(20), 22766–22776 (2016).
[Crossref]

Y. Pan, X. Xu, S. Solanki, X. Liang, R. B. Tanjung, C. Tan, and T. C. Chong, “Fast CGH computation using SLUT on GPU,” Opt. Express 17(21), 18543–18555 (2009).
[Crossref]

Opt. Lasers Eng. (1)

Z. Zeng, H. Zheng, Y. Yu, and A. K. Asundic, “Off-axis phase-only holograms of 3D objects using accelerated point-based Fresnel diffraction algorithm,” Opt. Lasers Eng. 93, 47–54 (2017).
[Crossref]

Sci. Rep. (1)

S. C. Kim, X. B. Dong, and E. S. Kim, “Accelerated one-step generation of full-color holographic videos using a color-tunable novel-look-up-table method for holographic three-dimensional television broadcasting,” Sci. Rep. 5(1), 14056 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Diagram of the proposed method to generate the CGH.
Fig. 2.
Fig. 2. Comparison of offline computation time by using S-LUT, C-LUT, AC-LUT and AHC-LUT methods. Figure 2(a) is the time of monochrome LUTs, and Fig. 2(b) is the computation time of color LUTs.
Fig. 3.
Fig. 3. Comparison of online computation time by using S-LUT, C-LUT, AC-LUT and AHC-LUT methods. Figure 3(a) is the time of monochrome holograms, and Fig. 3(b) is the time of color holograms.
Fig. 4.
Fig. 4. Numerical simulation results by using different methods focused on different distances. Figures 4(a), 4(e) and 4(i), Figs. 4(b), 4(f) and 4(j), Figs. 4(c), 4(g) and 4(k), Figs. 4(d), 4(h) and 4(l) are reconstructed results by using S-LUT, C-LUT, AC-LUT and AHC-LUT methods, respectively. Here, Figs. 4(a)–4(d), Figs. 4(e)–4(h), Figs. 4(i)–4(l) are focused on 200 mm, 250 mm, 300 mm, respectively.
Fig. 5.
Fig. 5. Numerical simulation results by using AHC-LUT method. Figures 5(a) and 5(b) are the monochrome results focused on 200mm and 220mm, respectively. Figures 5(c) and 5(d) are the color results focused on 200mm and 220mm, respectively.
Fig. 6.
Fig. 6. Setup of the holographic display system: SLM is the spatial light modulator, PC is the personal computer, L1 and L2 are the Fourier transform lens.
Fig. 7.
Fig. 7. Optical experimental results by using different methods focused on different distances. Figures 7(a), 7(e) and 7(i), Figs. 7(b), 7(f) and 7(j), Figs. 7(c), 7(g) and 7(k), Figs. 7(d), 7(h) and 7(l) are reconstructed results by using S-LUT, C-LUT, AC-LUT and AHC-LUT methods, respectively. Here, Figs. 7(a)–7(d), Figs. 7(e)–7(h), Figs. 7(i)–7(l) are focused on 200mm, 250mm, 300mm, respectively.
Fig. 8.
Fig. 8. Optical experimental results by using AHC-LUT method. Figures 8(a) and 8(b) are the monochrome results focused on 200mm and 220mm, respectively. Figures 8(c) and 8(d) are the color results focused on 200mm and 220mm, respectively.

Tables (5)

Tables Icon

Table 1. Complexity and memory usage by using S-LUT, C-LUT, AC-LUT, and AHC-LUT methods

Tables Icon

Table 2. Distortion ratio by using S-LUT, C-LUT, AC-LUT and AHC-LUT methods

Tables Icon

Table 3. CGH computation parameters

Tables Icon

Table 4. Memory usage by using S-LUT, C-LUT, AC-LUT and AHC-LUT method

Tables Icon

Table 5. Distortion ratio by using S-LUT, C-LUT, AC-LUT and AHC-LUT methods

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

H ( x p , y q ) = j = 0 N 1 A j exp [ i ( k r j + ϕ j ) ]
r j = ( ( x p x j ) 2 + ( y q y j ) 2 + ( d z j ) 2 ) 1 / 2
H ( x p , y q ) = j = 1 N A j exp { i k [ ( d z j ) + ( x p x j ) 2 + ( y q y j ) 2 2 ( d z j ) ] }
H ( x p , y q ) = j = 1 N A j exp [ i k ( d z j ) ] { exp [ ( x p x j ) 2 + ( y q y j ) 2 2 ] } ( i k d z j )
H ( x p , y q ) = j = 1 N A j exp [ i k ( d z j ) ] { exp [ ( x p x j ) 2 2 ] exp [ ( y q y j ) 2 2 ] } ( i k d z j )
H ( x p , y q ) = j = 1 N A j L 1 ( z j , λ ) ( H ( x p , x j ) V ( y q , y j ) ) L 2 ( z j , λ )
H ( x p , y q ) = j z = 1 N z [ j x y = 1 N x y A j x y ( H ( x p , x j x y ) V ( y q , y j x y ) ) L 2 ( z j z , λ ) ] L 1 ( z j z , λ )
H ( x p , y q ) = j z = 1 N z {   j x = 1 N x [ j y = 1 N y A j y V ( y q , y j y ) L 2 ( z j z , λ ) ] H ( x p , x j x ) L 2 ( z j z , λ ) }   L 1 ( z j z , λ )
H ( x p , y q ) = j z = 1 N z { j x = 1 N x [ j y = 1 N y A j y V ( y q y j y , y m ) L 2 ( z j z , λ ) ]   H ( x p x j x , x m ) L 2 ( z j z , λ ) } L 1 ( z j z , λ )
Resolution of  H ( x p , x m )   : p + N x Δ x Resolution of  V ( y q , y m )   : q + N y Δ y
/ / offline computation ,  to build a LUT For x p + N x Δ x  of hologram and  x m  of 2D image planes H ( x p , x m ) = exp [ ( x p x m ) 2 / 2 ] End For y q + N y Δ y  of hologram and  y m  of 2D image planes V ( y q , y m ) = exp [ ( y p y m ) 2 / 2 ] End
/ / online computation ,  to read out the data from LUT and generate the hologram  For each  z j  For each  x j  that  A j 0  (j = 0,1 N x 1 )  For each  y q  of hologram and each  y j  that  A j 0  and   have the same  x j (j = 0,1 N y 1 )  V = A j ( V ( y q y j , y m ) L 2 ( z j z , λ ) ) + V ;    End  For each  x p , y q  of hologram H V = V ( H ( x p x j , x m ) L 2 ( z j z , λ ) ) + H V ;  End  End  For each  x p , y q  of hologram H ( x p , y q ) = H V L 1 ( z j z , λ ) + H ( x p , y q ) ;  End End

Metrics