Abstract

Wavefront shaping is a powerful method to refocus light through a scattering medium. Its application to large spectral bandwidths or multiple wavelengths refocusing for nonlinear bio-imaging in-depth is however limited by spectral decorrelations. In this work, we demonstrate ways to access a large spectral memory of a refocus in thin scattering media and thick forward-scattering biological tissues. First, we show that the accessible spectral bandwidth through a scattering medium involves an axial spatio-spectral coupling, which can be minimized when working in a confocal geometry. Second, we show that this bandwidth can be further enlarged when working in a broadband excitation regime. These results open important prospects for multispectral nonlinear imaging through scattering media.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Focusing and scanning through scattering media in microseconds

Daniel Feldkhun, Omer Tzang, Kelvin H. Wagner, and Rafael Piestun
Optica 6(1) 72-75 (2019)

Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation

Yan Liu, Cheng Ma, Yuecheng Shen, Junhui Shi, and Lihong V. Wang
Optica 4(2) 280-288 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6(1), 7276 (2015).
    [Crossref]
  2. J.-H. Park, W. Sun, and M. Cui, “High-resolution in vivo imaging of mouse brain through the intact skull,” Proc. Natl. Acad. Sci. U. S. A. 112(30), 9236–9241 (2015).
    [Crossref]
  3. M. J. Booth, “Adaptive optics in microscopy,” Philos. Trans. R. Soc., A 365(1861), 2829–2843 (2007).
    [Crossref]
  4. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309 (2007).
    [Crossref]
  5. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104(10), 100601 (2010).
    [Crossref]
  6. A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
    [Crossref]
  7. H. B. De Aguiar, S. Gigan, and S. Brasselet, “Enhanced nonlinear imaging through scattering media using transmission-matrix-based wave-front shaping,” Phys. Rev. A 94(4), 043830 (2016).
    [Crossref]
  8. C. Stringari, L. Abdeladim, G. Malkinson, P. Mahou, X. Solinas, I. Lamarre, S. Brizion, J.-B. Galey, W. Supatto, R. Legouis, A.-M. Pena, and E. Beaurepaire, “Multicolor two-photon imaging of endogenous fluorophores in living tissues by wavelength mixing,” Sci. Rep. 7(1), 3792 (2017).
    [Crossref]
  9. J. W. Lichtman, J. Livet, and J. R. Sanes, “A technicolour approach to the connectome,” Nat. Rev. Neurosci. 9(6), 417–422 (2008).
    [Crossref]
  10. J.-X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine,” Science 350(6264), aaa8870 (2015).
    [Crossref]
  11. A. Hanninen, M. W. Shu, and E. O. Potma, “Hyperspectral imaging with laser-scanning sum-frequency generation microscopy,” Biomed. Opt. Express 8(9), 4230 (2017).
    [Crossref]
  12. F. van Beijnum, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Frequency bandwidth of light focused through turbid media,” Opt. Lett. 36(3), 373 (2011).
    [Crossref]
  13. E. A. Shapiro, T. M. Drane, and V. Milner, “Prospects of coherent control in turbid media: Bounds on focusing broadband laser pulses,” Phys. Rev. A 84(5), 053807 (2011).
    [Crossref]
  14. N. Curry, P. Bondareff, M. Leclercq, N. F. van Hulst, R. Sapienza, S. Gigan, and S. Grésillon, “Direct determination of diffusion properties of random media from speckle contrast,” Opt. Lett. 36(17), 3332 (2011).
    [Crossref]
  15. H. P. Paudel, C. Stockbridge, J. Mertz, and T. Bifano, “Focusing polychromatic light through strongly scattering media,” Opt. Express 21(14), 17299 (2013).
    [Crossref]
  16. D. Andreoli, G. Volpe, S. Popoff, O. Katz, S. Grésillon, and S. Gigan, “Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix,” Sci. Rep. 5(1), 10347 (2015).
    [Crossref]
  17. O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
    [Crossref]
  18. M. May, “Information inferred from the observation of speckles,” J. Phys. E: Sci. Instrum. 10(9), 849–864 (1977).
    [Crossref]
  19. E. Small, O. Katz, Y. Eshel, Y. Silberberg, and D. Oron, “Spatio-temporal X-wave,” Opt. Express 17(21), 18659 (2009).
    [Crossref]
  20. M. Hofer and S. Brasselet, “Manipulating the transmission matrix of scattering media for nonlinear imaging beyond the memory effect,” Opt. Lett. 44(9), 2137 (2019).
    [Crossref]
  21. X. Xu, X. Xie, A. Thendiyammal, H. Zhuang, J. Xie, Y. Liu, J. Zhou, and A. P. Mosk, “Imaging of objects through a thin scattering layer using a spectrally and spatially separated reference,” Opt. Express 26(12), 15073 (2018).
    [Crossref]
  22. J. Liang, J. Cai, J. Xie, X. Xie, J. Zhou, and X. Yu, “Depth-resolved and auto-focus imaging through scattering layer with wavelength compensation,” J. Opt. Soc. Am. A 36(6), 944 (2019).
    [Crossref]
  23. O. Katz, E. Small, Y. Guan, and Y. Silberberg, “Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers,” Optica 1(3), 170 (2014).
    [Crossref]
  24. M. Hofer, C. Soeller, S. Brasselet, and J. Bertolotti, “Wide field fluorescence epi-microscopy behind a scattering medium enabled by speckle correlations,” Opt. Express 26(8), 9866 (2018).
    [Crossref]
  25. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref]
  26. S. Schott, J. Bertolotti, J.-F. Léger, L. Bourdieu, and S. Gigan, “Characterization of the angular memory effect of scattered light in biological tissues,” Opt. Express 23(10), 13505 (2015).
    [Crossref]
  27. G. Osnabrugge, R. Horstmeyer, I. N. Papadopoulos, B. Judkewitz, and I. M. Vellekoop, “Generalized optical memory effect,” Optica 4(8), 886 (2017).
    [Crossref]
  28. I. Freund, M. Rosenbluh, and S. Feng, “Memory Effects in Propagation of Optical Waves through Disordered Media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
    [Crossref]
  29. B. Judkewitz, R. Horstmeyer, I. M. Vellekoop, I. N. Papadopoulos, and C. Yang, “Translation correlations in anisotropically scattering media,” Nat. Phys. 11(8), 684–689 (2015).
    [Crossref]
  30. O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
    [Crossref]
  31. J. Aulbach, B. Gjonaj, P. Johnson, and A. Lagendijk, “Spatiotemporal focusing in opaque scattering media by wave front shaping with nonlinear feedback,” Opt. Express 20(28), 29237 (2012).
    [Crossref]
  32. D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2(1), 447 (2011).
    [Crossref]
  33. M. Mounaix, H. Defienne, and S. Gigan, “Deterministic light focusing in space and time through multiple scattering media with a time-resolved transmission matrix approach,” Phys. Rev. A 94(4), 041802 (2016).
    [Crossref]
  34. M. Mounaix, D. Andreoli, H. Defienne, G. Volpe, O. Katz, S. Grésillon, and S. Gigan, “Spatiotemporal Coherent Control of Light through a Multiple Scattering Medium with the Multispectral Transmission Matrix,” Phys. Rev. Lett. 116(25), 253901 (2016).
    [Crossref]
  35. M. Mounaix, H. B. de Aguiar, and S. Gigan, “Temporal recompression through a scattering medium via a broadband transmission matrix,” Optica 4(10), 1289 (2017).
    [Crossref]
  36. M. Mounaix, D. M. Ta, and S. Gigan, “Transmission matrix approaches for nonlinear fluorescence excitation through multiple scattering media,” Opt. Lett. 43(12), 2831 (2018).
    [Crossref]
  37. H. B. de Aguiar, S. Gigan, and S. Brasselet, “Polarization recovery through scattering media,” Sci. Adv. 3(9), e1600743 (2017).
    [Crossref]
  38. M. Kadobianskyi, I. N. Papadopoulos, T. Chaigne, R. Horstmeyer, and B. Judkewitz, “Scattering correlations of time-gated light,” Optica 5(4), 389 (2018).
    [Crossref]

2019 (2)

2018 (4)

2017 (5)

H. B. de Aguiar, S. Gigan, and S. Brasselet, “Polarization recovery through scattering media,” Sci. Adv. 3(9), e1600743 (2017).
[Crossref]

M. Mounaix, H. B. de Aguiar, and S. Gigan, “Temporal recompression through a scattering medium via a broadband transmission matrix,” Optica 4(10), 1289 (2017).
[Crossref]

G. Osnabrugge, R. Horstmeyer, I. N. Papadopoulos, B. Judkewitz, and I. M. Vellekoop, “Generalized optical memory effect,” Optica 4(8), 886 (2017).
[Crossref]

C. Stringari, L. Abdeladim, G. Malkinson, P. Mahou, X. Solinas, I. Lamarre, S. Brizion, J.-B. Galey, W. Supatto, R. Legouis, A.-M. Pena, and E. Beaurepaire, “Multicolor two-photon imaging of endogenous fluorophores in living tissues by wavelength mixing,” Sci. Rep. 7(1), 3792 (2017).
[Crossref]

A. Hanninen, M. W. Shu, and E. O. Potma, “Hyperspectral imaging with laser-scanning sum-frequency generation microscopy,” Biomed. Opt. Express 8(9), 4230 (2017).
[Crossref]

2016 (4)

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref]

H. B. De Aguiar, S. Gigan, and S. Brasselet, “Enhanced nonlinear imaging through scattering media using transmission-matrix-based wave-front shaping,” Phys. Rev. A 94(4), 043830 (2016).
[Crossref]

M. Mounaix, H. Defienne, and S. Gigan, “Deterministic light focusing in space and time through multiple scattering media with a time-resolved transmission matrix approach,” Phys. Rev. A 94(4), 041802 (2016).
[Crossref]

M. Mounaix, D. Andreoli, H. Defienne, G. Volpe, O. Katz, S. Grésillon, and S. Gigan, “Spatiotemporal Coherent Control of Light through a Multiple Scattering Medium with the Multispectral Transmission Matrix,” Phys. Rev. Lett. 116(25), 253901 (2016).
[Crossref]

2015 (6)

B. Judkewitz, R. Horstmeyer, I. M. Vellekoop, I. N. Papadopoulos, and C. Yang, “Translation correlations in anisotropically scattering media,” Nat. Phys. 11(8), 684–689 (2015).
[Crossref]

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6(1), 7276 (2015).
[Crossref]

J.-H. Park, W. Sun, and M. Cui, “High-resolution in vivo imaging of mouse brain through the intact skull,” Proc. Natl. Acad. Sci. U. S. A. 112(30), 9236–9241 (2015).
[Crossref]

J.-X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine,” Science 350(6264), aaa8870 (2015).
[Crossref]

D. Andreoli, G. Volpe, S. Popoff, O. Katz, S. Grésillon, and S. Gigan, “Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix,” Sci. Rep. 5(1), 10347 (2015).
[Crossref]

S. Schott, J. Bertolotti, J.-F. Léger, L. Bourdieu, and S. Gigan, “Characterization of the angular memory effect of scattered light in biological tissues,” Opt. Express 23(10), 13505 (2015).
[Crossref]

2014 (2)

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

O. Katz, E. Small, Y. Guan, and Y. Silberberg, “Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers,” Optica 1(3), 170 (2014).
[Crossref]

2013 (2)

2012 (1)

2011 (5)

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2(1), 447 (2011).
[Crossref]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

F. van Beijnum, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Frequency bandwidth of light focused through turbid media,” Opt. Lett. 36(3), 373 (2011).
[Crossref]

E. A. Shapiro, T. M. Drane, and V. Milner, “Prospects of coherent control in turbid media: Bounds on focusing broadband laser pulses,” Phys. Rev. A 84(5), 053807 (2011).
[Crossref]

N. Curry, P. Bondareff, M. Leclercq, N. F. van Hulst, R. Sapienza, S. Gigan, and S. Grésillon, “Direct determination of diffusion properties of random media from speckle contrast,” Opt. Lett. 36(17), 3332 (2011).
[Crossref]

2010 (1)

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref]

2009 (1)

2008 (1)

J. W. Lichtman, J. Livet, and J. R. Sanes, “A technicolour approach to the connectome,” Nat. Rev. Neurosci. 9(6), 417–422 (2008).
[Crossref]

2007 (2)

M. J. Booth, “Adaptive optics in microscopy,” Philos. Trans. R. Soc., A 365(1861), 2829–2843 (2007).
[Crossref]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309 (2007).
[Crossref]

1988 (1)

I. Freund, M. Rosenbluh, and S. Feng, “Memory Effects in Propagation of Optical Waves through Disordered Media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref]

1977 (1)

M. May, “Information inferred from the observation of speckles,” J. Phys. E: Sci. Instrum. 10(9), 849–864 (1977).
[Crossref]

Abdeladim, L.

C. Stringari, L. Abdeladim, G. Malkinson, P. Mahou, X. Solinas, I. Lamarre, S. Brizion, J.-B. Galey, W. Supatto, R. Legouis, A.-M. Pena, and E. Beaurepaire, “Multicolor two-photon imaging of endogenous fluorophores in living tissues by wavelength mixing,” Sci. Rep. 7(1), 3792 (2017).
[Crossref]

Andreoli, D.

M. Mounaix, D. Andreoli, H. Defienne, G. Volpe, O. Katz, S. Grésillon, and S. Gigan, “Spatiotemporal Coherent Control of Light through a Multiple Scattering Medium with the Multispectral Transmission Matrix,” Phys. Rev. Lett. 116(25), 253901 (2016).
[Crossref]

D. Andreoli, G. Volpe, S. Popoff, O. Katz, S. Grésillon, and S. Gigan, “Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix,” Sci. Rep. 5(1), 10347 (2015).
[Crossref]

Aubry, A.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref]

Aulbach, J.

Austin, D. R.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2(1), 447 (2011).
[Crossref]

Badon, A.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref]

Beaurepaire, E.

C. Stringari, L. Abdeladim, G. Malkinson, P. Mahou, X. Solinas, I. Lamarre, S. Brizion, J.-B. Galey, W. Supatto, R. Legouis, A.-M. Pena, and E. Beaurepaire, “Multicolor two-photon imaging of endogenous fluorophores in living tissues by wavelength mixing,” Sci. Rep. 7(1), 3792 (2017).
[Crossref]

Bertolotti, J.

Betzig, E.

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6(1), 7276 (2015).
[Crossref]

Bifano, T.

Boccara, A. C.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref]

Bondareff, P.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2(1), 447 (2011).
[Crossref]

N. Curry, P. Bondareff, M. Leclercq, N. F. van Hulst, R. Sapienza, S. Gigan, and S. Grésillon, “Direct determination of diffusion properties of random media from speckle contrast,” Opt. Lett. 36(17), 3332 (2011).
[Crossref]

Booth, M. J.

M. J. Booth, “Adaptive optics in microscopy,” Philos. Trans. R. Soc., A 365(1861), 2829–2843 (2007).
[Crossref]

Bourdieu, L.

Brasselet, S.

M. Hofer and S. Brasselet, “Manipulating the transmission matrix of scattering media for nonlinear imaging beyond the memory effect,” Opt. Lett. 44(9), 2137 (2019).
[Crossref]

M. Hofer, C. Soeller, S. Brasselet, and J. Bertolotti, “Wide field fluorescence epi-microscopy behind a scattering medium enabled by speckle correlations,” Opt. Express 26(8), 9866 (2018).
[Crossref]

H. B. de Aguiar, S. Gigan, and S. Brasselet, “Polarization recovery through scattering media,” Sci. Adv. 3(9), e1600743 (2017).
[Crossref]

H. B. De Aguiar, S. Gigan, and S. Brasselet, “Enhanced nonlinear imaging through scattering media using transmission-matrix-based wave-front shaping,” Phys. Rev. A 94(4), 043830 (2016).
[Crossref]

Brizion, S.

C. Stringari, L. Abdeladim, G. Malkinson, P. Mahou, X. Solinas, I. Lamarre, S. Brizion, J.-B. Galey, W. Supatto, R. Legouis, A.-M. Pena, and E. Beaurepaire, “Multicolor two-photon imaging of endogenous fluorophores in living tissues by wavelength mixing,” Sci. Rep. 7(1), 3792 (2017).
[Crossref]

Bromberg, Y.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

Cai, J.

Carminati, R.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref]

Chaigne, T.

Chatel, B.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2(1), 447 (2011).
[Crossref]

Cheng, J.-X.

J.-X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine,” Science 350(6264), aaa8870 (2015).
[Crossref]

Cui, M.

J.-H. Park, W. Sun, and M. Cui, “High-resolution in vivo imaging of mouse brain through the intact skull,” Proc. Natl. Acad. Sci. U. S. A. 112(30), 9236–9241 (2015).
[Crossref]

Curry, N.

de Aguiar, H. B.

H. B. de Aguiar, S. Gigan, and S. Brasselet, “Polarization recovery through scattering media,” Sci. Adv. 3(9), e1600743 (2017).
[Crossref]

M. Mounaix, H. B. de Aguiar, and S. Gigan, “Temporal recompression through a scattering medium via a broadband transmission matrix,” Optica 4(10), 1289 (2017).
[Crossref]

H. B. De Aguiar, S. Gigan, and S. Brasselet, “Enhanced nonlinear imaging through scattering media using transmission-matrix-based wave-front shaping,” Phys. Rev. A 94(4), 043830 (2016).
[Crossref]

Defienne, H.

M. Mounaix, D. Andreoli, H. Defienne, G. Volpe, O. Katz, S. Grésillon, and S. Gigan, “Spatiotemporal Coherent Control of Light through a Multiple Scattering Medium with the Multispectral Transmission Matrix,” Phys. Rev. Lett. 116(25), 253901 (2016).
[Crossref]

M. Mounaix, H. Defienne, and S. Gigan, “Deterministic light focusing in space and time through multiple scattering media with a time-resolved transmission matrix approach,” Phys. Rev. A 94(4), 041802 (2016).
[Crossref]

Drane, T. M.

E. A. Shapiro, T. M. Drane, and V. Milner, “Prospects of coherent control in turbid media: Bounds on focusing broadband laser pulses,” Phys. Rev. A 84(5), 053807 (2011).
[Crossref]

Eshel, Y.

Feng, S.

I. Freund, M. Rosenbluh, and S. Feng, “Memory Effects in Propagation of Optical Waves through Disordered Media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref]

Fink, M.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref]

Freund, I.

I. Freund, M. Rosenbluh, and S. Feng, “Memory Effects in Propagation of Optical Waves through Disordered Media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref]

Galey, J.-B.

C. Stringari, L. Abdeladim, G. Malkinson, P. Mahou, X. Solinas, I. Lamarre, S. Brizion, J.-B. Galey, W. Supatto, R. Legouis, A.-M. Pena, and E. Beaurepaire, “Multicolor two-photon imaging of endogenous fluorophores in living tissues by wavelength mixing,” Sci. Rep. 7(1), 3792 (2017).
[Crossref]

Gigan, S.

M. Mounaix, D. M. Ta, and S. Gigan, “Transmission matrix approaches for nonlinear fluorescence excitation through multiple scattering media,” Opt. Lett. 43(12), 2831 (2018).
[Crossref]

H. B. de Aguiar, S. Gigan, and S. Brasselet, “Polarization recovery through scattering media,” Sci. Adv. 3(9), e1600743 (2017).
[Crossref]

M. Mounaix, H. B. de Aguiar, and S. Gigan, “Temporal recompression through a scattering medium via a broadband transmission matrix,” Optica 4(10), 1289 (2017).
[Crossref]

M. Mounaix, H. Defienne, and S. Gigan, “Deterministic light focusing in space and time through multiple scattering media with a time-resolved transmission matrix approach,” Phys. Rev. A 94(4), 041802 (2016).
[Crossref]

M. Mounaix, D. Andreoli, H. Defienne, G. Volpe, O. Katz, S. Grésillon, and S. Gigan, “Spatiotemporal Coherent Control of Light through a Multiple Scattering Medium with the Multispectral Transmission Matrix,” Phys. Rev. Lett. 116(25), 253901 (2016).
[Crossref]

H. B. De Aguiar, S. Gigan, and S. Brasselet, “Enhanced nonlinear imaging through scattering media using transmission-matrix-based wave-front shaping,” Phys. Rev. A 94(4), 043830 (2016).
[Crossref]

D. Andreoli, G. Volpe, S. Popoff, O. Katz, S. Grésillon, and S. Gigan, “Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix,” Sci. Rep. 5(1), 10347 (2015).
[Crossref]

S. Schott, J. Bertolotti, J.-F. Léger, L. Bourdieu, and S. Gigan, “Characterization of the angular memory effect of scattered light in biological tissues,” Opt. Express 23(10), 13505 (2015).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

N. Curry, P. Bondareff, M. Leclercq, N. F. van Hulst, R. Sapienza, S. Gigan, and S. Grésillon, “Direct determination of diffusion properties of random media from speckle contrast,” Opt. Lett. 36(17), 3332 (2011).
[Crossref]

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2(1), 447 (2011).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref]

Gjonaj, B.

Grésillon, S.

M. Mounaix, D. Andreoli, H. Defienne, G. Volpe, O. Katz, S. Grésillon, and S. Gigan, “Spatiotemporal Coherent Control of Light through a Multiple Scattering Medium with the Multispectral Transmission Matrix,” Phys. Rev. Lett. 116(25), 253901 (2016).
[Crossref]

D. Andreoli, G. Volpe, S. Popoff, O. Katz, S. Grésillon, and S. Gigan, “Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix,” Sci. Rep. 5(1), 10347 (2015).
[Crossref]

N. Curry, P. Bondareff, M. Leclercq, N. F. van Hulst, R. Sapienza, S. Gigan, and S. Grésillon, “Direct determination of diffusion properties of random media from speckle contrast,” Opt. Lett. 36(17), 3332 (2011).
[Crossref]

Guan, Y.

Hanninen, A.

Harvey, B. K.

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6(1), 7276 (2015).
[Crossref]

Heidmann, P.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Hofer, M.

Horstmeyer, R.

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref]

Ji, N.

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6(1), 7276 (2015).
[Crossref]

Johnson, P.

Judkewitz, B.

Kadobianskyi, M.

Katz, O.

M. Mounaix, D. Andreoli, H. Defienne, G. Volpe, O. Katz, S. Grésillon, and S. Gigan, “Spatiotemporal Coherent Control of Light through a Multiple Scattering Medium with the Multispectral Transmission Matrix,” Phys. Rev. Lett. 116(25), 253901 (2016).
[Crossref]

D. Andreoli, G. Volpe, S. Popoff, O. Katz, S. Grésillon, and S. Gigan, “Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix,” Sci. Rep. 5(1), 10347 (2015).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

O. Katz, E. Small, Y. Guan, and Y. Silberberg, “Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers,” Optica 1(3), 170 (2014).
[Crossref]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

E. Small, O. Katz, Y. Eshel, Y. Silberberg, and D. Oron, “Spatio-temporal X-wave,” Opt. Express 17(21), 18659 (2009).
[Crossref]

Lagendijk, A.

Lamarre, I.

C. Stringari, L. Abdeladim, G. Malkinson, P. Mahou, X. Solinas, I. Lamarre, S. Brizion, J.-B. Galey, W. Supatto, R. Legouis, A.-M. Pena, and E. Beaurepaire, “Multicolor two-photon imaging of endogenous fluorophores in living tissues by wavelength mixing,” Sci. Rep. 7(1), 3792 (2017).
[Crossref]

Leclercq, M.

Léger, J.-F.

Legouis, R.

C. Stringari, L. Abdeladim, G. Malkinson, P. Mahou, X. Solinas, I. Lamarre, S. Brizion, J.-B. Galey, W. Supatto, R. Legouis, A.-M. Pena, and E. Beaurepaire, “Multicolor two-photon imaging of endogenous fluorophores in living tissues by wavelength mixing,” Sci. Rep. 7(1), 3792 (2017).
[Crossref]

Lerosey, G.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref]

Li, D.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref]

Liang, J.

Lichtman, J. W.

J. W. Lichtman, J. Livet, and J. R. Sanes, “A technicolour approach to the connectome,” Nat. Rev. Neurosci. 9(6), 417–422 (2008).
[Crossref]

Liu, Y.

Livet, J.

J. W. Lichtman, J. Livet, and J. R. Sanes, “A technicolour approach to the connectome,” Nat. Rev. Neurosci. 9(6), 417–422 (2008).
[Crossref]

Mahou, P.

C. Stringari, L. Abdeladim, G. Malkinson, P. Mahou, X. Solinas, I. Lamarre, S. Brizion, J.-B. Galey, W. Supatto, R. Legouis, A.-M. Pena, and E. Beaurepaire, “Multicolor two-photon imaging of endogenous fluorophores in living tissues by wavelength mixing,” Sci. Rep. 7(1), 3792 (2017).
[Crossref]

Malkinson, G.

C. Stringari, L. Abdeladim, G. Malkinson, P. Mahou, X. Solinas, I. Lamarre, S. Brizion, J.-B. Galey, W. Supatto, R. Legouis, A.-M. Pena, and E. Beaurepaire, “Multicolor two-photon imaging of endogenous fluorophores in living tissues by wavelength mixing,” Sci. Rep. 7(1), 3792 (2017).
[Crossref]

May, M.

M. May, “Information inferred from the observation of speckles,” J. Phys. E: Sci. Instrum. 10(9), 849–864 (1977).
[Crossref]

McCabe, D. J.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2(1), 447 (2011).
[Crossref]

Mertz, J.

Milner, V.

E. A. Shapiro, T. M. Drane, and V. Milner, “Prospects of coherent control in turbid media: Bounds on focusing broadband laser pulses,” Phys. Rev. A 84(5), 053807 (2011).
[Crossref]

Mosk, A. P.

Mounaix, M.

M. Mounaix, D. M. Ta, and S. Gigan, “Transmission matrix approaches for nonlinear fluorescence excitation through multiple scattering media,” Opt. Lett. 43(12), 2831 (2018).
[Crossref]

M. Mounaix, H. B. de Aguiar, and S. Gigan, “Temporal recompression through a scattering medium via a broadband transmission matrix,” Optica 4(10), 1289 (2017).
[Crossref]

M. Mounaix, H. Defienne, and S. Gigan, “Deterministic light focusing in space and time through multiple scattering media with a time-resolved transmission matrix approach,” Phys. Rev. A 94(4), 041802 (2016).
[Crossref]

M. Mounaix, D. Andreoli, H. Defienne, G. Volpe, O. Katz, S. Grésillon, and S. Gigan, “Spatiotemporal Coherent Control of Light through a Multiple Scattering Medium with the Multispectral Transmission Matrix,” Phys. Rev. Lett. 116(25), 253901 (2016).
[Crossref]

Oron, D.

Osnabrugge, G.

Papadopoulos, I. N.

Park, J.-H.

J.-H. Park, W. Sun, and M. Cui, “High-resolution in vivo imaging of mouse brain through the intact skull,” Proc. Natl. Acad. Sci. U. S. A. 112(30), 9236–9241 (2015).
[Crossref]

Paudel, H. P.

Pena, A.-M.

C. Stringari, L. Abdeladim, G. Malkinson, P. Mahou, X. Solinas, I. Lamarre, S. Brizion, J.-B. Galey, W. Supatto, R. Legouis, A.-M. Pena, and E. Beaurepaire, “Multicolor two-photon imaging of endogenous fluorophores in living tissues by wavelength mixing,” Sci. Rep. 7(1), 3792 (2017).
[Crossref]

Popoff, S.

D. Andreoli, G. Volpe, S. Popoff, O. Katz, S. Grésillon, and S. Gigan, “Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix,” Sci. Rep. 5(1), 10347 (2015).
[Crossref]

Popoff, S. M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref]

Potma, E. O.

Richie, C. T.

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6(1), 7276 (2015).
[Crossref]

Rosenbluh, M.

I. Freund, M. Rosenbluh, and S. Feng, “Memory Effects in Propagation of Optical Waves through Disordered Media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref]

Sanes, J. R.

J. W. Lichtman, J. Livet, and J. R. Sanes, “A technicolour approach to the connectome,” Nat. Rev. Neurosci. 9(6), 417–422 (2008).
[Crossref]

Sapienza, R.

Schott, S.

Shapiro, E. A.

E. A. Shapiro, T. M. Drane, and V. Milner, “Prospects of coherent control in turbid media: Bounds on focusing broadband laser pulses,” Phys. Rev. A 84(5), 053807 (2011).
[Crossref]

Shu, M. W.

Silberberg, Y.

Small, E.

Soeller, C.

Solinas, X.

C. Stringari, L. Abdeladim, G. Malkinson, P. Mahou, X. Solinas, I. Lamarre, S. Brizion, J.-B. Galey, W. Supatto, R. Legouis, A.-M. Pena, and E. Beaurepaire, “Multicolor two-photon imaging of endogenous fluorophores in living tissues by wavelength mixing,” Sci. Rep. 7(1), 3792 (2017).
[Crossref]

Stockbridge, C.

Stringari, C.

C. Stringari, L. Abdeladim, G. Malkinson, P. Mahou, X. Solinas, I. Lamarre, S. Brizion, J.-B. Galey, W. Supatto, R. Legouis, A.-M. Pena, and E. Beaurepaire, “Multicolor two-photon imaging of endogenous fluorophores in living tissues by wavelength mixing,” Sci. Rep. 7(1), 3792 (2017).
[Crossref]

Sun, W.

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6(1), 7276 (2015).
[Crossref]

J.-H. Park, W. Sun, and M. Cui, “High-resolution in vivo imaging of mouse brain through the intact skull,” Proc. Natl. Acad. Sci. U. S. A. 112(30), 9236–9241 (2015).
[Crossref]

Supatto, W.

C. Stringari, L. Abdeladim, G. Malkinson, P. Mahou, X. Solinas, I. Lamarre, S. Brizion, J.-B. Galey, W. Supatto, R. Legouis, A.-M. Pena, and E. Beaurepaire, “Multicolor two-photon imaging of endogenous fluorophores in living tissues by wavelength mixing,” Sci. Rep. 7(1), 3792 (2017).
[Crossref]

Ta, D. M.

Tajalli, A.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2(1), 447 (2011).
[Crossref]

Thendiyammal, A.

van Beijnum, F.

van Hulst, N. F.

van Putten, E. G.

Vellekoop, I. M.

Volpe, G.

M. Mounaix, D. Andreoli, H. Defienne, G. Volpe, O. Katz, S. Grésillon, and S. Gigan, “Spatiotemporal Coherent Control of Light through a Multiple Scattering Medium with the Multispectral Transmission Matrix,” Phys. Rev. Lett. 116(25), 253901 (2016).
[Crossref]

D. Andreoli, G. Volpe, S. Popoff, O. Katz, S. Grésillon, and S. Gigan, “Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix,” Sci. Rep. 5(1), 10347 (2015).
[Crossref]

Walmsley, I. A.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2(1), 447 (2011).
[Crossref]

Wang, K.

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6(1), 7276 (2015).
[Crossref]

Xie, J.

Xie, X.

Xie, X. S.

J.-X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine,” Science 350(6264), aaa8870 (2015).
[Crossref]

Xu, X.

Yang, C.

B. Judkewitz, R. Horstmeyer, I. M. Vellekoop, I. N. Papadopoulos, and C. Yang, “Translation correlations in anisotropically scattering media,” Nat. Phys. 11(8), 684–689 (2015).
[Crossref]

Yu, X.

Zhou, J.

Zhuang, H.

Biomed. Opt. Express (1)

J. Opt. Soc. Am. A (1)

J. Phys. E: Sci. Instrum. (1)

M. May, “Information inferred from the observation of speckles,” J. Phys. E: Sci. Instrum. 10(9), 849–864 (1977).
[Crossref]

Nat. Commun. (2)

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6(1), 7276 (2015).
[Crossref]

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2(1), 447 (2011).
[Crossref]

Nat. Photonics (2)

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Nat. Phys. (1)

B. Judkewitz, R. Horstmeyer, I. M. Vellekoop, I. N. Papadopoulos, and C. Yang, “Translation correlations in anisotropically scattering media,” Nat. Phys. 11(8), 684–689 (2015).
[Crossref]

Nat. Rev. Neurosci. (1)

J. W. Lichtman, J. Livet, and J. R. Sanes, “A technicolour approach to the connectome,” Nat. Rev. Neurosci. 9(6), 417–422 (2008).
[Crossref]

Opt. Express (6)

Opt. Lett. (5)

Optica (4)

Philos. Trans. R. Soc., A (1)

M. J. Booth, “Adaptive optics in microscopy,” Philos. Trans. R. Soc., A 365(1861), 2829–2843 (2007).
[Crossref]

Phys. Med. Biol. (1)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref]

Phys. Rev. A (3)

M. Mounaix, H. Defienne, and S. Gigan, “Deterministic light focusing in space and time through multiple scattering media with a time-resolved transmission matrix approach,” Phys. Rev. A 94(4), 041802 (2016).
[Crossref]

E. A. Shapiro, T. M. Drane, and V. Milner, “Prospects of coherent control in turbid media: Bounds on focusing broadband laser pulses,” Phys. Rev. A 84(5), 053807 (2011).
[Crossref]

H. B. De Aguiar, S. Gigan, and S. Brasselet, “Enhanced nonlinear imaging through scattering media using transmission-matrix-based wave-front shaping,” Phys. Rev. A 94(4), 043830 (2016).
[Crossref]

Phys. Rev. Lett. (3)

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref]

M. Mounaix, D. Andreoli, H. Defienne, G. Volpe, O. Katz, S. Grésillon, and S. Gigan, “Spatiotemporal Coherent Control of Light through a Multiple Scattering Medium with the Multispectral Transmission Matrix,” Phys. Rev. Lett. 116(25), 253901 (2016).
[Crossref]

I. Freund, M. Rosenbluh, and S. Feng, “Memory Effects in Propagation of Optical Waves through Disordered Media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

J.-H. Park, W. Sun, and M. Cui, “High-resolution in vivo imaging of mouse brain through the intact skull,” Proc. Natl. Acad. Sci. U. S. A. 112(30), 9236–9241 (2015).
[Crossref]

Sci. Adv. (2)

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref]

H. B. de Aguiar, S. Gigan, and S. Brasselet, “Polarization recovery through scattering media,” Sci. Adv. 3(9), e1600743 (2017).
[Crossref]

Sci. Rep. (2)

C. Stringari, L. Abdeladim, G. Malkinson, P. Mahou, X. Solinas, I. Lamarre, S. Brizion, J.-B. Galey, W. Supatto, R. Legouis, A.-M. Pena, and E. Beaurepaire, “Multicolor two-photon imaging of endogenous fluorophores in living tissues by wavelength mixing,” Sci. Rep. 7(1), 3792 (2017).
[Crossref]

D. Andreoli, G. Volpe, S. Popoff, O. Katz, S. Grésillon, and S. Gigan, “Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix,” Sci. Rep. 5(1), 10347 (2015).
[Crossref]

Science (1)

J.-X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine,” Science 350(6264), aaa8870 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Experimental layout. O1, O2: objectives. SLM: spatial light modulator. L1,L2 (lenses) are used to image the SLM on the back focal plane of O1. L3 (lens) is used to image the refocus plane on the CCD camera. (b) Positioning of the sample and objectives. ${z_1}$= SF is the distance between the scattering medium (here a diffuser) and the geometrical focus (F). ${z_2}$ = FR is the distance between F and the refocus plane R at ${\lambda _0}$. $\delta z$ is the distance between R and the new position of the refocus plane when the wavelength $\lambda $ is shifted from its initial value ${\lambda _0}$. (c) Speckle images obtained at the fixed plane R for several wavelengths separated by 6 nm, for ${z_1}$ = 2 mm and ${z_2}$ = 1 mm. (d) Wavefront shaping experiment producing a refocus in R. Once the TM is measured for ${\lambda _0}$, the incident wavelength is tuned to ${\lambda _1}$ and ${\lambda _2}$, producing distorted focus images at $\delta z$ = 0. (e) Translating the image planes by $\delta z$ allows to recover a focus at ${\lambda _1}$ and ${\lambda _2}$.
Fig. 2.
Fig. 2. Measured speckle correlations in 2D, 3D, and enhancement ratio of the refocus at the best focus plane, in a diffuser. (a) The reference R plane position is set close to the geometrical focus plane (${z_2}$∼ 120 µm). The scattering medium outpu $\delta \lambda $ t surface is positioned at ${z_1} = 2$ mm from the geometrical focus F. (b) Measured speckle correlations obtained when tuning the incident wavelength away from ${\lambda _0}$ = 828 nm: in 2D (red markers), 3D (blue markers) and enhancement ratio at the best focus plane (green markers). is the shift of the measured wavelength with respect to the reference wavelength ${\lambda _0}.$ The continuous line is a fit of the 2D experimental data by a Gaussian function used here to estimate the width of the curve. The non-zero background of the curve is attributed to the used Speckle field of view. Here, the refocus 2D bandwidth is not represented due to the fast degradation of the refocus quality when changing the incident wavelength, making the estimation of the enhancement ratio imprecise. (c) Same configuration represented in a 3D plot where the translation distance $\delta z$, necessary to find the best focus at wavelengths $\lambda $, is represented as an additional axis. The speckle correlation 2D (red) and 3D (blue) experimental points (markers) and fits (continuous lines) are represented both in the $\lambda $-space and in the $z$-space, as well as in 3D (continuous thick lines crossing the graph). In this situation the measured spectral decorrelation bandwidths are respectively $\Delta \lambda = $ 18 nm in 2D and $\Delta {\lambda _{3D}} = $ 87 nm in 3D, while the spatial extent of the 3D bandwidth is $\Delta z =$ 30.5 µm. Note that this size is larger than the speckle lateral and axial grain sizes (which are less than 1 and 8 µm respectively).
Fig. 3.
Fig. 3. Relation between wavelength detuning $\delta \lambda $ and axial distance between foci. (a) Experimental configuration showing the different planes involved, $\delta z$ is the translation required to recover an optimized focus at $\lambda $ (ranging from 750 nm to 940 nm), relative to the reference plane R of refocus at ${\lambda _0} = 828$ nm. The distance from the scattering medium to the geometrical focus is ${z_1}$ = 5 mm, and the refocus plane position R is varied between ${z_2} = - 2$ mm and $2$ mm. (b) Displacement relative to the plane R ($\delta z + {z_2}$) required for wavelengths shifts $\delta \lambda $ defined by ($\lambda = {\lambda _0} + \delta \lambda )$, for different values ${z_2}$. (c) Same data shown as a function of $\delta z$. The dashed lines represent a function that follows the law $\lambda z.{z_1}/({z - {z_1}} )= const$.
Fig. 4.
Fig. 4. 2D (red) and 3D (blue) spectral bandwidths reported as a function of the spatial extent $\Delta z$ of $\Delta {\lambda _{3D}}$ for different media (see text) in the geometrical configuration ${z_1}$ = 5 mm. The refocus (reference) R plane position is set close to the scattering medium surface (${z_2}$ ∼ 120 µm). The blue dashed line is added as a guide line.
Fig. 5.
Fig. 5. Broadband refocussing in the multispectral regime, using a 150 fs source centered on ${\lambda _0}$ = 785 nm, and a diffuser as the scattering medium. (a) Scheme for evaluating the dependence of $\Delta {\lambda _{3D}}$ as a function of the ${z_1}$ (= SF) distance. The reference refocus plane R for ${\lambda _0}$ is at the geometrical focus position. (b) 3D spectral correlation of refocussed beams, for different SF distances. (c) Scheme for evaluating the dependence of $\Delta {\lambda _{3D}}$ as a function of the FR distance. (d) $\Delta {\lambda _{3D}}$ obtained for different FR distances (${z_1}$ = 2 mm). (e) 2D speckle correlation bandwidth obtained in the confocal geometry (this bandwidth is similar to 3D speckle correlation bandwidths when the system is not in the confocal geometry). (f) Relation between spectral detuning and the axial displacement of the best refocus plane, for different ${z_2}$ (= FR) distances. The data are compared to the values obtained in Fig. 3.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I ( u , v ) = | G ( x , y ) exp ( i π λ z ( z z 1 ) z 1 ( x 2 + y 2 ) ) exp ( i 2 π λ z ( u x + v y ) ) d x d y | 2