Abstract

Strong circular dichroism in absorption in the near-infrared wavelength range is realized by designing binary-pattern chiral plasmonic metasurfaces via the micro-genetic algorithm optimization method. The influence of geometric parameter modifications in the binary-pattern nanostructures on the circular dichroism performance is studied. The strong circular dichroism in absorption is attributed to the simultaneous excitation and field interference of the resonant modes with relative phase delay under linearly polarized incident light. This work provides a universal design method toward the on-demand properties of chiral metasurfaces, which paves the way for future applications in chemical and biological sensing, chiral imaging and spectroscopy.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable strong circular dichroism in a non-chiral metallic metasurface integrated with graphene

Abbas Ghasempour Ardakani and Khatereh Moradi
Appl. Opt. 58(23) 6217-6221 (2019)

Near-infrared chiral plasmonic metasurface absorbers

Leixin Ouyang, Wei Wang, Daniel Rosenmann, David A. Czaplewski, Jie Gao, and Xiaodong Yang
Opt. Express 26(24) 31484-31489 (2018)

Broadband infrared binary-pattern metasurface absorbers with micro-genetic algorithm optimization

Zhigang Li, Liliana Stan, David A. Czaplewski, Xiaodong Yang, and Jie Gao
Opt. Lett. 44(1) 114-117 (2019)

References

  • View by:
  • |
  • |
  • |

  1. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
    [Crossref]
  2. W. Li, Z. J. Coppens, L. Vázquez, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
    [Crossref]
  3. L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An Active Metamaterial Platform for Chiral Responsive Optoelectronics,” Adv. Mater. 27(29), 4377–4383 (2015).
    [Crossref]
  4. J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7(1), 41893 (2017).
    [Crossref]
  5. N. Liu and H. Giessen, “Three-dimensional optical metamaterials as model systems for longitudinal and transverse magnetic coupling,” Opt. Express 16(26), 21233–21238 (2008).
    [Crossref]
  6. Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
    [Crossref]
  7. Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8(1), 14180 (2017).
    [Crossref]
  8. J.-G. Yun, J. Sung, S.-J. Kim, and B. Lee, “Simultaneous control of polarization and amplitude over broad bandwidth using multi-layered anisotropic metasurfaces,” Opt. Express 26(23), 29826–29836 (2018).
    [Crossref]
  9. J. Sperrhake, M. Decker, M. Falkner, S. Fasold, T. Kaiser, I. Staude, and T. Pertsch, “Analyzing the polarization response of a chiral metasurface stack by semi-analytic modeling,” Opt. Express 27(2), 1236–1248 (2019).
    [Crossref]
  10. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [Crossref]
  11. M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6(1), 6484 (2015).
    [Crossref]
  12. E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
    [Crossref]
  13. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Specular optical activity of achiral metasurfaces,” Appl. Phys. Lett. 108(14), 141905 (2016).
    [Crossref]
  14. Y. Chen, J. Gao, and X. Yang, “Direction-Controlled Bifunctional Metasurface Polarizers,” Laser Photonics Rev. 12(12), 1800198 (2018).
    [Crossref]
  15. A. Hoorfar, “Evolutionary programming in electromagnetic optimization: A review,” IEEE Trans. Antennas Propag. 55(3), 523–537 (2007).
    [Crossref]
  16. J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
    [Crossref]
  17. S. Jafar-Zanjani, S. Inampudi, and H. Mosallaei, “Adaptive Genetic Algorithm for Optical Metasurfaces Design,” Sci. Rep. 8(1), 11040 (2018).
    [Crossref]
  18. C. Y. Kao, S. Osher, and E. Yablonovitch, “Maximizing band gaps in two-dimensional photonic crystals by using level set methods,” Appl. Phys. B: Lasers Opt. 81(2–3), 235–244 (2005).
    [Crossref]
  19. B. Vial and Y. Hao, “Topology optimized all-dielectric cloak: design, performances and modal picture of the invisibility effect,” Opt. Express 23(18), 23551–23560 (2015).
    [Crossref]
  20. S. K. Goudos and J. N. Sahalos, “Microwave absorber optimal design using multi-objective particle swarm optimization,” Microw. Opt. Technol. Lett. 48(8), 1553–1558 (2006).
    [Crossref]
  21. S. Roy, S. D. Roy, J. Tewary, A. Mahanti, and G. K. Mahanti, “Particle Swarm optimization for optimal design of broadband multilayer microwave absorber for wide angle of incidence,” Prog. Electromagn. Res. B 62, 121–135 (2015).
    [Crossref]
  22. W. Ma, F. Cheng, and Y. Liu, “Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials,” ACS Nano 12(6), 6326–6334 (2018).
    [Crossref]
  23. D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures,” ACS Photonics 5(4), 1365–1369 (2018).
    [Crossref]
  24. J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, and J. A. Fan, “Free-Form Diffractive Metagrating Design Based on Generative Adversarial Networks,” ACS Nano 13(8), 8872–8878 (2019).
    [Crossref]
  25. I. Sajedian, J. Kim, and J. Rho, “Finding the optical properties of plasmonic structures by image processing using a combination of convolutional neural networks and recurrent neural networks,” Microsyst. Nanoeng. 5(1), 27 (2019).
    [Crossref]
  26. J. A. Bossard, S. Yun, D. H. Werner, and T. S. Mayer, “Synthesizing low loss negative index metamaterial stacks for the mid-infrared using genetic algorithms,” Opt. Express 17(17), 14771–14779 (2009).
    [Crossref]
  27. Z. Li, L. Stan, D. A. Czaplewski, X. Yang, and J. Gao, “Broadband infrared binary-pattern metasurface absorbers with micro-genetic algorithm optimization,” Opt. Lett. 44(1), 114–117 (2019).
    [Crossref]
  28. C. Akturk, M. Karaaslan, E. Ozdemir, V. Ozkaner, F. Dincer, M. Bakir, and Z. Ozer, “Chiral metamaterial design using optimized pixelated inclusions with genetic algorithm,” Opt. Eng. 54(3), 035106 (2015).
    [Crossref]
  29. D.-H. Kwon, P. L. Werner, and D. H. Werner, “Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation,” Opt. Express 16(16), 11802–11807 (2008).
    [Crossref]
  30. Q. Hong, T. X. Wu, X. Zhu, R. Lu, and S.-T. Wu, “Designs of wide-view and broadband circular polarizers,” Opt. Express 13(20), 8318–8331 (2005).
    [Crossref]
  31. S. Chakravarty, R. Mittra, and N. R. Williams, “Application of a microgenetic algorithm (MGA)to the design of broad-band microwave absorbers using multiple frequency selective surface screens buried in dielectrics,” IEEE Trans. Antennas Propag. 50(3), 284–296 (2002).
    [Crossref]
  32. T. L. Pu, K. M. Huang, B. Wang, and Y. Yang, “Application of micro-genetic algorithm to the design of matched high gain patch antenna with zero-refractive-index metamaterial lens,” J. Electromagn. Waves Appl. 24(8–9), 1207–1217 (2010).
    [Crossref]
  33. R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S. H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
    [Crossref]
  34. I. H. Malitson, “Interspecimen Comparison of the Refractive Index of Fused Silica,” J. Opt. Soc. Am. 55(10), 1205 (1965).
    [Crossref]
  35. J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
    [Crossref]

2019 (4)

J. Sperrhake, M. Decker, M. Falkner, S. Fasold, T. Kaiser, I. Staude, and T. Pertsch, “Analyzing the polarization response of a chiral metasurface stack by semi-analytic modeling,” Opt. Express 27(2), 1236–1248 (2019).
[Crossref]

J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, and J. A. Fan, “Free-Form Diffractive Metagrating Design Based on Generative Adversarial Networks,” ACS Nano 13(8), 8872–8878 (2019).
[Crossref]

I. Sajedian, J. Kim, and J. Rho, “Finding the optical properties of plasmonic structures by image processing using a combination of convolutional neural networks and recurrent neural networks,” Microsyst. Nanoeng. 5(1), 27 (2019).
[Crossref]

Z. Li, L. Stan, D. A. Czaplewski, X. Yang, and J. Gao, “Broadband infrared binary-pattern metasurface absorbers with micro-genetic algorithm optimization,” Opt. Lett. 44(1), 114–117 (2019).
[Crossref]

2018 (5)

W. Ma, F. Cheng, and Y. Liu, “Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials,” ACS Nano 12(6), 6326–6334 (2018).
[Crossref]

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures,” ACS Photonics 5(4), 1365–1369 (2018).
[Crossref]

S. Jafar-Zanjani, S. Inampudi, and H. Mosallaei, “Adaptive Genetic Algorithm for Optical Metasurfaces Design,” Sci. Rep. 8(1), 11040 (2018).
[Crossref]

Y. Chen, J. Gao, and X. Yang, “Direction-Controlled Bifunctional Metasurface Polarizers,” Laser Photonics Rev. 12(12), 1800198 (2018).
[Crossref]

J.-G. Yun, J. Sung, S.-J. Kim, and B. Lee, “Simultaneous control of polarization and amplitude over broad bandwidth using multi-layered anisotropic metasurfaces,” Opt. Express 26(23), 29826–29836 (2018).
[Crossref]

2017 (2)

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8(1), 14180 (2017).
[Crossref]

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7(1), 41893 (2017).
[Crossref]

2016 (1)

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Specular optical activity of achiral metasurfaces,” Appl. Phys. Lett. 108(14), 141905 (2016).
[Crossref]

2015 (6)

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6(1), 6484 (2015).
[Crossref]

W. Li, Z. J. Coppens, L. Vázquez, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref]

L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An Active Metamaterial Platform for Chiral Responsive Optoelectronics,” Adv. Mater. 27(29), 4377–4383 (2015).
[Crossref]

B. Vial and Y. Hao, “Topology optimized all-dielectric cloak: design, performances and modal picture of the invisibility effect,” Opt. Express 23(18), 23551–23560 (2015).
[Crossref]

C. Akturk, M. Karaaslan, E. Ozdemir, V. Ozkaner, F. Dincer, M. Bakir, and Z. Ozer, “Chiral metamaterial design using optimized pixelated inclusions with genetic algorithm,” Opt. Eng. 54(3), 035106 (2015).
[Crossref]

S. Roy, S. D. Roy, J. Tewary, A. Mahanti, and G. K. Mahanti, “Particle Swarm optimization for optimal design of broadband multilayer microwave absorber for wide angle of incidence,” Prog. Electromagn. Res. B 62, 121–135 (2015).
[Crossref]

2014 (2)

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref]

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref]

2012 (1)

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S. H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

2011 (1)

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

2010 (1)

T. L. Pu, K. M. Huang, B. Wang, and Y. Yang, “Application of micro-genetic algorithm to the design of matched high gain patch antenna with zero-refractive-index metamaterial lens,” J. Electromagn. Waves Appl. 24(8–9), 1207–1217 (2010).
[Crossref]

2009 (3)

J. A. Bossard, S. Yun, D. H. Werner, and T. S. Mayer, “Synthesizing low loss negative index metamaterial stacks for the mid-infrared using genetic algorithms,” Opt. Express 17(17), 14771–14779 (2009).
[Crossref]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

2008 (2)

2007 (1)

A. Hoorfar, “Evolutionary programming in electromagnetic optimization: A review,” IEEE Trans. Antennas Propag. 55(3), 523–537 (2007).
[Crossref]

2006 (2)

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref]

S. K. Goudos and J. N. Sahalos, “Microwave absorber optimal design using multi-objective particle swarm optimization,” Microw. Opt. Technol. Lett. 48(8), 1553–1558 (2006).
[Crossref]

2005 (2)

C. Y. Kao, S. Osher, and E. Yablonovitch, “Maximizing band gaps in two-dimensional photonic crystals by using level set methods,” Appl. Phys. B: Lasers Opt. 81(2–3), 235–244 (2005).
[Crossref]

Q. Hong, T. X. Wu, X. Zhu, R. Lu, and S.-T. Wu, “Designs of wide-view and broadband circular polarizers,” Opt. Express 13(20), 8318–8331 (2005).
[Crossref]

2002 (1)

S. Chakravarty, R. Mittra, and N. R. Williams, “Application of a microgenetic algorithm (MGA)to the design of broad-band microwave absorbers using multiple frequency selective surface screens buried in dielectrics,” IEEE Trans. Antennas Propag. 50(3), 284–296 (2002).
[Crossref]

1965 (1)

Akturk, C.

C. Akturk, M. Karaaslan, E. Ozdemir, V. Ozkaner, F. Dincer, M. Bakir, and Z. Ozer, “Chiral metamaterial design using optimized pixelated inclusions with genetic algorithm,” Opt. Eng. 54(3), 035106 (2015).
[Crossref]

Alù, A.

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8(1), 14180 (2017).
[Crossref]

Askarpour, A. N.

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8(1), 14180 (2017).
[Crossref]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Bakir, M.

C. Akturk, M. Karaaslan, E. Ozdemir, V. Ozkaner, F. Dincer, M. Bakir, and Z. Ozer, “Chiral metamaterial design using optimized pixelated inclusions with genetic algorithm,” Opt. Eng. 54(3), 035106 (2015).
[Crossref]

Benedetti, A.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6(1), 6484 (2015).
[Crossref]

Boreman, G. D.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S. H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Bossard, J. A.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref]

J. A. Bossard, S. Yun, D. H. Werner, and T. S. Mayer, “Synthesizing low loss negative index metamaterial stacks for the mid-infrared using genetic algorithms,” Opt. Express 17(17), 14771–14779 (2009).
[Crossref]

Cai, W.

L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An Active Metamaterial Platform for Chiral Responsive Optoelectronics,” Adv. Mater. 27(29), 4377–4383 (2015).
[Crossref]

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref]

Cao, B.

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7(1), 41893 (2017).
[Crossref]

Chakravarty, S.

S. Chakravarty, R. Mittra, and N. R. Williams, “Application of a microgenetic algorithm (MGA)to the design of broad-band microwave absorbers using multiple frequency selective surface screens buried in dielectrics,” IEEE Trans. Antennas Propag. 50(3), 284–296 (2002).
[Crossref]

Chen, Y.

Y. Chen, J. Gao, and X. Yang, “Direction-Controlled Bifunctional Metasurface Polarizers,” Laser Photonics Rev. 12(12), 1800198 (2018).
[Crossref]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref]

Cheng, F.

W. Ma, F. Cheng, and Y. Liu, “Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials,” ACS Nano 12(6), 6326–6334 (2018).
[Crossref]

Coppens, Z. J.

W. Li, Z. J. Coppens, L. Vázquez, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref]

Cui, Y.

L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An Active Metamaterial Platform for Chiral Responsive Optoelectronics,” Adv. Mater. 27(29), 4377–4383 (2015).
[Crossref]

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref]

Cuscunà, M.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6(1), 6484 (2015).
[Crossref]

Czaplewski, D. A.

Decker, M.

J. Sperrhake, M. Decker, M. Falkner, S. Fasold, T. Kaiser, I. Staude, and T. Pertsch, “Analyzing the polarization response of a chiral metasurface stack by semi-analytic modeling,” Opt. Express 27(2), 1236–1248 (2019).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Dincer, F.

C. Akturk, M. Karaaslan, E. Ozdemir, V. Ozkaner, F. Dincer, M. Bakir, and Z. Ozer, “Chiral metamaterial design using optimized pixelated inclusions with genetic algorithm,” Opt. Eng. 54(3), 035106 (2015).
[Crossref]

Esposito, M.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6(1), 6484 (2015).
[Crossref]

Falkner, M.

Fan, J. A.

J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, and J. A. Fan, “Free-Form Diffractive Metagrating Design Based on Generative Adversarial Networks,” ACS Nano 13(8), 8872–8878 (2019).
[Crossref]

Fasold, S.

Fedotov, V. A.

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Specular optical activity of achiral metasurfaces,” Appl. Phys. Lett. 108(14), 141905 (2016).
[Crossref]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Gao, J.

Giessen, H.

Goudos, S. K.

S. K. Goudos and J. N. Sahalos, “Microwave absorber optimal design using multi-objective particle swarm optimization,” Microw. Opt. Technol. Lett. 48(8), 1553–1558 (2006).
[Crossref]

Govorov, A. O.

W. Li, Z. J. Coppens, L. Vázquez, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref]

Guo, P.

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7(1), 41893 (2017).
[Crossref]

Hao, J.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

Hao, Y.

Hickey, J.

J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, and J. A. Fan, “Free-Form Diffractive Metagrating Design Based on Generative Adversarial Networks,” ACS Nano 13(8), 8872–8878 (2019).
[Crossref]

Hong, Q.

Hoorfar, A.

A. Hoorfar, “Evolutionary programming in electromagnetic optimization: A review,” IEEE Trans. Antennas Propag. 55(3), 523–537 (2007).
[Crossref]

Hoyer, S.

J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, and J. A. Fan, “Free-Form Diffractive Metagrating Design Based on Generative Adversarial Networks,” ACS Nano 13(8), 8872–8878 (2019).
[Crossref]

Hu, J.

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7(1), 41893 (2017).
[Crossref]

Huang, K. M.

T. L. Pu, K. M. Huang, B. Wang, and Y. Yang, “Application of micro-genetic algorithm to the design of matched high gain patch antenna with zero-refractive-index metamaterial lens,” J. Electromagn. Waves Appl. 24(8–9), 1207–1217 (2010).
[Crossref]

Inampudi, S.

S. Jafar-Zanjani, S. Inampudi, and H. Mosallaei, “Adaptive Genetic Algorithm for Optical Metasurfaces Design,” Sci. Rep. 8(1), 11040 (2018).
[Crossref]

Jafar-Zanjani, S.

S. Jafar-Zanjani, S. Inampudi, and H. Mosallaei, “Adaptive Genetic Algorithm for Optical Metasurfaces Design,” Sci. Rep. 8(1), 11040 (2018).
[Crossref]

Jiang, J.

J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, and J. A. Fan, “Free-Form Diffractive Metagrating Design Based on Generative Adversarial Networks,” ACS Nano 13(8), 8872–8878 (2019).
[Crossref]

Johnson, T. W.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S. H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Kaiser, T.

Kang, L.

L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An Active Metamaterial Platform for Chiral Responsive Optoelectronics,” Adv. Mater. 27(29), 4377–4383 (2015).
[Crossref]

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref]

Kao, C. Y.

C. Y. Kao, S. Osher, and E. Yablonovitch, “Maximizing band gaps in two-dimensional photonic crystals by using level set methods,” Appl. Phys. B: Lasers Opt. 81(2–3), 235–244 (2005).
[Crossref]

Karaaslan, M.

C. Akturk, M. Karaaslan, E. Ozdemir, V. Ozkaner, F. Dincer, M. Bakir, and Z. Ozer, “Chiral metamaterial design using optimized pixelated inclusions with genetic algorithm,” Opt. Eng. 54(3), 035106 (2015).
[Crossref]

Khoram, E.

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures,” ACS Photonics 5(4), 1365–1369 (2018).
[Crossref]

Kim, J.

I. Sajedian, J. Kim, and J. Rho, “Finding the optical properties of plasmonic structures by image processing using a combination of convolutional neural networks and recurrent neural networks,” Microsyst. Nanoeng. 5(1), 27 (2019).
[Crossref]

Kim, S.-J.

Kwon, D.-H.

Lan, S.

L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An Active Metamaterial Platform for Chiral Responsive Optoelectronics,” Adv. Mater. 27(29), 4377–4383 (2015).
[Crossref]

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref]

Lee, B.

Li, W.

W. Li, Z. J. Coppens, L. Vázquez, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref]

Li, X.

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8(1), 14180 (2017).
[Crossref]

Li, Z.

Lin, L.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref]

Lin, Y.

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7(1), 41893 (2017).
[Crossref]

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Liu, D.

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures,” ACS Photonics 5(4), 1365–1369 (2018).
[Crossref]

Liu, L.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref]

Liu, N.

Liu, X. X.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref]

Liu, Y.

W. Ma, F. Cheng, and Y. Liu, “Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials,” ACS Nano 12(6), 6326–6334 (2018).
[Crossref]

L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An Active Metamaterial Platform for Chiral Responsive Optoelectronics,” Adv. Mater. 27(29), 4377–4383 (2015).
[Crossref]

Lu, R.

Ma, W.

W. Ma, F. Cheng, and Y. Liu, “Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials,” ACS Nano 12(6), 6326–6334 (2018).
[Crossref]

Mahanti, A.

S. Roy, S. D. Roy, J. Tewary, A. Mahanti, and G. K. Mahanti, “Particle Swarm optimization for optimal design of broadband multilayer microwave absorber for wide angle of incidence,” Prog. Electromagn. Res. B 62, 121–135 (2015).
[Crossref]

Mahanti, G. K.

S. Roy, S. D. Roy, J. Tewary, A. Mahanti, and G. K. Mahanti, “Particle Swarm optimization for optimal design of broadband multilayer microwave absorber for wide angle of incidence,” Prog. Electromagn. Res. B 62, 121–135 (2015).
[Crossref]

Malitson, I. H.

Mayer, T. S.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref]

J. A. Bossard, S. Yun, D. H. Werner, and T. S. Mayer, “Synthesizing low loss negative index metamaterial stacks for the mid-infrared using genetic algorithms,” Opt. Express 17(17), 14771–14779 (2009).
[Crossref]

Mittra, R.

S. Chakravarty, R. Mittra, and N. R. Williams, “Application of a microgenetic algorithm (MGA)to the design of broad-band microwave absorbers using multiple frequency selective surface screens buried in dielectrics,” IEEE Trans. Antennas Propag. 50(3), 284–296 (2002).
[Crossref]

Mladyonov, P. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref]

Mosallaei, H.

S. Jafar-Zanjani, S. Inampudi, and H. Mosallaei, “Adaptive Genetic Algorithm for Optical Metasurfaces Design,” Sci. Rep. 8(1), 11040 (2018).
[Crossref]

Oh, S. H.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S. H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Olmon, R. L.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S. H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Osher, S.

C. Y. Kao, S. Osher, and E. Yablonovitch, “Maximizing band gaps in two-dimensional photonic crystals by using level set methods,” Appl. Phys. B: Lasers Opt. 81(2–3), 235–244 (2005).
[Crossref]

Ozdemir, E.

C. Akturk, M. Karaaslan, E. Ozdemir, V. Ozkaner, F. Dincer, M. Bakir, and Z. Ozer, “Chiral metamaterial design using optimized pixelated inclusions with genetic algorithm,” Opt. Eng. 54(3), 035106 (2015).
[Crossref]

Ozer, Z.

C. Akturk, M. Karaaslan, E. Ozdemir, V. Ozkaner, F. Dincer, M. Bakir, and Z. Ozer, “Chiral metamaterial design using optimized pixelated inclusions with genetic algorithm,” Opt. Eng. 54(3), 035106 (2015).
[Crossref]

Ozkaner, V.

C. Akturk, M. Karaaslan, E. Ozdemir, V. Ozkaner, F. Dincer, M. Bakir, and Z. Ozer, “Chiral metamaterial design using optimized pixelated inclusions with genetic algorithm,” Opt. Eng. 54(3), 035106 (2015).
[Crossref]

Passaseo, A.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6(1), 6484 (2015).
[Crossref]

Pertsch, T.

Plum, E.

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Specular optical activity of achiral metasurfaces,” Appl. Phys. Lett. 108(14), 141905 (2016).
[Crossref]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref]

Prosvirnin, S. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref]

Pu, T. L.

T. L. Pu, K. M. Huang, B. Wang, and Y. Yang, “Application of micro-genetic algorithm to the design of matched high gain patch antenna with zero-refractive-index metamaterial lens,” J. Electromagn. Waves Appl. 24(8–9), 1207–1217 (2010).
[Crossref]

Qiu, M.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

Raschke, M. B.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S. H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Rho, J.

I. Sajedian, J. Kim, and J. Rho, “Finding the optical properties of plasmonic structures by image processing using a combination of convolutional neural networks and recurrent neural networks,” Microsyst. Nanoeng. 5(1), 27 (2019).
[Crossref]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Rodrigues, S.

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref]

Rodrigues, S. P.

L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An Active Metamaterial Platform for Chiral Responsive Optoelectronics,” Adv. Mater. 27(29), 4377–4383 (2015).
[Crossref]

Rogacheva, A. V.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref]

Roy, S.

S. Roy, S. D. Roy, J. Tewary, A. Mahanti, and G. K. Mahanti, “Particle Swarm optimization for optimal design of broadband multilayer microwave absorber for wide angle of incidence,” Prog. Electromagn. Res. B 62, 121–135 (2015).
[Crossref]

Roy, S. D.

S. Roy, S. D. Roy, J. Tewary, A. Mahanti, and G. K. Mahanti, “Particle Swarm optimization for optimal design of broadband multilayer microwave absorber for wide angle of incidence,” Prog. Electromagn. Res. B 62, 121–135 (2015).
[Crossref]

Sahalos, J. N.

S. K. Goudos and J. N. Sahalos, “Microwave absorber optimal design using multi-objective particle swarm optimization,” Microw. Opt. Technol. Lett. 48(8), 1553–1558 (2006).
[Crossref]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Sajedian, I.

I. Sajedian, J. Kim, and J. Rho, “Finding the optical properties of plasmonic structures by image processing using a combination of convolutional neural networks and recurrent neural networks,” Microsyst. Nanoeng. 5(1), 27 (2019).
[Crossref]

Sanvitto, D.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6(1), 6484 (2015).
[Crossref]

Sell, D.

J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, and J. A. Fan, “Free-Form Diffractive Metagrating Design Based on Generative Adversarial Networks,” ACS Nano 13(8), 8872–8878 (2019).
[Crossref]

Shelton, D.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S. H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Shi, J.

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8(1), 14180 (2017).
[Crossref]

Slovick, B.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S. H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Sperrhake, J.

Stan, L.

Staude, I.

Sun, L.

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8(1), 14180 (2017).
[Crossref]

Sung, J.

Tan, Y.

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures,” ACS Photonics 5(4), 1365–1369 (2018).
[Crossref]

Tasco, V.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6(1), 6484 (2015).
[Crossref]

Tewary, J.

S. Roy, S. D. Roy, J. Tewary, A. Mahanti, and G. K. Mahanti, “Particle Swarm optimization for optimal design of broadband multilayer microwave absorber for wide angle of incidence,” Prog. Electromagn. Res. B 62, 121–135 (2015).
[Crossref]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Todisco, F.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6(1), 6484 (2015).
[Crossref]

Tsai, D. P.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref]

Valentine, J.

W. Li, Z. J. Coppens, L. Vázquez, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref]

Vázquez, L.

W. Li, Z. J. Coppens, L. Vázquez, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref]

Vial, B.

Von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Wang, B.

T. L. Pu, K. M. Huang, B. Wang, and Y. Yang, “Application of micro-genetic algorithm to the design of matched high gain patch antenna with zero-refractive-index metamaterial lens,” J. Electromagn. Waves Appl. 24(8–9), 1207–1217 (2010).
[Crossref]

Wang, C.

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7(1), 41893 (2017).
[Crossref]

Wang, W.

W. Li, Z. J. Coppens, L. Vázquez, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref]

Wegener, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Werner, D. H.

L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An Active Metamaterial Platform for Chiral Responsive Optoelectronics,” Adv. Mater. 27(29), 4377–4383 (2015).
[Crossref]

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref]

J. A. Bossard, S. Yun, D. H. Werner, and T. S. Mayer, “Synthesizing low loss negative index metamaterial stacks for the mid-infrared using genetic algorithms,” Opt. Express 17(17), 14771–14779 (2009).
[Crossref]

D.-H. Kwon, P. L. Werner, and D. H. Werner, “Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation,” Opt. Express 16(16), 11802–11807 (2008).
[Crossref]

Werner, P. L.

Williams, N. R.

S. Chakravarty, R. Mittra, and N. R. Williams, “Application of a microgenetic algorithm (MGA)to the design of broad-band microwave absorbers using multiple frequency selective surface screens buried in dielectrics,” IEEE Trans. Antennas Propag. 50(3), 284–296 (2002).
[Crossref]

Wu, S.-T.

Wu, T. X.

Yablonovitch, E.

C. Y. Kao, S. Osher, and E. Yablonovitch, “Maximizing band gaps in two-dimensional photonic crystals by using level set methods,” Appl. Phys. B: Lasers Opt. 81(2–3), 235–244 (2005).
[Crossref]

Yang, J.

J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, and J. A. Fan, “Free-Form Diffractive Metagrating Design Based on Generative Adversarial Networks,” ACS Nano 13(8), 8872–8878 (2019).
[Crossref]

Yang, X.

Yang, Y.

T. L. Pu, K. M. Huang, B. Wang, and Y. Yang, “Application of micro-genetic algorithm to the design of matched high gain patch antenna with zero-refractive-index metamaterial lens,” J. Electromagn. Waves Appl. 24(8–9), 1207–1217 (2010).
[Crossref]

Yu, Z.

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures,” ACS Photonics 5(4), 1365–1369 (2018).
[Crossref]

Yun, J.-G.

Yun, S.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref]

J. A. Bossard, S. Yun, D. H. Werner, and T. S. Mayer, “Synthesizing low loss negative index metamaterial stacks for the mid-infrared using genetic algorithms,” Opt. Express 17(17), 14771–14779 (2009).
[Crossref]

Zhao, X.

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7(1), 41893 (2017).
[Crossref]

Zhao, Y.

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8(1), 14180 (2017).
[Crossref]

Zheludev, N. I.

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Specular optical activity of achiral metasurfaces,” Appl. Phys. Lett. 108(14), 141905 (2016).
[Crossref]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref]

Zhou, L.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

Zhu, A.

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7(1), 41893 (2017).
[Crossref]

Zhu, X.

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7(1), 41893 (2017).
[Crossref]

Q. Hong, T. X. Wu, X. Zhu, R. Lu, and S.-T. Wu, “Designs of wide-view and broadband circular polarizers,” Opt. Express 13(20), 8318–8331 (2005).
[Crossref]

ACS Nano (3)

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref]

W. Ma, F. Cheng, and Y. Liu, “Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials,” ACS Nano 12(6), 6326–6334 (2018).
[Crossref]

J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, and J. A. Fan, “Free-Form Diffractive Metagrating Design Based on Generative Adversarial Networks,” ACS Nano 13(8), 8872–8878 (2019).
[Crossref]

ACS Photonics (1)

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures,” ACS Photonics 5(4), 1365–1369 (2018).
[Crossref]

Adv. Mater. (1)

L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, and W. Cai, “An Active Metamaterial Platform for Chiral Responsive Optoelectronics,” Adv. Mater. 27(29), 4377–4383 (2015).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

C. Y. Kao, S. Osher, and E. Yablonovitch, “Maximizing band gaps in two-dimensional photonic crystals by using level set methods,” Appl. Phys. B: Lasers Opt. 81(2–3), 235–244 (2005).
[Crossref]

Appl. Phys. Lett. (1)

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Specular optical activity of achiral metasurfaces,” Appl. Phys. Lett. 108(14), 141905 (2016).
[Crossref]

IEEE Trans. Antennas Propag. (2)

S. Chakravarty, R. Mittra, and N. R. Williams, “Application of a microgenetic algorithm (MGA)to the design of broad-band microwave absorbers using multiple frequency selective surface screens buried in dielectrics,” IEEE Trans. Antennas Propag. 50(3), 284–296 (2002).
[Crossref]

A. Hoorfar, “Evolutionary programming in electromagnetic optimization: A review,” IEEE Trans. Antennas Propag. 55(3), 523–537 (2007).
[Crossref]

J. Electromagn. Waves Appl. (1)

T. L. Pu, K. M. Huang, B. Wang, and Y. Yang, “Application of micro-genetic algorithm to the design of matched high gain patch antenna with zero-refractive-index metamaterial lens,” J. Electromagn. Waves Appl. 24(8–9), 1207–1217 (2010).
[Crossref]

J. Opt. Soc. Am. (1)

Laser Photonics Rev. (1)

Y. Chen, J. Gao, and X. Yang, “Direction-Controlled Bifunctional Metasurface Polarizers,” Laser Photonics Rev. 12(12), 1800198 (2018).
[Crossref]

Microsyst. Nanoeng. (1)

I. Sajedian, J. Kim, and J. Rho, “Finding the optical properties of plasmonic structures by image processing using a combination of convolutional neural networks and recurrent neural networks,” Microsyst. Nanoeng. 5(1), 27 (2019).
[Crossref]

Microw. Opt. Technol. Lett. (1)

S. K. Goudos and J. N. Sahalos, “Microwave absorber optimal design using multi-objective particle swarm optimization,” Microw. Opt. Technol. Lett. 48(8), 1553–1558 (2006).
[Crossref]

Nano Lett. (1)

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref]

Nat. Commun. (3)

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8(1), 14180 (2017).
[Crossref]

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6(1), 6484 (2015).
[Crossref]

W. Li, Z. J. Coppens, L. Vázquez, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref]

Opt. Eng. (1)

C. Akturk, M. Karaaslan, E. Ozdemir, V. Ozkaner, F. Dincer, M. Bakir, and Z. Ozer, “Chiral metamaterial design using optimized pixelated inclusions with genetic algorithm,” Opt. Eng. 54(3), 035106 (2015).
[Crossref]

Opt. Express (7)

Opt. Lett. (1)

Phys. Rev. B (2)

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S. H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Phys. Rev. Lett. (2)

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref]

Prog. Electromagn. Res. B (1)

S. Roy, S. D. Roy, J. Tewary, A. Mahanti, and G. K. Mahanti, “Particle Swarm optimization for optimal design of broadband multilayer microwave absorber for wide angle of incidence,” Prog. Electromagn. Res. B 62, 121–135 (2015).
[Crossref]

Sci. Rep. (2)

S. Jafar-Zanjani, S. Inampudi, and H. Mosallaei, “Adaptive Genetic Algorithm for Optical Metasurfaces Design,” Sci. Rep. 8(1), 11040 (2018).
[Crossref]

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7(1), 41893 (2017).
[Crossref]

Science (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic of the designed binary-pattern chiral plasmonic metasurface with pattern A. The geometric parameters are denoted as w = 64 nm, th = 55 nm, td = 145 nm and tm = 200 nm. (b) Top view of the designed pattern A with period Px = 704 nm and Py = 960 nm. (c) SEM image of the fabricated chiral metasurface with pattern A. (d) Experimental (Exp) and simulated (Sim) absorption spectra under LCP and RCP incidence at normal direction, respectively. (e) Normalized electric field $|E |$ distributions at the resonant wavelength of 1.62 µm under LCP and RCP incidence, respectively, plotted at the surface of the top Au pattern.
Fig. 2.
Fig. 2. (a) Schematic of the alternative designed binary-pattern chiral plasmonic metasurface with pattern B. (b) Top view of the designed pattern B. (c) SEM image of the fabricated chiral metasurface with pattern B. (d) Experimental (Exp) and simulated (Sim) absorption spectra under LCP and RCP incidence at normal direction, respectively. (e) Normalized electric field $|E |$ distributions at the resonant wavelength of 1.91 µm under LCP and RCP incidence, respectively, plotted at the surface of the top Au pattern.
Fig. 3.
Fig. 3. The influence of geometric parameter modifications in the designed binary-pattern nanostructures on the circular dichroism performance. Schematics of (a) decreasing and (b) increasing the gap space along the x direction by shifting the two right components, and (c) geometric alignment by shifting the two bottom components shown in the blue dashed box to form pattern A1, pattern A2 and pattern A3, and (d)–(f) the corresponding simulated absorption spectra under LCP and RCP incidence. (g)–(i) Schematics of adding or removing pixels in supercell components shown in red dashed circle to form pattern A4, pattern A5 and pattern A6, and (j)–(l) the corresponding simulated absorption spectra under LCP and RCP incidence.
Fig. 4.
Fig. 4. Circular dichroic mode analysis for chiral metasurface with pattern A. (a) Schematic of the top view of chiral metasurface with pattern A. (b) Simulated absorption spectra under x- and y- polarized light at normal incidence. (c) The constructive or destructive interferences of the electric field Ex under x- and y-polarized incidence with a relative phase delay of 90° or −90°, leading to the circular dichroic modes under LCP and RCP incidence. All modes are plotted at the surface of the top Au pattern at the resonant wavelength of 1.62 µm.
Fig. 5.
Fig. 5. Circular dichroic mode analysis for chiral metasurface with pattern A4. (a) Schematic of the top view of chiral metasurface with pattern A4. (b) Simulated absorption spectra under x- and y- polarized incidence at normal direction. (c) The constructive or destructive interferences of the electric field Ex under x- and y-polarized incidence with a relative phase delay of 90° or −90°, leading to the circular dichroic modes under LCP and RCP incidence. All modes are plotted at the surface of the top Au pattern at the resonant wavelength of 1.86 µm.
Fig. 6.
Fig. 6. (a) Schematic of cross sections at positions a-a and b-b. (b), (c) Cross-sectional magnetic field Hy distributions under LCP or RCP incidence located at position a-a and position b-b in the x-z plane, respectively. The black arrows represent the direction and magnitude of the induced current density due to the magnetic field. (d), (e) Cross-sectional time-averaged optical power dissipation density Qh distributions under LCP or RCP incidence located at position a-a and position b-b, respectively. Green arrows describe the direction and magnitude of Poynting vector. All fields are plotted at the resonant wavelength of 1.62 µm.

Metrics