Abstract

Trapped atomic ions are an ideal candidate for quantum network nodes, with long-lived identical qubit memories that can be locally entangled through their Coulomb interaction and remotely entangled through photonic channels. The integrity of this photonic interface is generally reliant on the purity of single photons produced by the quantum memory. Here, we demonstrate a single-photon source for quantum networking based on a trapped $^{138}\mbox {Ba}^{+}$ ion with a single photon purity of $g^{(2)}(0)=(8.1\pm 2.3)\times 10^{-5}$ without background subtraction. We further optimize the tradeoff between the photonic generation rate and the memory-photon entanglement fidelity for the case of polarization photonic qubits by tailoring the spatial mode of the collected light.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78(16), 3221–3224 (1997).
    [Crossref]
  2. S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science 362(6412), eaam9288 (2018).
    [Crossref]
  3. H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
    [Crossref]
  4. N. Sangouard, R. Dubessy, and C. Simon, “Quantum repeaters based on single trapped ions,” Phys. Rev. A 79(4), 042340 (2009).
    [Crossref]
  5. S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484(7393), 195–200 (2012).
    [Crossref]
  6. A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys. 87(4), 1379–1418 (2015).
    [Crossref]
  7. J. I. Cirac and P. Zoller, “Quantum computations with cold trapped ions,” Phys. Rev. Lett. 74(20), 4091–4094 (1995).
    [Crossref]
  8. K. Mølmer and A. Sørensen, “Multiparticle entanglement of hot trapped ions,” Phys. Rev. Lett. 82(9), 1835–1838 (1999).
    [Crossref]
  9. L. Duan, B. B. Blinov, D. L. Moehring, and C. R. Monroe, “Scalable trapped ion quantum computation with a probabilistic ion-photon mapping,” Quantum Inf. & Comput. 4, 165–173 (2004).
  10. P. Maunz, D. L. Moehring, S. Olmschenk, K. C. Younge, D. N. Matsukevich, and C. Monroe, “Quantum interference of photon pairs from two remote trapped atomic ions,” Nat. Phys. 3(8), 538–541 (2007).
    [Crossref]
  11. B. B. Blinov, D. L. Moehring, L.-M. Duan, and C. Monroe, “Observation of entanglement between a single trapped atom and a single photon,” Nature 428(6979), 153–157 (2004).
    [Crossref]
  12. T. Sauter, W. Neuhauser, R. Blatt, and P. E. Toschek, “Observation of quantum jumps,” Phys. Rev. Lett. 57(14), 1696–1698 (1986).
    [Crossref]
  13. G. Araneda, D. B. Higginbottom, L. Slodicka, Y. Colombe, and R. Blatt, “Interference of single photons emitted by entangled atoms in free space,” Phys. Rev. Lett. 120(19), 193603 (2018).
    [Crossref]
  14. R. D. Graham, S.-P. Chen, T. Sakrejda, J. Wright, Z. Zhou, and B. B. Blinov, “A system for trapping barium ions in a microfabricated surface trap,” AIP Adv. 4(5), 057124 (2014).
    [Crossref]
  15. D. Yum, D. D. Munshi, T. Dutta, and M. Mukherjee, “Optical barium ion qubit,” J. Opt. Soc. Am. B 34(8), 1632–1636 (2017).
    [Crossref]
  16. D. Hucul, J. E. Christensen, E. R. Hudson, and W. C. Campbell, “Spectroscopy of a synthetic trapped ion qubit,” Phys. Rev. Lett. 119(10), 100501 (2017).
    [Crossref]
  17. J. D. Siverns, X. Li, and Q. Quraishi, “Ion–photon entanglement and quantum frequency conversion with trapped Ba$+$+ ions,” Appl. Opt. 56(3), B222–B230 (2017).
    [Crossref]
  18. I. V. Inlek, C. Crocker, M. Lichtman, K. Sosnova, and C. Monroe, “Multispecies trapped-ion node for quantum networking,” Phys. Rev. Lett. 118(25), 250502 (2017).
    [Crossref]
  19. D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, and C. Monroe, “Modular entanglement of atomic qubits using photonsand phonons,” Nat. Phys. 11(1), 37–42 (2015).
    [Crossref]
  20. L. Slodička, G. Hétet, N. Röck, P. Schindler, M. Hennrich, and R. Blatt, “Atom-atom entanglement by single-photon detection,” Phys. Rev. Lett. 110(8), 083603 (2013).
    [Crossref]
  21. D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449(7158), 68–71 (2007).
    [Crossref]
  22. D. B. Higginbottom, L. Slodicka, G. Araneda, L. Lachman, R. Filip, M. Hennrich, and R. Blatt, “Pure single photons from a trapped atom source,” New J. Phys. 18(9), 093038 (2016).
    [Crossref]
  23. M. Bock, P. Eich, S. Kucera, M. Kreis, A. Lenhard, C. Becher, and J. Eschner, “High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion,” Nat. Commun. 9(1), 1998 (2018).
    [Crossref]
  24. N. Yu, W. Nagourney, and H. Dehmelt, “Radiative lifetime measurement of the Ba+ metastable D$_{3/2}$3/2 state,” Phys. Rev. Lett. 78(26), 4898–4901 (1997).
    [Crossref]
  25. M. Mücke, J. Bochmann, C. Hahn, A. Neuzner, C. Nölleke, A. Reiserer, G. Rempe, and S. Ritter, “Generation of single photons from an atom-cavity system,” Phys. Rev. A 87(6), 063805 (2013).
    [Crossref]
  26. L. Schweickert, K. D. Jons, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112(9), 093106 (2018).
    [Crossref]
  27. C. Simon and W. T. M. Irvine, “Robust long-distance entanglement and a loophole-free bell test with ions and photons,” Phys. Rev. Lett. 91(11), 110405 (2003).
    [Crossref]
  28. L. Luo, D. Hayes, T. Manning, D. Matsukevich, P. Maunz, S. Olmschenk, J. Sterk, and C. Monroe, “Protocols and techniques for a scalable atom-photon quantum network,” Fortschr. Phys. 57(11-12), 1133–1152 (2009).
    [Crossref]
  29. T. E. Northup and R. Blatt, “Quantum information transfer using photons,” Nat. Photonics 8(5), 356–363 (2014). Review Article.
    [Crossref]
  30. T. Kim, P. Maunz, and J. Kim, “Efficient collection of single photons emitted from a trapped ion into a single-mode fiber for scalable quantum-information processing,” Phys. Rev. A 84(6), 063423 (2011).
    [Crossref]
  31. D. Nadlinger and D. Lucas, (private communication).
  32. G. Araneda, S. Walser, Y. Colombe, D. B. Higginbottom, J. Volz, R. Blatt, and A. Rauschenbeutel, “Wavelength-scale errors in optical localization due to spin-orbit coupling of light,” Nat. Phys. 15(1), 17–21 (2019).
    [Crossref]
  33. C. Nölleke, A. Neuzner, A. Reiserer, C. Hahn, G. Rempe, and S. Ritter, “Efficient teleportation between remote single-atom quantum memories,” Phys. Rev. Lett. 110(14), 140403 (2013).
    [Crossref]
  34. C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89(2), 022317 (2014).
    [Crossref]

2019 (1)

G. Araneda, S. Walser, Y. Colombe, D. B. Higginbottom, J. Volz, R. Blatt, and A. Rauschenbeutel, “Wavelength-scale errors in optical localization due to spin-orbit coupling of light,” Nat. Phys. 15(1), 17–21 (2019).
[Crossref]

2018 (4)

M. Bock, P. Eich, S. Kucera, M. Kreis, A. Lenhard, C. Becher, and J. Eschner, “High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion,” Nat. Commun. 9(1), 1998 (2018).
[Crossref]

L. Schweickert, K. D. Jons, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112(9), 093106 (2018).
[Crossref]

S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science 362(6412), eaam9288 (2018).
[Crossref]

G. Araneda, D. B. Higginbottom, L. Slodicka, Y. Colombe, and R. Blatt, “Interference of single photons emitted by entangled atoms in free space,” Phys. Rev. Lett. 120(19), 193603 (2018).
[Crossref]

2017 (4)

D. Yum, D. D. Munshi, T. Dutta, and M. Mukherjee, “Optical barium ion qubit,” J. Opt. Soc. Am. B 34(8), 1632–1636 (2017).
[Crossref]

D. Hucul, J. E. Christensen, E. R. Hudson, and W. C. Campbell, “Spectroscopy of a synthetic trapped ion qubit,” Phys. Rev. Lett. 119(10), 100501 (2017).
[Crossref]

J. D. Siverns, X. Li, and Q. Quraishi, “Ion–photon entanglement and quantum frequency conversion with trapped Ba$+$+ ions,” Appl. Opt. 56(3), B222–B230 (2017).
[Crossref]

I. V. Inlek, C. Crocker, M. Lichtman, K. Sosnova, and C. Monroe, “Multispecies trapped-ion node for quantum networking,” Phys. Rev. Lett. 118(25), 250502 (2017).
[Crossref]

2016 (1)

D. B. Higginbottom, L. Slodicka, G. Araneda, L. Lachman, R. Filip, M. Hennrich, and R. Blatt, “Pure single photons from a trapped atom source,” New J. Phys. 18(9), 093038 (2016).
[Crossref]

2015 (2)

D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, and C. Monroe, “Modular entanglement of atomic qubits using photonsand phonons,” Nat. Phys. 11(1), 37–42 (2015).
[Crossref]

A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys. 87(4), 1379–1418 (2015).
[Crossref]

2014 (3)

R. D. Graham, S.-P. Chen, T. Sakrejda, J. Wright, Z. Zhou, and B. B. Blinov, “A system for trapping barium ions in a microfabricated surface trap,” AIP Adv. 4(5), 057124 (2014).
[Crossref]

T. E. Northup and R. Blatt, “Quantum information transfer using photons,” Nat. Photonics 8(5), 356–363 (2014). Review Article.
[Crossref]

C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89(2), 022317 (2014).
[Crossref]

2013 (3)

C. Nölleke, A. Neuzner, A. Reiserer, C. Hahn, G. Rempe, and S. Ritter, “Efficient teleportation between remote single-atom quantum memories,” Phys. Rev. Lett. 110(14), 140403 (2013).
[Crossref]

M. Mücke, J. Bochmann, C. Hahn, A. Neuzner, C. Nölleke, A. Reiserer, G. Rempe, and S. Ritter, “Generation of single photons from an atom-cavity system,” Phys. Rev. A 87(6), 063805 (2013).
[Crossref]

L. Slodička, G. Hétet, N. Röck, P. Schindler, M. Hennrich, and R. Blatt, “Atom-atom entanglement by single-photon detection,” Phys. Rev. Lett. 110(8), 083603 (2013).
[Crossref]

2012 (1)

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484(7393), 195–200 (2012).
[Crossref]

2011 (1)

T. Kim, P. Maunz, and J. Kim, “Efficient collection of single photons emitted from a trapped ion into a single-mode fiber for scalable quantum-information processing,” Phys. Rev. A 84(6), 063423 (2011).
[Crossref]

2009 (2)

L. Luo, D. Hayes, T. Manning, D. Matsukevich, P. Maunz, S. Olmschenk, J. Sterk, and C. Monroe, “Protocols and techniques for a scalable atom-photon quantum network,” Fortschr. Phys. 57(11-12), 1133–1152 (2009).
[Crossref]

N. Sangouard, R. Dubessy, and C. Simon, “Quantum repeaters based on single trapped ions,” Phys. Rev. A 79(4), 042340 (2009).
[Crossref]

2008 (1)

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref]

2007 (2)

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449(7158), 68–71 (2007).
[Crossref]

P. Maunz, D. L. Moehring, S. Olmschenk, K. C. Younge, D. N. Matsukevich, and C. Monroe, “Quantum interference of photon pairs from two remote trapped atomic ions,” Nat. Phys. 3(8), 538–541 (2007).
[Crossref]

2004 (2)

B. B. Blinov, D. L. Moehring, L.-M. Duan, and C. Monroe, “Observation of entanglement between a single trapped atom and a single photon,” Nature 428(6979), 153–157 (2004).
[Crossref]

L. Duan, B. B. Blinov, D. L. Moehring, and C. R. Monroe, “Scalable trapped ion quantum computation with a probabilistic ion-photon mapping,” Quantum Inf. & Comput. 4, 165–173 (2004).

2003 (1)

C. Simon and W. T. M. Irvine, “Robust long-distance entanglement and a loophole-free bell test with ions and photons,” Phys. Rev. Lett. 91(11), 110405 (2003).
[Crossref]

1999 (1)

K. Mølmer and A. Sørensen, “Multiparticle entanglement of hot trapped ions,” Phys. Rev. Lett. 82(9), 1835–1838 (1999).
[Crossref]

1997 (2)

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78(16), 3221–3224 (1997).
[Crossref]

N. Yu, W. Nagourney, and H. Dehmelt, “Radiative lifetime measurement of the Ba+ metastable D$_{3/2}$3/2 state,” Phys. Rev. Lett. 78(26), 4898–4901 (1997).
[Crossref]

1995 (1)

J. I. Cirac and P. Zoller, “Quantum computations with cold trapped ions,” Phys. Rev. Lett. 74(20), 4091–4094 (1995).
[Crossref]

1986 (1)

T. Sauter, W. Neuhauser, R. Blatt, and P. E. Toschek, “Observation of quantum jumps,” Phys. Rev. Lett. 57(14), 1696–1698 (1986).
[Crossref]

Araneda, G.

G. Araneda, S. Walser, Y. Colombe, D. B. Higginbottom, J. Volz, R. Blatt, and A. Rauschenbeutel, “Wavelength-scale errors in optical localization due to spin-orbit coupling of light,” Nat. Phys. 15(1), 17–21 (2019).
[Crossref]

G. Araneda, D. B. Higginbottom, L. Slodicka, Y. Colombe, and R. Blatt, “Interference of single photons emitted by entangled atoms in free space,” Phys. Rev. Lett. 120(19), 193603 (2018).
[Crossref]

D. B. Higginbottom, L. Slodicka, G. Araneda, L. Lachman, R. Filip, M. Hennrich, and R. Blatt, “Pure single photons from a trapped atom source,” New J. Phys. 18(9), 093038 (2016).
[Crossref]

Becher, C.

M. Bock, P. Eich, S. Kucera, M. Kreis, A. Lenhard, C. Becher, and J. Eschner, “High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion,” Nat. Commun. 9(1), 1998 (2018).
[Crossref]

Blatt, R.

G. Araneda, S. Walser, Y. Colombe, D. B. Higginbottom, J. Volz, R. Blatt, and A. Rauschenbeutel, “Wavelength-scale errors in optical localization due to spin-orbit coupling of light,” Nat. Phys. 15(1), 17–21 (2019).
[Crossref]

G. Araneda, D. B. Higginbottom, L. Slodicka, Y. Colombe, and R. Blatt, “Interference of single photons emitted by entangled atoms in free space,” Phys. Rev. Lett. 120(19), 193603 (2018).
[Crossref]

D. B. Higginbottom, L. Slodicka, G. Araneda, L. Lachman, R. Filip, M. Hennrich, and R. Blatt, “Pure single photons from a trapped atom source,” New J. Phys. 18(9), 093038 (2016).
[Crossref]

T. E. Northup and R. Blatt, “Quantum information transfer using photons,” Nat. Photonics 8(5), 356–363 (2014). Review Article.
[Crossref]

L. Slodička, G. Hétet, N. Röck, P. Schindler, M. Hennrich, and R. Blatt, “Atom-atom entanglement by single-photon detection,” Phys. Rev. Lett. 110(8), 083603 (2013).
[Crossref]

T. Sauter, W. Neuhauser, R. Blatt, and P. E. Toschek, “Observation of quantum jumps,” Phys. Rev. Lett. 57(14), 1696–1698 (1986).
[Crossref]

Blinov, B. B.

R. D. Graham, S.-P. Chen, T. Sakrejda, J. Wright, Z. Zhou, and B. B. Blinov, “A system for trapping barium ions in a microfabricated surface trap,” AIP Adv. 4(5), 057124 (2014).
[Crossref]

B. B. Blinov, D. L. Moehring, L.-M. Duan, and C. Monroe, “Observation of entanglement between a single trapped atom and a single photon,” Nature 428(6979), 153–157 (2004).
[Crossref]

L. Duan, B. B. Blinov, D. L. Moehring, and C. R. Monroe, “Scalable trapped ion quantum computation with a probabilistic ion-photon mapping,” Quantum Inf. & Comput. 4, 165–173 (2004).

Bochmann, J.

M. Mücke, J. Bochmann, C. Hahn, A. Neuzner, C. Nölleke, A. Reiserer, G. Rempe, and S. Ritter, “Generation of single photons from an atom-cavity system,” Phys. Rev. A 87(6), 063805 (2013).
[Crossref]

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484(7393), 195–200 (2012).
[Crossref]

Bock, M.

M. Bock, P. Eich, S. Kucera, M. Kreis, A. Lenhard, C. Becher, and J. Eschner, “High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion,” Nat. Commun. 9(1), 1998 (2018).
[Crossref]

Brown, K. R.

C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89(2), 022317 (2014).
[Crossref]

Campbell, W. C.

D. Hucul, J. E. Christensen, E. R. Hudson, and W. C. Campbell, “Spectroscopy of a synthetic trapped ion qubit,” Phys. Rev. Lett. 119(10), 100501 (2017).
[Crossref]

Chen, S.-P.

R. D. Graham, S.-P. Chen, T. Sakrejda, J. Wright, Z. Zhou, and B. B. Blinov, “A system for trapping barium ions in a microfabricated surface trap,” AIP Adv. 4(5), 057124 (2014).
[Crossref]

Christensen, J. E.

D. Hucul, J. E. Christensen, E. R. Hudson, and W. C. Campbell, “Spectroscopy of a synthetic trapped ion qubit,” Phys. Rev. Lett. 119(10), 100501 (2017).
[Crossref]

Cirac, J. I.

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78(16), 3221–3224 (1997).
[Crossref]

J. I. Cirac and P. Zoller, “Quantum computations with cold trapped ions,” Phys. Rev. Lett. 74(20), 4091–4094 (1995).
[Crossref]

Clark, S. M.

D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, and C. Monroe, “Modular entanglement of atomic qubits using photonsand phonons,” Nat. Phys. 11(1), 37–42 (2015).
[Crossref]

Colombe, Y.

G. Araneda, S. Walser, Y. Colombe, D. B. Higginbottom, J. Volz, R. Blatt, and A. Rauschenbeutel, “Wavelength-scale errors in optical localization due to spin-orbit coupling of light,” Nat. Phys. 15(1), 17–21 (2019).
[Crossref]

G. Araneda, D. B. Higginbottom, L. Slodicka, Y. Colombe, and R. Blatt, “Interference of single photons emitted by entangled atoms in free space,” Phys. Rev. Lett. 120(19), 193603 (2018).
[Crossref]

Covre da Silva, S. F.

L. Schweickert, K. D. Jons, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112(9), 093106 (2018).
[Crossref]

Crocker, C.

I. V. Inlek, C. Crocker, M. Lichtman, K. Sosnova, and C. Monroe, “Multispecies trapped-ion node for quantum networking,” Phys. Rev. Lett. 118(25), 250502 (2017).
[Crossref]

D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, and C. Monroe, “Modular entanglement of atomic qubits using photonsand phonons,” Nat. Phys. 11(1), 37–42 (2015).
[Crossref]

Debnath, S.

D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, and C. Monroe, “Modular entanglement of atomic qubits using photonsand phonons,” Nat. Phys. 11(1), 37–42 (2015).
[Crossref]

Dehmelt, H.

N. Yu, W. Nagourney, and H. Dehmelt, “Radiative lifetime measurement of the Ba+ metastable D$_{3/2}$3/2 state,” Phys. Rev. Lett. 78(26), 4898–4901 (1997).
[Crossref]

Duan, L.

L. Duan, B. B. Blinov, D. L. Moehring, and C. R. Monroe, “Scalable trapped ion quantum computation with a probabilistic ion-photon mapping,” Quantum Inf. & Comput. 4, 165–173 (2004).

Duan, L.-M.

C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89(2), 022317 (2014).
[Crossref]

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449(7158), 68–71 (2007).
[Crossref]

B. B. Blinov, D. L. Moehring, L.-M. Duan, and C. Monroe, “Observation of entanglement between a single trapped atom and a single photon,” Nature 428(6979), 153–157 (2004).
[Crossref]

Dubessy, R.

N. Sangouard, R. Dubessy, and C. Simon, “Quantum repeaters based on single trapped ions,” Phys. Rev. A 79(4), 042340 (2009).
[Crossref]

Dutta, T.

Eich, P.

M. Bock, P. Eich, S. Kucera, M. Kreis, A. Lenhard, C. Becher, and J. Eschner, “High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion,” Nat. Commun. 9(1), 1998 (2018).
[Crossref]

Elkouss, D.

S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science 362(6412), eaam9288 (2018).
[Crossref]

Eschner, J.

M. Bock, P. Eich, S. Kucera, M. Kreis, A. Lenhard, C. Becher, and J. Eschner, “High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion,” Nat. Commun. 9(1), 1998 (2018).
[Crossref]

Figueroa, E.

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484(7393), 195–200 (2012).
[Crossref]

Filip, R.

D. B. Higginbottom, L. Slodicka, G. Araneda, L. Lachman, R. Filip, M. Hennrich, and R. Blatt, “Pure single photons from a trapped atom source,” New J. Phys. 18(9), 093038 (2016).
[Crossref]

Graham, R. D.

R. D. Graham, S.-P. Chen, T. Sakrejda, J. Wright, Z. Zhou, and B. B. Blinov, “A system for trapping barium ions in a microfabricated surface trap,” AIP Adv. 4(5), 057124 (2014).
[Crossref]

Hahn, C.

M. Mücke, J. Bochmann, C. Hahn, A. Neuzner, C. Nölleke, A. Reiserer, G. Rempe, and S. Ritter, “Generation of single photons from an atom-cavity system,” Phys. Rev. A 87(6), 063805 (2013).
[Crossref]

C. Nölleke, A. Neuzner, A. Reiserer, C. Hahn, G. Rempe, and S. Ritter, “Efficient teleportation between remote single-atom quantum memories,” Phys. Rev. Lett. 110(14), 140403 (2013).
[Crossref]

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484(7393), 195–200 (2012).
[Crossref]

Hanson, R.

S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science 362(6412), eaam9288 (2018).
[Crossref]

Hayes, D.

L. Luo, D. Hayes, T. Manning, D. Matsukevich, P. Maunz, S. Olmschenk, J. Sterk, and C. Monroe, “Protocols and techniques for a scalable atom-photon quantum network,” Fortschr. Phys. 57(11-12), 1133–1152 (2009).
[Crossref]

Hennrich, M.

D. B. Higginbottom, L. Slodicka, G. Araneda, L. Lachman, R. Filip, M. Hennrich, and R. Blatt, “Pure single photons from a trapped atom source,” New J. Phys. 18(9), 093038 (2016).
[Crossref]

L. Slodička, G. Hétet, N. Röck, P. Schindler, M. Hennrich, and R. Blatt, “Atom-atom entanglement by single-photon detection,” Phys. Rev. Lett. 110(8), 083603 (2013).
[Crossref]

Hétet, G.

L. Slodička, G. Hétet, N. Röck, P. Schindler, M. Hennrich, and R. Blatt, “Atom-atom entanglement by single-photon detection,” Phys. Rev. Lett. 110(8), 083603 (2013).
[Crossref]

Higginbottom, D. B.

G. Araneda, S. Walser, Y. Colombe, D. B. Higginbottom, J. Volz, R. Blatt, and A. Rauschenbeutel, “Wavelength-scale errors in optical localization due to spin-orbit coupling of light,” Nat. Phys. 15(1), 17–21 (2019).
[Crossref]

G. Araneda, D. B. Higginbottom, L. Slodicka, Y. Colombe, and R. Blatt, “Interference of single photons emitted by entangled atoms in free space,” Phys. Rev. Lett. 120(19), 193603 (2018).
[Crossref]

D. B. Higginbottom, L. Slodicka, G. Araneda, L. Lachman, R. Filip, M. Hennrich, and R. Blatt, “Pure single photons from a trapped atom source,” New J. Phys. 18(9), 093038 (2016).
[Crossref]

Huang, H.

L. Schweickert, K. D. Jons, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112(9), 093106 (2018).
[Crossref]

Hucul, D.

D. Hucul, J. E. Christensen, E. R. Hudson, and W. C. Campbell, “Spectroscopy of a synthetic trapped ion qubit,” Phys. Rev. Lett. 119(10), 100501 (2017).
[Crossref]

D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, and C. Monroe, “Modular entanglement of atomic qubits using photonsand phonons,” Nat. Phys. 11(1), 37–42 (2015).
[Crossref]

Hudson, E. R.

D. Hucul, J. E. Christensen, E. R. Hudson, and W. C. Campbell, “Spectroscopy of a synthetic trapped ion qubit,” Phys. Rev. Lett. 119(10), 100501 (2017).
[Crossref]

Inlek, I. V.

I. V. Inlek, C. Crocker, M. Lichtman, K. Sosnova, and C. Monroe, “Multispecies trapped-ion node for quantum networking,” Phys. Rev. Lett. 118(25), 250502 (2017).
[Crossref]

D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, and C. Monroe, “Modular entanglement of atomic qubits using photonsand phonons,” Nat. Phys. 11(1), 37–42 (2015).
[Crossref]

Irvine, W. T. M.

C. Simon and W. T. M. Irvine, “Robust long-distance entanglement and a loophole-free bell test with ions and photons,” Phys. Rev. Lett. 91(11), 110405 (2003).
[Crossref]

Jons, K. D.

L. Schweickert, K. D. Jons, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112(9), 093106 (2018).
[Crossref]

Kim, J.

C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89(2), 022317 (2014).
[Crossref]

T. Kim, P. Maunz, and J. Kim, “Efficient collection of single photons emitted from a trapped ion into a single-mode fiber for scalable quantum-information processing,” Phys. Rev. A 84(6), 063423 (2011).
[Crossref]

Kim, T.

T. Kim, P. Maunz, and J. Kim, “Efficient collection of single photons emitted from a trapped ion into a single-mode fiber for scalable quantum-information processing,” Phys. Rev. A 84(6), 063423 (2011).
[Crossref]

Kimble, H. J.

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref]

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78(16), 3221–3224 (1997).
[Crossref]

Kreis, M.

M. Bock, P. Eich, S. Kucera, M. Kreis, A. Lenhard, C. Becher, and J. Eschner, “High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion,” Nat. Commun. 9(1), 1998 (2018).
[Crossref]

Kucera, S.

M. Bock, P. Eich, S. Kucera, M. Kreis, A. Lenhard, C. Becher, and J. Eschner, “High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion,” Nat. Commun. 9(1), 1998 (2018).
[Crossref]

Lachman, L.

D. B. Higginbottom, L. Slodicka, G. Araneda, L. Lachman, R. Filip, M. Hennrich, and R. Blatt, “Pure single photons from a trapped atom source,” New J. Phys. 18(9), 093038 (2016).
[Crossref]

Lenhard, A.

M. Bock, P. Eich, S. Kucera, M. Kreis, A. Lenhard, C. Becher, and J. Eschner, “High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion,” Nat. Commun. 9(1), 1998 (2018).
[Crossref]

Lettner, T.

L. Schweickert, K. D. Jons, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112(9), 093106 (2018).
[Crossref]

Li, X.

Lichtman, M.

I. V. Inlek, C. Crocker, M. Lichtman, K. Sosnova, and C. Monroe, “Multispecies trapped-ion node for quantum networking,” Phys. Rev. Lett. 118(25), 250502 (2017).
[Crossref]

Lucas, D.

D. Nadlinger and D. Lucas, (private communication).

Luo, L.

L. Luo, D. Hayes, T. Manning, D. Matsukevich, P. Maunz, S. Olmschenk, J. Sterk, and C. Monroe, “Protocols and techniques for a scalable atom-photon quantum network,” Fortschr. Phys. 57(11-12), 1133–1152 (2009).
[Crossref]

Mabuchi, H.

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78(16), 3221–3224 (1997).
[Crossref]

Manning, T.

L. Luo, D. Hayes, T. Manning, D. Matsukevich, P. Maunz, S. Olmschenk, J. Sterk, and C. Monroe, “Protocols and techniques for a scalable atom-photon quantum network,” Fortschr. Phys. 57(11-12), 1133–1152 (2009).
[Crossref]

Matsukevich, D.

L. Luo, D. Hayes, T. Manning, D. Matsukevich, P. Maunz, S. Olmschenk, J. Sterk, and C. Monroe, “Protocols and techniques for a scalable atom-photon quantum network,” Fortschr. Phys. 57(11-12), 1133–1152 (2009).
[Crossref]

Matsukevich, D. N.

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449(7158), 68–71 (2007).
[Crossref]

P. Maunz, D. L. Moehring, S. Olmschenk, K. C. Younge, D. N. Matsukevich, and C. Monroe, “Quantum interference of photon pairs from two remote trapped atomic ions,” Nat. Phys. 3(8), 538–541 (2007).
[Crossref]

Maunz, P.

C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89(2), 022317 (2014).
[Crossref]

T. Kim, P. Maunz, and J. Kim, “Efficient collection of single photons emitted from a trapped ion into a single-mode fiber for scalable quantum-information processing,” Phys. Rev. A 84(6), 063423 (2011).
[Crossref]

L. Luo, D. Hayes, T. Manning, D. Matsukevich, P. Maunz, S. Olmschenk, J. Sterk, and C. Monroe, “Protocols and techniques for a scalable atom-photon quantum network,” Fortschr. Phys. 57(11-12), 1133–1152 (2009).
[Crossref]

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449(7158), 68–71 (2007).
[Crossref]

P. Maunz, D. L. Moehring, S. Olmschenk, K. C. Younge, D. N. Matsukevich, and C. Monroe, “Quantum interference of photon pairs from two remote trapped atomic ions,” Nat. Phys. 3(8), 538–541 (2007).
[Crossref]

Moehring, D. L.

P. Maunz, D. L. Moehring, S. Olmschenk, K. C. Younge, D. N. Matsukevich, and C. Monroe, “Quantum interference of photon pairs from two remote trapped atomic ions,” Nat. Phys. 3(8), 538–541 (2007).
[Crossref]

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449(7158), 68–71 (2007).
[Crossref]

L. Duan, B. B. Blinov, D. L. Moehring, and C. R. Monroe, “Scalable trapped ion quantum computation with a probabilistic ion-photon mapping,” Quantum Inf. & Comput. 4, 165–173 (2004).

B. B. Blinov, D. L. Moehring, L.-M. Duan, and C. Monroe, “Observation of entanglement between a single trapped atom and a single photon,” Nature 428(6979), 153–157 (2004).
[Crossref]

Mølmer, K.

K. Mølmer and A. Sørensen, “Multiparticle entanglement of hot trapped ions,” Phys. Rev. Lett. 82(9), 1835–1838 (1999).
[Crossref]

Monroe, C.

I. V. Inlek, C. Crocker, M. Lichtman, K. Sosnova, and C. Monroe, “Multispecies trapped-ion node for quantum networking,” Phys. Rev. Lett. 118(25), 250502 (2017).
[Crossref]

D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, and C. Monroe, “Modular entanglement of atomic qubits using photonsand phonons,” Nat. Phys. 11(1), 37–42 (2015).
[Crossref]

C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89(2), 022317 (2014).
[Crossref]

L. Luo, D. Hayes, T. Manning, D. Matsukevich, P. Maunz, S. Olmschenk, J. Sterk, and C. Monroe, “Protocols and techniques for a scalable atom-photon quantum network,” Fortschr. Phys. 57(11-12), 1133–1152 (2009).
[Crossref]

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449(7158), 68–71 (2007).
[Crossref]

P. Maunz, D. L. Moehring, S. Olmschenk, K. C. Younge, D. N. Matsukevich, and C. Monroe, “Quantum interference of photon pairs from two remote trapped atomic ions,” Nat. Phys. 3(8), 538–541 (2007).
[Crossref]

B. B. Blinov, D. L. Moehring, L.-M. Duan, and C. Monroe, “Observation of entanglement between a single trapped atom and a single photon,” Nature 428(6979), 153–157 (2004).
[Crossref]

Monroe, C. R.

L. Duan, B. B. Blinov, D. L. Moehring, and C. R. Monroe, “Scalable trapped ion quantum computation with a probabilistic ion-photon mapping,” Quantum Inf. & Comput. 4, 165–173 (2004).

Mücke, M.

M. Mücke, J. Bochmann, C. Hahn, A. Neuzner, C. Nölleke, A. Reiserer, G. Rempe, and S. Ritter, “Generation of single photons from an atom-cavity system,” Phys. Rev. A 87(6), 063805 (2013).
[Crossref]

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484(7393), 195–200 (2012).
[Crossref]

Mukherjee, M.

Munshi, D. D.

Nadlinger, D.

D. Nadlinger and D. Lucas, (private communication).

Nagourney, W.

N. Yu, W. Nagourney, and H. Dehmelt, “Radiative lifetime measurement of the Ba+ metastable D$_{3/2}$3/2 state,” Phys. Rev. Lett. 78(26), 4898–4901 (1997).
[Crossref]

Neuhauser, W.

T. Sauter, W. Neuhauser, R. Blatt, and P. E. Toschek, “Observation of quantum jumps,” Phys. Rev. Lett. 57(14), 1696–1698 (1986).
[Crossref]

Neuzner, A.

M. Mücke, J. Bochmann, C. Hahn, A. Neuzner, C. Nölleke, A. Reiserer, G. Rempe, and S. Ritter, “Generation of single photons from an atom-cavity system,” Phys. Rev. A 87(6), 063805 (2013).
[Crossref]

C. Nölleke, A. Neuzner, A. Reiserer, C. Hahn, G. Rempe, and S. Ritter, “Efficient teleportation between remote single-atom quantum memories,” Phys. Rev. Lett. 110(14), 140403 (2013).
[Crossref]

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484(7393), 195–200 (2012).
[Crossref]

Nölleke, C.

C. Nölleke, A. Neuzner, A. Reiserer, C. Hahn, G. Rempe, and S. Ritter, “Efficient teleportation between remote single-atom quantum memories,” Phys. Rev. Lett. 110(14), 140403 (2013).
[Crossref]

M. Mücke, J. Bochmann, C. Hahn, A. Neuzner, C. Nölleke, A. Reiserer, G. Rempe, and S. Ritter, “Generation of single photons from an atom-cavity system,” Phys. Rev. A 87(6), 063805 (2013).
[Crossref]

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484(7393), 195–200 (2012).
[Crossref]

Northup, T. E.

T. E. Northup and R. Blatt, “Quantum information transfer using photons,” Nat. Photonics 8(5), 356–363 (2014). Review Article.
[Crossref]

Olmschenk, S.

L. Luo, D. Hayes, T. Manning, D. Matsukevich, P. Maunz, S. Olmschenk, J. Sterk, and C. Monroe, “Protocols and techniques for a scalable atom-photon quantum network,” Fortschr. Phys. 57(11-12), 1133–1152 (2009).
[Crossref]

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449(7158), 68–71 (2007).
[Crossref]

P. Maunz, D. L. Moehring, S. Olmschenk, K. C. Younge, D. N. Matsukevich, and C. Monroe, “Quantum interference of photon pairs from two remote trapped atomic ions,” Nat. Phys. 3(8), 538–541 (2007).
[Crossref]

Quraishi, Q.

Rastelli, A.

L. Schweickert, K. D. Jons, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112(9), 093106 (2018).
[Crossref]

Rauschenbeutel, A.

G. Araneda, S. Walser, Y. Colombe, D. B. Higginbottom, J. Volz, R. Blatt, and A. Rauschenbeutel, “Wavelength-scale errors in optical localization due to spin-orbit coupling of light,” Nat. Phys. 15(1), 17–21 (2019).
[Crossref]

Raussendorf, R.

C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89(2), 022317 (2014).
[Crossref]

Reindl, M.

L. Schweickert, K. D. Jons, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112(9), 093106 (2018).
[Crossref]

Reiserer, A.

A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys. 87(4), 1379–1418 (2015).
[Crossref]

C. Nölleke, A. Neuzner, A. Reiserer, C. Hahn, G. Rempe, and S. Ritter, “Efficient teleportation between remote single-atom quantum memories,” Phys. Rev. Lett. 110(14), 140403 (2013).
[Crossref]

M. Mücke, J. Bochmann, C. Hahn, A. Neuzner, C. Nölleke, A. Reiserer, G. Rempe, and S. Ritter, “Generation of single photons from an atom-cavity system,” Phys. Rev. A 87(6), 063805 (2013).
[Crossref]

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484(7393), 195–200 (2012).
[Crossref]

Rempe, G.

A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys. 87(4), 1379–1418 (2015).
[Crossref]

C. Nölleke, A. Neuzner, A. Reiserer, C. Hahn, G. Rempe, and S. Ritter, “Efficient teleportation between remote single-atom quantum memories,” Phys. Rev. Lett. 110(14), 140403 (2013).
[Crossref]

M. Mücke, J. Bochmann, C. Hahn, A. Neuzner, C. Nölleke, A. Reiserer, G. Rempe, and S. Ritter, “Generation of single photons from an atom-cavity system,” Phys. Rev. A 87(6), 063805 (2013).
[Crossref]

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484(7393), 195–200 (2012).
[Crossref]

Ritter, S.

C. Nölleke, A. Neuzner, A. Reiserer, C. Hahn, G. Rempe, and S. Ritter, “Efficient teleportation between remote single-atom quantum memories,” Phys. Rev. Lett. 110(14), 140403 (2013).
[Crossref]

M. Mücke, J. Bochmann, C. Hahn, A. Neuzner, C. Nölleke, A. Reiserer, G. Rempe, and S. Ritter, “Generation of single photons from an atom-cavity system,” Phys. Rev. A 87(6), 063805 (2013).
[Crossref]

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484(7393), 195–200 (2012).
[Crossref]

Röck, N.

L. Slodička, G. Hétet, N. Röck, P. Schindler, M. Hennrich, and R. Blatt, “Atom-atom entanglement by single-photon detection,” Phys. Rev. Lett. 110(8), 083603 (2013).
[Crossref]

Ruthven, A.

C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89(2), 022317 (2014).
[Crossref]

Sakrejda, T.

R. D. Graham, S.-P. Chen, T. Sakrejda, J. Wright, Z. Zhou, and B. B. Blinov, “A system for trapping barium ions in a microfabricated surface trap,” AIP Adv. 4(5), 057124 (2014).
[Crossref]

Sangouard, N.

N. Sangouard, R. Dubessy, and C. Simon, “Quantum repeaters based on single trapped ions,” Phys. Rev. A 79(4), 042340 (2009).
[Crossref]

Sauter, T.

T. Sauter, W. Neuhauser, R. Blatt, and P. E. Toschek, “Observation of quantum jumps,” Phys. Rev. Lett. 57(14), 1696–1698 (1986).
[Crossref]

Schindler, P.

L. Slodička, G. Hétet, N. Röck, P. Schindler, M. Hennrich, and R. Blatt, “Atom-atom entanglement by single-photon detection,” Phys. Rev. Lett. 110(8), 083603 (2013).
[Crossref]

Schweickert, L.

L. Schweickert, K. D. Jons, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112(9), 093106 (2018).
[Crossref]

Simon, C.

N. Sangouard, R. Dubessy, and C. Simon, “Quantum repeaters based on single trapped ions,” Phys. Rev. A 79(4), 042340 (2009).
[Crossref]

C. Simon and W. T. M. Irvine, “Robust long-distance entanglement and a loophole-free bell test with ions and photons,” Phys. Rev. Lett. 91(11), 110405 (2003).
[Crossref]

Siverns, J. D.

Slodicka, L.

G. Araneda, D. B. Higginbottom, L. Slodicka, Y. Colombe, and R. Blatt, “Interference of single photons emitted by entangled atoms in free space,” Phys. Rev. Lett. 120(19), 193603 (2018).
[Crossref]

D. B. Higginbottom, L. Slodicka, G. Araneda, L. Lachman, R. Filip, M. Hennrich, and R. Blatt, “Pure single photons from a trapped atom source,” New J. Phys. 18(9), 093038 (2016).
[Crossref]

L. Slodička, G. Hétet, N. Röck, P. Schindler, M. Hennrich, and R. Blatt, “Atom-atom entanglement by single-photon detection,” Phys. Rev. Lett. 110(8), 083603 (2013).
[Crossref]

Sørensen, A.

K. Mølmer and A. Sørensen, “Multiparticle entanglement of hot trapped ions,” Phys. Rev. Lett. 82(9), 1835–1838 (1999).
[Crossref]

Sosnova, K.

I. V. Inlek, C. Crocker, M. Lichtman, K. Sosnova, and C. Monroe, “Multispecies trapped-ion node for quantum networking,” Phys. Rev. Lett. 118(25), 250502 (2017).
[Crossref]

Sterk, J.

L. Luo, D. Hayes, T. Manning, D. Matsukevich, P. Maunz, S. Olmschenk, J. Sterk, and C. Monroe, “Protocols and techniques for a scalable atom-photon quantum network,” Fortschr. Phys. 57(11-12), 1133–1152 (2009).
[Crossref]

Toschek, P. E.

T. Sauter, W. Neuhauser, R. Blatt, and P. E. Toschek, “Observation of quantum jumps,” Phys. Rev. Lett. 57(14), 1696–1698 (1986).
[Crossref]

Trotta, R.

L. Schweickert, K. D. Jons, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112(9), 093106 (2018).
[Crossref]

Uphoff, M.

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484(7393), 195–200 (2012).
[Crossref]

Vittorini, G.

D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, and C. Monroe, “Modular entanglement of atomic qubits using photonsand phonons,” Nat. Phys. 11(1), 37–42 (2015).
[Crossref]

Volz, J.

G. Araneda, S. Walser, Y. Colombe, D. B. Higginbottom, J. Volz, R. Blatt, and A. Rauschenbeutel, “Wavelength-scale errors in optical localization due to spin-orbit coupling of light,” Nat. Phys. 15(1), 17–21 (2019).
[Crossref]

Walser, S.

G. Araneda, S. Walser, Y. Colombe, D. B. Higginbottom, J. Volz, R. Blatt, and A. Rauschenbeutel, “Wavelength-scale errors in optical localization due to spin-orbit coupling of light,” Nat. Phys. 15(1), 17–21 (2019).
[Crossref]

Wehner, S.

S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science 362(6412), eaam9288 (2018).
[Crossref]

Wright, J.

R. D. Graham, S.-P. Chen, T. Sakrejda, J. Wright, Z. Zhou, and B. B. Blinov, “A system for trapping barium ions in a microfabricated surface trap,” AIP Adv. 4(5), 057124 (2014).
[Crossref]

Younge, K. C.

P. Maunz, D. L. Moehring, S. Olmschenk, K. C. Younge, D. N. Matsukevich, and C. Monroe, “Quantum interference of photon pairs from two remote trapped atomic ions,” Nat. Phys. 3(8), 538–541 (2007).
[Crossref]

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449(7158), 68–71 (2007).
[Crossref]

Yu, N.

N. Yu, W. Nagourney, and H. Dehmelt, “Radiative lifetime measurement of the Ba+ metastable D$_{3/2}$3/2 state,” Phys. Rev. Lett. 78(26), 4898–4901 (1997).
[Crossref]

Yum, D.

Zeuner, K. D.

L. Schweickert, K. D. Jons, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112(9), 093106 (2018).
[Crossref]

Zhou, Z.

R. D. Graham, S.-P. Chen, T. Sakrejda, J. Wright, Z. Zhou, and B. B. Blinov, “A system for trapping barium ions in a microfabricated surface trap,” AIP Adv. 4(5), 057124 (2014).
[Crossref]

Zichi, J.

L. Schweickert, K. D. Jons, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112(9), 093106 (2018).
[Crossref]

Zoller, P.

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78(16), 3221–3224 (1997).
[Crossref]

J. I. Cirac and P. Zoller, “Quantum computations with cold trapped ions,” Phys. Rev. Lett. 74(20), 4091–4094 (1995).
[Crossref]

Zwiller, V.

L. Schweickert, K. D. Jons, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112(9), 093106 (2018).
[Crossref]

AIP Adv. (1)

R. D. Graham, S.-P. Chen, T. Sakrejda, J. Wright, Z. Zhou, and B. B. Blinov, “A system for trapping barium ions in a microfabricated surface trap,” AIP Adv. 4(5), 057124 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

L. Schweickert, K. D. Jons, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112(9), 093106 (2018).
[Crossref]

Fortschr. Phys. (1)

L. Luo, D. Hayes, T. Manning, D. Matsukevich, P. Maunz, S. Olmschenk, J. Sterk, and C. Monroe, “Protocols and techniques for a scalable atom-photon quantum network,” Fortschr. Phys. 57(11-12), 1133–1152 (2009).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

M. Bock, P. Eich, S. Kucera, M. Kreis, A. Lenhard, C. Becher, and J. Eschner, “High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion,” Nat. Commun. 9(1), 1998 (2018).
[Crossref]

Nat. Photonics (1)

T. E. Northup and R. Blatt, “Quantum information transfer using photons,” Nat. Photonics 8(5), 356–363 (2014). Review Article.
[Crossref]

Nat. Phys. (3)

G. Araneda, S. Walser, Y. Colombe, D. B. Higginbottom, J. Volz, R. Blatt, and A. Rauschenbeutel, “Wavelength-scale errors in optical localization due to spin-orbit coupling of light,” Nat. Phys. 15(1), 17–21 (2019).
[Crossref]

D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, and C. Monroe, “Modular entanglement of atomic qubits using photonsand phonons,” Nat. Phys. 11(1), 37–42 (2015).
[Crossref]

P. Maunz, D. L. Moehring, S. Olmschenk, K. C. Younge, D. N. Matsukevich, and C. Monroe, “Quantum interference of photon pairs from two remote trapped atomic ions,” Nat. Phys. 3(8), 538–541 (2007).
[Crossref]

Nature (4)

B. B. Blinov, D. L. Moehring, L.-M. Duan, and C. Monroe, “Observation of entanglement between a single trapped atom and a single photon,” Nature 428(6979), 153–157 (2004).
[Crossref]

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref]

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484(7393), 195–200 (2012).
[Crossref]

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449(7158), 68–71 (2007).
[Crossref]

New J. Phys. (1)

D. B. Higginbottom, L. Slodicka, G. Araneda, L. Lachman, R. Filip, M. Hennrich, and R. Blatt, “Pure single photons from a trapped atom source,” New J. Phys. 18(9), 093038 (2016).
[Crossref]

Phys. Rev. A (4)

M. Mücke, J. Bochmann, C. Hahn, A. Neuzner, C. Nölleke, A. Reiserer, G. Rempe, and S. Ritter, “Generation of single photons from an atom-cavity system,” Phys. Rev. A 87(6), 063805 (2013).
[Crossref]

T. Kim, P. Maunz, and J. Kim, “Efficient collection of single photons emitted from a trapped ion into a single-mode fiber for scalable quantum-information processing,” Phys. Rev. A 84(6), 063423 (2011).
[Crossref]

N. Sangouard, R. Dubessy, and C. Simon, “Quantum repeaters based on single trapped ions,” Phys. Rev. A 79(4), 042340 (2009).
[Crossref]

C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89(2), 022317 (2014).
[Crossref]

Phys. Rev. Lett. (11)

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78(16), 3221–3224 (1997).
[Crossref]

J. I. Cirac and P. Zoller, “Quantum computations with cold trapped ions,” Phys. Rev. Lett. 74(20), 4091–4094 (1995).
[Crossref]

K. Mølmer and A. Sørensen, “Multiparticle entanglement of hot trapped ions,” Phys. Rev. Lett. 82(9), 1835–1838 (1999).
[Crossref]

T. Sauter, W. Neuhauser, R. Blatt, and P. E. Toschek, “Observation of quantum jumps,” Phys. Rev. Lett. 57(14), 1696–1698 (1986).
[Crossref]

G. Araneda, D. B. Higginbottom, L. Slodicka, Y. Colombe, and R. Blatt, “Interference of single photons emitted by entangled atoms in free space,” Phys. Rev. Lett. 120(19), 193603 (2018).
[Crossref]

D. Hucul, J. E. Christensen, E. R. Hudson, and W. C. Campbell, “Spectroscopy of a synthetic trapped ion qubit,” Phys. Rev. Lett. 119(10), 100501 (2017).
[Crossref]

C. Nölleke, A. Neuzner, A. Reiserer, C. Hahn, G. Rempe, and S. Ritter, “Efficient teleportation between remote single-atom quantum memories,” Phys. Rev. Lett. 110(14), 140403 (2013).
[Crossref]

C. Simon and W. T. M. Irvine, “Robust long-distance entanglement and a loophole-free bell test with ions and photons,” Phys. Rev. Lett. 91(11), 110405 (2003).
[Crossref]

I. V. Inlek, C. Crocker, M. Lichtman, K. Sosnova, and C. Monroe, “Multispecies trapped-ion node for quantum networking,” Phys. Rev. Lett. 118(25), 250502 (2017).
[Crossref]

N. Yu, W. Nagourney, and H. Dehmelt, “Radiative lifetime measurement of the Ba+ metastable D$_{3/2}$3/2 state,” Phys. Rev. Lett. 78(26), 4898–4901 (1997).
[Crossref]

L. Slodička, G. Hétet, N. Röck, P. Schindler, M. Hennrich, and R. Blatt, “Atom-atom entanglement by single-photon detection,” Phys. Rev. Lett. 110(8), 083603 (2013).
[Crossref]

Quantum Inf. & Comput. (1)

L. Duan, B. B. Blinov, D. L. Moehring, and C. R. Monroe, “Scalable trapped ion quantum computation with a probabilistic ion-photon mapping,” Quantum Inf. & Comput. 4, 165–173 (2004).

Rev. Mod. Phys. (1)

A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys. 87(4), 1379–1418 (2015).
[Crossref]

Science (1)

S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science 362(6412), eaam9288 (2018).
[Crossref]

Other (1)

D. Nadlinger and D. Lucas, (private communication).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Energy level diagram for $^{138}\mbox{Ba}^{+}$ atom including branching ratios from $\left|{e}\right>$ to the S and D manifolds. (b) Double excitation errors plotted as a function of pulse time $T_p$ assuming a Rabi rate of $\Omega=\pi/T_p$. Note that even for pulses of order $T_p \sim \tau_e = 10.5$ ns the double excitation error is low. This low error rate is important, as it cannot be reduced by spatial filtering. (c) Sketch of the setup used to collect light and analyze the polarization of photonic qubits. Light is collected by a NA = 0.6 objective located outside of the vacuum window and then directed through a half-wave plate that can perform x-rotations on the polarization qubit. Next is a polarizing, beam-splitting cube and a pair of APDs (Laser Components COUNT-10B) to detect the photon's polarization.
Fig. 2.
Fig. 2. (a) Normalized second-order autocorrelation function. 26 $\mu$s peak spacing corresponds to experimental repetition rate. Strong suppression of $\tau=0$ peak demonstrates purity of single photon source. (b) Measured $g^{(2)}(0)$ value plotted in blue against the fraction of light collected in the neighboring bright peak for the same integration time. 1$\sigma$ error bars for this data are shown in yellow. The detector dark-count limited $g^{(2)}(0)$ is shown in green and the $g^{(2)}(0)$ value given a fitted, constant background count rate of 22s$^{-1}$ is shown in red. The discontinuous jumps in the blue data plot correspond to coincidence detection events.
Fig. 3.
Fig. 3. (a) Spatial distribution of light from a $\sigma$-polarized (blue) and $\pi$-polarized (yellow) emission along the z quantization axis. Note that in the x-y plane at polar angle $\theta=\pi/2$ there are equal amounts of $\sigma$ and $\pi$ emission. (b) Polarization mixing from the $\sigma$-polarized emission pattern when measured about an axis perpendicular to the magnetic field. The color gradient shows the ratio of vertical to horizontal polarized light collected about this axis. At $\theta = \pi/2$ there is no vertical component to the collected light. (c) Two types of apertures are analyzed in this experiment. Circular stop (top) used to restrict collection angle while maintaining a circular aperture. Horizontal stop (bottom) used to restrict collection in the $\theta$ (vertical) direction while allowing full collection in the $\phi$ (horizontal) direction.
Fig. 4.
Fig. 4. (a) Theoretical scaling between solid angle of light collection and polarization-mixing errors on ion-photon fidelity. The blue curve represents the scaling for a simple circular aperture. The yellow, green, and red curves give the scaling assuming a fixed circular aperture of NA = 0.6, 0.7, or 0.8 respectively with added horizontal apertures that restrict collection in the $\theta$ direction. (b) Ion-photon correlation results as a function of wave plate rotation angle. The red (blue) curve shows the probability of finding the ion in the $\left|{\uparrow}\right>$ state when the photon is detected on APD1 (APD2). No stops were used for these experiments. (c) Coherences in the y-basis are taken by setting the half-wave plate to perform a $\pi/2$ rotation on the photon and then applying a $\pi/2$ pulse on the ion with a varying phase.

Tables (1)

Tables Icon

Table 1. Here we compare our experimental results using the various apertures with the expected results from the theoretical curves presented in Fig. 4 scaled to account for other sources of error in the system. Our results are highly consistent with a favorable trade-off of collection rate and fidelity from the use of horizontal apertures.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

π = i 3 16 sin θ θ ^ , σ + = i e i ϕ 3 16 ( cos θ θ ^ + i ϕ ^ ) , σ = 0
Ψ r = 1 2 ( e i ϕ | H + i e i ϕ cos θ | V + 0 | H + i sin θ | V )

Metrics