Abstract

This paper reports a torsion sensor based on the multimode interference theory. The sensor is fabricated by sandwiching a section of perfluorinated polymer optical fiber (POF) between two silica single mode fibers to construct a single-mode-multimode-single-mode (SMS) structure. The perfluorinated POF is easily connected to the optical fiber via the precise alignment of ceramic ferrules and ceramic mating sleeve. With the considerable flexibility and deformability of the perfluorinated POF, the proposed sensor is especially suitable for torsion measurement. Experimental results show that a wavelength sensitivity of 106.762 pm/(rad/m) and an intensity sensitivity of 0.165 dBm/(rad/m) are obtained within a large torsion rate of −100∼100 rad/m.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multi-mode interferometer-based twist sensor with low temperature sensitivity employing square coreless fibers

Binbin Song, Yinping Miao, Wei Lin, Hao Zhang, Jixuan Wu, and Bo Liu
Opt. Express 21(22) 26806-26811 (2013)

Intensity modulated torsion sensor based on optical fiber reflective Lyot filter

Bo Huang, Xuewen Shu, and Yueqing Du
Opt. Express 25(5) 5081-5090 (2017)

Highly sensitive torsion senor based on dual-side-hole fiber Mach-Zehnder interferometer

Peizhen Jiang, Yang Ouyang, Huiyong Guo, and Ai Zhou
Opt. Express 27(23) 33880-33888 (2019)

References

  • View by:
  • |
  • |
  • |

  1. X. Xi, G. K. L. Wong, T. Weiss, and P. S. J. Russell, “Measuring mechanical strain and twist using helical photonic crystal fiber,” Opt. Lett. 38(24), 5401–5404 (2013).
    [Crossref]
  2. V. Lemarquand, “Synthesis study of magnetic torque sensors,” IEEE Trans. Magn. 35(6), 4503–4510 (1999).
    [Crossref]
  3. D. Williams, X. Bao, and C. Liang, “Characterization of high nonlinearity in brillouin amplification in optical fibers with applications in fiber sensing and photonic logic,” Photonics Res. 2(1), 1–9 (2014).
    [Crossref]
  4. B. Vedran and D. Denis, “Fiber-optic sensors for measurements of torsion, twist and rotation: a review,” Sensors 17(3), 443–472 (2017).
    [Crossref]
  5. C. Broadway, M. Rui, A. G. Leal Junior, C. Marques, and C. Caucheteur, “Towards commercial polymer fiber bragg grating sensors: review and applications,” J. Lightwave Technol. 37(11), 2605–2615 (2019).
    [Crossref]
  6. J. Zubia and J. Arrue, “Plastic optical fibers: an introduction to their technological processes and applications,” Opt. Fiber Technol. 7(2), 101–140 (2001).
    [Crossref]
  7. A. Theodosiou, A. Lacraz, A. Stassis, C. Koutsides, M. Komodromos, and K. Kalli, “Plane-by-plane femtosecond laser inscription method for single-peak bragg gratings in multimode CYTOP polymer optical fibre,” J. Lightwave Technol. 35(24), 5404–5410 (2017).
    [Crossref]
  8. J. Zubia, J. Arrue, and A. Mendioroz, “Theoretical analysis of the torsion-induced optical effect in a plastic optical fiber,” Opt. Fiber Technol. 3(2), 162–167 (1997).
    [Crossref]
  9. I. R. Husdi, K. Nakamura, and S. Ueha, “Sensing characteristics of plastic optical fibres measured by optical time-domain reflectometry,” Meas. Sci. Technol. 15(8), 1553–1559 (2004).
    [Crossref]
  10. B. Yan, Y. Luo, K. Bhowmik, G. Rajan, M. Ji, and J. Wen, “Twist effect and sensing of few mode polymer fibre bragg gratings,” Opt. Commun. 359, 411–418 (2016).
    [Crossref]
  11. R. Oliveira, T. H. R. Marques, L. Bilro, R. Nogueira, and C. M. B. Cordeiro, “Multiparameter POF sensing based on multimode interference and fiber Bragg grating,” J. Lightwave Technol. 35(1), 3–9 (2017).
    [Crossref]
  12. A. Lacraz, A. Theodosiou, and K. Kalli, “Femtosecond laser inscribed Bragg grating arrays in long lengths of polymer optical fibres; a route to practical sensing with POF,” Electron. Lett. 52(19), 1626–1627 (2016).
    [Crossref]
  13. H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
    [Crossref]
  14. A. Schreier, S. Liehr, A. Wosniok, and K. Krebber, “Investigation on the influence of humidity on stimulated Brillouin backscattering in perfluorinated polymer optical fibers,” Sensors 18(11), 3952–3964 (2018).
    [Crossref]
  15. G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, and H. K. Rasmussen, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
    [Crossref]
  16. A. G. Leal-Junior, A. Theodosiou, C. R. Díaz, C. Marques, M. J. Pontes, K. Kalli, and A. Frizera, “Simultaneous measurement of axial strain, bending and torsion with a single fiber Bragg grating in CYTOP fiber,” J. Lightwave Technol. 37(3), 971–980 (2019).
    [Crossref]
  17. N. Hayashi, Y. Mizuno, and K. Nakamura, “Brillouin gain spectrum dependence on large strain in perfluorinated graded-index polymer optical fiber,” Opt. Express 20(19), 21101–21106 (2012).
    [Crossref]
  18. R. Ishikawa, H. Lee, A. Lacraz, A. Theodosiou, K. Kalli, Y. Mizuno, and K. Nakamura, “Pressure dependence of fiber bragg grating inscribed in perfluorinated polymer fiber,” IEEE Photonics Technol. Lett. 29(24), 2167–2170 (2017).
    [Crossref]
  19. A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond laser inscribed Bragg gratings in low loss CYTOP polymer optical fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
    [Crossref]
  20. J. Huang, X. Lan, H. Wang, L. Yuan, T. Wei, and Z. Gao, “Polymer optical fiber for large strain measurement based on multimode interference,” Opt. Lett. 37(20), 4308–4310 (2012).
    [Crossref]
  21. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
    [Crossref]
  22. B. Song, Y. Miao, W. Lin, H. Zhang, J. Wu, and B. Liu, “Multi-mode interferometer-based twist sensor with low temperature sensitivity employing square coreless fibers,” Opt. Express 21(22), 26806 (2013).
    [Crossref]
  23. H. Wang, S. Pu, N. Wang, S. Dong, and J. Huang, “Magnetic field sensing based on singlemode-multimode-singlemode fiber structures using magnetic fluids as cladding,” Opt. Lett. 38(19), 3765–3768 (2013).
    [Crossref]
  24. Y. Zheng, K. Bremer, and B. Roth, “Investigating the strain, temperature and humidity sensitivity of a multimode graded-index perfluorinated polymer optical fiber with Bragg grating,” Sensors 18(5), 1436–1446 (2018).
    [Crossref]
  25. Y. Chen, Q. Han, T. Liu, and X. Lü, “Self-temperature-compensative refractometer based on singlemode-multimode-singlemode fiber structure,” Sens. Actuators, B 212, 107–111 (2015).
    [Crossref]

2019 (2)

2018 (2)

A. Schreier, S. Liehr, A. Wosniok, and K. Krebber, “Investigation on the influence of humidity on stimulated Brillouin backscattering in perfluorinated polymer optical fibers,” Sensors 18(11), 3952–3964 (2018).
[Crossref]

Y. Zheng, K. Bremer, and B. Roth, “Investigating the strain, temperature and humidity sensitivity of a multimode graded-index perfluorinated polymer optical fiber with Bragg grating,” Sensors 18(5), 1436–1446 (2018).
[Crossref]

2017 (4)

R. Ishikawa, H. Lee, A. Lacraz, A. Theodosiou, K. Kalli, Y. Mizuno, and K. Nakamura, “Pressure dependence of fiber bragg grating inscribed in perfluorinated polymer fiber,” IEEE Photonics Technol. Lett. 29(24), 2167–2170 (2017).
[Crossref]

R. Oliveira, T. H. R. Marques, L. Bilro, R. Nogueira, and C. M. B. Cordeiro, “Multiparameter POF sensing based on multimode interference and fiber Bragg grating,” J. Lightwave Technol. 35(1), 3–9 (2017).
[Crossref]

A. Theodosiou, A. Lacraz, A. Stassis, C. Koutsides, M. Komodromos, and K. Kalli, “Plane-by-plane femtosecond laser inscription method for single-peak bragg gratings in multimode CYTOP polymer optical fibre,” J. Lightwave Technol. 35(24), 5404–5410 (2017).
[Crossref]

B. Vedran and D. Denis, “Fiber-optic sensors for measurements of torsion, twist and rotation: a review,” Sensors 17(3), 443–472 (2017).
[Crossref]

2016 (3)

A. Lacraz, A. Theodosiou, and K. Kalli, “Femtosecond laser inscribed Bragg grating arrays in long lengths of polymer optical fibres; a route to practical sensing with POF,” Electron. Lett. 52(19), 1626–1627 (2016).
[Crossref]

B. Yan, Y. Luo, K. Bhowmik, G. Rajan, M. Ji, and J. Wen, “Twist effect and sensing of few mode polymer fibre bragg gratings,” Opt. Commun. 359, 411–418 (2016).
[Crossref]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, and H. K. Rasmussen, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref]

2015 (2)

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond laser inscribed Bragg gratings in low loss CYTOP polymer optical fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

Y. Chen, Q. Han, T. Liu, and X. Lü, “Self-temperature-compensative refractometer based on singlemode-multimode-singlemode fiber structure,” Sens. Actuators, B 212, 107–111 (2015).
[Crossref]

2014 (1)

D. Williams, X. Bao, and C. Liang, “Characterization of high nonlinearity in brillouin amplification in optical fibers with applications in fiber sensing and photonic logic,” Photonics Res. 2(1), 1–9 (2014).
[Crossref]

2013 (3)

2012 (2)

2004 (1)

I. R. Husdi, K. Nakamura, and S. Ueha, “Sensing characteristics of plastic optical fibres measured by optical time-domain reflectometry,” Meas. Sci. Technol. 15(8), 1553–1559 (2004).
[Crossref]

2002 (1)

H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

2001 (1)

J. Zubia and J. Arrue, “Plastic optical fibers: an introduction to their technological processes and applications,” Opt. Fiber Technol. 7(2), 101–140 (2001).
[Crossref]

1999 (1)

V. Lemarquand, “Synthesis study of magnetic torque sensors,” IEEE Trans. Magn. 35(6), 4503–4510 (1999).
[Crossref]

1997 (1)

J. Zubia, J. Arrue, and A. Mendioroz, “Theoretical analysis of the torsion-induced optical effect in a plastic optical fiber,” Opt. Fiber Technol. 3(2), 162–167 (1997).
[Crossref]

1995 (1)

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Arrue, J.

J. Zubia and J. Arrue, “Plastic optical fibers: an introduction to their technological processes and applications,” Opt. Fiber Technol. 7(2), 101–140 (2001).
[Crossref]

J. Zubia, J. Arrue, and A. Mendioroz, “Theoretical analysis of the torsion-induced optical effect in a plastic optical fiber,” Opt. Fiber Technol. 3(2), 162–167 (1997).
[Crossref]

Bao, X.

D. Williams, X. Bao, and C. Liang, “Characterization of high nonlinearity in brillouin amplification in optical fibers with applications in fiber sensing and photonic logic,” Photonics Res. 2(1), 1–9 (2014).
[Crossref]

Bhowmik, K.

B. Yan, Y. Luo, K. Bhowmik, G. Rajan, M. Ji, and J. Wen, “Twist effect and sensing of few mode polymer fibre bragg gratings,” Opt. Commun. 359, 411–418 (2016).
[Crossref]

Bilro, L.

Bremer, K.

Y. Zheng, K. Bremer, and B. Roth, “Investigating the strain, temperature and humidity sensitivity of a multimode graded-index perfluorinated polymer optical fiber with Bragg grating,” Sensors 18(5), 1436–1446 (2018).
[Crossref]

Broadway, C.

Caucheteur, C.

Chen, Y.

Y. Chen, Q. Han, T. Liu, and X. Lü, “Self-temperature-compensative refractometer based on singlemode-multimode-singlemode fiber structure,” Sens. Actuators, B 212, 107–111 (2015).
[Crossref]

Cordeiro, C. M. B.

Dalton, L. R.

H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Denis, D.

B. Vedran and D. Denis, “Fiber-optic sensors for measurements of torsion, twist and rotation: a review,” Sensors 17(3), 443–472 (2017).
[Crossref]

Díaz, C. R.

Dong, S.

Fasano, A.

Frizera, A.

Gao, Z.

Han, Q.

Y. Chen, Q. Han, T. Liu, and X. Lü, “Self-temperature-compensative refractometer based on singlemode-multimode-singlemode fiber structure,” Sens. Actuators, B 212, 107–111 (2015).
[Crossref]

Hayashi, N.

Huang, J.

Husdi, I. R.

I. R. Husdi, K. Nakamura, and S. Ueha, “Sensing characteristics of plastic optical fibres measured by optical time-domain reflectometry,” Meas. Sci. Technol. 15(8), 1553–1559 (2004).
[Crossref]

Ishikawa, R.

R. Ishikawa, H. Lee, A. Lacraz, A. Theodosiou, K. Kalli, Y. Mizuno, and K. Nakamura, “Pressure dependence of fiber bragg grating inscribed in perfluorinated polymer fiber,” IEEE Photonics Technol. Lett. 29(24), 2167–2170 (2017).
[Crossref]

Jen, A. K. Y.

H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Ji, M.

B. Yan, Y. Luo, K. Bhowmik, G. Rajan, M. Ji, and J. Wen, “Twist effect and sensing of few mode polymer fibre bragg gratings,” Opt. Commun. 359, 411–418 (2016).
[Crossref]

Kalli, K.

A. G. Leal-Junior, A. Theodosiou, C. R. Díaz, C. Marques, M. J. Pontes, K. Kalli, and A. Frizera, “Simultaneous measurement of axial strain, bending and torsion with a single fiber Bragg grating in CYTOP fiber,” J. Lightwave Technol. 37(3), 971–980 (2019).
[Crossref]

A. Theodosiou, A. Lacraz, A. Stassis, C. Koutsides, M. Komodromos, and K. Kalli, “Plane-by-plane femtosecond laser inscription method for single-peak bragg gratings in multimode CYTOP polymer optical fibre,” J. Lightwave Technol. 35(24), 5404–5410 (2017).
[Crossref]

R. Ishikawa, H. Lee, A. Lacraz, A. Theodosiou, K. Kalli, Y. Mizuno, and K. Nakamura, “Pressure dependence of fiber bragg grating inscribed in perfluorinated polymer fiber,” IEEE Photonics Technol. Lett. 29(24), 2167–2170 (2017).
[Crossref]

A. Lacraz, A. Theodosiou, and K. Kalli, “Femtosecond laser inscribed Bragg grating arrays in long lengths of polymer optical fibres; a route to practical sensing with POF,” Electron. Lett. 52(19), 1626–1627 (2016).
[Crossref]

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond laser inscribed Bragg gratings in low loss CYTOP polymer optical fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

Komodromos, M.

Koutsides, C.

A. Theodosiou, A. Lacraz, A. Stassis, C. Koutsides, M. Komodromos, and K. Kalli, “Plane-by-plane femtosecond laser inscription method for single-peak bragg gratings in multimode CYTOP polymer optical fibre,” J. Lightwave Technol. 35(24), 5404–5410 (2017).
[Crossref]

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond laser inscribed Bragg gratings in low loss CYTOP polymer optical fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

Krebber, K.

A. Schreier, S. Liehr, A. Wosniok, and K. Krebber, “Investigation on the influence of humidity on stimulated Brillouin backscattering in perfluorinated polymer optical fibers,” Sensors 18(11), 3952–3964 (2018).
[Crossref]

Lacraz, A.

A. Theodosiou, A. Lacraz, A. Stassis, C. Koutsides, M. Komodromos, and K. Kalli, “Plane-by-plane femtosecond laser inscription method for single-peak bragg gratings in multimode CYTOP polymer optical fibre,” J. Lightwave Technol. 35(24), 5404–5410 (2017).
[Crossref]

R. Ishikawa, H. Lee, A. Lacraz, A. Theodosiou, K. Kalli, Y. Mizuno, and K. Nakamura, “Pressure dependence of fiber bragg grating inscribed in perfluorinated polymer fiber,” IEEE Photonics Technol. Lett. 29(24), 2167–2170 (2017).
[Crossref]

A. Lacraz, A. Theodosiou, and K. Kalli, “Femtosecond laser inscribed Bragg grating arrays in long lengths of polymer optical fibres; a route to practical sensing with POF,” Electron. Lett. 52(19), 1626–1627 (2016).
[Crossref]

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond laser inscribed Bragg gratings in low loss CYTOP polymer optical fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

Lan, X.

Leal Junior, A. G.

Leal-Junior, A. G.

Lee, H.

R. Ishikawa, H. Lee, A. Lacraz, A. Theodosiou, K. Kalli, Y. Mizuno, and K. Nakamura, “Pressure dependence of fiber bragg grating inscribed in perfluorinated polymer fiber,” IEEE Photonics Technol. Lett. 29(24), 2167–2170 (2017).
[Crossref]

Lemarquand, V.

V. Lemarquand, “Synthesis study of magnetic torque sensors,” IEEE Trans. Magn. 35(6), 4503–4510 (1999).
[Crossref]

Liang, C.

D. Williams, X. Bao, and C. Liang, “Characterization of high nonlinearity in brillouin amplification in optical fibers with applications in fiber sensing and photonic logic,” Photonics Res. 2(1), 1–9 (2014).
[Crossref]

Liehr, S.

A. Schreier, S. Liehr, A. Wosniok, and K. Krebber, “Investigation on the influence of humidity on stimulated Brillouin backscattering in perfluorinated polymer optical fibers,” Sensors 18(11), 3952–3964 (2018).
[Crossref]

Lin, W.

Liu, B.

Liu, T.

Y. Chen, Q. Han, T. Liu, and X. Lü, “Self-temperature-compensative refractometer based on singlemode-multimode-singlemode fiber structure,” Sens. Actuators, B 212, 107–111 (2015).
[Crossref]

Lü, X.

Y. Chen, Q. Han, T. Liu, and X. Lü, “Self-temperature-compensative refractometer based on singlemode-multimode-singlemode fiber structure,” Sens. Actuators, B 212, 107–111 (2015).
[Crossref]

Luo, Y.

B. Yan, Y. Luo, K. Bhowmik, G. Rajan, M. Ji, and J. Wen, “Twist effect and sensing of few mode polymer fibre bragg gratings,” Opt. Commun. 359, 411–418 (2016).
[Crossref]

Ma, H.

H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Markos, C.

Marques, C.

Marques, T. H. R.

Mendioroz, A.

J. Zubia, J. Arrue, and A. Mendioroz, “Theoretical analysis of the torsion-induced optical effect in a plastic optical fiber,” Opt. Fiber Technol. 3(2), 162–167 (1997).
[Crossref]

Miao, Y.

Mizuno, Y.

R. Ishikawa, H. Lee, A. Lacraz, A. Theodosiou, K. Kalli, Y. Mizuno, and K. Nakamura, “Pressure dependence of fiber bragg grating inscribed in perfluorinated polymer fiber,” IEEE Photonics Technol. Lett. 29(24), 2167–2170 (2017).
[Crossref]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Brillouin gain spectrum dependence on large strain in perfluorinated graded-index polymer optical fiber,” Opt. Express 20(19), 21101–21106 (2012).
[Crossref]

Nakamura, K.

R. Ishikawa, H. Lee, A. Lacraz, A. Theodosiou, K. Kalli, Y. Mizuno, and K. Nakamura, “Pressure dependence of fiber bragg grating inscribed in perfluorinated polymer fiber,” IEEE Photonics Technol. Lett. 29(24), 2167–2170 (2017).
[Crossref]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Brillouin gain spectrum dependence on large strain in perfluorinated graded-index polymer optical fiber,” Opt. Express 20(19), 21101–21106 (2012).
[Crossref]

I. R. Husdi, K. Nakamura, and S. Ueha, “Sensing characteristics of plastic optical fibres measured by optical time-domain reflectometry,” Meas. Sci. Technol. 15(8), 1553–1559 (2004).
[Crossref]

Nielsen, K.

Nogueira, R.

Oliveira, R.

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Polis, M.

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond laser inscribed Bragg gratings in low loss CYTOP polymer optical fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

Pontes, M. J.

Pu, S.

Rajan, G.

B. Yan, Y. Luo, K. Bhowmik, G. Rajan, M. Ji, and J. Wen, “Twist effect and sensing of few mode polymer fibre bragg gratings,” Opt. Commun. 359, 411–418 (2016).
[Crossref]

Rasmussen, H. K.

Roth, B.

Y. Zheng, K. Bremer, and B. Roth, “Investigating the strain, temperature and humidity sensitivity of a multimode graded-index perfluorinated polymer optical fiber with Bragg grating,” Sensors 18(5), 1436–1446 (2018).
[Crossref]

Rui, M.

Russell, P. S. J.

Schreier, A.

A. Schreier, S. Liehr, A. Wosniok, and K. Krebber, “Investigation on the influence of humidity on stimulated Brillouin backscattering in perfluorinated polymer optical fibers,” Sensors 18(11), 3952–3964 (2018).
[Crossref]

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Song, B.

Stassis, A.

Stefani, A.

Theodosiou, A.

A. G. Leal-Junior, A. Theodosiou, C. R. Díaz, C. Marques, M. J. Pontes, K. Kalli, and A. Frizera, “Simultaneous measurement of axial strain, bending and torsion with a single fiber Bragg grating in CYTOP fiber,” J. Lightwave Technol. 37(3), 971–980 (2019).
[Crossref]

A. Theodosiou, A. Lacraz, A. Stassis, C. Koutsides, M. Komodromos, and K. Kalli, “Plane-by-plane femtosecond laser inscription method for single-peak bragg gratings in multimode CYTOP polymer optical fibre,” J. Lightwave Technol. 35(24), 5404–5410 (2017).
[Crossref]

R. Ishikawa, H. Lee, A. Lacraz, A. Theodosiou, K. Kalli, Y. Mizuno, and K. Nakamura, “Pressure dependence of fiber bragg grating inscribed in perfluorinated polymer fiber,” IEEE Photonics Technol. Lett. 29(24), 2167–2170 (2017).
[Crossref]

A. Lacraz, A. Theodosiou, and K. Kalli, “Femtosecond laser inscribed Bragg grating arrays in long lengths of polymer optical fibres; a route to practical sensing with POF,” Electron. Lett. 52(19), 1626–1627 (2016).
[Crossref]

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond laser inscribed Bragg gratings in low loss CYTOP polymer optical fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

Ueha, S.

I. R. Husdi, K. Nakamura, and S. Ueha, “Sensing characteristics of plastic optical fibres measured by optical time-domain reflectometry,” Meas. Sci. Technol. 15(8), 1553–1559 (2004).
[Crossref]

Vedran, B.

B. Vedran and D. Denis, “Fiber-optic sensors for measurements of torsion, twist and rotation: a review,” Sensors 17(3), 443–472 (2017).
[Crossref]

Wang, H.

Wang, N.

Wei, T.

Weiss, T.

Wen, J.

B. Yan, Y. Luo, K. Bhowmik, G. Rajan, M. Ji, and J. Wen, “Twist effect and sensing of few mode polymer fibre bragg gratings,” Opt. Commun. 359, 411–418 (2016).
[Crossref]

Williams, D.

D. Williams, X. Bao, and C. Liang, “Characterization of high nonlinearity in brillouin amplification in optical fibers with applications in fiber sensing and photonic logic,” Photonics Res. 2(1), 1–9 (2014).
[Crossref]

Wong, G. K. L.

Wosniok, A.

A. Schreier, S. Liehr, A. Wosniok, and K. Krebber, “Investigation on the influence of humidity on stimulated Brillouin backscattering in perfluorinated polymer optical fibers,” Sensors 18(11), 3952–3964 (2018).
[Crossref]

Woyessa, G.

Wu, J.

Xi, X.

Yan, B.

B. Yan, Y. Luo, K. Bhowmik, G. Rajan, M. Ji, and J. Wen, “Twist effect and sensing of few mode polymer fibre bragg gratings,” Opt. Commun. 359, 411–418 (2016).
[Crossref]

Yuan, L.

Zhang, H.

Zheng, Y.

Y. Zheng, K. Bremer, and B. Roth, “Investigating the strain, temperature and humidity sensitivity of a multimode graded-index perfluorinated polymer optical fiber with Bragg grating,” Sensors 18(5), 1436–1446 (2018).
[Crossref]

Zubia, J.

J. Zubia and J. Arrue, “Plastic optical fibers: an introduction to their technological processes and applications,” Opt. Fiber Technol. 7(2), 101–140 (2001).
[Crossref]

J. Zubia, J. Arrue, and A. Mendioroz, “Theoretical analysis of the torsion-induced optical effect in a plastic optical fiber,” Opt. Fiber Technol. 3(2), 162–167 (1997).
[Crossref]

Adv. Mater. (1)

H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Electron. Lett. (1)

A. Lacraz, A. Theodosiou, and K. Kalli, “Femtosecond laser inscribed Bragg grating arrays in long lengths of polymer optical fibres; a route to practical sensing with POF,” Electron. Lett. 52(19), 1626–1627 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (2)

R. Ishikawa, H. Lee, A. Lacraz, A. Theodosiou, K. Kalli, Y. Mizuno, and K. Nakamura, “Pressure dependence of fiber bragg grating inscribed in perfluorinated polymer fiber,” IEEE Photonics Technol. Lett. 29(24), 2167–2170 (2017).
[Crossref]

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond laser inscribed Bragg gratings in low loss CYTOP polymer optical fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

IEEE Trans. Magn. (1)

V. Lemarquand, “Synthesis study of magnetic torque sensors,” IEEE Trans. Magn. 35(6), 4503–4510 (1999).
[Crossref]

J. Lightwave Technol. (5)

Meas. Sci. Technol. (1)

I. R. Husdi, K. Nakamura, and S. Ueha, “Sensing characteristics of plastic optical fibres measured by optical time-domain reflectometry,” Meas. Sci. Technol. 15(8), 1553–1559 (2004).
[Crossref]

Opt. Commun. (1)

B. Yan, Y. Luo, K. Bhowmik, G. Rajan, M. Ji, and J. Wen, “Twist effect and sensing of few mode polymer fibre bragg gratings,” Opt. Commun. 359, 411–418 (2016).
[Crossref]

Opt. Express (3)

Opt. Fiber Technol. (2)

J. Zubia and J. Arrue, “Plastic optical fibers: an introduction to their technological processes and applications,” Opt. Fiber Technol. 7(2), 101–140 (2001).
[Crossref]

J. Zubia, J. Arrue, and A. Mendioroz, “Theoretical analysis of the torsion-induced optical effect in a plastic optical fiber,” Opt. Fiber Technol. 3(2), 162–167 (1997).
[Crossref]

Opt. Lett. (3)

Photonics Res. (1)

D. Williams, X. Bao, and C. Liang, “Characterization of high nonlinearity in brillouin amplification in optical fibers with applications in fiber sensing and photonic logic,” Photonics Res. 2(1), 1–9 (2014).
[Crossref]

Sens. Actuators, B (1)

Y. Chen, Q. Han, T. Liu, and X. Lü, “Self-temperature-compensative refractometer based on singlemode-multimode-singlemode fiber structure,” Sens. Actuators, B 212, 107–111 (2015).
[Crossref]

Sensors (3)

Y. Zheng, K. Bremer, and B. Roth, “Investigating the strain, temperature and humidity sensitivity of a multimode graded-index perfluorinated polymer optical fiber with Bragg grating,” Sensors 18(5), 1436–1446 (2018).
[Crossref]

B. Vedran and D. Denis, “Fiber-optic sensors for measurements of torsion, twist and rotation: a review,” Sensors 17(3), 443–472 (2017).
[Crossref]

A. Schreier, S. Liehr, A. Wosniok, and K. Krebber, “Investigation on the influence of humidity on stimulated Brillouin backscattering in perfluorinated polymer optical fibers,” Sensors 18(11), 3952–3964 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a)Schematic diagram of the perfluorinated POF-based sensor structure, (b)cross-section of the perfluorinated POF with over-cladding layer, (c)connection between POF and silica SMF using ceramic ferrule and ceramic mating sleeve.
Fig. 2.
Fig. 2. Schematic diagram of the experimental setup.
Fig. 3.
Fig. 3. Transmission spectra of the perfluorinated POF-based torsion sensor with different POF length.
Fig. 4.
Fig. 4. Transmission spectral characteristics of the perfluorinated POF-based torsion sensor under different torsion angles ranging from:(a) −360° to 0° with counter-clockwise rotation, (b)0° to 360° with clockwise rotation.
Fig. 5.
Fig. 5. Average wavelength response of the torsion sensor in ten repeat measurements with different POF lengths:(a) 8 cm, (b) 7 cm, (c) 6 cm.
Fig. 6.
Fig. 6. Average intensity response of the torsion sensor in ten repeat measurements with different POF lengths:(a) 8 cm, (b) 7 cm, (c) 6 cm.
Fig. 7.
Fig. 7. (a)Wavelength response of the torsion sensor with different connection offset, (b)intensity response of the torsion sensor with different connection offset.
Fig. 8.
Fig. 8. Transmission response of the perfluorinated POF-based torsion sensor at different temperature: (a)wavelength response; (b)intensity response.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n ( r ) = { n c o [ 1 2 ( n c o n c l ) r 2 R 2 ] 1 / 2 ; r R n c o [ 1 2 ( n c o n c l ) ] 1 / 2 ; r > R
Ψ ( r , z ) = m = 0 M [ b m ψ m ( r ) exp ( j β m z ) ]
b m = 0 Ψ ( r , 0 ) ψ m ( r ) r d r 0 ψ m 2 ( r ) r d r
β m = k 0 n ( r ) ( m + 1 ) 2 λ π 4 n ( r ) W m e 2
η o u t = 10 log 10 ( | 0 Ψ ( r , L ) ψ 0 ( r ) r d r | 2 0 | Ψ ( r , L ) | 2 r d r 0 | ψ 0 ( r ) | 2 r d r )

Metrics