Abstract

In this study, we demonstrate the switching of the direction of the photocurrent in an n-type GaAs/Al0.3Ga0.7As modulation-doped quantum well using a polarization pulse-shaping apparatus containing a 4f setup. The right- and left-polarization-twisting pulses with a polarization rotation frequency in the THz-regime are incident on a modulation-doped quantum well. The results show that the sign of the photovoltage is dependent on the direction of rotation of the polarization-twisting pulses, which can be explained by the circular photogalvanic effect combined with the production of a classical edge photocurrent from the acceleration of free electrons in the vicinity of the sample edge by the incident optical electric field. The wide range over which the polarization-rotation frequency may be tuned makes this method a powerful tool to investigate the response of an extensive variety of materials in the THz-regime.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Lateral photovoltaic effect observed in doping-modulated GaAs/Al0.3Ga0.7As

Ji Hong Liu, Shuang Qiao, BaoLai Liang, ShuFang Wang, and GuangSheng Fu
Opt. Express 25(4) A166-A175 (2017)

Planar, Al0.3Ga0.7As-passivated-base, heterojunction bipolar phototransistors

Gordon Wood Anderson, Francis J. Kub, Thomas F. Carruthers, Nicolas A. Papanicolaou, Michael Y. Frankel, D. Scott Katzer, John A. Modolo, and W. F. Tseng
Appl. Opt. 36(4) 760-764 (1997)

Multilayer GaAs-Al0.3Ga0.7As dielectric quarter wave stacks grown by molecular beam epitaxy

J. P. van der Ziel and M. Ilegems
Appl. Opt. 14(11) 2627-2630 (1975)

References

  • View by:
  • |
  • |
  • |

  1. T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
    [Crossref] [PubMed]
  2. T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, “Optimal control of multiphoton ionization processes in aligned I2 molecules with time-dependent polarization pulses,” Phys. Rev. Lett. 92, 133005 (2004).
    [Crossref]
  3. M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photon. 7, 724 (2013).
    [Crossref]
  4. S. D. Ganichev, E. L. Ivchenko, S. N. Danilov, J. Eroms, W. Wegscheider, D. Weiss, and W. Prettl, “Conversion of spin into directed electric current in quantum wells,” Phys. Rev. Lett. 86, 4358–4361 (2001).
    [Crossref] [PubMed]
  5. S. D. Ganichev, V. V. Bel’kov, P. Schneider, E. L. Ivchenko, S. A. Tarasenko, W. Wegscheider, D. Weiss, D. Schuh, E. V. Beregulin, and W. Prettl, “Resonant inversion of the circular photogalvanic effect in n-doped quantum wells,” Phys. Rev. B 68, 035319 (2003).
    [Crossref]
  6. H. Diehl, V. A. Shalygin, V. V. Bel’kov, C. Hoffmann, S. N. Danilov, T. Herrle, S. A. Tarasenko, D. Schuh, C. Gerl, W. Wegscheider, W. Prettl, and S. D. Ganichev, “Spin photocurrents in (110)-grown quantum well structures,” New J. Phys. 9, 349 (2007).
    [Crossref]
  7. J. Karch, C. Drexler, P. Olbrich, M. Fehrenbacher, M. Hirmer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, B. Birkner, J. Eroms, D. Weiss, R. Yakimova, S. Lara-Avila, S. Kubatkin, M. Ostler, T. Seyller, and S. D. Ganichev, “Terahertz radiation driven chiral edge currents in graphene,” Phys. Rev. Lett. 107, 276601 (2011).
    [Crossref]
  8. E. Ziemann, S. D. Ganichev, W. Prettl, I. N. Yassievich, and V. I. Perel, “Characterization of deep impurities in semiconductors by terahertz tunneling ionization,” J. Appl. Phys. 87, 3843–3849 (2000).
    [Crossref]
  9. T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable terahertz wave generation in the 3- to 7-THz region from gap,” Appl. Phys. Lett. 83, 237–239 (2003).
    [Crossref]
  10. T. Higuchi, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for angular momentum transfer via impulsive stimulated raman scattering,” Phys. Rev. A 87, 013808 (2013).
    [Crossref]
  11. K. Misawa, “Applications of polarization-shaped femtosecond laser pulses,” Adv. Phys. X 1, 544–569 (2016).
  12. T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for light-induced magnetization of a crystal with threefold symmetry: The case of antiferromagnetic NiO,” Phys. Rev. Lett. 106, 047401 (2011).
    [Crossref] [PubMed]
  13. A. Pinczuk, S. Schmitt-Rink, G. Danan, J. P. Valladares, L. N. Pfeiffer, and K. W. West, “Large exchange interactions in the electron gas of GaAs quantum wells,” Phys. Rev. Lett. 63, 1633–1636 (1989).
    [Crossref] [PubMed]
  14. S. Das Sarma and D.-W. Wang, “Resonant raman scattering by elementary electronic excitations in semiconductor structures,” Phys. Rev. Lett. 83, 816–819 (1999).
    [Crossref]
  15. A. M. Weiner, Ultrafast Optics (John Wiley and Sons, 2009), chap. 9, pp. 499–505, 2nd ed.
  16. G. Dresselhaus, “Spin-orbit coupling effects in zinc blende structures,” Phys. Rev. 100, 580–586 (1955).
    [Crossref]
  17. Y. Bychkov and E. Rashba, “Properties of a 2D electron gas with lifted spectral degeneracy,” Sov. Phys. JETP. 39, 66 (1984).
  18. J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, “Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure,” Phys. Rev. Lett. 78, 1335–1338 (1997).
    [Crossref]
  19. T. Koga, J. Nitta, T. Akazaki, and H. Takayanagi, “Rashba spin-orbit coupling probed by the weak antilocalization analysis in InAlAs/InGaAs/InAlAs quantum wells as a function of quantum well asymmetry,” Phys. Rev. Lett. 89, 046801 (2002).
    [Crossref] [PubMed]
  20. V. Alperovich, V. N. Belinicher, V. Novikov, and A. Terekhov, “Surface photovoltaic effect in gallium arsenide,” JETP Lett. 31, 546–549 (1980).
  21. A. A. Burkov and L. Balents, “Weyl semimetal in a topological insulator multilayer,” Phys. Rev. Lett. 107, 127205 (2011).
    [Crossref] [PubMed]
  22. M. M. Vazifeh and M. Franz, “Electromagnetic response of Weyl semimetals,” Phys. Rev. Lett. 111, 027201 (2013).
    [Crossref] [PubMed]
  23. B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, “Experimental discovery of Weyl semimetal TaAs,” Phys. Rev. X 5, 031013 (2015).
  24. Z. Zhu, Y. Cheng, and U. Schwingenschlögl, “Topological phase diagrams of bulk and monolayer TiS2−xTex,” Phys. Rev. Lett. 110, 077202 (2013).
    [Crossref]
  25. A. Carvalho, R. M. Ribeiro, and A. H. Castro Neto, “Band nesting and the optical response of two-dimensional semiconducting transition metal dichalcogenides,” Phys. Rev. B 88, 115205 (2013).
    [Crossref]

2016 (1)

K. Misawa, “Applications of polarization-shaped femtosecond laser pulses,” Adv. Phys. X 1, 544–569 (2016).

2015 (1)

B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, “Experimental discovery of Weyl semimetal TaAs,” Phys. Rev. X 5, 031013 (2015).

2013 (5)

Z. Zhu, Y. Cheng, and U. Schwingenschlögl, “Topological phase diagrams of bulk and monolayer TiS2−xTex,” Phys. Rev. Lett. 110, 077202 (2013).
[Crossref]

A. Carvalho, R. M. Ribeiro, and A. H. Castro Neto, “Band nesting and the optical response of two-dimensional semiconducting transition metal dichalcogenides,” Phys. Rev. B 88, 115205 (2013).
[Crossref]

M. M. Vazifeh and M. Franz, “Electromagnetic response of Weyl semimetals,” Phys. Rev. Lett. 111, 027201 (2013).
[Crossref] [PubMed]

T. Higuchi, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for angular momentum transfer via impulsive stimulated raman scattering,” Phys. Rev. A 87, 013808 (2013).
[Crossref]

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photon. 7, 724 (2013).
[Crossref]

2011 (3)

J. Karch, C. Drexler, P. Olbrich, M. Fehrenbacher, M. Hirmer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, B. Birkner, J. Eroms, D. Weiss, R. Yakimova, S. Lara-Avila, S. Kubatkin, M. Ostler, T. Seyller, and S. D. Ganichev, “Terahertz radiation driven chiral edge currents in graphene,” Phys. Rev. Lett. 107, 276601 (2011).
[Crossref]

T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for light-induced magnetization of a crystal with threefold symmetry: The case of antiferromagnetic NiO,” Phys. Rev. Lett. 106, 047401 (2011).
[Crossref] [PubMed]

A. A. Burkov and L. Balents, “Weyl semimetal in a topological insulator multilayer,” Phys. Rev. Lett. 107, 127205 (2011).
[Crossref] [PubMed]

2007 (1)

H. Diehl, V. A. Shalygin, V. V. Bel’kov, C. Hoffmann, S. N. Danilov, T. Herrle, S. A. Tarasenko, D. Schuh, C. Gerl, W. Wegscheider, W. Prettl, and S. D. Ganichev, “Spin photocurrents in (110)-grown quantum well structures,” New J. Phys. 9, 349 (2007).
[Crossref]

2004 (2)

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref] [PubMed]

T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, “Optimal control of multiphoton ionization processes in aligned I2 molecules with time-dependent polarization pulses,” Phys. Rev. Lett. 92, 133005 (2004).
[Crossref]

2003 (2)

S. D. Ganichev, V. V. Bel’kov, P. Schneider, E. L. Ivchenko, S. A. Tarasenko, W. Wegscheider, D. Weiss, D. Schuh, E. V. Beregulin, and W. Prettl, “Resonant inversion of the circular photogalvanic effect in n-doped quantum wells,” Phys. Rev. B 68, 035319 (2003).
[Crossref]

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable terahertz wave generation in the 3- to 7-THz region from gap,” Appl. Phys. Lett. 83, 237–239 (2003).
[Crossref]

2002 (1)

T. Koga, J. Nitta, T. Akazaki, and H. Takayanagi, “Rashba spin-orbit coupling probed by the weak antilocalization analysis in InAlAs/InGaAs/InAlAs quantum wells as a function of quantum well asymmetry,” Phys. Rev. Lett. 89, 046801 (2002).
[Crossref] [PubMed]

2001 (1)

S. D. Ganichev, E. L. Ivchenko, S. N. Danilov, J. Eroms, W. Wegscheider, D. Weiss, and W. Prettl, “Conversion of spin into directed electric current in quantum wells,” Phys. Rev. Lett. 86, 4358–4361 (2001).
[Crossref] [PubMed]

2000 (1)

E. Ziemann, S. D. Ganichev, W. Prettl, I. N. Yassievich, and V. I. Perel, “Characterization of deep impurities in semiconductors by terahertz tunneling ionization,” J. Appl. Phys. 87, 3843–3849 (2000).
[Crossref]

1999 (1)

S. Das Sarma and D.-W. Wang, “Resonant raman scattering by elementary electronic excitations in semiconductor structures,” Phys. Rev. Lett. 83, 816–819 (1999).
[Crossref]

1997 (1)

J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, “Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure,” Phys. Rev. Lett. 78, 1335–1338 (1997).
[Crossref]

1989 (1)

A. Pinczuk, S. Schmitt-Rink, G. Danan, J. P. Valladares, L. N. Pfeiffer, and K. W. West, “Large exchange interactions in the electron gas of GaAs quantum wells,” Phys. Rev. Lett. 63, 1633–1636 (1989).
[Crossref] [PubMed]

1984 (1)

Y. Bychkov and E. Rashba, “Properties of a 2D electron gas with lifted spectral degeneracy,” Sov. Phys. JETP. 39, 66 (1984).

1980 (1)

V. Alperovich, V. N. Belinicher, V. Novikov, and A. Terekhov, “Surface photovoltaic effect in gallium arsenide,” JETP Lett. 31, 546–549 (1980).

1955 (1)

G. Dresselhaus, “Spin-orbit coupling effects in zinc blende structures,” Phys. Rev. 100, 580–586 (1955).
[Crossref]

Akazaki, T.

T. Koga, J. Nitta, T. Akazaki, and H. Takayanagi, “Rashba spin-orbit coupling probed by the weak antilocalization analysis in InAlAs/InGaAs/InAlAs quantum wells as a function of quantum well asymmetry,” Phys. Rev. Lett. 89, 046801 (2002).
[Crossref] [PubMed]

J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, “Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure,” Phys. Rev. Lett. 78, 1335–1338 (1997).
[Crossref]

Alperovich, V.

V. Alperovich, V. N. Belinicher, V. Novikov, and A. Terekhov, “Surface photovoltaic effect in gallium arsenide,” JETP Lett. 31, 546–549 (1980).

Balents, L.

A. A. Burkov and L. Balents, “Weyl semimetal in a topological insulator multilayer,” Phys. Rev. Lett. 107, 127205 (2011).
[Crossref] [PubMed]

Baumert, T.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref] [PubMed]

Bel’kov, V. V.

H. Diehl, V. A. Shalygin, V. V. Bel’kov, C. Hoffmann, S. N. Danilov, T. Herrle, S. A. Tarasenko, D. Schuh, C. Gerl, W. Wegscheider, W. Prettl, and S. D. Ganichev, “Spin photocurrents in (110)-grown quantum well structures,” New J. Phys. 9, 349 (2007).
[Crossref]

S. D. Ganichev, V. V. Bel’kov, P. Schneider, E. L. Ivchenko, S. A. Tarasenko, W. Wegscheider, D. Weiss, D. Schuh, E. V. Beregulin, and W. Prettl, “Resonant inversion of the circular photogalvanic effect in n-doped quantum wells,” Phys. Rev. B 68, 035319 (2003).
[Crossref]

Belinicher, V. N.

V. Alperovich, V. N. Belinicher, V. Novikov, and A. Terekhov, “Surface photovoltaic effect in gallium arsenide,” JETP Lett. 31, 546–549 (1980).

Beregulin, E. V.

S. D. Ganichev, V. V. Bel’kov, P. Schneider, E. L. Ivchenko, S. A. Tarasenko, W. Wegscheider, D. Weiss, D. Schuh, E. V. Beregulin, and W. Prettl, “Resonant inversion of the circular photogalvanic effect in n-doped quantum wells,” Phys. Rev. B 68, 035319 (2003).
[Crossref]

Birkner, B.

J. Karch, C. Drexler, P. Olbrich, M. Fehrenbacher, M. Hirmer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, B. Birkner, J. Eroms, D. Weiss, R. Yakimova, S. Lara-Avila, S. Kubatkin, M. Ostler, T. Seyller, and S. D. Ganichev, “Terahertz radiation driven chiral edge currents in graphene,” Phys. Rev. Lett. 107, 276601 (2011).
[Crossref]

Brixner, T.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref] [PubMed]

Burkov, A. A.

A. A. Burkov and L. Balents, “Weyl semimetal in a topological insulator multilayer,” Phys. Rev. Lett. 107, 127205 (2011).
[Crossref] [PubMed]

Bychkov, Y.

Y. Bychkov and E. Rashba, “Properties of a 2D electron gas with lifted spectral degeneracy,” Sov. Phys. JETP. 39, 66 (1984).

Carvalho, A.

A. Carvalho, R. M. Ribeiro, and A. H. Castro Neto, “Band nesting and the optical response of two-dimensional semiconducting transition metal dichalcogenides,” Phys. Rev. B 88, 115205 (2013).
[Crossref]

Castro Neto, A. H.

A. Carvalho, R. M. Ribeiro, and A. H. Castro Neto, “Band nesting and the optical response of two-dimensional semiconducting transition metal dichalcogenides,” Phys. Rev. B 88, 115205 (2013).
[Crossref]

Chen, G. F.

B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, “Experimental discovery of Weyl semimetal TaAs,” Phys. Rev. X 5, 031013 (2015).

Cheng, Y.

Z. Zhu, Y. Cheng, and U. Schwingenschlögl, “Topological phase diagrams of bulk and monolayer TiS2−xTex,” Phys. Rev. Lett. 110, 077202 (2013).
[Crossref]

Dai, X.

B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, “Experimental discovery of Weyl semimetal TaAs,” Phys. Rev. X 5, 031013 (2015).

Danan, G.

A. Pinczuk, S. Schmitt-Rink, G. Danan, J. P. Valladares, L. N. Pfeiffer, and K. W. West, “Large exchange interactions in the electron gas of GaAs quantum wells,” Phys. Rev. Lett. 63, 1633–1636 (1989).
[Crossref] [PubMed]

Danilov, S. N.

H. Diehl, V. A. Shalygin, V. V. Bel’kov, C. Hoffmann, S. N. Danilov, T. Herrle, S. A. Tarasenko, D. Schuh, C. Gerl, W. Wegscheider, W. Prettl, and S. D. Ganichev, “Spin photocurrents in (110)-grown quantum well structures,” New J. Phys. 9, 349 (2007).
[Crossref]

S. D. Ganichev, E. L. Ivchenko, S. N. Danilov, J. Eroms, W. Wegscheider, D. Weiss, and W. Prettl, “Conversion of spin into directed electric current in quantum wells,” Phys. Rev. Lett. 86, 4358–4361 (2001).
[Crossref] [PubMed]

Das Sarma, S.

S. Das Sarma and D.-W. Wang, “Resonant raman scattering by elementary electronic excitations in semiconductor structures,” Phys. Rev. Lett. 83, 816–819 (1999).
[Crossref]

Diehl, H.

H. Diehl, V. A. Shalygin, V. V. Bel’kov, C. Hoffmann, S. N. Danilov, T. Herrle, S. A. Tarasenko, D. Schuh, C. Gerl, W. Wegscheider, W. Prettl, and S. D. Ganichev, “Spin photocurrents in (110)-grown quantum well structures,” New J. Phys. 9, 349 (2007).
[Crossref]

Ding, H.

B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, “Experimental discovery of Weyl semimetal TaAs,” Phys. Rev. X 5, 031013 (2015).

Dresselhaus, G.

G. Dresselhaus, “Spin-orbit coupling effects in zinc blende structures,” Phys. Rev. 100, 580–586 (1955).
[Crossref]

Drexler, C.

J. Karch, C. Drexler, P. Olbrich, M. Fehrenbacher, M. Hirmer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, B. Birkner, J. Eroms, D. Weiss, R. Yakimova, S. Lara-Avila, S. Kubatkin, M. Ostler, T. Seyller, and S. D. Ganichev, “Terahertz radiation driven chiral edge currents in graphene,” Phys. Rev. Lett. 107, 276601 (2011).
[Crossref]

Enoki, T.

J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, “Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure,” Phys. Rev. Lett. 78, 1335–1338 (1997).
[Crossref]

Eroms, J.

J. Karch, C. Drexler, P. Olbrich, M. Fehrenbacher, M. Hirmer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, B. Birkner, J. Eroms, D. Weiss, R. Yakimova, S. Lara-Avila, S. Kubatkin, M. Ostler, T. Seyller, and S. D. Ganichev, “Terahertz radiation driven chiral edge currents in graphene,” Phys. Rev. Lett. 107, 276601 (2011).
[Crossref]

S. D. Ganichev, E. L. Ivchenko, S. N. Danilov, J. Eroms, W. Wegscheider, D. Weiss, and W. Prettl, “Conversion of spin into directed electric current in quantum wells,” Phys. Rev. Lett. 86, 4358–4361 (2001).
[Crossref] [PubMed]

Fang, Z.

B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, “Experimental discovery of Weyl semimetal TaAs,” Phys. Rev. X 5, 031013 (2015).

Fehrenbacher, M.

J. Karch, C. Drexler, P. Olbrich, M. Fehrenbacher, M. Hirmer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, B. Birkner, J. Eroms, D. Weiss, R. Yakimova, S. Lara-Avila, S. Kubatkin, M. Ostler, T. Seyller, and S. D. Ganichev, “Terahertz radiation driven chiral edge currents in graphene,” Phys. Rev. Lett. 107, 276601 (2011).
[Crossref]

Franz, M.

M. M. Vazifeh and M. Franz, “Electromagnetic response of Weyl semimetals,” Phys. Rev. Lett. 111, 027201 (2013).
[Crossref] [PubMed]

Fu, B. B.

B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, “Experimental discovery of Weyl semimetal TaAs,” Phys. Rev. X 5, 031013 (2015).

Ganichev, S. D.

J. Karch, C. Drexler, P. Olbrich, M. Fehrenbacher, M. Hirmer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, B. Birkner, J. Eroms, D. Weiss, R. Yakimova, S. Lara-Avila, S. Kubatkin, M. Ostler, T. Seyller, and S. D. Ganichev, “Terahertz radiation driven chiral edge currents in graphene,” Phys. Rev. Lett. 107, 276601 (2011).
[Crossref]

H. Diehl, V. A. Shalygin, V. V. Bel’kov, C. Hoffmann, S. N. Danilov, T. Herrle, S. A. Tarasenko, D. Schuh, C. Gerl, W. Wegscheider, W. Prettl, and S. D. Ganichev, “Spin photocurrents in (110)-grown quantum well structures,” New J. Phys. 9, 349 (2007).
[Crossref]

S. D. Ganichev, V. V. Bel’kov, P. Schneider, E. L. Ivchenko, S. A. Tarasenko, W. Wegscheider, D. Weiss, D. Schuh, E. V. Beregulin, and W. Prettl, “Resonant inversion of the circular photogalvanic effect in n-doped quantum wells,” Phys. Rev. B 68, 035319 (2003).
[Crossref]

S. D. Ganichev, E. L. Ivchenko, S. N. Danilov, J. Eroms, W. Wegscheider, D. Weiss, and W. Prettl, “Conversion of spin into directed electric current in quantum wells,” Phys. Rev. Lett. 86, 4358–4361 (2001).
[Crossref] [PubMed]

E. Ziemann, S. D. Ganichev, W. Prettl, I. N. Yassievich, and V. I. Perel, “Characterization of deep impurities in semiconductors by terahertz tunneling ionization,” J. Appl. Phys. 87, 3843–3849 (2000).
[Crossref]

Gerber, G.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref] [PubMed]

Gerl, C.

H. Diehl, V. A. Shalygin, V. V. Bel’kov, C. Hoffmann, S. N. Danilov, T. Herrle, S. A. Tarasenko, D. Schuh, C. Gerl, W. Wegscheider, W. Prettl, and S. D. Ganichev, “Spin photocurrents in (110)-grown quantum well structures,” New J. Phys. 9, 349 (2007).
[Crossref]

Glazov, M. M.

J. Karch, C. Drexler, P. Olbrich, M. Fehrenbacher, M. Hirmer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, B. Birkner, J. Eroms, D. Weiss, R. Yakimova, S. Lara-Avila, S. Kubatkin, M. Ostler, T. Seyller, and S. D. Ganichev, “Terahertz radiation driven chiral edge currents in graphene,” Phys. Rev. Lett. 107, 276601 (2011).
[Crossref]

Graefe, O.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref] [PubMed]

Herrle, T.

H. Diehl, V. A. Shalygin, V. V. Bel’kov, C. Hoffmann, S. N. Danilov, T. Herrle, S. A. Tarasenko, D. Schuh, C. Gerl, W. Wegscheider, W. Prettl, and S. D. Ganichev, “Spin photocurrents in (110)-grown quantum well structures,” New J. Phys. 9, 349 (2007).
[Crossref]

Higuchi, T.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photon. 7, 724 (2013).
[Crossref]

T. Higuchi, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for angular momentum transfer via impulsive stimulated raman scattering,” Phys. Rev. A 87, 013808 (2013).
[Crossref]

T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for light-induced magnetization of a crystal with threefold symmetry: The case of antiferromagnetic NiO,” Phys. Rev. Lett. 106, 047401 (2011).
[Crossref] [PubMed]

Hirmer, M.

J. Karch, C. Drexler, P. Olbrich, M. Fehrenbacher, M. Hirmer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, B. Birkner, J. Eroms, D. Weiss, R. Yakimova, S. Lara-Avila, S. Kubatkin, M. Ostler, T. Seyller, and S. D. Ganichev, “Terahertz radiation driven chiral edge currents in graphene,” Phys. Rev. Lett. 107, 276601 (2011).
[Crossref]

Hoffmann, C.

H. Diehl, V. A. Shalygin, V. V. Bel’kov, C. Hoffmann, S. N. Danilov, T. Herrle, S. A. Tarasenko, D. Schuh, C. Gerl, W. Wegscheider, W. Prettl, and S. D. Ganichev, “Spin photocurrents in (110)-grown quantum well structures,” New J. Phys. 9, 349 (2007).
[Crossref]

Horn, C.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref] [PubMed]

Huang, X. C.

B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, “Experimental discovery of Weyl semimetal TaAs,” Phys. Rev. X 5, 031013 (2015).

Ivchenko, E. L.

J. Karch, C. Drexler, P. Olbrich, M. Fehrenbacher, M. Hirmer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, B. Birkner, J. Eroms, D. Weiss, R. Yakimova, S. Lara-Avila, S. Kubatkin, M. Ostler, T. Seyller, and S. D. Ganichev, “Terahertz radiation driven chiral edge currents in graphene,” Phys. Rev. Lett. 107, 276601 (2011).
[Crossref]

S. D. Ganichev, V. V. Bel’kov, P. Schneider, E. L. Ivchenko, S. A. Tarasenko, W. Wegscheider, D. Weiss, D. Schuh, E. V. Beregulin, and W. Prettl, “Resonant inversion of the circular photogalvanic effect in n-doped quantum wells,” Phys. Rev. B 68, 035319 (2003).
[Crossref]

S. D. Ganichev, E. L. Ivchenko, S. N. Danilov, J. Eroms, W. Wegscheider, D. Weiss, and W. Prettl, “Conversion of spin into directed electric current in quantum wells,” Phys. Rev. Lett. 86, 4358–4361 (2001).
[Crossref] [PubMed]

Kanai, T.

T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, “Optimal control of multiphoton ionization processes in aligned I2 molecules with time-dependent polarization pulses,” Phys. Rev. Lett. 92, 133005 (2004).
[Crossref]

Kanda, N.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photon. 7, 724 (2013).
[Crossref]

T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for light-induced magnetization of a crystal with threefold symmetry: The case of antiferromagnetic NiO,” Phys. Rev. Lett. 106, 047401 (2011).
[Crossref] [PubMed]

Karch, J.

J. Karch, C. Drexler, P. Olbrich, M. Fehrenbacher, M. Hirmer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, B. Birkner, J. Eroms, D. Weiss, R. Yakimova, S. Lara-Avila, S. Kubatkin, M. Ostler, T. Seyller, and S. D. Ganichev, “Terahertz radiation driven chiral edge currents in graphene,” Phys. Rev. Lett. 107, 276601 (2011).
[Crossref]

Kimura, T.

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable terahertz wave generation in the 3- to 7-THz region from gap,” Appl. Phys. Lett. 83, 237–239 (2003).
[Crossref]

Koga, T.

T. Koga, J. Nitta, T. Akazaki, and H. Takayanagi, “Rashba spin-orbit coupling probed by the weak antilocalization analysis in InAlAs/InGaAs/InAlAs quantum wells as a function of quantum well asymmetry,” Phys. Rev. Lett. 89, 046801 (2002).
[Crossref] [PubMed]

Konishi, K.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photon. 7, 724 (2013).
[Crossref]

Krampert, G.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref] [PubMed]

Kubatkin, S.

J. Karch, C. Drexler, P. Olbrich, M. Fehrenbacher, M. Hirmer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, B. Birkner, J. Eroms, D. Weiss, R. Yakimova, S. Lara-Avila, S. Kubatkin, M. Ostler, T. Seyller, and S. D. Ganichev, “Terahertz radiation driven chiral edge currents in graphene,” Phys. Rev. Lett. 107, 276601 (2011).
[Crossref]

Kuwata-Gonokami, M.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photon. 7, 724 (2013).
[Crossref]

T. Higuchi, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for angular momentum transfer via impulsive stimulated raman scattering,” Phys. Rev. A 87, 013808 (2013).
[Crossref]

T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for light-induced magnetization of a crystal with threefold symmetry: The case of antiferromagnetic NiO,” Phys. Rev. Lett. 106, 047401 (2011).
[Crossref] [PubMed]

Lara-Avila, S.

J. Karch, C. Drexler, P. Olbrich, M. Fehrenbacher, M. Hirmer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, B. Birkner, J. Eroms, D. Weiss, R. Yakimova, S. Lara-Avila, S. Kubatkin, M. Ostler, T. Seyller, and S. D. Ganichev, “Terahertz radiation driven chiral edge currents in graphene,” Phys. Rev. Lett. 107, 276601 (2011).
[Crossref]

Liese, D.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref] [PubMed]

Lv, B. Q.

B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, “Experimental discovery of Weyl semimetal TaAs,” Phys. Rev. X 5, 031013 (2015).

Ma, J.

B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, “Experimental discovery of Weyl semimetal TaAs,” Phys. Rev. X 5, 031013 (2015).

Miao, H.

B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, “Experimental discovery of Weyl semimetal TaAs,” Phys. Rev. X 5, 031013 (2015).

Minemoto, S.

T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, “Optimal control of multiphoton ionization processes in aligned I2 molecules with time-dependent polarization pulses,” Phys. Rev. Lett. 92, 133005 (2004).
[Crossref]

Misawa, K.

K. Misawa, “Applications of polarization-shaped femtosecond laser pulses,” Adv. Phys. X 1, 544–569 (2016).

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photon. 7, 724 (2013).
[Crossref]

Nishizawa, J.

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable terahertz wave generation in the 3- to 7-THz region from gap,” Appl. Phys. Lett. 83, 237–239 (2003).
[Crossref]

Nitta, J.

T. Koga, J. Nitta, T. Akazaki, and H. Takayanagi, “Rashba spin-orbit coupling probed by the weak antilocalization analysis in InAlAs/InGaAs/InAlAs quantum wells as a function of quantum well asymmetry,” Phys. Rev. Lett. 89, 046801 (2002).
[Crossref] [PubMed]

J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, “Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure,” Phys. Rev. Lett. 78, 1335–1338 (1997).
[Crossref]

Novikov, V.

V. Alperovich, V. N. Belinicher, V. Novikov, and A. Terekhov, “Surface photovoltaic effect in gallium arsenide,” JETP Lett. 31, 546–549 (1980).

Olbrich, P.

J. Karch, C. Drexler, P. Olbrich, M. Fehrenbacher, M. Hirmer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, B. Birkner, J. Eroms, D. Weiss, R. Yakimova, S. Lara-Avila, S. Kubatkin, M. Ostler, T. Seyller, and S. D. Ganichev, “Terahertz radiation driven chiral edge currents in graphene,” Phys. Rev. Lett. 107, 276601 (2011).
[Crossref]

Ostler, M.

J. Karch, C. Drexler, P. Olbrich, M. Fehrenbacher, M. Hirmer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, B. Birkner, J. Eroms, D. Weiss, R. Yakimova, S. Lara-Avila, S. Kubatkin, M. Ostler, T. Seyller, and S. D. Ganichev, “Terahertz radiation driven chiral edge currents in graphene,” Phys. Rev. Lett. 107, 276601 (2011).
[Crossref]

Perel, V. I.

E. Ziemann, S. D. Ganichev, W. Prettl, I. N. Yassievich, and V. I. Perel, “Characterization of deep impurities in semiconductors by terahertz tunneling ionization,” J. Appl. Phys. 87, 3843–3849 (2000).
[Crossref]

Pfeifer, T.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref] [PubMed]

Pfeiffer, L. N.

A. Pinczuk, S. Schmitt-Rink, G. Danan, J. P. Valladares, L. N. Pfeiffer, and K. W. West, “Large exchange interactions in the electron gas of GaAs quantum wells,” Phys. Rev. Lett. 63, 1633–1636 (1989).
[Crossref] [PubMed]

Pinczuk, A.

A. Pinczuk, S. Schmitt-Rink, G. Danan, J. P. Valladares, L. N. Pfeiffer, and K. W. West, “Large exchange interactions in the electron gas of GaAs quantum wells,” Phys. Rev. Lett. 63, 1633–1636 (1989).
[Crossref] [PubMed]

Prettl, W.

H. Diehl, V. A. Shalygin, V. V. Bel’kov, C. Hoffmann, S. N. Danilov, T. Herrle, S. A. Tarasenko, D. Schuh, C. Gerl, W. Wegscheider, W. Prettl, and S. D. Ganichev, “Spin photocurrents in (110)-grown quantum well structures,” New J. Phys. 9, 349 (2007).
[Crossref]

S. D. Ganichev, V. V. Bel’kov, P. Schneider, E. L. Ivchenko, S. A. Tarasenko, W. Wegscheider, D. Weiss, D. Schuh, E. V. Beregulin, and W. Prettl, “Resonant inversion of the circular photogalvanic effect in n-doped quantum wells,” Phys. Rev. B 68, 035319 (2003).
[Crossref]

S. D. Ganichev, E. L. Ivchenko, S. N. Danilov, J. Eroms, W. Wegscheider, D. Weiss, and W. Prettl, “Conversion of spin into directed electric current in quantum wells,” Phys. Rev. Lett. 86, 4358–4361 (2001).
[Crossref] [PubMed]

E. Ziemann, S. D. Ganichev, W. Prettl, I. N. Yassievich, and V. I. Perel, “Characterization of deep impurities in semiconductors by terahertz tunneling ionization,” J. Appl. Phys. 87, 3843–3849 (2000).
[Crossref]

Qian, T.

B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, “Experimental discovery of Weyl semimetal TaAs,” Phys. Rev. X 5, 031013 (2015).

Rashba, E.

Y. Bychkov and E. Rashba, “Properties of a 2D electron gas with lifted spectral degeneracy,” Sov. Phys. JETP. 39, 66 (1984).

Ribeiro, R. M.

A. Carvalho, R. M. Ribeiro, and A. H. Castro Neto, “Band nesting and the optical response of two-dimensional semiconducting transition metal dichalcogenides,” Phys. Rev. B 88, 115205 (2013).
[Crossref]

Richard, P.

B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, “Experimental discovery of Weyl semimetal TaAs,” Phys. Rev. X 5, 031013 (2015).

Saito, K.

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable terahertz wave generation in the 3- to 7-THz region from gap,” Appl. Phys. Lett. 83, 237–239 (2003).
[Crossref]

Sakai, H.

T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, “Optimal control of multiphoton ionization processes in aligned I2 molecules with time-dependent polarization pulses,” Phys. Rev. Lett. 92, 133005 (2004).
[Crossref]

Sato, M.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photon. 7, 724 (2013).
[Crossref]

Schmitt-Rink, S.

A. Pinczuk, S. Schmitt-Rink, G. Danan, J. P. Valladares, L. N. Pfeiffer, and K. W. West, “Large exchange interactions in the electron gas of GaAs quantum wells,” Phys. Rev. Lett. 63, 1633–1636 (1989).
[Crossref] [PubMed]

Schneider, P.

S. D. Ganichev, V. V. Bel’kov, P. Schneider, E. L. Ivchenko, S. A. Tarasenko, W. Wegscheider, D. Weiss, D. Schuh, E. V. Beregulin, and W. Prettl, “Resonant inversion of the circular photogalvanic effect in n-doped quantum wells,” Phys. Rev. B 68, 035319 (2003).
[Crossref]

Schuh, D.

H. Diehl, V. A. Shalygin, V. V. Bel’kov, C. Hoffmann, S. N. Danilov, T. Herrle, S. A. Tarasenko, D. Schuh, C. Gerl, W. Wegscheider, W. Prettl, and S. D. Ganichev, “Spin photocurrents in (110)-grown quantum well structures,” New J. Phys. 9, 349 (2007).
[Crossref]

S. D. Ganichev, V. V. Bel’kov, P. Schneider, E. L. Ivchenko, S. A. Tarasenko, W. Wegscheider, D. Weiss, D. Schuh, E. V. Beregulin, and W. Prettl, “Resonant inversion of the circular photogalvanic effect in n-doped quantum wells,” Phys. Rev. B 68, 035319 (2003).
[Crossref]

Schwingenschlögl, U.

Z. Zhu, Y. Cheng, and U. Schwingenschlögl, “Topological phase diagrams of bulk and monolayer TiS2−xTex,” Phys. Rev. Lett. 110, 077202 (2013).
[Crossref]

Selle, R.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref] [PubMed]

Seyller, T.

J. Karch, C. Drexler, P. Olbrich, M. Fehrenbacher, M. Hirmer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, B. Birkner, J. Eroms, D. Weiss, R. Yakimova, S. Lara-Avila, S. Kubatkin, M. Ostler, T. Seyller, and S. D. Ganichev, “Terahertz radiation driven chiral edge currents in graphene,” Phys. Rev. Lett. 107, 276601 (2011).
[Crossref]

Shalygin, V. A.

H. Diehl, V. A. Shalygin, V. V. Bel’kov, C. Hoffmann, S. N. Danilov, T. Herrle, S. A. Tarasenko, D. Schuh, C. Gerl, W. Wegscheider, W. Prettl, and S. D. Ganichev, “Spin photocurrents in (110)-grown quantum well structures,” New J. Phys. 9, 349 (2007).
[Crossref]

Suto, K.

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable terahertz wave generation in the 3- to 7-THz region from gap,” Appl. Phys. Lett. 83, 237–239 (2003).
[Crossref]

Suzuki, T.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photon. 7, 724 (2013).
[Crossref]

T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, “Optimal control of multiphoton ionization processes in aligned I2 molecules with time-dependent polarization pulses,” Phys. Rev. Lett. 92, 133005 (2004).
[Crossref]

Takayanagi, H.

T. Koga, J. Nitta, T. Akazaki, and H. Takayanagi, “Rashba spin-orbit coupling probed by the weak antilocalization analysis in InAlAs/InGaAs/InAlAs quantum wells as a function of quantum well asymmetry,” Phys. Rev. Lett. 89, 046801 (2002).
[Crossref] [PubMed]

J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, “Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure,” Phys. Rev. Lett. 78, 1335–1338 (1997).
[Crossref]

Tamaru, H.

T. Higuchi, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for angular momentum transfer via impulsive stimulated raman scattering,” Phys. Rev. A 87, 013808 (2013).
[Crossref]

T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for light-induced magnetization of a crystal with threefold symmetry: The case of antiferromagnetic NiO,” Phys. Rev. Lett. 106, 047401 (2011).
[Crossref] [PubMed]

Tanabe, T.

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable terahertz wave generation in the 3- to 7-THz region from gap,” Appl. Phys. Lett. 83, 237–239 (2003).
[Crossref]

Tarasenko, S. A.

J. Karch, C. Drexler, P. Olbrich, M. Fehrenbacher, M. Hirmer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, B. Birkner, J. Eroms, D. Weiss, R. Yakimova, S. Lara-Avila, S. Kubatkin, M. Ostler, T. Seyller, and S. D. Ganichev, “Terahertz radiation driven chiral edge currents in graphene,” Phys. Rev. Lett. 107, 276601 (2011).
[Crossref]

H. Diehl, V. A. Shalygin, V. V. Bel’kov, C. Hoffmann, S. N. Danilov, T. Herrle, S. A. Tarasenko, D. Schuh, C. Gerl, W. Wegscheider, W. Prettl, and S. D. Ganichev, “Spin photocurrents in (110)-grown quantum well structures,” New J. Phys. 9, 349 (2007).
[Crossref]

S. D. Ganichev, V. V. Bel’kov, P. Schneider, E. L. Ivchenko, S. A. Tarasenko, W. Wegscheider, D. Weiss, D. Schuh, E. V. Beregulin, and W. Prettl, “Resonant inversion of the circular photogalvanic effect in n-doped quantum wells,” Phys. Rev. B 68, 035319 (2003).
[Crossref]

Terekhov, A.

V. Alperovich, V. N. Belinicher, V. Novikov, and A. Terekhov, “Surface photovoltaic effect in gallium arsenide,” JETP Lett. 31, 546–549 (1980).

Valladares, J. P.

A. Pinczuk, S. Schmitt-Rink, G. Danan, J. P. Valladares, L. N. Pfeiffer, and K. W. West, “Large exchange interactions in the electron gas of GaAs quantum wells,” Phys. Rev. Lett. 63, 1633–1636 (1989).
[Crossref] [PubMed]

Vazifeh, M. M.

M. M. Vazifeh and M. Franz, “Electromagnetic response of Weyl semimetals,” Phys. Rev. Lett. 111, 027201 (2013).
[Crossref] [PubMed]

Wang, D.-W.

S. Das Sarma and D.-W. Wang, “Resonant raman scattering by elementary electronic excitations in semiconductor structures,” Phys. Rev. Lett. 83, 816–819 (1999).
[Crossref]

Wang, X. P.

B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, “Experimental discovery of Weyl semimetal TaAs,” Phys. Rev. X 5, 031013 (2015).

Wegscheider, W.

H. Diehl, V. A. Shalygin, V. V. Bel’kov, C. Hoffmann, S. N. Danilov, T. Herrle, S. A. Tarasenko, D. Schuh, C. Gerl, W. Wegscheider, W. Prettl, and S. D. Ganichev, “Spin photocurrents in (110)-grown quantum well structures,” New J. Phys. 9, 349 (2007).
[Crossref]

S. D. Ganichev, V. V. Bel’kov, P. Schneider, E. L. Ivchenko, S. A. Tarasenko, W. Wegscheider, D. Weiss, D. Schuh, E. V. Beregulin, and W. Prettl, “Resonant inversion of the circular photogalvanic effect in n-doped quantum wells,” Phys. Rev. B 68, 035319 (2003).
[Crossref]

S. D. Ganichev, E. L. Ivchenko, S. N. Danilov, J. Eroms, W. Wegscheider, D. Weiss, and W. Prettl, “Conversion of spin into directed electric current in quantum wells,” Phys. Rev. Lett. 86, 4358–4361 (2001).
[Crossref] [PubMed]

Weiner, A. M.

A. M. Weiner, Ultrafast Optics (John Wiley and Sons, 2009), chap. 9, pp. 499–505, 2nd ed.

Weiss, D.

J. Karch, C. Drexler, P. Olbrich, M. Fehrenbacher, M. Hirmer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, B. Birkner, J. Eroms, D. Weiss, R. Yakimova, S. Lara-Avila, S. Kubatkin, M. Ostler, T. Seyller, and S. D. Ganichev, “Terahertz radiation driven chiral edge currents in graphene,” Phys. Rev. Lett. 107, 276601 (2011).
[Crossref]

S. D. Ganichev, V. V. Bel’kov, P. Schneider, E. L. Ivchenko, S. A. Tarasenko, W. Wegscheider, D. Weiss, D. Schuh, E. V. Beregulin, and W. Prettl, “Resonant inversion of the circular photogalvanic effect in n-doped quantum wells,” Phys. Rev. B 68, 035319 (2003).
[Crossref]

S. D. Ganichev, E. L. Ivchenko, S. N. Danilov, J. Eroms, W. Wegscheider, D. Weiss, and W. Prettl, “Conversion of spin into directed electric current in quantum wells,” Phys. Rev. Lett. 86, 4358–4361 (2001).
[Crossref] [PubMed]

Weng, H. M.

B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, “Experimental discovery of Weyl semimetal TaAs,” Phys. Rev. X 5, 031013 (2015).

West, K. W.

A. Pinczuk, S. Schmitt-Rink, G. Danan, J. P. Valladares, L. N. Pfeiffer, and K. W. West, “Large exchange interactions in the electron gas of GaAs quantum wells,” Phys. Rev. Lett. 63, 1633–1636 (1989).
[Crossref] [PubMed]

Wollenhaupt, M.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref] [PubMed]

Yakimova, R.

J. Karch, C. Drexler, P. Olbrich, M. Fehrenbacher, M. Hirmer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, B. Birkner, J. Eroms, D. Weiss, R. Yakimova, S. Lara-Avila, S. Kubatkin, M. Ostler, T. Seyller, and S. D. Ganichev, “Terahertz radiation driven chiral edge currents in graphene,” Phys. Rev. Lett. 107, 276601 (2011).
[Crossref]

Yassievich, I. N.

E. Ziemann, S. D. Ganichev, W. Prettl, I. N. Yassievich, and V. I. Perel, “Characterization of deep impurities in semiconductors by terahertz tunneling ionization,” J. Appl. Phys. 87, 3843–3849 (2000).
[Crossref]

Yoshioka, K.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photon. 7, 724 (2013).
[Crossref]

Zhao, L. X.

B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, “Experimental discovery of Weyl semimetal TaAs,” Phys. Rev. X 5, 031013 (2015).

Zhu, Z.

Z. Zhu, Y. Cheng, and U. Schwingenschlögl, “Topological phase diagrams of bulk and monolayer TiS2−xTex,” Phys. Rev. Lett. 110, 077202 (2013).
[Crossref]

Ziemann, E.

E. Ziemann, S. D. Ganichev, W. Prettl, I. N. Yassievich, and V. I. Perel, “Characterization of deep impurities in semiconductors by terahertz tunneling ionization,” J. Appl. Phys. 87, 3843–3849 (2000).
[Crossref]

Adv. Phys. X (1)

K. Misawa, “Applications of polarization-shaped femtosecond laser pulses,” Adv. Phys. X 1, 544–569 (2016).

Appl. Phys. Lett. (1)

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable terahertz wave generation in the 3- to 7-THz region from gap,” Appl. Phys. Lett. 83, 237–239 (2003).
[Crossref]

J. Appl. Phys. (1)

E. Ziemann, S. D. Ganichev, W. Prettl, I. N. Yassievich, and V. I. Perel, “Characterization of deep impurities in semiconductors by terahertz tunneling ionization,” J. Appl. Phys. 87, 3843–3849 (2000).
[Crossref]

JETP Lett. (1)

V. Alperovich, V. N. Belinicher, V. Novikov, and A. Terekhov, “Surface photovoltaic effect in gallium arsenide,” JETP Lett. 31, 546–549 (1980).

Nat. Photon. (1)

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photon. 7, 724 (2013).
[Crossref]

New J. Phys. (1)

H. Diehl, V. A. Shalygin, V. V. Bel’kov, C. Hoffmann, S. N. Danilov, T. Herrle, S. A. Tarasenko, D. Schuh, C. Gerl, W. Wegscheider, W. Prettl, and S. D. Ganichev, “Spin photocurrents in (110)-grown quantum well structures,” New J. Phys. 9, 349 (2007).
[Crossref]

Phys. Rev. (1)

G. Dresselhaus, “Spin-orbit coupling effects in zinc blende structures,” Phys. Rev. 100, 580–586 (1955).
[Crossref]

Phys. Rev. A (1)

T. Higuchi, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for angular momentum transfer via impulsive stimulated raman scattering,” Phys. Rev. A 87, 013808 (2013).
[Crossref]

Phys. Rev. B (2)

S. D. Ganichev, V. V. Bel’kov, P. Schneider, E. L. Ivchenko, S. A. Tarasenko, W. Wegscheider, D. Weiss, D. Schuh, E. V. Beregulin, and W. Prettl, “Resonant inversion of the circular photogalvanic effect in n-doped quantum wells,” Phys. Rev. B 68, 035319 (2003).
[Crossref]

A. Carvalho, R. M. Ribeiro, and A. H. Castro Neto, “Band nesting and the optical response of two-dimensional semiconducting transition metal dichalcogenides,” Phys. Rev. B 88, 115205 (2013).
[Crossref]

Phys. Rev. Lett. (12)

Z. Zhu, Y. Cheng, and U. Schwingenschlögl, “Topological phase diagrams of bulk and monolayer TiS2−xTex,” Phys. Rev. Lett. 110, 077202 (2013).
[Crossref]

J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, “Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure,” Phys. Rev. Lett. 78, 1335–1338 (1997).
[Crossref]

T. Koga, J. Nitta, T. Akazaki, and H. Takayanagi, “Rashba spin-orbit coupling probed by the weak antilocalization analysis in InAlAs/InGaAs/InAlAs quantum wells as a function of quantum well asymmetry,” Phys. Rev. Lett. 89, 046801 (2002).
[Crossref] [PubMed]

A. A. Burkov and L. Balents, “Weyl semimetal in a topological insulator multilayer,” Phys. Rev. Lett. 107, 127205 (2011).
[Crossref] [PubMed]

M. M. Vazifeh and M. Franz, “Electromagnetic response of Weyl semimetals,” Phys. Rev. Lett. 111, 027201 (2013).
[Crossref] [PubMed]

J. Karch, C. Drexler, P. Olbrich, M. Fehrenbacher, M. Hirmer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, B. Birkner, J. Eroms, D. Weiss, R. Yakimova, S. Lara-Avila, S. Kubatkin, M. Ostler, T. Seyller, and S. D. Ganichev, “Terahertz radiation driven chiral edge currents in graphene,” Phys. Rev. Lett. 107, 276601 (2011).
[Crossref]

S. D. Ganichev, E. L. Ivchenko, S. N. Danilov, J. Eroms, W. Wegscheider, D. Weiss, and W. Prettl, “Conversion of spin into directed electric current in quantum wells,” Phys. Rev. Lett. 86, 4358–4361 (2001).
[Crossref] [PubMed]

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref] [PubMed]

T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, “Optimal control of multiphoton ionization processes in aligned I2 molecules with time-dependent polarization pulses,” Phys. Rev. Lett. 92, 133005 (2004).
[Crossref]

T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for light-induced magnetization of a crystal with threefold symmetry: The case of antiferromagnetic NiO,” Phys. Rev. Lett. 106, 047401 (2011).
[Crossref] [PubMed]

A. Pinczuk, S. Schmitt-Rink, G. Danan, J. P. Valladares, L. N. Pfeiffer, and K. W. West, “Large exchange interactions in the electron gas of GaAs quantum wells,” Phys. Rev. Lett. 63, 1633–1636 (1989).
[Crossref] [PubMed]

S. Das Sarma and D.-W. Wang, “Resonant raman scattering by elementary electronic excitations in semiconductor structures,” Phys. Rev. Lett. 83, 816–819 (1999).
[Crossref]

Phys. Rev. X (1)

B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, “Experimental discovery of Weyl semimetal TaAs,” Phys. Rev. X 5, 031013 (2015).

Sov. Phys. JETP. (1)

Y. Bychkov and E. Rashba, “Properties of a 2D electron gas with lifted spectral degeneracy,” Sov. Phys. JETP. 39, 66 (1984).

Other (1)

A. M. Weiner, Ultrafast Optics (John Wiley and Sons, 2009), chap. 9, pp. 499–505, 2nd ed.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic diagram of the sample Hall-bar structure. The voltage probe pairs 3–4 and 3–6 were used to measure the photovoltage. The blue solid circles A to E are the positions of the center of the illumination spot aligned at the center of the stem of the Hall-bar. The red solid circles F to J are the positions of the center of the illumination spot aligned parallel to the y direction. (b) Schematic drawing of experimental setup. 20-fs pulses are introduced into the 4f setup to disperse the frequency components. The spectral phase θ±45° (ω) is set by the SLM to generate PTPs. The envelope helicity of the pulses is modulated by the PEM to obtain a retardation between −λ/4 and +λ/4. The pulses are incident on the Hall-bar sample in a He cryostat at 5 K at an oblique angle of 20°. The position of the Hall-bar sample is moved with a three-axis mechanical stage at a fixed laser beam position. The photovoltage is detected by a lock-in amplifier synchronized with the PEM. The small white point at the center of the Hall-bar in the optical micrograph captured by the monochrome CCD camera is the excitation laser spot. The electric field vector of the PTP is also shown.
Fig. 2
Fig. 2 (a) Directions of the linearly polarized incident electric field (inc) and the diagonally polarized electric fields (E±45° (t)). Dual-pixel masks of SLMs control the phases θ±45° (ω) of the diagonally polarized components of each frequency ω. (b) Polarization direction of the left-envelope-helicity PTP (E+(t)) rotating as ϕopt(ωins(t)) = γβ−1t.
Fig. 3
Fig. 3 (a) Photovoltage signal ΔV34,R(L) measured between contacts 3 and 4, and (b) ΔV36,R(L) measured between contacts 3 and 6 as functions of the Stokes frequency of the PTPs for below-band-gap excitation between 825 and 900 nm at pulse energy of 131 pJ. Data points plotted are ΔV34,R = V34,RV34,L at γ > 0 and β > 0 (blue circles), and ΔV34,L = V34,LV34,R at γ < 0 and β > 0 (red circles) in (a), and ΔV36,R = V36,RV36,L (blue circles), and ΔV36,L = V36,LV36,R (red circles) in (b).
Fig. 4
Fig. 4 Photovoltage signal ΔV34,R(L) measured between contacts 3 and 4 as functions of the Stokes frequency of PTPs for resonant excitation between 700 and 900 nm at pulse energy of 27 pJ for the laser excitation spot A–J as schematically shown in Fig. 1(a). Data points are plotted for ΔV34,R = V34,RV34,L at γ > 0 and β > 0 (blue circles), and ΔV34,L = V34,LV34,R at γ < 0 and β > 0 (red circles).
Fig. 5
Fig. 5 Schematics of conduction-band electron subband structures with k-term linear in k and the transitions between the subbands e1 and e2 with spins ±1/2 induced by the σ+ excitations.
Fig. 6
Fig. 6 Schematic illustrations of (a) photocurrent induced by the circular photogalvanic effect and (b) classical edge photocurrent generated by the acceleration of free carriers in the vicinity of the sample edge by the optical electric field.
Fig. 7
Fig. 7 Photovoltage signal ΔV36,R(L) measured between contacts 3 and 6 as functions of the Stokes frequency of PTPs for resonant excitation between 700 and 900 nm for the laser excitation spot positioned at point A–J on the Hall-bar structure [see Fig. 1(a)]. Data points are plotted for ΔV36,R = V36,RV36,L at γ > 0 and β > 0 (blue circles), and ΔV36,L = V36,LV36,R at γ < 0 and β > 0 (red circles).
Fig. 8
Fig. 8 (a) Laser beam-spot position dependence at point A–E of photovoltage signal (i) ΔV34,R (blue circles), (ii) ΔV34,L (red circles), (iii) ΔV36,R (blue triangles), and (iv) ΔV36,L (red triangles) at Ω = 49.3 THz. (b) Laser beam-spot position dependence at point F–J of photovoltage signal (i) ΔV34,R (blue circles), (ii) ΔV34,L (red circles), (iii) ΔV36,R (blue triangles), and (iv) ΔV36,L (red triangles) at Ω = 49.3 THz. The insets indicate schematic diagram of the laser beam-spot positions on the sample Hall-bar structure. The origin of the coordinate system is set at the crossing of the center of the Hall-bar and the line connecting contacts 3 and 6.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E ± 45 ° ( t ) e ^ ± 45 ° = d ω 2 π e i ω t E ˜ inc ( ω ) e i θ ± 45 ° ( ω ) e ^ ± 45 °
( E x ( t ) E y ( t ) ) = d ω 2 π e i ω t E ˜ inc ( ω ) e i θ opt ( ω ) ( cos ϕ opt ( ω ) sin ϕ opt ( ω ) )
θ opt ( ω ) = β 2 ( ω ω 0 ) 2 ,
ϕ opt ( ω ) = γ ( ω ω 0 )
χ e = χ e 0 + ( χ e ) q ( t ) + ( 2 χ e ) q ( t ) q ( t ) + .
U ( t ) = 1 2 0 [ χ e 0 + χ e q ( t ) ] E ( t ) E ( t ) .
F ( t ) = U ( t ) = 0 2 χ e ( E ( t ) E ( t ) )
E * ( ω Ω ) E + ( ω ) = E + ( Ω ω ) E + ( ω ) .
J = γ e ^ E 2 P circ ,
j x = γ x y t p t s sin Θ 0 E 2 P circ / n ,
f t + v x f x + q E THz ( t ) f p = Q { f } ,