Abstract

In this paper, we experimentally demonstrate an ultra-broadband high-performance polarization beam splitter (PBS) based on silicon-on-insulator (SOI) platform. The proposed device is based on a directional coupler consisting of a 70-nm taper-etched waveguide and a slot waveguide with a compact coupling length of 11 microns, the structure of which is suitable for a commercial two-step fabrication process. Benefiting from the preferences of coupling TM mode to slot waveguide and restricting TE mode in taper-etched waveguide, the polarization extinction ratios (PER) for TE and TM polarizations can reach as high as 30 dB and 40 dB at 1550 nm based on experimental results, respectively; besides, an ultra-wide operation bandwidth with PER >20 dB is achieved as ~175 nm from 1450 nm to 1625 nm (covering S, C and L bands), or the bandwidth with PER >25 dB is over ~120 nm from 1462 nm to 1582 nm, which is the largest operation bandwidth to the best of our knowledge. At last, the insertion losses (IL) are −0.17 dB and −0.22 dB for TE and TM polarizations at 1550 nm, respectively.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Horizontal slot waveguides for polarization branching control

Nai-Chia Cheng, Yao-Feng Ma, Po-Han Fu, Chun-Chieh Chin, and Ding-Wei Huang
Appl. Opt. 54(3) 436-443 (2015)

Compact and fabrication-tolerant polarization splitter based on horizontal triple-slot waveguide

Weifeng Jiang, Xiaohan Sun, and B. M. Azizur Rahman
Appl. Opt. 56(8) 2119-2126 (2017)

Ultracompact and broadband polarization beam splitter based on polarization-dependent critical guiding condition

Zhoufeng Ying, Guanghui Wang, Xuping Zhang, Ho-pui Ho, and Ying Huang
Opt. Lett. 40(9) 2134-2137 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Barh, B. M. A. Rahman, R. K. Varshney, and B. P. Pal, “Design and Performance Study of a Compact SOI Polarization Rotator at 1.55 μm,” J. Lightwave Technol. 31(23), 3687–3693 (2013).
    [Crossref]
  2. Y. Kim, D. W. Kim, M. Lee, M. H. Lee, D. E. Yoo, K. N. Kim, S. C. Jeon, and K. H. Kim, “Demonstration of integrated polarization rotator based on an asymmetric silicon waveguide with a trench,” J. Opt. 18(9), 095801 (2016).
    [Crossref]
  3. Y. Xiong, D. X. Xu, J. H. Schmid, P. Cheben, S. Janz, and W. N. Ye, “Fabrication tolerant and broadband polarization splitter and rotator based on a taper-etched directional coupler,” Opt. Express 22(14), 17458–17465 (2014).
    [Crossref] [PubMed]
  4. P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y. K. Chen, “Monolithic silicon photonic integrated circuits for compact 100 + Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 150–157 (2014).
    [Crossref]
  5. P. Dong, Y. K. Chen, G. H. Duan, and D. T. Neilson, “Silicon photonic devices and integrated circuits,” Nanophotonics 3(4–5), 215–228 (2014).
  6. L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
    [Crossref] [PubMed]
  7. X. Sun, J. S. Aitchison, and M. Mojahedi, “Realization of an ultra-compact polarization beam splitter using asymmetric MMI based on silicon nitride / silicon-on-insulator platform,” Opt. Express 25(7), 8296–8305 (2017).
    [Crossref] [PubMed]
  8. Y. Zhang, Y. He, J. Wu, X. Jiang, R. Liu, C. Qiu, X. Jiang, J. Yang, C. Tremblay, and Y. Su, “High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations,” Opt. Express 24(6), 6586–6593 (2016).
    [Crossref] [PubMed]
  9. H. Qiu, J. Jiang, P. Yu, J. Yang, H. Yu, and X. Jiang, “Broad bandwidth and large fabrication tolerance polarization beam splitter based on multimode anti-symmetric Bragg sidewall gratings,” Opt. Lett. 42(19), 3912–3915 (2017).
    [Crossref] [PubMed]
  10. T. K. Liang and H. K. Tsang, “Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 17(2), 393–395 (2005).
    [Crossref]
  11. D. W. Kim, M. H. Lee, Y. Kim, and K. H. Kim, “Planar-type polarization beam splitter based on a bridged silicon waveguide coupler,” Opt. Express 23(2), 998–1004 (2015).
    [Crossref] [PubMed]
  12. Z. Ying, G. Wang, X. Zhang, H. P. Ho, and Y. Huang, “Ultracompact and broadband polarization beam splitter based on polarization-dependent critical guiding condition,” Opt. Lett. 40(9), 2134–2137 (2015).
    [Crossref] [PubMed]
  13. T. Zhang, X. Yin, L. Chen, and X. Li, “Ultra-compact polarization beam splitter utilizing a graphene-based asymmetrical directional coupler,” Opt. Lett. 41(2), 356–359 (2016).
    [Crossref] [PubMed]
  14. C. Li and D. Dai, “Compact polarization beam splitter for silicon photonic integrated circuits with a 340-nm-thick silicon core layer,” Opt. Lett. 42(21), 4243–4246 (2017).
    [Crossref] [PubMed]
  15. J. R. Ong, T. Y. L. Ang, E. Sahin, B. Pawlina, G. F. R. Chen, D. T. H. Tan, S. T. Lim, and C. E. Png, “Broadband silicon polarization beam splitter with a high extinction ratio using a triple-bent-waveguide directional coupler,” Opt. Lett. 42(21), 4450–4453 (2017).
    [Crossref] [PubMed]
  16. H. Wu, Y. Tan, and D. Dai, “Ultra-broadband high-performance polarizing beam splitter on silicon,” Opt. Express 25(6), 6069–6075 (2017).
    [Crossref] [PubMed]
  17. F. Zhang, H. Yun, Y. Wang, Z. Lu, L. Chrostowski, and N. A. Jaeger, “Compact broadband polarization beam splitter using a symmetric directional coupler with sinusoidal bends,” Opt. Lett. 42(2), 235–238 (2017).
    [Crossref] [PubMed]
  18. Y. Kim, M. H. Lee, Y. Kim, and K. H. Kim, “High-extinction-ratio directional-coupler-type polarization beam splitter with a bridged silicon wire waveguide,” Opt. Lett. 43(14), 3241–3244 (2018).
    [Crossref] [PubMed]
  19. C. Errando-Herranz, S. Das, and K. B. Gylfason, “Suspended polarization beam splitter on silicon-on-insulator,” Opt. Express 26(3), 2675–2681 (2018).
    [Crossref] [PubMed]
  20. D. Dai, Z. Wang, and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett. 36(13), 2590–2592 (2011).
    [Crossref] [PubMed]

2018 (2)

2017 (6)

2016 (4)

T. Zhang, X. Yin, L. Chen, and X. Li, “Ultra-compact polarization beam splitter utilizing a graphene-based asymmetrical directional coupler,” Opt. Lett. 41(2), 356–359 (2016).
[Crossref] [PubMed]

Y. Zhang, Y. He, J. Wu, X. Jiang, R. Liu, C. Qiu, X. Jiang, J. Yang, C. Tremblay, and Y. Su, “High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations,” Opt. Express 24(6), 6586–6593 (2016).
[Crossref] [PubMed]

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
[Crossref] [PubMed]

Y. Kim, D. W. Kim, M. Lee, M. H. Lee, D. E. Yoo, K. N. Kim, S. C. Jeon, and K. H. Kim, “Demonstration of integrated polarization rotator based on an asymmetric silicon waveguide with a trench,” J. Opt. 18(9), 095801 (2016).
[Crossref]

2015 (2)

2014 (3)

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y. K. Chen, “Monolithic silicon photonic integrated circuits for compact 100 + Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 150–157 (2014).
[Crossref]

P. Dong, Y. K. Chen, G. H. Duan, and D. T. Neilson, “Silicon photonic devices and integrated circuits,” Nanophotonics 3(4–5), 215–228 (2014).

Y. Xiong, D. X. Xu, J. H. Schmid, P. Cheben, S. Janz, and W. N. Ye, “Fabrication tolerant and broadband polarization splitter and rotator based on a taper-etched directional coupler,” Opt. Express 22(14), 17458–17465 (2014).
[Crossref] [PubMed]

2013 (1)

2011 (1)

2005 (1)

T. K. Liang and H. K. Tsang, “Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 17(2), 393–395 (2005).
[Crossref]

Aitchison, J. S.

Ang, T. Y. L.

Aroca, R.

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y. K. Chen, “Monolithic silicon photonic integrated circuits for compact 100 + Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 150–157 (2014).
[Crossref]

Barh, A.

Bowers, J. E.

Buhl, L. L.

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y. K. Chen, “Monolithic silicon photonic integrated circuits for compact 100 + Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 150–157 (2014).
[Crossref]

Chandrasekhar, S.

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y. K. Chen, “Monolithic silicon photonic integrated circuits for compact 100 + Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 150–157 (2014).
[Crossref]

Cheben, P.

Chen, G. F. R.

Chen, L.

Chen, Y. K.

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y. K. Chen, “Monolithic silicon photonic integrated circuits for compact 100 + Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 150–157 (2014).
[Crossref]

P. Dong, Y. K. Chen, G. H. Duan, and D. T. Neilson, “Silicon photonic devices and integrated circuits,” Nanophotonics 3(4–5), 215–228 (2014).

Chrostowski, L.

Dai, D.

Dai, D. X.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
[Crossref] [PubMed]

Das, S.

Dong, P.

P. Dong, Y. K. Chen, G. H. Duan, and D. T. Neilson, “Silicon photonic devices and integrated circuits,” Nanophotonics 3(4–5), 215–228 (2014).

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y. K. Chen, “Monolithic silicon photonic integrated circuits for compact 100 + Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 150–157 (2014).
[Crossref]

Duan, G. H.

P. Dong, Y. K. Chen, G. H. Duan, and D. T. Neilson, “Silicon photonic devices and integrated circuits,” Nanophotonics 3(4–5), 215–228 (2014).

Errando-Herranz, C.

Feng, L. T.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
[Crossref] [PubMed]

Guo, G. C.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
[Crossref] [PubMed]

Guo, G. P.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
[Crossref] [PubMed]

Gylfason, K. B.

He, Y.

Ho, H. P.

Huang, Y.

Jaeger, N. A.

Janz, S.

Jeon, S. C.

Y. Kim, D. W. Kim, M. Lee, M. H. Lee, D. E. Yoo, K. N. Kim, S. C. Jeon, and K. H. Kim, “Demonstration of integrated polarization rotator based on an asymmetric silicon waveguide with a trench,” J. Opt. 18(9), 095801 (2016).
[Crossref]

Jiang, J.

Jiang, X.

Kim, D. W.

Y. Kim, D. W. Kim, M. Lee, M. H. Lee, D. E. Yoo, K. N. Kim, S. C. Jeon, and K. H. Kim, “Demonstration of integrated polarization rotator based on an asymmetric silicon waveguide with a trench,” J. Opt. 18(9), 095801 (2016).
[Crossref]

D. W. Kim, M. H. Lee, Y. Kim, and K. H. Kim, “Planar-type polarization beam splitter based on a bridged silicon waveguide coupler,” Opt. Express 23(2), 998–1004 (2015).
[Crossref] [PubMed]

Kim, K. H.

Kim, K. N.

Y. Kim, D. W. Kim, M. Lee, M. H. Lee, D. E. Yoo, K. N. Kim, S. C. Jeon, and K. H. Kim, “Demonstration of integrated polarization rotator based on an asymmetric silicon waveguide with a trench,” J. Opt. 18(9), 095801 (2016).
[Crossref]

Kim, Y.

Lee, M.

Y. Kim, D. W. Kim, M. Lee, M. H. Lee, D. E. Yoo, K. N. Kim, S. C. Jeon, and K. H. Kim, “Demonstration of integrated polarization rotator based on an asymmetric silicon waveguide with a trench,” J. Opt. 18(9), 095801 (2016).
[Crossref]

Lee, M. H.

Li, C.

Li, M.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
[Crossref] [PubMed]

Li, X.

Liang, T. K.

T. K. Liang and H. K. Tsang, “Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 17(2), 393–395 (2005).
[Crossref]

Lim, S. T.

Liu, R.

Liu, X.

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y. K. Chen, “Monolithic silicon photonic integrated circuits for compact 100 + Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 150–157 (2014).
[Crossref]

Lu, Z.

Mojahedi, M.

Neilson, D. T.

P. Dong, Y. K. Chen, G. H. Duan, and D. T. Neilson, “Silicon photonic devices and integrated circuits,” Nanophotonics 3(4–5), 215–228 (2014).

Ong, J. R.

Pal, B. P.

Pawlina, B.

Png, C. E.

Qiu, C.

Qiu, H.

Rahman, B. M. A.

Ren, X. F.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
[Crossref] [PubMed]

Sahin, E.

Schmid, J. H.

Shi, B. S.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
[Crossref] [PubMed]

Su, Y.

Sun, X.

Tan, D. T. H.

Tan, Y.

Tremblay, C.

Tsang, H. K.

T. K. Liang and H. K. Tsang, “Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 17(2), 393–395 (2005).
[Crossref]

Varshney, R. K.

Wang, G.

Wang, Y.

Wang, Z.

Wu, H.

Wu, J.

Xiong, X.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
[Crossref] [PubMed]

Xiong, Y.

Xu, D. X.

Yang, J.

Ye, W. N.

Yin, X.

Ying, Z.

Yoo, D. E.

Y. Kim, D. W. Kim, M. Lee, M. H. Lee, D. E. Yoo, K. N. Kim, S. C. Jeon, and K. H. Kim, “Demonstration of integrated polarization rotator based on an asymmetric silicon waveguide with a trench,” J. Opt. 18(9), 095801 (2016).
[Crossref]

Yu, H.

Yu, L.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
[Crossref] [PubMed]

Yu, P.

Yun, H.

Zhang, F.

Zhang, M.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
[Crossref] [PubMed]

Zhang, T.

Zhang, X.

Zhang, Y.

Zhou, Z. Y.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y. K. Chen, “Monolithic silicon photonic integrated circuits for compact 100 + Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 150–157 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

T. K. Liang and H. K. Tsang, “Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 17(2), 393–395 (2005).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

Y. Kim, D. W. Kim, M. Lee, M. H. Lee, D. E. Yoo, K. N. Kim, S. C. Jeon, and K. H. Kim, “Demonstration of integrated polarization rotator based on an asymmetric silicon waveguide with a trench,” J. Opt. 18(9), 095801 (2016).
[Crossref]

Nanophotonics (1)

P. Dong, Y. K. Chen, G. H. Duan, and D. T. Neilson, “Silicon photonic devices and integrated circuits,” Nanophotonics 3(4–5), 215–228 (2014).

Nat. Commun. (1)

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (8)

D. Dai, Z. Wang, and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett. 36(13), 2590–2592 (2011).
[Crossref] [PubMed]

F. Zhang, H. Yun, Y. Wang, Z. Lu, L. Chrostowski, and N. A. Jaeger, “Compact broadband polarization beam splitter using a symmetric directional coupler with sinusoidal bends,” Opt. Lett. 42(2), 235–238 (2017).
[Crossref] [PubMed]

Y. Kim, M. H. Lee, Y. Kim, and K. H. Kim, “High-extinction-ratio directional-coupler-type polarization beam splitter with a bridged silicon wire waveguide,” Opt. Lett. 43(14), 3241–3244 (2018).
[Crossref] [PubMed]

Z. Ying, G. Wang, X. Zhang, H. P. Ho, and Y. Huang, “Ultracompact and broadband polarization beam splitter based on polarization-dependent critical guiding condition,” Opt. Lett. 40(9), 2134–2137 (2015).
[Crossref] [PubMed]

T. Zhang, X. Yin, L. Chen, and X. Li, “Ultra-compact polarization beam splitter utilizing a graphene-based asymmetrical directional coupler,” Opt. Lett. 41(2), 356–359 (2016).
[Crossref] [PubMed]

C. Li and D. Dai, “Compact polarization beam splitter for silicon photonic integrated circuits with a 340-nm-thick silicon core layer,” Opt. Lett. 42(21), 4243–4246 (2017).
[Crossref] [PubMed]

J. R. Ong, T. Y. L. Ang, E. Sahin, B. Pawlina, G. F. R. Chen, D. T. H. Tan, S. T. Lim, and C. E. Png, “Broadband silicon polarization beam splitter with a high extinction ratio using a triple-bent-waveguide directional coupler,” Opt. Lett. 42(21), 4450–4453 (2017).
[Crossref] [PubMed]

H. Qiu, J. Jiang, P. Yu, J. Yang, H. Yu, and X. Jiang, “Broad bandwidth and large fabrication tolerance polarization beam splitter based on multimode anti-symmetric Bragg sidewall gratings,” Opt. Lett. 42(19), 3912–3915 (2017).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) 3D schematic of proposed PBS. (b) Cross section view of the waveguides.
Fig. 2
Fig. 2 The calculated effective indices of (a) TE mode and (b) TM mode for the taper-etched waveguide and slot waveguide as a function of Wt at wavelengths of 1450 nm, 1550 nm and 1625 nm.
Fig. 3
Fig. 3 The calculated ER values as functions of wavelength and parameters such as (a) width of the slot waveguides W2; (b) gap of the slot waveguide Ws; (c) gap between slot and taper-etched waveguides Wg; (d) length of the taper-etched waveguide Lc for both TE and TM modes.
Fig. 4
Fig. 4 Optical field distribution when (a) TE mode or (b) TM mode is injected into the PBS. (c) Transmissions of TM (or TE) mode from either through or cross port over the band from 1450 to 1625 nm when TM (or TE) mode is injected. (d) Transmissions of TE (or TM) mode from either through or cross port over the band from 1450 to 1625 nm when TM (or TE) mode is injected.
Fig. 5
Fig. 5 Affection of the filter. When TM mode is injected, the propagation of TE polarization (a) without filter or (b) with filter; and the propagation of TM polarization (c) without filter or (d) with filter. (e) The comparison for the transmission of rotated polarization with/without filter when TM mode is injected. (d) Affection on the PER and IL when filter is added.
Fig. 6
Fig. 6 Analysis for the affection of the abrupt change at height. When TE mode is injected, (a) the top view and (b) the side view of the propagation. (c) The calculated transmission and reflection of the propagation for TE mode. When TM mode is injected, (d) the top view and (e) the side view of the propagation. (f) The calculated transmission and reflection of the propagation for TM mode.
Fig. 7
Fig. 7 (a) Optical micrograph of the fabricated PBS and (b) the detailed structure. (c) The coupling loss for TE and TM couplers and the output spectrum of TL. (d) Optical micrograph of the reference waveguide.
Fig. 8
Fig. 8 (a) Measured transmissions for TE and TM modes from their corresponding ports. (b) Measured PER over the whole band when TE or TM mode is injected.
Fig. 9
Fig. 9 Measured transmissions of rotated polarizations when TE or TM mode is injected.

Tables (2)

Tables Icon

Table 1 Main parameters of PBS.

Tables Icon

Table 2 Comparison of high-performance PBSs demonstrated in recent years.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P= P OSA P TL L coupler

Metrics