Abstract

We proposed a high-performance optical coherence velocimeter (OCV) based on broadband optical interference which achieves spatial resolution from interference cancellation or enhancement of different components of the broadband light. There is a challengeable issue for OCV that the interference fringes become blurred when the velocity of detected object is relatively large, hindering the pace of OCV application in high-velocity field. To resolve this, the relationship between blurry coefficient and OCV system parameters (e.g., exposure time, central wavelength, bandwidth of source) was derived. It was found that blurry coefficient changed with oscillatory decay form and reached the minimum at each order blurry velocity. It showed that maximum measurable velocity of OCV systems could reach 10th order blurry velocity. The measurement of vibration of the loudspeaker driven by a function signal generator was employed to experimentally verify the velocity measurement performance of the system. The experiment demonstrated that the developed OCV can provide large velocity measurement ranges from static to 25.2 mm/s with nanometer-level precision and maximum measurable vibration frequency of up to 50 kHz. However, in theory, the theoretical maximum measurable velocity can be up to 1.06 m/s for current OCV configuration. The OCV has high precision, large dynamic range, and high-velocity measurement capability, making it attractive for applications in mechanical structure vibration monitoring and acoustic measurement.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Effect and use of exposure control in vibration analysis using TV holography

Geir O. Rosvold and Ole J. Løkberg
Appl. Opt. 32(5) 684-691 (1993)

Characteristics of vibration frequency measurement based on sound field imaging by digital holography

Sudheesh K. Rajput, Osamu Matoba, and Yasuhiro Awatsuji
OSA Continuum 1(1) 200-212 (2018)

Imaging velocities of a vibrating object by stroboscopic sideband holography

F. Verpillat, F. Joud, M. Atlan, and M. Gross
Opt. Express 20(20) 22860-22871 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. J. Rothberg, M. S. Allen, P. Castellini, D. Di Maio, J. J. J. Dirckx, D. J. Ewins, B. J. Halkon, P. Muyshondt, N. Paone, T. Ryan, H. Steger, E. P. Tomasini, S. Vanlanduit, and J. F. Vignola, “An international review of laser Doppler vibrometry: Making light work of vibration measurement,” Opt. Lasers Eng. 99, 11–22 (2017).
    [Crossref]
  2. E. Yoshikawa and T. Ushio, “Wind ranging and velocimetry with low peak power and long-duration modulated laser,” Opt. Express 25(8), 8845–8859 (2017).
    [Crossref] [PubMed]
  3. A. Rashno, D. D. Koozekanani, P. M. Drayna, B. Nazari, S. Sadri, H. Rabbani, and K. K. Parhi, “Fully automated segmentation of Fluid/Cyst regions in optical coherence tomography images with diabetic macular edema using neutrosophic sets and graph algorithms,” IEEE Trans. Biomed. Eng. 65(5), 989–1001 (2018).
    [PubMed]
  4. S. Chen, J. Yi, W. Liu, V. Backman, and H. F. Zhang, “Monte Carlo investigation of optical coherence tomography retinal oximetry,” IEEE Trans. Biomed. Eng. 62(9), 2308–2315 (2015).
    [Crossref] [PubMed]
  5. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
    [Crossref] [PubMed]
  6. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [Crossref] [PubMed]
  7. L. An, P. Li, T. T. Shen, and R. Wang, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second,” Biomed. Opt. Express 2(10), 2770–2783 (2011).
    [Crossref] [PubMed]
  8. J. T. Oh and S. W. Kim, “Polarization-sensitive optical coherence tomography for photoelasticity testing of glass/epoxy composites,” Opt. Express 11(14), 1669–1676 (2003).
    [Crossref] [PubMed]
  9. M. Juuti, H. Tuononen, T. Prykari, V. Kontturi, M. Kuosmanen, E. Alarousu, J. Ketolainen, R. Myllylä, and K.-E. Peiponen, “Optical and terahertz measurement techniques for flat-faced pharmaceutical tablets: a case study of gloss, surface roughness and bulk properties of starch acetate tablets,” Meas. Sci. Technol. 20(1), 150301 (2009).
    [Crossref] [PubMed]
  10. J. Zhang, B. M. Williams, S. Lawman, D. Atkinson, Z. Zhang, Y. Shen, and Y. Zheng, “Non-destructive analysis of flake properties in automotive paints with full-field optical coherence tomography and 3D segmentation,” Opt. Express 25(16), 18614–18628 (2017).
    [Crossref] [PubMed]
  11. G. Latour, J. P. Echard, B. Soulier, I. Emond, S. Vaiedelich, and M. Elias, “Structural and optical properties of wood and wood finishes studied using optical coherence tomography: application to an 18th century Italian violin,” Appl. Opt. 48(33), 6485–6491 (2009).
    [Crossref] [PubMed]
  12. T. Prykari, J. Czajkowski, E. Alarousu, and R. A. Myllyla, “Optical coherence tomography as an accurate inspection and quality evaluation technique in paper industry,” Opt. Rev. 17(3), 218–222 (2010).
    [Crossref]
  13. K. Ding, M. Xie, and X. Zhang, “Phase difference correction method for phase and frequency in spectral analysis,” Mech. Syst. Signal Process. 14(5), 835–843 (2000).
    [Crossref]
  14. S. Zhong and Q. Zhang, “Enhanced optical coherence vibration tomography for sub-nanoscale-displacement-resolution calibration of piezoelectric actuators,” Sens. Actuators A Phys. 233, 42–46 (2015).
    [Crossref]
  15. J. Zhong, S. Zhong, Q. Zhang, and L. Yao, “Two-dimensional optical coherence tomography for real-time structural dynamical characterization,” Opt. Lasers Eng. 66, 74–79 (2015).
  16. S. Zhong, H. Shen, and Y. Shen, “Real-time monitoring of structural vibration using spectral-domain optical coherence tomography,” Opt. Lasers Eng. 49(1), 127–131 (2011).
    [Crossref]
  17. V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, and I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance,” Opt. Express 11(7), 794–809 (2003).
    [Crossref] [PubMed]
  18. Y. Wang, D. Huang, Y. Su, and X. S. Yao, “Two-dimensional phase unwrapping in Doppler Fourier domain optical coherence tomography,” Opt. Express 24(23), 26129–26145 (2016).
    [Crossref] [PubMed]
  19. K. Ding, D. Cao, and W. Li, “An approach to discrete spectrum correction based on energy centroid,” Key Eng. Mater. 321, 1270–1273 (2006).

2018 (1)

A. Rashno, D. D. Koozekanani, P. M. Drayna, B. Nazari, S. Sadri, H. Rabbani, and K. K. Parhi, “Fully automated segmentation of Fluid/Cyst regions in optical coherence tomography images with diabetic macular edema using neutrosophic sets and graph algorithms,” IEEE Trans. Biomed. Eng. 65(5), 989–1001 (2018).
[PubMed]

2017 (3)

S. J. Rothberg, M. S. Allen, P. Castellini, D. Di Maio, J. J. J. Dirckx, D. J. Ewins, B. J. Halkon, P. Muyshondt, N. Paone, T. Ryan, H. Steger, E. P. Tomasini, S. Vanlanduit, and J. F. Vignola, “An international review of laser Doppler vibrometry: Making light work of vibration measurement,” Opt. Lasers Eng. 99, 11–22 (2017).
[Crossref]

E. Yoshikawa and T. Ushio, “Wind ranging and velocimetry with low peak power and long-duration modulated laser,” Opt. Express 25(8), 8845–8859 (2017).
[Crossref] [PubMed]

J. Zhang, B. M. Williams, S. Lawman, D. Atkinson, Z. Zhang, Y. Shen, and Y. Zheng, “Non-destructive analysis of flake properties in automotive paints with full-field optical coherence tomography and 3D segmentation,” Opt. Express 25(16), 18614–18628 (2017).
[Crossref] [PubMed]

2016 (1)

2015 (3)

S. Chen, J. Yi, W. Liu, V. Backman, and H. F. Zhang, “Monte Carlo investigation of optical coherence tomography retinal oximetry,” IEEE Trans. Biomed. Eng. 62(9), 2308–2315 (2015).
[Crossref] [PubMed]

S. Zhong and Q. Zhang, “Enhanced optical coherence vibration tomography for sub-nanoscale-displacement-resolution calibration of piezoelectric actuators,” Sens. Actuators A Phys. 233, 42–46 (2015).
[Crossref]

J. Zhong, S. Zhong, Q. Zhang, and L. Yao, “Two-dimensional optical coherence tomography for real-time structural dynamical characterization,” Opt. Lasers Eng. 66, 74–79 (2015).

2011 (2)

S. Zhong, H. Shen, and Y. Shen, “Real-time monitoring of structural vibration using spectral-domain optical coherence tomography,” Opt. Lasers Eng. 49(1), 127–131 (2011).
[Crossref]

L. An, P. Li, T. T. Shen, and R. Wang, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second,” Biomed. Opt. Express 2(10), 2770–2783 (2011).
[Crossref] [PubMed]

2010 (1)

T. Prykari, J. Czajkowski, E. Alarousu, and R. A. Myllyla, “Optical coherence tomography as an accurate inspection and quality evaluation technique in paper industry,” Opt. Rev. 17(3), 218–222 (2010).
[Crossref]

2009 (2)

G. Latour, J. P. Echard, B. Soulier, I. Emond, S. Vaiedelich, and M. Elias, “Structural and optical properties of wood and wood finishes studied using optical coherence tomography: application to an 18th century Italian violin,” Appl. Opt. 48(33), 6485–6491 (2009).
[Crossref] [PubMed]

M. Juuti, H. Tuononen, T. Prykari, V. Kontturi, M. Kuosmanen, E. Alarousu, J. Ketolainen, R. Myllylä, and K.-E. Peiponen, “Optical and terahertz measurement techniques for flat-faced pharmaceutical tablets: a case study of gloss, surface roughness and bulk properties of starch acetate tablets,” Meas. Sci. Technol. 20(1), 150301 (2009).
[Crossref] [PubMed]

2006 (1)

K. Ding, D. Cao, and W. Li, “An approach to discrete spectrum correction based on energy centroid,” Key Eng. Mater. 321, 1270–1273 (2006).

2003 (4)

2000 (1)

K. Ding, M. Xie, and X. Zhang, “Phase difference correction method for phase and frequency in spectral analysis,” Mech. Syst. Signal Process. 14(5), 835–843 (2000).
[Crossref]

Alarousu, E.

T. Prykari, J. Czajkowski, E. Alarousu, and R. A. Myllyla, “Optical coherence tomography as an accurate inspection and quality evaluation technique in paper industry,” Opt. Rev. 17(3), 218–222 (2010).
[Crossref]

M. Juuti, H. Tuononen, T. Prykari, V. Kontturi, M. Kuosmanen, E. Alarousu, J. Ketolainen, R. Myllylä, and K.-E. Peiponen, “Optical and terahertz measurement techniques for flat-faced pharmaceutical tablets: a case study of gloss, surface roughness and bulk properties of starch acetate tablets,” Meas. Sci. Technol. 20(1), 150301 (2009).
[Crossref] [PubMed]

Allen, M. S.

S. J. Rothberg, M. S. Allen, P. Castellini, D. Di Maio, J. J. J. Dirckx, D. J. Ewins, B. J. Halkon, P. Muyshondt, N. Paone, T. Ryan, H. Steger, E. P. Tomasini, S. Vanlanduit, and J. F. Vignola, “An international review of laser Doppler vibrometry: Making light work of vibration measurement,” Opt. Lasers Eng. 99, 11–22 (2017).
[Crossref]

An, L.

Atkinson, D.

Backman, V.

S. Chen, J. Yi, W. Liu, V. Backman, and H. F. Zhang, “Monte Carlo investigation of optical coherence tomography retinal oximetry,” IEEE Trans. Biomed. Eng. 62(9), 2308–2315 (2015).
[Crossref] [PubMed]

Bouma, B. E.

Cao, D.

K. Ding, D. Cao, and W. Li, “An approach to discrete spectrum correction based on energy centroid,” Key Eng. Mater. 321, 1270–1273 (2006).

Castellini, P.

S. J. Rothberg, M. S. Allen, P. Castellini, D. Di Maio, J. J. J. Dirckx, D. J. Ewins, B. J. Halkon, P. Muyshondt, N. Paone, T. Ryan, H. Steger, E. P. Tomasini, S. Vanlanduit, and J. F. Vignola, “An international review of laser Doppler vibrometry: Making light work of vibration measurement,” Opt. Lasers Eng. 99, 11–22 (2017).
[Crossref]

Cense, B.

Chen, S.

S. Chen, J. Yi, W. Liu, V. Backman, and H. F. Zhang, “Monte Carlo investigation of optical coherence tomography retinal oximetry,” IEEE Trans. Biomed. Eng. 62(9), 2308–2315 (2015).
[Crossref] [PubMed]

Choma, M.

Czajkowski, J.

T. Prykari, J. Czajkowski, E. Alarousu, and R. A. Myllyla, “Optical coherence tomography as an accurate inspection and quality evaluation technique in paper industry,” Opt. Rev. 17(3), 218–222 (2010).
[Crossref]

de Boer, J. F.

Di Maio, D.

S. J. Rothberg, M. S. Allen, P. Castellini, D. Di Maio, J. J. J. Dirckx, D. J. Ewins, B. J. Halkon, P. Muyshondt, N. Paone, T. Ryan, H. Steger, E. P. Tomasini, S. Vanlanduit, and J. F. Vignola, “An international review of laser Doppler vibrometry: Making light work of vibration measurement,” Opt. Lasers Eng. 99, 11–22 (2017).
[Crossref]

Ding, K.

K. Ding, D. Cao, and W. Li, “An approach to discrete spectrum correction based on energy centroid,” Key Eng. Mater. 321, 1270–1273 (2006).

K. Ding, M. Xie, and X. Zhang, “Phase difference correction method for phase and frequency in spectral analysis,” Mech. Syst. Signal Process. 14(5), 835–843 (2000).
[Crossref]

Dirckx, J. J. J.

S. J. Rothberg, M. S. Allen, P. Castellini, D. Di Maio, J. J. J. Dirckx, D. J. Ewins, B. J. Halkon, P. Muyshondt, N. Paone, T. Ryan, H. Steger, E. P. Tomasini, S. Vanlanduit, and J. F. Vignola, “An international review of laser Doppler vibrometry: Making light work of vibration measurement,” Opt. Lasers Eng. 99, 11–22 (2017).
[Crossref]

Drayna, P. M.

A. Rashno, D. D. Koozekanani, P. M. Drayna, B. Nazari, S. Sadri, H. Rabbani, and K. K. Parhi, “Fully automated segmentation of Fluid/Cyst regions in optical coherence tomography images with diabetic macular edema using neutrosophic sets and graph algorithms,” IEEE Trans. Biomed. Eng. 65(5), 989–1001 (2018).
[PubMed]

Echard, J. P.

Elias, M.

Emond, I.

Ewins, D. J.

S. J. Rothberg, M. S. Allen, P. Castellini, D. Di Maio, J. J. J. Dirckx, D. J. Ewins, B. J. Halkon, P. Muyshondt, N. Paone, T. Ryan, H. Steger, E. P. Tomasini, S. Vanlanduit, and J. F. Vignola, “An international review of laser Doppler vibrometry: Making light work of vibration measurement,” Opt. Lasers Eng. 99, 11–22 (2017).
[Crossref]

Gordon, M. L.

Halkon, B. J.

S. J. Rothberg, M. S. Allen, P. Castellini, D. Di Maio, J. J. J. Dirckx, D. J. Ewins, B. J. Halkon, P. Muyshondt, N. Paone, T. Ryan, H. Steger, E. P. Tomasini, S. Vanlanduit, and J. F. Vignola, “An international review of laser Doppler vibrometry: Making light work of vibration measurement,” Opt. Lasers Eng. 99, 11–22 (2017).
[Crossref]

Huang, D.

Izatt, J.

Juuti, M.

M. Juuti, H. Tuononen, T. Prykari, V. Kontturi, M. Kuosmanen, E. Alarousu, J. Ketolainen, R. Myllylä, and K.-E. Peiponen, “Optical and terahertz measurement techniques for flat-faced pharmaceutical tablets: a case study of gloss, surface roughness and bulk properties of starch acetate tablets,” Meas. Sci. Technol. 20(1), 150301 (2009).
[Crossref] [PubMed]

Ketolainen, J.

M. Juuti, H. Tuononen, T. Prykari, V. Kontturi, M. Kuosmanen, E. Alarousu, J. Ketolainen, R. Myllylä, and K.-E. Peiponen, “Optical and terahertz measurement techniques for flat-faced pharmaceutical tablets: a case study of gloss, surface roughness and bulk properties of starch acetate tablets,” Meas. Sci. Technol. 20(1), 150301 (2009).
[Crossref] [PubMed]

Kim, S. W.

Kontturi, V.

M. Juuti, H. Tuononen, T. Prykari, V. Kontturi, M. Kuosmanen, E. Alarousu, J. Ketolainen, R. Myllylä, and K.-E. Peiponen, “Optical and terahertz measurement techniques for flat-faced pharmaceutical tablets: a case study of gloss, surface roughness and bulk properties of starch acetate tablets,” Meas. Sci. Technol. 20(1), 150301 (2009).
[Crossref] [PubMed]

Koozekanani, D. D.

A. Rashno, D. D. Koozekanani, P. M. Drayna, B. Nazari, S. Sadri, H. Rabbani, and K. K. Parhi, “Fully automated segmentation of Fluid/Cyst regions in optical coherence tomography images with diabetic macular edema using neutrosophic sets and graph algorithms,” IEEE Trans. Biomed. Eng. 65(5), 989–1001 (2018).
[PubMed]

Kuosmanen, M.

M. Juuti, H. Tuononen, T. Prykari, V. Kontturi, M. Kuosmanen, E. Alarousu, J. Ketolainen, R. Myllylä, and K.-E. Peiponen, “Optical and terahertz measurement techniques for flat-faced pharmaceutical tablets: a case study of gloss, surface roughness and bulk properties of starch acetate tablets,” Meas. Sci. Technol. 20(1), 150301 (2009).
[Crossref] [PubMed]

Latour, G.

Lawman, S.

Li, P.

Li, W.

K. Ding, D. Cao, and W. Li, “An approach to discrete spectrum correction based on energy centroid,” Key Eng. Mater. 321, 1270–1273 (2006).

Liu, W.

S. Chen, J. Yi, W. Liu, V. Backman, and H. F. Zhang, “Monte Carlo investigation of optical coherence tomography retinal oximetry,” IEEE Trans. Biomed. Eng. 62(9), 2308–2315 (2015).
[Crossref] [PubMed]

Lo, S.

Mok, A.

Muyshondt, P.

S. J. Rothberg, M. S. Allen, P. Castellini, D. Di Maio, J. J. J. Dirckx, D. J. Ewins, B. J. Halkon, P. Muyshondt, N. Paone, T. Ryan, H. Steger, E. P. Tomasini, S. Vanlanduit, and J. F. Vignola, “An international review of laser Doppler vibrometry: Making light work of vibration measurement,” Opt. Lasers Eng. 99, 11–22 (2017).
[Crossref]

Myllyla, R. A.

T. Prykari, J. Czajkowski, E. Alarousu, and R. A. Myllyla, “Optical coherence tomography as an accurate inspection and quality evaluation technique in paper industry,” Opt. Rev. 17(3), 218–222 (2010).
[Crossref]

Myllylä, R.

M. Juuti, H. Tuononen, T. Prykari, V. Kontturi, M. Kuosmanen, E. Alarousu, J. Ketolainen, R. Myllylä, and K.-E. Peiponen, “Optical and terahertz measurement techniques for flat-faced pharmaceutical tablets: a case study of gloss, surface roughness and bulk properties of starch acetate tablets,” Meas. Sci. Technol. 20(1), 150301 (2009).
[Crossref] [PubMed]

Nazari, B.

A. Rashno, D. D. Koozekanani, P. M. Drayna, B. Nazari, S. Sadri, H. Rabbani, and K. K. Parhi, “Fully automated segmentation of Fluid/Cyst regions in optical coherence tomography images with diabetic macular edema using neutrosophic sets and graph algorithms,” IEEE Trans. Biomed. Eng. 65(5), 989–1001 (2018).
[PubMed]

Oh, J. T.

Paone, N.

S. J. Rothberg, M. S. Allen, P. Castellini, D. Di Maio, J. J. J. Dirckx, D. J. Ewins, B. J. Halkon, P. Muyshondt, N. Paone, T. Ryan, H. Steger, E. P. Tomasini, S. Vanlanduit, and J. F. Vignola, “An international review of laser Doppler vibrometry: Making light work of vibration measurement,” Opt. Lasers Eng. 99, 11–22 (2017).
[Crossref]

Parhi, K. K.

A. Rashno, D. D. Koozekanani, P. M. Drayna, B. Nazari, S. Sadri, H. Rabbani, and K. K. Parhi, “Fully automated segmentation of Fluid/Cyst regions in optical coherence tomography images with diabetic macular edema using neutrosophic sets and graph algorithms,” IEEE Trans. Biomed. Eng. 65(5), 989–1001 (2018).
[PubMed]

Park, B. H.

Peiponen, K.-E.

M. Juuti, H. Tuononen, T. Prykari, V. Kontturi, M. Kuosmanen, E. Alarousu, J. Ketolainen, R. Myllylä, and K.-E. Peiponen, “Optical and terahertz measurement techniques for flat-faced pharmaceutical tablets: a case study of gloss, surface roughness and bulk properties of starch acetate tablets,” Meas. Sci. Technol. 20(1), 150301 (2009).
[Crossref] [PubMed]

Pekar, J.

Pierce, M. C.

Prykari, T.

T. Prykari, J. Czajkowski, E. Alarousu, and R. A. Myllyla, “Optical coherence tomography as an accurate inspection and quality evaluation technique in paper industry,” Opt. Rev. 17(3), 218–222 (2010).
[Crossref]

M. Juuti, H. Tuononen, T. Prykari, V. Kontturi, M. Kuosmanen, E. Alarousu, J. Ketolainen, R. Myllylä, and K.-E. Peiponen, “Optical and terahertz measurement techniques for flat-faced pharmaceutical tablets: a case study of gloss, surface roughness and bulk properties of starch acetate tablets,” Meas. Sci. Technol. 20(1), 150301 (2009).
[Crossref] [PubMed]

Qi, B.

Rabbani, H.

A. Rashno, D. D. Koozekanani, P. M. Drayna, B. Nazari, S. Sadri, H. Rabbani, and K. K. Parhi, “Fully automated segmentation of Fluid/Cyst regions in optical coherence tomography images with diabetic macular edema using neutrosophic sets and graph algorithms,” IEEE Trans. Biomed. Eng. 65(5), 989–1001 (2018).
[PubMed]

Rashno, A.

A. Rashno, D. D. Koozekanani, P. M. Drayna, B. Nazari, S. Sadri, H. Rabbani, and K. K. Parhi, “Fully automated segmentation of Fluid/Cyst regions in optical coherence tomography images with diabetic macular edema using neutrosophic sets and graph algorithms,” IEEE Trans. Biomed. Eng. 65(5), 989–1001 (2018).
[PubMed]

Rothberg, S. J.

S. J. Rothberg, M. S. Allen, P. Castellini, D. Di Maio, J. J. J. Dirckx, D. J. Ewins, B. J. Halkon, P. Muyshondt, N. Paone, T. Ryan, H. Steger, E. P. Tomasini, S. Vanlanduit, and J. F. Vignola, “An international review of laser Doppler vibrometry: Making light work of vibration measurement,” Opt. Lasers Eng. 99, 11–22 (2017).
[Crossref]

Ryan, T.

S. J. Rothberg, M. S. Allen, P. Castellini, D. Di Maio, J. J. J. Dirckx, D. J. Ewins, B. J. Halkon, P. Muyshondt, N. Paone, T. Ryan, H. Steger, E. P. Tomasini, S. Vanlanduit, and J. F. Vignola, “An international review of laser Doppler vibrometry: Making light work of vibration measurement,” Opt. Lasers Eng. 99, 11–22 (2017).
[Crossref]

Sadri, S.

A. Rashno, D. D. Koozekanani, P. M. Drayna, B. Nazari, S. Sadri, H. Rabbani, and K. K. Parhi, “Fully automated segmentation of Fluid/Cyst regions in optical coherence tomography images with diabetic macular edema using neutrosophic sets and graph algorithms,” IEEE Trans. Biomed. Eng. 65(5), 989–1001 (2018).
[PubMed]

Sarunic, M.

Seng-Yue, E.

Shen, H.

S. Zhong, H. Shen, and Y. Shen, “Real-time monitoring of structural vibration using spectral-domain optical coherence tomography,” Opt. Lasers Eng. 49(1), 127–131 (2011).
[Crossref]

Shen, T. T.

Shen, Y.

Soulier, B.

Steger, H.

S. J. Rothberg, M. S. Allen, P. Castellini, D. Di Maio, J. J. J. Dirckx, D. J. Ewins, B. J. Halkon, P. Muyshondt, N. Paone, T. Ryan, H. Steger, E. P. Tomasini, S. Vanlanduit, and J. F. Vignola, “An international review of laser Doppler vibrometry: Making light work of vibration measurement,” Opt. Lasers Eng. 99, 11–22 (2017).
[Crossref]

Su, Y.

Tearney, G. J.

Tomasini, E. P.

S. J. Rothberg, M. S. Allen, P. Castellini, D. Di Maio, J. J. J. Dirckx, D. J. Ewins, B. J. Halkon, P. Muyshondt, N. Paone, T. Ryan, H. Steger, E. P. Tomasini, S. Vanlanduit, and J. F. Vignola, “An international review of laser Doppler vibrometry: Making light work of vibration measurement,” Opt. Lasers Eng. 99, 11–22 (2017).
[Crossref]

Tuononen, H.

M. Juuti, H. Tuononen, T. Prykari, V. Kontturi, M. Kuosmanen, E. Alarousu, J. Ketolainen, R. Myllylä, and K.-E. Peiponen, “Optical and terahertz measurement techniques for flat-faced pharmaceutical tablets: a case study of gloss, surface roughness and bulk properties of starch acetate tablets,” Meas. Sci. Technol. 20(1), 150301 (2009).
[Crossref] [PubMed]

Ushio, T.

Vaiedelich, S.

Vanlanduit, S.

S. J. Rothberg, M. S. Allen, P. Castellini, D. Di Maio, J. J. J. Dirckx, D. J. Ewins, B. J. Halkon, P. Muyshondt, N. Paone, T. Ryan, H. Steger, E. P. Tomasini, S. Vanlanduit, and J. F. Vignola, “An international review of laser Doppler vibrometry: Making light work of vibration measurement,” Opt. Lasers Eng. 99, 11–22 (2017).
[Crossref]

Vignola, J. F.

S. J. Rothberg, M. S. Allen, P. Castellini, D. Di Maio, J. J. J. Dirckx, D. J. Ewins, B. J. Halkon, P. Muyshondt, N. Paone, T. Ryan, H. Steger, E. P. Tomasini, S. Vanlanduit, and J. F. Vignola, “An international review of laser Doppler vibrometry: Making light work of vibration measurement,” Opt. Lasers Eng. 99, 11–22 (2017).
[Crossref]

Vitkin, I. A.

Wang, R.

Wang, Y.

Williams, B. M.

Wilson, B. C.

Xie, M.

K. Ding, M. Xie, and X. Zhang, “Phase difference correction method for phase and frequency in spectral analysis,” Mech. Syst. Signal Process. 14(5), 835–843 (2000).
[Crossref]

Yang, C.

Yang, V. X. D.

Yao, L.

J. Zhong, S. Zhong, Q. Zhang, and L. Yao, “Two-dimensional optical coherence tomography for real-time structural dynamical characterization,” Opt. Lasers Eng. 66, 74–79 (2015).

Yao, X. S.

Yi, J.

S. Chen, J. Yi, W. Liu, V. Backman, and H. F. Zhang, “Monte Carlo investigation of optical coherence tomography retinal oximetry,” IEEE Trans. Biomed. Eng. 62(9), 2308–2315 (2015).
[Crossref] [PubMed]

Yoshikawa, E.

Zhang, H. F.

S. Chen, J. Yi, W. Liu, V. Backman, and H. F. Zhang, “Monte Carlo investigation of optical coherence tomography retinal oximetry,” IEEE Trans. Biomed. Eng. 62(9), 2308–2315 (2015).
[Crossref] [PubMed]

Zhang, J.

Zhang, Q.

S. Zhong and Q. Zhang, “Enhanced optical coherence vibration tomography for sub-nanoscale-displacement-resolution calibration of piezoelectric actuators,” Sens. Actuators A Phys. 233, 42–46 (2015).
[Crossref]

J. Zhong, S. Zhong, Q. Zhang, and L. Yao, “Two-dimensional optical coherence tomography for real-time structural dynamical characterization,” Opt. Lasers Eng. 66, 74–79 (2015).

Zhang, X.

K. Ding, M. Xie, and X. Zhang, “Phase difference correction method for phase and frequency in spectral analysis,” Mech. Syst. Signal Process. 14(5), 835–843 (2000).
[Crossref]

Zhang, Z.

Zheng, Y.

Zhong, J.

J. Zhong, S. Zhong, Q. Zhang, and L. Yao, “Two-dimensional optical coherence tomography for real-time structural dynamical characterization,” Opt. Lasers Eng. 66, 74–79 (2015).

Zhong, S.

J. Zhong, S. Zhong, Q. Zhang, and L. Yao, “Two-dimensional optical coherence tomography for real-time structural dynamical characterization,” Opt. Lasers Eng. 66, 74–79 (2015).

S. Zhong and Q. Zhang, “Enhanced optical coherence vibration tomography for sub-nanoscale-displacement-resolution calibration of piezoelectric actuators,” Sens. Actuators A Phys. 233, 42–46 (2015).
[Crossref]

S. Zhong, H. Shen, and Y. Shen, “Real-time monitoring of structural vibration using spectral-domain optical coherence tomography,” Opt. Lasers Eng. 49(1), 127–131 (2011).
[Crossref]

Appl. Opt. (1)

Biomed. Opt. Express (1)

IEEE Trans. Biomed. Eng. (2)

A. Rashno, D. D. Koozekanani, P. M. Drayna, B. Nazari, S. Sadri, H. Rabbani, and K. K. Parhi, “Fully automated segmentation of Fluid/Cyst regions in optical coherence tomography images with diabetic macular edema using neutrosophic sets and graph algorithms,” IEEE Trans. Biomed. Eng. 65(5), 989–1001 (2018).
[PubMed]

S. Chen, J. Yi, W. Liu, V. Backman, and H. F. Zhang, “Monte Carlo investigation of optical coherence tomography retinal oximetry,” IEEE Trans. Biomed. Eng. 62(9), 2308–2315 (2015).
[Crossref] [PubMed]

Key Eng. Mater. (1)

K. Ding, D. Cao, and W. Li, “An approach to discrete spectrum correction based on energy centroid,” Key Eng. Mater. 321, 1270–1273 (2006).

Meas. Sci. Technol. (1)

M. Juuti, H. Tuononen, T. Prykari, V. Kontturi, M. Kuosmanen, E. Alarousu, J. Ketolainen, R. Myllylä, and K.-E. Peiponen, “Optical and terahertz measurement techniques for flat-faced pharmaceutical tablets: a case study of gloss, surface roughness and bulk properties of starch acetate tablets,” Meas. Sci. Technol. 20(1), 150301 (2009).
[Crossref] [PubMed]

Mech. Syst. Signal Process. (1)

K. Ding, M. Xie, and X. Zhang, “Phase difference correction method for phase and frequency in spectral analysis,” Mech. Syst. Signal Process. 14(5), 835–843 (2000).
[Crossref]

Opt. Express (6)

Opt. Lasers Eng. (3)

S. J. Rothberg, M. S. Allen, P. Castellini, D. Di Maio, J. J. J. Dirckx, D. J. Ewins, B. J. Halkon, P. Muyshondt, N. Paone, T. Ryan, H. Steger, E. P. Tomasini, S. Vanlanduit, and J. F. Vignola, “An international review of laser Doppler vibrometry: Making light work of vibration measurement,” Opt. Lasers Eng. 99, 11–22 (2017).
[Crossref]

J. Zhong, S. Zhong, Q. Zhang, and L. Yao, “Two-dimensional optical coherence tomography for real-time structural dynamical characterization,” Opt. Lasers Eng. 66, 74–79 (2015).

S. Zhong, H. Shen, and Y. Shen, “Real-time monitoring of structural vibration using spectral-domain optical coherence tomography,” Opt. Lasers Eng. 49(1), 127–131 (2011).
[Crossref]

Opt. Lett. (1)

Opt. Rev. (1)

T. Prykari, J. Czajkowski, E. Alarousu, and R. A. Myllyla, “Optical coherence tomography as an accurate inspection and quality evaluation technique in paper industry,” Opt. Rev. 17(3), 218–222 (2010).
[Crossref]

Sens. Actuators A Phys. (1)

S. Zhong and Q. Zhang, “Enhanced optical coherence vibration tomography for sub-nanoscale-displacement-resolution calibration of piezoelectric actuators,” Sens. Actuators A Phys. 233, 42–46 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of optical coherence velocimeter (OCV) with free space reference structure (a) and fiber-optic reference structure (b). The vibration structure (LS, loud speaker) was controlled by a function signal generator (FSG). SLD, Super luminescent diode; PC, personal computer; BS, Beam-splitter; L, Lens; M, Mirror; SM, silicon mirror; FO, 2*2 fiber optic; G, Grating; Detector, Linear array camera
Fig. 2
Fig. 2 The relationship between blurry coefficient and vibration velocity when the center wavelength is 800nm.
Fig. 3
Fig. 3 The velocity-independent blurry coefficient of different wavelengths.
Fig. 4
Fig. 4 The velocity dependent blurry coefficient of system with different bandwidths.
Fig. 5
Fig. 5 (a) The comparison of OCV measured results with and without spectrum correction method for the vibration with amplitude in micrometers; (b) the OCV measured results with spectrum correction method for the vibration amplitude in nanometers. For clarity, the curves are offset vertically.
Fig. 6
Fig. 6 (a) The displacement and velocity of the sinusoidal vibration measured by the OCV system. (b) The change of blurry coefficient in a motion cycle under different exposure time conditions.
Fig. 7
Fig. 7 (a) The OCV measurement result of vibration excited by swept frequency signal with a range of 10-500 Hz (b) The OCV measurement result of 5 kHz, 10 kHz and 20 kHz acoustic signal.
Fig. 8
Fig. 8 The relationship between maximum measurable frequency and amplitude of vibration

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I (λ) = S (λ) [ I r + I s + n 2 I r I ns cos( 2 2π λ Δ L n ) + nm 2 I ms I ns cos( 2 2π λ (Δ d n Δ d m ) )]
I (λ) = S (λ) t 1 t 2 ( I r + I s +2 I r I s cos(2 2π λ (Δ L (t) + ν (t) t)))dt
I (λ) = S (λ) *( t 2 t 1 )+ S (λ) *2 I r I s * λ 4π ν ( t 2 + t 1 2 ) *[sin( 4π λ (Δ L ( t 1 ) + ν ( t 2 + t 1 2 ) * t 2 )sin( 4π λ (Δ L ( t 1 ) + ν ( t 2 + t 1 2 ) * t 1 )] = S (λ) *( t 2 t 1 )[( I r + I s )+2 I r I s * λ (2π ν ( t 2 + t 1 2 ) *( t 2 t 1 )) *sin( 2π ν (t) *( t 2 t 1 ) λ )*cos( 4π λ (Δ L ( t 1 ) + ν ( t 2 + t 1 2 ) *( t 2 + t 1 2 )))]
ν blur = nλ 2( t 2 t 1 ) , n=1,2,3...
C blur = λ 0 λ 0 + S (λ) *| sin(β)/β | dλ S (λ) = 2 ln2 π λ width *exp[ (2 ln2 λ λ 0 λ width ) 2 ]
sin(β) β = sin(nπ λ 0 /λ) ( nπ λ 0 λ ) = sin(nπ+ nπ( λ 0 λ)/λ ) ( nπ λ 0 /λ ) λ λ 0 λ 0
C blur 1 = λ 0 λ 0 + 2 ln2 π λ width *exp[ (2 ln2 λ λ 0 λ width ) 2 ] *| λ λ 0 λ 0 |dλ = λ width 2 ln2 π λ 0 λ 0 λ 0 + exp[ (2 ln2 λ λ 0 λ width ) 2 ] d (2 ln2 λ λ 0 λ width ) 2 = λ width 2 ln2 π λ 0 =0.3388* λ width λ 0
C blur 2 λ 0 λ width 2 λ 0 + λ width 2 1 λ width *sin(2πν*Δt/λ) * λ 0 2πνΔt dλ = 1 λ width * λ 0 2πνΔt * λ 0 λ width 2 λ 0 + λ width 2 sin(2πν*Δt/λ) dλ λ 0 2πνΔt 2 π = 1 β * 2 π
C blur 2 = 1 β * 2 π = 2 π 2 λ width λ 0 =0.2026* λ width λ 0 C blur 1 =60%*0.03388* λ width λ 0 =0.2033* λ width λ 0 C blur 2 C blur 1
C blur =0.3388* λ width λ 0 2* 1 SSNR
ν OCV =5* λ 0 t 2 t 1
{ f< f sampling 2 A*2πf< ν OCV =5* λ 0 Δt

Metrics