Abstract

We develop a local birefringence determination method of measuring the distribution of external force-induced birefringence in spun high-birefringence (HiBi) fiber (spun HiBi fiber) using polarimetric optical frequency domain reflectometry (P-OFDR). By constructing the similarity between the measured Mueller matrices and fiber under test (FUT) matrices using two input states of polarization, the total phase retardance caused by the local birefringence of FUT can be determined from the trace of the measured matrices. We measure the local birefringence of spun HiBi fibers from two different manufacturers and telecom SMF (G652.D) caused by bending, twist, and transverse stress using our presented P-OFDR system. From the experimental results, we find that bending- and twist-induced birefringences of spun HiBi fiber are much lower than those of standard SMF. More remarkably, the coating package influences the transverse stress induced birefringence of spun HiBi fibers significantly. These experimental results verify that our presented method is beneficial to evaluating and improving spun HiBi fibers’ quality.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Distributed polarization analysis with binary polarization rotators for the accurate measurement of distance-resolved birefringence along a single-mode fiber

Ting Feng, Yanling Shang, Xichen Wang, Shengbao Wu, Anton Khomenko, Xiaojun Chen, and X. Steve Yao
Opt. Express 26(20) 25989-26002 (2018)

Accurate measurements of circular and residual linear birefringences of spun fibers using binary polarization rotators

Zhexi Xu, X. Steve Yao, Zhenyang Ding, X. James Chen, Xin Zhao, Hao Xiao, Ting Feng, and Tiegen Liu
Opt. Express 25(24) 30780-30792 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Wang, S. Xu, W. Li, and X. Wang, “Optical fiber current sensor research: review and outlook,” Opt. Quantum Electron. 48(9), 442 (2016).
    [Crossref]
  2. R. M. Silva, H. Martins, I. Nascimento, J. M. Baptista, A. L. Ribeiro, J. L. Santos, P. Jorge, and O. Frazão, “Optical current sensors for high power systems: a review,” Appl. Sci. (Basel) 2(3), 602–628 (2012).
    [Crossref]
  3. N. Peng, Y. Huang, S. Wang, T. Wen, W. Liu, Q. Zuo, and L. Wang, “Fiber optic current sensor based on special spun highly birefringent fiber,” IEEE Photonics Technol. Lett. 25(17), 1668–1671 (2013).
    [Crossref]
  4. A. J. Barlow, J. J. Ramskov-Hansen, and D. N. Payne, “Birefringence and polarization mode-dispersion in spun single-mode fibers,” Appl. Opt. 20(17), 2962–2968 (1981).
    [Crossref] [PubMed]
  5. D. Payne, A. Barlow, and J. Hansen, “Development of low- and high-birefringence optical fibers,” IEEE J. Quantum Electron. 18(4), 477–488 (1982).
    [Crossref]
  6. A. J. Barlow, J. J. Ramskov-Hansen, and D. N. Payne, “Anisotropy in spun single-mode fibres,” Electron. Lett. 18(5), 200–202 (1982).
    [Crossref]
  7. R. Laming and D. N. Payne, “Electric current sensors employing spun highly birefringent optical fibers,” J. Lightwave Technol. 7(12), 2084–2094 (1989).
    [Crossref]
  8. L. Li, J. R. Qian, and D. N. Payne, “Current sensors using highly birefringent bow-tie fibres,” Electron. Lett. 22(21), 1142–1144 (1986).
    [Crossref]
  9. L. Li, J. R. Qian, and D. N. Payne, “Miniature multi-turn fibre current sensors,” Int. J. Optical Sensors 2(1), 25–31 (1987).
  10. Z. Xu, X. S. Yao, Z. Ding, X. J. Chen, X. Zhao, H. Xiao, T. Feng, and T. Liu, “Accurate measurements of circular and residual linear birefringences of spun fibers using binary polarization rotators,” Opt. Express 25(24), 30780–30792 (2017).
    [Crossref] [PubMed]
  11. L. Palmieri, A. Galtarossa, and T. Geisler, “Distributed characterization of bending effects on the birefringence of single-mode optical fibers,” Opt. Lett. 35(14), 2481–2483 (2010).
    [Crossref] [PubMed]
  12. Y. Shang, T. Feng, X. Wang, A. Khomenko, J. Chen, and X. S. Yao, “Distributed measurement of bending-induced birefringence in single-mode fibers with PA-OFDR,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper JTh2A.117.
    [Crossref]
  13. A. Galtarossa, D. Grosso, and L. Palmieri, “Accurate characterization of twist-induced optical activity in single-mode fibers by means of polarization-sensitive reflectometry,” IEEE Photonics Technol. Lett. 21(22), 1713–1715 (2009).
    [Crossref]
  14. C. Wei, H. Chen, X. Chen, D. Chen, Z. Li, and X. S. Yao, “Distributed transverse stress measurement along an optic fiber using polarimetric OFDR,” Opt. Lett. 41(12), 2819–2822 (2016).
    [Crossref] [PubMed]
  15. X. Fan, Y. Koshikiya, and F. Ito, “Full polarimetric phase-noise-compensated optical-frequency-domain reflectometry for distributed measurement of high-PMD fibers,” Opt. Lett. 35(1), 25–27 (2010).
    [Crossref] [PubMed]
  16. L. Palmieri, “Polarization properties of spun single-mode fibers,” J. Lightwave Technol. 24(11), 4075–4088 (2006).
    [Crossref]
  17. A. Galtarossa, D. Grosso, L. Palmieri, and M. Rizzo, “Spin-profile characterization in randomly birefringent spun fibers by means of frequency-domain reflectometry,” Opt. Lett. 34(7), 1078–1080 (2009).
    [Crossref] [PubMed]
  18. L. Palmieri, T. Geisler, and A. Galtarossa, “Characterization of strongly spun fibers with spin rate exceeding OFDR spatial resolution,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMF2.
    [Crossref]
  19. L. Palmieri, T. Geisler, and A. Galtarossa, “Distributed characterization of bending-induced birefringence in spun fibers by means of P-OFDR,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OWS2.
    [Crossref]
  20. L. Palmieri, “Distributed polarimetric measurements for optical fiber sensing,” Opt. Fiber Technol. 19(6), 720–728 (2013).
    [Crossref]
  21. N. Cyr, Hongxin Chen, and G. W. Schinn nn, “Random-scrambling tunable POTDR for distributed measurement of cumulative PMD,” J. Lightwave Technol. 27(18), 4164–4174 (2009).
    [Crossref]
  22. T. Feng, Y. Shang, X. Wang, S. Wu, A. Khomenko, X. Chen, and X. S. Yao, “Distributed polarization analysis with binary polarization rotators for the accurate measurement of distance-resolved birefringence along a single-mode fiber,” Opt. Express 26(20), 25989–26002 (2018).
    [Crossref] [PubMed]
  23. General Photonics white paper, “Date sheet of OFDR-1000” (General photonics Inc., 2018) http://www.generalphotonics.com/wp-content/uploads/2016/03/OFDR-1000A-3-29-16.pdf
  24. E. D. Moore and R. R. McLeod, “Correction of sampling errors due to laser tuning rate fluctuations in swept-wavelength interferometry,” Opt. Express 16(17), 13139–13149 (2008).
    [Crossref] [PubMed]
  25. X. S. Yao, L. Yan, and Y. Shi, “Highly repeatable all-solid-state polarization-state generator,” Opt. Lett. 30(11), 1324–1326 (2005).
    [Crossref] [PubMed]
  26. S. Makita, M. Yamanari, and Y. Yasuno, “Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express 18(2), 854–876 (2010).
    [Crossref] [PubMed]
  27. J. F. de Boer, C. K. Hitzenberger, and Y. Yasuno, “Polarization sensitive optical coherence tomography - a review [Invited],” Biomed. Opt. Express 8(3), 1838–1873 (2017).
    [Crossref] [PubMed]
  28. S. Manhas, M. K. Swami, P. Buddhiwant, N. Ghosh, P. K. Gupta, and J. Singh, “Mueller matrix approach for determination of optical rotation in chiral turbid media in backscattering geometry,” Opt. Express 14(1), 190–202 (2006).
    [Crossref] [PubMed]
  29. Fibercore white paper, “Products and Services,” (Fibercore, 2018), https://www.fibercore.com/mediaLibrary/images/english/6881.pdf .

2018 (1)

2017 (2)

2016 (2)

2013 (2)

N. Peng, Y. Huang, S. Wang, T. Wen, W. Liu, Q. Zuo, and L. Wang, “Fiber optic current sensor based on special spun highly birefringent fiber,” IEEE Photonics Technol. Lett. 25(17), 1668–1671 (2013).
[Crossref]

L. Palmieri, “Distributed polarimetric measurements for optical fiber sensing,” Opt. Fiber Technol. 19(6), 720–728 (2013).
[Crossref]

2012 (1)

R. M. Silva, H. Martins, I. Nascimento, J. M. Baptista, A. L. Ribeiro, J. L. Santos, P. Jorge, and O. Frazão, “Optical current sensors for high power systems: a review,” Appl. Sci. (Basel) 2(3), 602–628 (2012).
[Crossref]

2010 (3)

2009 (3)

2008 (1)

2006 (2)

2005 (1)

1989 (1)

R. Laming and D. N. Payne, “Electric current sensors employing spun highly birefringent optical fibers,” J. Lightwave Technol. 7(12), 2084–2094 (1989).
[Crossref]

1987 (1)

L. Li, J. R. Qian, and D. N. Payne, “Miniature multi-turn fibre current sensors,” Int. J. Optical Sensors 2(1), 25–31 (1987).

1986 (1)

L. Li, J. R. Qian, and D. N. Payne, “Current sensors using highly birefringent bow-tie fibres,” Electron. Lett. 22(21), 1142–1144 (1986).
[Crossref]

1982 (2)

D. Payne, A. Barlow, and J. Hansen, “Development of low- and high-birefringence optical fibers,” IEEE J. Quantum Electron. 18(4), 477–488 (1982).
[Crossref]

A. J. Barlow, J. J. Ramskov-Hansen, and D. N. Payne, “Anisotropy in spun single-mode fibres,” Electron. Lett. 18(5), 200–202 (1982).
[Crossref]

1981 (1)

Baptista, J. M.

R. M. Silva, H. Martins, I. Nascimento, J. M. Baptista, A. L. Ribeiro, J. L. Santos, P. Jorge, and O. Frazão, “Optical current sensors for high power systems: a review,” Appl. Sci. (Basel) 2(3), 602–628 (2012).
[Crossref]

Barlow, A.

D. Payne, A. Barlow, and J. Hansen, “Development of low- and high-birefringence optical fibers,” IEEE J. Quantum Electron. 18(4), 477–488 (1982).
[Crossref]

Barlow, A. J.

A. J. Barlow, J. J. Ramskov-Hansen, and D. N. Payne, “Anisotropy in spun single-mode fibres,” Electron. Lett. 18(5), 200–202 (1982).
[Crossref]

A. J. Barlow, J. J. Ramskov-Hansen, and D. N. Payne, “Birefringence and polarization mode-dispersion in spun single-mode fibers,” Appl. Opt. 20(17), 2962–2968 (1981).
[Crossref] [PubMed]

Buddhiwant, P.

Chen, D.

Chen, H.

Chen, X.

Chen, X. J.

Cyr, N.

de Boer, J. F.

Ding, Z.

Fan, X.

Feng, T.

Frazão, O.

R. M. Silva, H. Martins, I. Nascimento, J. M. Baptista, A. L. Ribeiro, J. L. Santos, P. Jorge, and O. Frazão, “Optical current sensors for high power systems: a review,” Appl. Sci. (Basel) 2(3), 602–628 (2012).
[Crossref]

Galtarossa, A.

Geisler, T.

Ghosh, N.

Grosso, D.

A. Galtarossa, D. Grosso, L. Palmieri, and M. Rizzo, “Spin-profile characterization in randomly birefringent spun fibers by means of frequency-domain reflectometry,” Opt. Lett. 34(7), 1078–1080 (2009).
[Crossref] [PubMed]

A. Galtarossa, D. Grosso, and L. Palmieri, “Accurate characterization of twist-induced optical activity in single-mode fibers by means of polarization-sensitive reflectometry,” IEEE Photonics Technol. Lett. 21(22), 1713–1715 (2009).
[Crossref]

Gupta, P. K.

Hansen, J.

D. Payne, A. Barlow, and J. Hansen, “Development of low- and high-birefringence optical fibers,” IEEE J. Quantum Electron. 18(4), 477–488 (1982).
[Crossref]

Hitzenberger, C. K.

Hongxin Chen,

Huang, Y.

N. Peng, Y. Huang, S. Wang, T. Wen, W. Liu, Q. Zuo, and L. Wang, “Fiber optic current sensor based on special spun highly birefringent fiber,” IEEE Photonics Technol. Lett. 25(17), 1668–1671 (2013).
[Crossref]

Ito, F.

Jorge, P.

R. M. Silva, H. Martins, I. Nascimento, J. M. Baptista, A. L. Ribeiro, J. L. Santos, P. Jorge, and O. Frazão, “Optical current sensors for high power systems: a review,” Appl. Sci. (Basel) 2(3), 602–628 (2012).
[Crossref]

Khomenko, A.

Koshikiya, Y.

Laming, R.

R. Laming and D. N. Payne, “Electric current sensors employing spun highly birefringent optical fibers,” J. Lightwave Technol. 7(12), 2084–2094 (1989).
[Crossref]

Li, L.

L. Li, J. R. Qian, and D. N. Payne, “Miniature multi-turn fibre current sensors,” Int. J. Optical Sensors 2(1), 25–31 (1987).

L. Li, J. R. Qian, and D. N. Payne, “Current sensors using highly birefringent bow-tie fibres,” Electron. Lett. 22(21), 1142–1144 (1986).
[Crossref]

Li, W.

R. Wang, S. Xu, W. Li, and X. Wang, “Optical fiber current sensor research: review and outlook,” Opt. Quantum Electron. 48(9), 442 (2016).
[Crossref]

Li, Z.

Liu, T.

Liu, W.

N. Peng, Y. Huang, S. Wang, T. Wen, W. Liu, Q. Zuo, and L. Wang, “Fiber optic current sensor based on special spun highly birefringent fiber,” IEEE Photonics Technol. Lett. 25(17), 1668–1671 (2013).
[Crossref]

Makita, S.

Manhas, S.

Martins, H.

R. M. Silva, H. Martins, I. Nascimento, J. M. Baptista, A. L. Ribeiro, J. L. Santos, P. Jorge, and O. Frazão, “Optical current sensors for high power systems: a review,” Appl. Sci. (Basel) 2(3), 602–628 (2012).
[Crossref]

McLeod, R. R.

Moore, E. D.

Nascimento, I.

R. M. Silva, H. Martins, I. Nascimento, J. M. Baptista, A. L. Ribeiro, J. L. Santos, P. Jorge, and O. Frazão, “Optical current sensors for high power systems: a review,” Appl. Sci. (Basel) 2(3), 602–628 (2012).
[Crossref]

Palmieri, L.

Payne, D.

D. Payne, A. Barlow, and J. Hansen, “Development of low- and high-birefringence optical fibers,” IEEE J. Quantum Electron. 18(4), 477–488 (1982).
[Crossref]

Payne, D. N.

R. Laming and D. N. Payne, “Electric current sensors employing spun highly birefringent optical fibers,” J. Lightwave Technol. 7(12), 2084–2094 (1989).
[Crossref]

L. Li, J. R. Qian, and D. N. Payne, “Miniature multi-turn fibre current sensors,” Int. J. Optical Sensors 2(1), 25–31 (1987).

L. Li, J. R. Qian, and D. N. Payne, “Current sensors using highly birefringent bow-tie fibres,” Electron. Lett. 22(21), 1142–1144 (1986).
[Crossref]

A. J. Barlow, J. J. Ramskov-Hansen, and D. N. Payne, “Anisotropy in spun single-mode fibres,” Electron. Lett. 18(5), 200–202 (1982).
[Crossref]

A. J. Barlow, J. J. Ramskov-Hansen, and D. N. Payne, “Birefringence and polarization mode-dispersion in spun single-mode fibers,” Appl. Opt. 20(17), 2962–2968 (1981).
[Crossref] [PubMed]

Peng, N.

N. Peng, Y. Huang, S. Wang, T. Wen, W. Liu, Q. Zuo, and L. Wang, “Fiber optic current sensor based on special spun highly birefringent fiber,” IEEE Photonics Technol. Lett. 25(17), 1668–1671 (2013).
[Crossref]

Qian, J. R.

L. Li, J. R. Qian, and D. N. Payne, “Miniature multi-turn fibre current sensors,” Int. J. Optical Sensors 2(1), 25–31 (1987).

L. Li, J. R. Qian, and D. N. Payne, “Current sensors using highly birefringent bow-tie fibres,” Electron. Lett. 22(21), 1142–1144 (1986).
[Crossref]

Ramskov-Hansen, J. J.

A. J. Barlow, J. J. Ramskov-Hansen, and D. N. Payne, “Anisotropy in spun single-mode fibres,” Electron. Lett. 18(5), 200–202 (1982).
[Crossref]

A. J. Barlow, J. J. Ramskov-Hansen, and D. N. Payne, “Birefringence and polarization mode-dispersion in spun single-mode fibers,” Appl. Opt. 20(17), 2962–2968 (1981).
[Crossref] [PubMed]

Ribeiro, A. L.

R. M. Silva, H. Martins, I. Nascimento, J. M. Baptista, A. L. Ribeiro, J. L. Santos, P. Jorge, and O. Frazão, “Optical current sensors for high power systems: a review,” Appl. Sci. (Basel) 2(3), 602–628 (2012).
[Crossref]

Rizzo, M.

Santos, J. L.

R. M. Silva, H. Martins, I. Nascimento, J. M. Baptista, A. L. Ribeiro, J. L. Santos, P. Jorge, and O. Frazão, “Optical current sensors for high power systems: a review,” Appl. Sci. (Basel) 2(3), 602–628 (2012).
[Crossref]

Schinn nn, G. W.

Shang, Y.

Shi, Y.

Silva, R. M.

R. M. Silva, H. Martins, I. Nascimento, J. M. Baptista, A. L. Ribeiro, J. L. Santos, P. Jorge, and O. Frazão, “Optical current sensors for high power systems: a review,” Appl. Sci. (Basel) 2(3), 602–628 (2012).
[Crossref]

Singh, J.

Swami, M. K.

Wang, L.

N. Peng, Y. Huang, S. Wang, T. Wen, W. Liu, Q. Zuo, and L. Wang, “Fiber optic current sensor based on special spun highly birefringent fiber,” IEEE Photonics Technol. Lett. 25(17), 1668–1671 (2013).
[Crossref]

Wang, R.

R. Wang, S. Xu, W. Li, and X. Wang, “Optical fiber current sensor research: review and outlook,” Opt. Quantum Electron. 48(9), 442 (2016).
[Crossref]

Wang, S.

N. Peng, Y. Huang, S. Wang, T. Wen, W. Liu, Q. Zuo, and L. Wang, “Fiber optic current sensor based on special spun highly birefringent fiber,” IEEE Photonics Technol. Lett. 25(17), 1668–1671 (2013).
[Crossref]

Wang, X.

Wei, C.

Wen, T.

N. Peng, Y. Huang, S. Wang, T. Wen, W. Liu, Q. Zuo, and L. Wang, “Fiber optic current sensor based on special spun highly birefringent fiber,” IEEE Photonics Technol. Lett. 25(17), 1668–1671 (2013).
[Crossref]

Wu, S.

Xiao, H.

Xu, S.

R. Wang, S. Xu, W. Li, and X. Wang, “Optical fiber current sensor research: review and outlook,” Opt. Quantum Electron. 48(9), 442 (2016).
[Crossref]

Xu, Z.

Yamanari, M.

Yan, L.

Yao, X. S.

Yasuno, Y.

Zhao, X.

Zuo, Q.

N. Peng, Y. Huang, S. Wang, T. Wen, W. Liu, Q. Zuo, and L. Wang, “Fiber optic current sensor based on special spun highly birefringent fiber,” IEEE Photonics Technol. Lett. 25(17), 1668–1671 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Sci. (Basel) (1)

R. M. Silva, H. Martins, I. Nascimento, J. M. Baptista, A. L. Ribeiro, J. L. Santos, P. Jorge, and O. Frazão, “Optical current sensors for high power systems: a review,” Appl. Sci. (Basel) 2(3), 602–628 (2012).
[Crossref]

Biomed. Opt. Express (1)

Electron. Lett. (2)

L. Li, J. R. Qian, and D. N. Payne, “Current sensors using highly birefringent bow-tie fibres,” Electron. Lett. 22(21), 1142–1144 (1986).
[Crossref]

A. J. Barlow, J. J. Ramskov-Hansen, and D. N. Payne, “Anisotropy in spun single-mode fibres,” Electron. Lett. 18(5), 200–202 (1982).
[Crossref]

IEEE J. Quantum Electron. (1)

D. Payne, A. Barlow, and J. Hansen, “Development of low- and high-birefringence optical fibers,” IEEE J. Quantum Electron. 18(4), 477–488 (1982).
[Crossref]

IEEE Photonics Technol. Lett. (2)

N. Peng, Y. Huang, S. Wang, T. Wen, W. Liu, Q. Zuo, and L. Wang, “Fiber optic current sensor based on special spun highly birefringent fiber,” IEEE Photonics Technol. Lett. 25(17), 1668–1671 (2013).
[Crossref]

A. Galtarossa, D. Grosso, and L. Palmieri, “Accurate characterization of twist-induced optical activity in single-mode fibers by means of polarization-sensitive reflectometry,” IEEE Photonics Technol. Lett. 21(22), 1713–1715 (2009).
[Crossref]

Int. J. Optical Sensors (1)

L. Li, J. R. Qian, and D. N. Payne, “Miniature multi-turn fibre current sensors,” Int. J. Optical Sensors 2(1), 25–31 (1987).

J. Lightwave Technol. (3)

Opt. Express (5)

Opt. Fiber Technol. (1)

L. Palmieri, “Distributed polarimetric measurements for optical fiber sensing,” Opt. Fiber Technol. 19(6), 720–728 (2013).
[Crossref]

Opt. Lett. (5)

Opt. Quantum Electron. (1)

R. Wang, S. Xu, W. Li, and X. Wang, “Optical fiber current sensor research: review and outlook,” Opt. Quantum Electron. 48(9), 442 (2016).
[Crossref]

Other (5)

General Photonics white paper, “Date sheet of OFDR-1000” (General photonics Inc., 2018) http://www.generalphotonics.com/wp-content/uploads/2016/03/OFDR-1000A-3-29-16.pdf

Fibercore white paper, “Products and Services,” (Fibercore, 2018), https://www.fibercore.com/mediaLibrary/images/english/6881.pdf .

L. Palmieri, T. Geisler, and A. Galtarossa, “Characterization of strongly spun fibers with spin rate exceeding OFDR spatial resolution,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMF2.
[Crossref]

L. Palmieri, T. Geisler, and A. Galtarossa, “Distributed characterization of bending-induced birefringence in spun fibers by means of P-OFDR,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OWS2.
[Crossref]

Y. Shang, T. Feng, X. Wang, A. Khomenko, J. Chen, and X. S. Yao, “Distributed measurement of bending-induced birefringence in single-mode fibers with PA-OFDR,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper JTh2A.117.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 P-OFDR system configuration. TLS is tunable laser source, which is linear tuning; PM is polarization maintaining; PC is Polarization controller; PSG is polarization state generator; FRM is faraday rotating mirror; BS is polarization insensitive beam splitter; PBS is polarization beam splitter; BPD is balanced photo-detector; FUT is fiber under test; DAQ is data acquisition card. Red line represents single mode fiber and blue line represents PM fiber.
Fig. 2
Fig. 2 Performance of our P-OFDR system using a standard SMF of 92 m. (a) Distributed signals of Rayleigh backscattering in the spatial domain. (b) Phase retardance results of transverse stress induced local birefringence caused by two weights pressing on FUT at the locations of 89.3 m and 89.5 m. (c) Phase retardance results of bending induced local birefringence caused by two loops on FUT at the locations of 89.3 m and 89.6 m.
Fig. 3
Fig. 3 Phase retardances of bending induced local birefringences of standard SMF (a), spun fiber A (b) and spun fiber B (c) in different diameters of fiber loops.
Fig. 4
Fig. 4 Phase retardances of twist and bending induced local birefringences of standard SMF (a), spun fiber A (b) and spun fiber B (c) in different twist angles of 0°, 45°, 90°and 135°in one paddle of a polarization controller. The maximum variations of phase retardances reflect local birefringences changing caused by twist effects.
Fig. 5
Fig. 5 Phase retardances of transverse stress induced local birefringences of standard SMF (a), spun fiber A (b) and spun fiber B (c) caused by different weights.
Fig. 6
Fig. 6 Phase retardances of transverse stress induced local birefringences of standard SMF (a), spun fiber A (b) and spun fiber B (c) without coating caused by different weights.
Fig. 7
Fig. 7 Measured bending induced local birefringences of the spun fiber B (SHB1250 (7.3/125) of Fibercore Co. Ltd.) with different bending diameters using PA-OFDR (OFDR-1000, General Photonics Inc.)

Tables (1)

Tables Icon

Table 1 Measured bending induced local birefringences of the spun fiber B with different bending diameters of PA-OFDR and our system

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

E in =[ H in1 H in2 V in1 V in2 ]=[ 1 0 0 1 ],
E ref =[ H ref 0 0 V ref ]=[ 1 0 0 e iφ ],
M=U(JJ*) U 1 , U=[ 1 0 0 1 1 0 0 1 0 1 1 0 0 i i 0 ],
E in =[ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ], E ref =[ 1 0 0 0 0 1 0 0 0 0 cosφ sinφ 0 0 sinφ cosφ ].
Q( z i )= E ref M out M ST ( z i ) M in E in .
Q( z i )=U( [ H 1 ( z i ) H 2 ( z i ) V 1 ( z i ) V 2 ( z i ) ] [ H 1 ( z i ) H 2 ( z i ) V 1 ( z i ) V 2 ( z i ) ] * ) U 1 .
M ST ( z i )=[ M S ( z 1 , z 2 ) T M S ( z 2 , z 3 ) T M S ( z i1 , z i ) T ][ M S ( z i1 , z i ) M S ( z 2 , z 3 ) M S ( z 1 , z 2 ) ],
Q( z i1 )= E ref M out M ST ( z i1 ) M in E in .
M( z i1 , z i )=Q( z i )Q ( z i1 ) 1 .
M( z i1 , z i )= E ref M out [ M S ( z 1 , z 2 ) T M S ( z 2 , z 3 ) T M S ( z i2 , z i1 ) T ] M S ( z i1 , z i ) T M S ( z i1 , z i ) × [ M S ( z 1 , z 2 ) T M S ( z 2 , z 3 ) T M S ( z i2 , z i1 ) T ] 1 M out 1 E ref 1 ,
M S ( z i1 , z i ) T M S ( z i1 , z i ) = M ST ( z i1 , z i ).
M( z i1 , z i )= E ref M out [ M S ( z 1 , z 2 ) T M S ( z 2 , z 3 ) T M S ( z i2 , z i1 ) T ] M ST ( z i1 , z i ) × [ M S ( z 1 , z 2 ) T M S ( z 2 , z 3 ) T M S ( z i2 , z i1 ) T ] 1 M out 1 E ref 1 .
A= E ref M out [ M S ( z 1 , z 2 ) T M S ( z 2 , z 3 ) T M S ( z i2 , z i1 ) T ],
M( z i1 , z i )=A M ST ( z i1 , z i ) A 1 .
M( z i1 , z i )= M Δ M R M D ,
M R ( z i1 , z i )= A R M ST R ( z i1 , z i ) A R1 ,
R( z i )=arccos( tr( M ST R ( z i1 , z i )) 2 1),
R( z i )=arccos( tr( M R ( z i1 , z i )) 2 1).
R( z i )=arccos{ 2 cos 2 ψ( z i ) cos 2 [ δ( z i ) 2 ]1 },
δ( z i )=2 cos 1 [ r 3 2 [ 1 cos 2 ( R( z i )/2 ) ]+ cos 2 [ R( z i )/2 ] ],
ψ( z i )== cos 1 [ cos( R( z i )/2 )/cos( δ( z i )/2 ) ],

Metrics