Abstract

We proposed a new type of dihedral corner reflector array (DCRA) called “radially arranged DCRA”. Our radially arranged DCRA could display a floating, three-dimensional image with a wide viewing angle without producing virtual images because dihedral corner reflectors were radially arranged for the designed paths of rays. In this research, we designed a reflector array pattern and evaluated the viewing angle of the floating image displayed by our radially arranged DCRA. During evaluation, we measured the reflection ratio of the radially arranged DCRA and demonstrated a floating image. Compared with a conventional DCRA, our radially arranged DCRA could expand the viewing angle from ± 30° to ± 90° without producing virtual images.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Twin imaging phenomenon of integral imaging

Juanmei Hu, Yimin Lou, Fengmin Wu, and Aixi Chen
Opt. Express 26(10) 13301-13310 (2018)

Simple Model of Corner Reflector Phenomena

H. D. Eckhardt
Appl. Opt. 10(7) 1559-1566 (1971)

Floating volumetric image formation using a dihedral corner reflector array device

Daisuke Miyazaki, Noboru Hirano, Yuki Maeda, Siori Yamamoto, Takaaki Mukai, and Satoshi Maekawa
Appl. Opt. 52(1) A281-A289 (2013)

References

  • View by:
  • |
  • |
  • |

  1. H. Kimura, T. Uchiyama, and H. Yohikawa, “Laser produced 3D display in the air,” in Proceedings of ACM SIGGRAPH 2006 Emerging technologies, T. Craven, ed. (Association for Computing Machinery, 2006), no. 20.
    [Crossref]
  2. Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” ACM Trans. Graph. 35(2), 17 (2016).
    [Crossref]
  3. H. Yamamoto, Y. Tomiyama, and S. Suyama, “Floating aerial LED signage based on aerial imaging by retro-reflection (AIRR),” Opt. Express 22(22), 26919–26924 (2014).
    [Crossref] [PubMed]
  4. D. Zhao, B. Su, G. Chen, and H. Liao, “360 degree viewable floating autostereoscopic display using integral photography and multiple semitransparent mirrors,” Opt. Express 23(8), 9812–9823 (2015).
    [Crossref] [PubMed]
  5. Y. Kim, K. Jung, and S. Min, “Analysis of off-axis integral floating system using concave mirror,” J. Opt. Soc. Korea 16(3), 270–276 (2012).
    [Crossref]
  6. T. Kakue, T. Nishitsuji, T. Kawashima, K. Suzuki, T. Shimobaba, and T. Ito, “Aerial projection of three-dimensional motion pictures by electro-holography and parabolic mirrors,” Sci. Rep. 5(1), 11750 (2015).
    [Crossref] [PubMed]
  7. H. Yamamoto, H. Bando, R. Kujime, and S. Suyama, “Design of crossed-mirror array to form floating 3D LED signs,” Proc. SPIE 8288, 828820 (2012).
    [Crossref]
  8. A. Yamaguchi, S. Maekawa, T. Yamane, I. Okada, and Y. Utsumi, “Fabrication of a dihedral corner reflector array for a floating image manufactured by x-ray lithography using synchrotron radiation,” Trans. Jpn. Inst. Electron. Packag. 8(1), 23–28 (2015).
    [Crossref]
  9. H. Katsumoto, H. Kajita, N. Koizumi, and T. Naemura, “HoVerTable PONG: Playing face-to-face game on horizontal tabletop with moving vertical mid-air image,” in Proceedings of the 13th International Conference on Advances in Computer Entertainment TechnologyH. Ando and G. Wallner, (Association for Computing Machinery, 2016), no. 50.
    [Crossref]
  10. H. Kim, I. Takahashi, H. Yamamoto, S. Maekawa, and T. Naemura, “MARIO: Mid-air augmented reality interaction with objects,” Entertain. Comput. 5(4), 233–241 (2014).
    [Crossref]
  11. Y. Maeda, D. Miyazaki, T. Mukai, and S. Maekawa, “Volumetric display using rotating prism sheets arranged in a symmetrical configuration,” Opt. Express 21(22), 27074–27086 (2013).
    [Crossref] [PubMed]
  12. D. Miyazaki, N. Hirano, Y. Maeda, S. Yamamoto, T. Mukai, and S. Maekawa, “Floating volumetric image formation using a dihedral corner reflector array device,” Appl. Opt. 52(1), A281–A289 (2013).
    [Crossref] [PubMed]
  13. E. Hecht, Optics: Pearson New International Edition (Pearson, 2013), Chap. 6.
  14. A. Campo and C. Greiner, “SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography,” J. Micromech. Microeng. 17(6), R81–R95 (2007).
    [Crossref]
  15. T. C. Sum, A. A. Bettiol, J. A. Van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83(9), 1707–1709 (2003).
    [Crossref]
  16. M. Nordstrom, D. Zauner, A. Boisen, and J. Hubner, “Single-mode waveguides with SU-8 polymer core and cladding for MOEMS applications,” J. Lightwave Technol. 25(5), 1284–1289 (2007).
    [Crossref]
  17. M. Akamatsu, K. Terao, H. Takao, F. Simokawa, F. Ohira, and T. Suzuki, “Development of high accuracy spray coating method using multi-layer coat,” Trans. IEE Jpn. 133-E(5), 170–176 (2013).
  18. W. Kang, E. Rade, S. Kopetz, and A. Neyer, “Novel exposure methods based on reflection and refraction effects in the field of SU-8 lithography,” J. Micromech. Microeng. 16(4), 821–831 (2006).
    [Crossref]

2016 (1)

Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” ACM Trans. Graph. 35(2), 17 (2016).
[Crossref]

2015 (3)

D. Zhao, B. Su, G. Chen, and H. Liao, “360 degree viewable floating autostereoscopic display using integral photography and multiple semitransparent mirrors,” Opt. Express 23(8), 9812–9823 (2015).
[Crossref] [PubMed]

A. Yamaguchi, S. Maekawa, T. Yamane, I. Okada, and Y. Utsumi, “Fabrication of a dihedral corner reflector array for a floating image manufactured by x-ray lithography using synchrotron radiation,” Trans. Jpn. Inst. Electron. Packag. 8(1), 23–28 (2015).
[Crossref]

T. Kakue, T. Nishitsuji, T. Kawashima, K. Suzuki, T. Shimobaba, and T. Ito, “Aerial projection of three-dimensional motion pictures by electro-holography and parabolic mirrors,” Sci. Rep. 5(1), 11750 (2015).
[Crossref] [PubMed]

2014 (2)

H. Kim, I. Takahashi, H. Yamamoto, S. Maekawa, and T. Naemura, “MARIO: Mid-air augmented reality interaction with objects,” Entertain. Comput. 5(4), 233–241 (2014).
[Crossref]

H. Yamamoto, Y. Tomiyama, and S. Suyama, “Floating aerial LED signage based on aerial imaging by retro-reflection (AIRR),” Opt. Express 22(22), 26919–26924 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (2)

H. Yamamoto, H. Bando, R. Kujime, and S. Suyama, “Design of crossed-mirror array to form floating 3D LED signs,” Proc. SPIE 8288, 828820 (2012).
[Crossref]

Y. Kim, K. Jung, and S. Min, “Analysis of off-axis integral floating system using concave mirror,” J. Opt. Soc. Korea 16(3), 270–276 (2012).
[Crossref]

2007 (2)

A. Campo and C. Greiner, “SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography,” J. Micromech. Microeng. 17(6), R81–R95 (2007).
[Crossref]

M. Nordstrom, D. Zauner, A. Boisen, and J. Hubner, “Single-mode waveguides with SU-8 polymer core and cladding for MOEMS applications,” J. Lightwave Technol. 25(5), 1284–1289 (2007).
[Crossref]

2006 (1)

W. Kang, E. Rade, S. Kopetz, and A. Neyer, “Novel exposure methods based on reflection and refraction effects in the field of SU-8 lithography,” J. Micromech. Microeng. 16(4), 821–831 (2006).
[Crossref]

2003 (1)

T. C. Sum, A. A. Bettiol, J. A. Van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83(9), 1707–1709 (2003).
[Crossref]

Akamatsu, M.

M. Akamatsu, K. Terao, H. Takao, F. Simokawa, F. Ohira, and T. Suzuki, “Development of high accuracy spray coating method using multi-layer coat,” Trans. IEE Jpn. 133-E(5), 170–176 (2013).

Ando, H.

H. Katsumoto, H. Kajita, N. Koizumi, and T. Naemura, “HoVerTable PONG: Playing face-to-face game on horizontal tabletop with moving vertical mid-air image,” in Proceedings of the 13th International Conference on Advances in Computer Entertainment TechnologyH. Ando and G. Wallner, (Association for Computing Machinery, 2016), no. 50.
[Crossref]

Bando, H.

H. Yamamoto, H. Bando, R. Kujime, and S. Suyama, “Design of crossed-mirror array to form floating 3D LED signs,” Proc. SPIE 8288, 828820 (2012).
[Crossref]

Bettiol, A. A.

T. C. Sum, A. A. Bettiol, J. A. Van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83(9), 1707–1709 (2003).
[Crossref]

Boisen, A.

Campo, A.

A. Campo and C. Greiner, “SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography,” J. Micromech. Microeng. 17(6), R81–R95 (2007).
[Crossref]

Chen, G.

Greiner, C.

A. Campo and C. Greiner, “SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography,” J. Micromech. Microeng. 17(6), R81–R95 (2007).
[Crossref]

Hasegawa, S.

Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” ACM Trans. Graph. 35(2), 17 (2016).
[Crossref]

Hayasaki, Y.

Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” ACM Trans. Graph. 35(2), 17 (2016).
[Crossref]

Hirano, N.

Hoshi, T.

Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” ACM Trans. Graph. 35(2), 17 (2016).
[Crossref]

Hubner, J.

Ito, T.

T. Kakue, T. Nishitsuji, T. Kawashima, K. Suzuki, T. Shimobaba, and T. Ito, “Aerial projection of three-dimensional motion pictures by electro-holography and parabolic mirrors,” Sci. Rep. 5(1), 11750 (2015).
[Crossref] [PubMed]

Jung, K.

Kajita, H.

H. Katsumoto, H. Kajita, N. Koizumi, and T. Naemura, “HoVerTable PONG: Playing face-to-face game on horizontal tabletop with moving vertical mid-air image,” in Proceedings of the 13th International Conference on Advances in Computer Entertainment TechnologyH. Ando and G. Wallner, (Association for Computing Machinery, 2016), no. 50.
[Crossref]

Kakue, T.

T. Kakue, T. Nishitsuji, T. Kawashima, K. Suzuki, T. Shimobaba, and T. Ito, “Aerial projection of three-dimensional motion pictures by electro-holography and parabolic mirrors,” Sci. Rep. 5(1), 11750 (2015).
[Crossref] [PubMed]

Kang, W.

W. Kang, E. Rade, S. Kopetz, and A. Neyer, “Novel exposure methods based on reflection and refraction effects in the field of SU-8 lithography,” J. Micromech. Microeng. 16(4), 821–831 (2006).
[Crossref]

Katsumoto, H.

H. Katsumoto, H. Kajita, N. Koizumi, and T. Naemura, “HoVerTable PONG: Playing face-to-face game on horizontal tabletop with moving vertical mid-air image,” in Proceedings of the 13th International Conference on Advances in Computer Entertainment TechnologyH. Ando and G. Wallner, (Association for Computing Machinery, 2016), no. 50.
[Crossref]

Kawashima, T.

T. Kakue, T. Nishitsuji, T. Kawashima, K. Suzuki, T. Shimobaba, and T. Ito, “Aerial projection of three-dimensional motion pictures by electro-holography and parabolic mirrors,” Sci. Rep. 5(1), 11750 (2015).
[Crossref] [PubMed]

Kim, H.

H. Kim, I. Takahashi, H. Yamamoto, S. Maekawa, and T. Naemura, “MARIO: Mid-air augmented reality interaction with objects,” Entertain. Comput. 5(4), 233–241 (2014).
[Crossref]

Kim, Y.

Koizumi, N.

H. Katsumoto, H. Kajita, N. Koizumi, and T. Naemura, “HoVerTable PONG: Playing face-to-face game on horizontal tabletop with moving vertical mid-air image,” in Proceedings of the 13th International Conference on Advances in Computer Entertainment TechnologyH. Ando and G. Wallner, (Association for Computing Machinery, 2016), no. 50.
[Crossref]

Kopetz, S.

W. Kang, E. Rade, S. Kopetz, and A. Neyer, “Novel exposure methods based on reflection and refraction effects in the field of SU-8 lithography,” J. Micromech. Microeng. 16(4), 821–831 (2006).
[Crossref]

Kujime, R.

H. Yamamoto, H. Bando, R. Kujime, and S. Suyama, “Design of crossed-mirror array to form floating 3D LED signs,” Proc. SPIE 8288, 828820 (2012).
[Crossref]

Kumagai, K.

Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” ACM Trans. Graph. 35(2), 17 (2016).
[Crossref]

Liao, H.

Maeda, Y.

Maekawa, S.

A. Yamaguchi, S. Maekawa, T. Yamane, I. Okada, and Y. Utsumi, “Fabrication of a dihedral corner reflector array for a floating image manufactured by x-ray lithography using synchrotron radiation,” Trans. Jpn. Inst. Electron. Packag. 8(1), 23–28 (2015).
[Crossref]

H. Kim, I. Takahashi, H. Yamamoto, S. Maekawa, and T. Naemura, “MARIO: Mid-air augmented reality interaction with objects,” Entertain. Comput. 5(4), 233–241 (2014).
[Crossref]

Y. Maeda, D. Miyazaki, T. Mukai, and S. Maekawa, “Volumetric display using rotating prism sheets arranged in a symmetrical configuration,” Opt. Express 21(22), 27074–27086 (2013).
[Crossref] [PubMed]

D. Miyazaki, N. Hirano, Y. Maeda, S. Yamamoto, T. Mukai, and S. Maekawa, “Floating volumetric image formation using a dihedral corner reflector array device,” Appl. Opt. 52(1), A281–A289 (2013).
[Crossref] [PubMed]

Min, S.

Miyazaki, D.

Mukai, T.

Naemura, T.

H. Kim, I. Takahashi, H. Yamamoto, S. Maekawa, and T. Naemura, “MARIO: Mid-air augmented reality interaction with objects,” Entertain. Comput. 5(4), 233–241 (2014).
[Crossref]

H. Katsumoto, H. Kajita, N. Koizumi, and T. Naemura, “HoVerTable PONG: Playing face-to-face game on horizontal tabletop with moving vertical mid-air image,” in Proceedings of the 13th International Conference on Advances in Computer Entertainment TechnologyH. Ando and G. Wallner, (Association for Computing Machinery, 2016), no. 50.
[Crossref]

Neyer, A.

W. Kang, E. Rade, S. Kopetz, and A. Neyer, “Novel exposure methods based on reflection and refraction effects in the field of SU-8 lithography,” J. Micromech. Microeng. 16(4), 821–831 (2006).
[Crossref]

Nishitsuji, T.

T. Kakue, T. Nishitsuji, T. Kawashima, K. Suzuki, T. Shimobaba, and T. Ito, “Aerial projection of three-dimensional motion pictures by electro-holography and parabolic mirrors,” Sci. Rep. 5(1), 11750 (2015).
[Crossref] [PubMed]

Nordstrom, M.

Ochiai, Y.

Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” ACM Trans. Graph. 35(2), 17 (2016).
[Crossref]

Ohira, F.

M. Akamatsu, K. Terao, H. Takao, F. Simokawa, F. Ohira, and T. Suzuki, “Development of high accuracy spray coating method using multi-layer coat,” Trans. IEE Jpn. 133-E(5), 170–176 (2013).

Okada, I.

A. Yamaguchi, S. Maekawa, T. Yamane, I. Okada, and Y. Utsumi, “Fabrication of a dihedral corner reflector array for a floating image manufactured by x-ray lithography using synchrotron radiation,” Trans. Jpn. Inst. Electron. Packag. 8(1), 23–28 (2015).
[Crossref]

Pun, E. Y. B.

T. C. Sum, A. A. Bettiol, J. A. Van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83(9), 1707–1709 (2003).
[Crossref]

Rade, E.

W. Kang, E. Rade, S. Kopetz, and A. Neyer, “Novel exposure methods based on reflection and refraction effects in the field of SU-8 lithography,” J. Micromech. Microeng. 16(4), 821–831 (2006).
[Crossref]

Rekimoto, J.

Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” ACM Trans. Graph. 35(2), 17 (2016).
[Crossref]

Shimobaba, T.

T. Kakue, T. Nishitsuji, T. Kawashima, K. Suzuki, T. Shimobaba, and T. Ito, “Aerial projection of three-dimensional motion pictures by electro-holography and parabolic mirrors,” Sci. Rep. 5(1), 11750 (2015).
[Crossref] [PubMed]

Simokawa, F.

M. Akamatsu, K. Terao, H. Takao, F. Simokawa, F. Ohira, and T. Suzuki, “Development of high accuracy spray coating method using multi-layer coat,” Trans. IEE Jpn. 133-E(5), 170–176 (2013).

Su, B.

Sum, T. C.

T. C. Sum, A. A. Bettiol, J. A. Van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83(9), 1707–1709 (2003).
[Crossref]

Suyama, S.

H. Yamamoto, Y. Tomiyama, and S. Suyama, “Floating aerial LED signage based on aerial imaging by retro-reflection (AIRR),” Opt. Express 22(22), 26919–26924 (2014).
[Crossref] [PubMed]

H. Yamamoto, H. Bando, R. Kujime, and S. Suyama, “Design of crossed-mirror array to form floating 3D LED signs,” Proc. SPIE 8288, 828820 (2012).
[Crossref]

Suzuki, K.

T. Kakue, T. Nishitsuji, T. Kawashima, K. Suzuki, T. Shimobaba, and T. Ito, “Aerial projection of three-dimensional motion pictures by electro-holography and parabolic mirrors,” Sci. Rep. 5(1), 11750 (2015).
[Crossref] [PubMed]

Suzuki, T.

M. Akamatsu, K. Terao, H. Takao, F. Simokawa, F. Ohira, and T. Suzuki, “Development of high accuracy spray coating method using multi-layer coat,” Trans. IEE Jpn. 133-E(5), 170–176 (2013).

Takahashi, I.

H. Kim, I. Takahashi, H. Yamamoto, S. Maekawa, and T. Naemura, “MARIO: Mid-air augmented reality interaction with objects,” Entertain. Comput. 5(4), 233–241 (2014).
[Crossref]

Takao, H.

M. Akamatsu, K. Terao, H. Takao, F. Simokawa, F. Ohira, and T. Suzuki, “Development of high accuracy spray coating method using multi-layer coat,” Trans. IEE Jpn. 133-E(5), 170–176 (2013).

Terao, K.

M. Akamatsu, K. Terao, H. Takao, F. Simokawa, F. Ohira, and T. Suzuki, “Development of high accuracy spray coating method using multi-layer coat,” Trans. IEE Jpn. 133-E(5), 170–176 (2013).

Tomiyama, Y.

Tung, K. K.

T. C. Sum, A. A. Bettiol, J. A. Van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83(9), 1707–1709 (2003).
[Crossref]

Utsumi, Y.

A. Yamaguchi, S. Maekawa, T. Yamane, I. Okada, and Y. Utsumi, “Fabrication of a dihedral corner reflector array for a floating image manufactured by x-ray lithography using synchrotron radiation,” Trans. Jpn. Inst. Electron. Packag. 8(1), 23–28 (2015).
[Crossref]

Van Kan, J. A.

T. C. Sum, A. A. Bettiol, J. A. Van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83(9), 1707–1709 (2003).
[Crossref]

Wallner, G.

H. Katsumoto, H. Kajita, N. Koizumi, and T. Naemura, “HoVerTable PONG: Playing face-to-face game on horizontal tabletop with moving vertical mid-air image,” in Proceedings of the 13th International Conference on Advances in Computer Entertainment TechnologyH. Ando and G. Wallner, (Association for Computing Machinery, 2016), no. 50.
[Crossref]

Watt, F.

T. C. Sum, A. A. Bettiol, J. A. Van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83(9), 1707–1709 (2003).
[Crossref]

Yamaguchi, A.

A. Yamaguchi, S. Maekawa, T. Yamane, I. Okada, and Y. Utsumi, “Fabrication of a dihedral corner reflector array for a floating image manufactured by x-ray lithography using synchrotron radiation,” Trans. Jpn. Inst. Electron. Packag. 8(1), 23–28 (2015).
[Crossref]

Yamamoto, H.

H. Kim, I. Takahashi, H. Yamamoto, S. Maekawa, and T. Naemura, “MARIO: Mid-air augmented reality interaction with objects,” Entertain. Comput. 5(4), 233–241 (2014).
[Crossref]

H. Yamamoto, Y. Tomiyama, and S. Suyama, “Floating aerial LED signage based on aerial imaging by retro-reflection (AIRR),” Opt. Express 22(22), 26919–26924 (2014).
[Crossref] [PubMed]

H. Yamamoto, H. Bando, R. Kujime, and S. Suyama, “Design of crossed-mirror array to form floating 3D LED signs,” Proc. SPIE 8288, 828820 (2012).
[Crossref]

Yamamoto, S.

Yamane, T.

A. Yamaguchi, S. Maekawa, T. Yamane, I. Okada, and Y. Utsumi, “Fabrication of a dihedral corner reflector array for a floating image manufactured by x-ray lithography using synchrotron radiation,” Trans. Jpn. Inst. Electron. Packag. 8(1), 23–28 (2015).
[Crossref]

Zauner, D.

Zhao, D.

ACM Trans. Graph. (1)

Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” ACM Trans. Graph. 35(2), 17 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T. C. Sum, A. A. Bettiol, J. A. Van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83(9), 1707–1709 (2003).
[Crossref]

Entertain. Comput. (1)

H. Kim, I. Takahashi, H. Yamamoto, S. Maekawa, and T. Naemura, “MARIO: Mid-air augmented reality interaction with objects,” Entertain. Comput. 5(4), 233–241 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Micromech. Microeng. (2)

A. Campo and C. Greiner, “SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography,” J. Micromech. Microeng. 17(6), R81–R95 (2007).
[Crossref]

W. Kang, E. Rade, S. Kopetz, and A. Neyer, “Novel exposure methods based on reflection and refraction effects in the field of SU-8 lithography,” J. Micromech. Microeng. 16(4), 821–831 (2006).
[Crossref]

J. Opt. Soc. Korea (1)

Opt. Express (3)

Proc. SPIE (1)

H. Yamamoto, H. Bando, R. Kujime, and S. Suyama, “Design of crossed-mirror array to form floating 3D LED signs,” Proc. SPIE 8288, 828820 (2012).
[Crossref]

Sci. Rep. (1)

T. Kakue, T. Nishitsuji, T. Kawashima, K. Suzuki, T. Shimobaba, and T. Ito, “Aerial projection of three-dimensional motion pictures by electro-holography and parabolic mirrors,” Sci. Rep. 5(1), 11750 (2015).
[Crossref] [PubMed]

Trans. IEE Jpn. (1)

M. Akamatsu, K. Terao, H. Takao, F. Simokawa, F. Ohira, and T. Suzuki, “Development of high accuracy spray coating method using multi-layer coat,” Trans. IEE Jpn. 133-E(5), 170–176 (2013).

Trans. Jpn. Inst. Electron. Packag. (1)

A. Yamaguchi, S. Maekawa, T. Yamane, I. Okada, and Y. Utsumi, “Fabrication of a dihedral corner reflector array for a floating image manufactured by x-ray lithography using synchrotron radiation,” Trans. Jpn. Inst. Electron. Packag. 8(1), 23–28 (2015).
[Crossref]

Other (3)

H. Katsumoto, H. Kajita, N. Koizumi, and T. Naemura, “HoVerTable PONG: Playing face-to-face game on horizontal tabletop with moving vertical mid-air image,” in Proceedings of the 13th International Conference on Advances in Computer Entertainment TechnologyH. Ando and G. Wallner, (Association for Computing Machinery, 2016), no. 50.
[Crossref]

H. Kimura, T. Uchiyama, and H. Yohikawa, “Laser produced 3D display in the air,” in Proceedings of ACM SIGGRAPH 2006 Emerging technologies, T. Craven, ed. (Association for Computing Machinery, 2006), no. 20.
[Crossref]

E. Hecht, Optics: Pearson New International Edition (Pearson, 2013), Chap. 6.

Supplementary Material (1)

NameDescription
» Visualization 1       This video shows floating images and virtual images produced by conventional and radially arranged DCRAs. Our radially patterned DCRA achieved a wide viewing angle of a floating image without virtual images.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic of our radially arranged DCRA and mechanism of a floating image displayed by DCRA. (a) A bird’s-eye view of the radially arranged DCRA. The DCRA displays a floating image at the plane-symmetric point to the light source. The top view of the (b) radially arranged DCRA and (c) conventional DCRA. The reflectors of the radially arranged DCRA are arranged radially. (d) The path of rays reflected once or twice by a dihedral corner reflector. (e) The optical system of a DCRA displaying a floating image. The twice-reflected rays produce the real image as a floating image. (f) The top view of a dihedral corner reflector. The maximum ratio of twice-reflected rays is observed when the incident angle is 45°.
Fig. 2
Fig. 2 Path of a ray reflected by side surfaces in a dihedral corner reflector. We set the normal directions to each of the side surfaces as x and y. This figure shows the path of a ray reflected by the side surfaces in the x direction. The width a [μm] and height b [μm] of the reflector, incident angle to the bottom surface in x direction ix [°], and refractive angle to the bottom surface in x direction rx [°] are defined in this Fig. Additionally, iy [°] and ry [°] are defined. The ratio of reflected rays to incident light in the x direction, Rx [-], is geometrically obtained, as shown in this figure.
Fig. 3
Fig. 3 Definition of the azimuth and elevation angles. (a) shows the azimuth angle in top view of the DCRA optical system. (b) shows the elevation angle in the cross-section along line AA’.
Fig. 4
Fig. 4 Theoretical reflection ratio θ is fixed at 45°. Defining a half-value width of η as the viewing angle, the viewing angle of radially arranged DCRA is ± 90°, while that of the conventional DCRA is approximately ± 30°. In the conventional DCRA, the once-reflected rays travel in the same direction as the twice-reflected rays, when φ = ± 45°.
Fig. 5
Fig. 5 Design of radially arranged DCRA for fabrication. (a) shows the array pattern of dihedral corner reflectors. We designed a to cyclically change within the range of 60 to 150 μm. (b) shows rectangular pillars as dihedral corner reflectors. We designed b = 200 μm, and the distance between the reflectors to be 30 μm.
Fig. 6
Fig. 6 Fabrication process for DCRAs.
Fig. 7
Fig. 7 Fabricated DCRAs. (a) and (b) show the SEM images, optical images, and measured height by stylus profilers of the radially arranged and conventional DCRAs. (c) shows the side view of dihedral corner reflectors.
Fig. 8
Fig. 8 Measured reflection ratio of fabricated DCRAs. θ was fixed at 45°. Lines represent theoretical η and plots represent measured η. When φ = ± 45°, the once-reflected ray was measured by the photodetector.
Fig. 9
Fig. 9 Setup for observation of a floating image. The DCRA and LCD are fixed on a turntable such that the LCD makes 45° with the DCRA. A white letter “A” with a height of 7 mm and a width of 8 mm is displayed on the LCD at a distance of 10 mm from the DCRA. The optical axis of the camera is fixed at a 45° angle with the DCRA.
Fig. 10
Fig. 10 Floating and virtual images displayed by radially arranged and conventional DCRAs (see Visualization 1). With the radially arranged DCRA, the floating image is bright and visible, even as φ increases. With the conventional DCRA, the floating image disappears and the virtual image appears when φ increases.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η=RMTQ.
R x ={ b a tan r x 2 b a tan r x ( 0< b a tan r x 1 ) ( 1< b a tan r x 2 )
R= R x R y ={ b a tan r x b a tan r y b a tan r x ( 2 b a tan r y ) ( 2 b a tan r x ) b a tan r y ( 2 b a tan r x )( 2 b a tan r y ) ( 0< b a tan r x 1,0< b a tan r y 1 ) ( 0< b a tan r x 1,1< b a tan r y 2 ) ( 1< b a tan r x 2,0< b a tan r y 1 ) ( 1< b a tan r x 2,1< b a tan r y 2 )

Metrics