Abstract

Here we present a novel phase-sensitive swept-source optical coherence tomography (PhS-SS-OCT) system. The simultaneously recorded calibration signal, which is commonly used in SS-OCT to stabilize the phase, is randomly sub-sampled during the acquisition, and it is later reconstructed based on the Compressed Sensing (CS) theory. We first mathematically investigated the method, and verified it through computer simulations. We then conducted a vibrational frequency test and a flow velocity measurement in phantoms to demonstrate the system’s capability of handling phase-sensitive tasks. The proposed scheme shows excellent phase stability with greatly discounted data bandwidth compared with conventional procedures. We further showcased the usefulness of the system in biological samples by detecting the blood flow in ex vivo swine left marginal artery. The proposed system is compatible with most of the existing SS-OCT systems and could be a preferred solution for future high-speed phase-sensitive applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Highly phase-stable 200 kHz swept-source optical coherence tomography based on KTN electro-optic deflector

Yuye Ling, Xinwen Yao, and Christine P. Hendon
Biomed. Opt. Express 8(8) 3687-3699 (2017)

High-penetration swept source Doppler optical coherence angiography by fully numerical phase stabilization

Young-Joo Hong, Shuichi Makita, Franck Jaillon, Myeong Jin Ju, Eun Jung Min, Byeong Ha Lee, Masahide Itoh, Masahiro Miura, and Yoshiaki Yasuno
Opt. Express 20(3) 2740-2760 (2012)

Phase-noise analysis of swept-source optical coherence tomography systems

Yuye Ling, Yu Gan, Xinwen Yao, and Christine P. Hendon
Opt. Lett. 42(7) 1333-1336 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proceedings of the National Academy of Sciences 112, 3128–3133 (2015).
    [Crossref]
  2. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Optics Express 15, 4083–4097 (2007).
    [Crossref] [PubMed]
  3. D. M. Schwartz, J. Fingler, D. Y. Kim, R. J. Zawadzki, L. S. Morse, S. S. Park, S. E. Fraser, and J. S. Werner, “Phase-variance optical coherence tomography: A technique for noninvasive angiography,” Ophthalmology 121, 180–187 (2014).
    [Crossref]
  4. A. Zhang, Q. Zhang, C.-L. Chen, and R. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. of Biomedical Optics 20, 100901 (2015).
    [Crossref]
  5. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Optics Letters 25, 114–116 (2000).
    [Crossref]
  6. R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Progress in Retinal and Eye Research 41, 26–43 (2014).
    [Crossref] [PubMed]
  7. S. Wang and K. V. Larin, “Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics,” Optics Letters 39, 41–44 (2014).
    [Crossref]
  8. S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: A review,” Journal of Biophotonics 8, 279–302 (2015).
    [Crossref]
  9. X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties, Optics Express 16, 11052–11065 (2008).
    [Crossref] [PubMed]
  10. R. F. Spaide, J. G. Fujimoto, and N. K. Waheed, “Image artifacts in optical coherence tomography angiography,” Retina 35, 2163–2180 (2015).
    [Crossref] [PubMed]
  11. L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Optics Express 16, 11438–11452 (2008).
    [Crossref] [PubMed]
  12. Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” Optics Express 16, 12350–12361 (2008).
    [Crossref] [PubMed]
  13. W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomedical Optics Express 5, 2963–2977 (2014).
    [Crossref] [PubMed]
  14. S. Song, W. Wei, B.-Y. Hsieh, I. Pelivanov, T. T. Shen, M. O’Donnell, and R. K. Wang, “Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate,” Applied Physics Letters 108, 191104 (2016).
    [Crossref]
  15. T. Klein and R. Huber, “High-speed OCT light sources and systems [Invited],” Biomedical Optics Express 8, 828–859 (2017).
    [Crossref]
  16. B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr 4+:forsterite laser,” Optics Letters 22, 1704–1706 (1997).
    [Crossref]
  17. R. A. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Optics Express 14, 3225–3237 (2006).
    [Crossref] [PubMed]
  18. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Optics Express 11, 2953–2963 (2003).
    [Crossref] [PubMed]
  19. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “OCT Multi-Megahertz: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Optics Express 18, 14685–14704 (2010).
    [Crossref]
  20. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomedical Optics Express 3, 2733–2751 (2012).
    [Crossref] [PubMed]
  21. X. Wei, A. K. S. Lau, Y. Xu, K. K. Tsia, and K. K. Y. Wong, “28 MHz swept source at 1.0 μm for ultrafast quantitative phase imaging,” Biomedical Optics Express 6, 3855–3864 (2015).
    [Crossref]
  22. Y. Ling, Y. Gan, X. Yao, and C. P. Hendon, “Phase-noise analysis of swept-source optical coherence tomography systems,” Optics Letters 42, 1333–1336 (2017).
    [Crossref] [PubMed]
  23. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Optics Express 13, 10652–10664 (2005).
    [Crossref] [PubMed]
  24. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Optics Express 17, 14880–14894 (2009).
    [Crossref] [PubMed]
  25. Z. Shangguan, Y. Shen, P. Li, and Z. Ding, “Wavenumber calibration and phase measurement in swept source optical coherence tomography (in Chinese),” Acta Physica Sinica 65, 034201 (2016).
  26. M. Singh, C. Wu, C.-H. Liu, J. Li, A. Schill, A. Nair, and K. V. Larin, “Phase-sensitive optical coherence elastography at 1.5 million A-Lines per second,” Optics Letters 40, 2588–2591 (2015).
    [Crossref] [PubMed]
  27. S. Amarakoon, J. H. De Jong, B. Braaf, S. Yzer, T. Missotten, M. E. van Velthoven, and J. F. de Boer, “Phase-resolved doppler optical coherence tomographic features in retinal angiomatous proliferation,” American Journal of Ophthalmology 160, 1044–1054 (2015).
    [Crossref] [PubMed]
  28. S. Kim, P. D. Raphael, J. S. Oghalai, and B. E. Applegate, “High-speed spectral calibration by complex FIR filter in phase-sensitive optical coherence tomography,” Biomedical Optics Express 7, 1430–1444 (2016).
    [Crossref] [PubMed]
  29. W. Chen, C. Du, and Y. Pan, “Cerebral capillary flow imaging by wavelength-division-multiplexing swept-source optical Doppler tomography,” Journal of Biophotonics 11, e201800004(2018).
    [Crossref] [PubMed]
  30. E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Information Theory 52, 489–509 (2006).
    [Crossref]
  31. D. Donoho, “Compressed sensing,” IEEE Trans. Information Theory 52, 1289–1306 (2006).
    [Crossref]
  32. N. Mohan, I. Stojanovic, W. C. Karl, B. E. A. Saleh, and M. C. Teich, “Compressed sensing in optical coherence tomography,” Proc. SPIE 7570, 75700L (2010).
    [Crossref]
  33. X. Liu and J. U. Kang, “SD-OCT Compressive: the application of compressed sensing in spectral domain optical coherence tomography,” Optics Express 18, 22010–22019 (2010).
    [Crossref]
  34. E. Lebed, P. J. Mackenzie, M. V. Sarunic, and M. F. Beg, “Rapid volumetric OCT image acquisition using Compressive Sampling,” Optics Express 18, 21003–21012 (2010).
    [Crossref] [PubMed]
  35. W. Meiniel, Y. Gan, C. P. Hendon, J.-C. Olivo-Marin, A. Laine, and E. D. Angelini, “Sparsity-based simplification of spectral-domain optical coherence tomography images of cardiac samples,” in Proceedings of 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), (IEEE, 2016), pp. 373–376.
    [Crossref]
  36. W. Meiniel, Y. Gan, J.-C. Olivo-Marin, and E. Angelini, “A sparsity-based simplification method for segmentation of spectral-domain optical coherence tomography images,” Proc. SPIE 10394, 1039406 (2017).
  37. C. K. Mididoddi, F. Bai, G. Wang, J. Liu, S. Gibson, and C. Wang, “High-throughput photonic time-stretch optical coherence tomography with data compression,” IEEE Photonics Journal 9, 1–15 (2017).
    [Crossref]
  38. E. Candès and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Probl. 23, 969 (2007).
    [Crossref]
  39. D. L. Donoho and X. Huo, “Uncertainty principles and ideal atomic decomposition,” IEEE Trans. Inf. Theory 47, 2845–2862 (2001).
    [Crossref]
  40. M. Lustig, D. Donoho, and J. M. Pauly, “MRI Sparse: The application of compressed sensing for rapid MR imaging,” Magnetic Resonance in Medicine 58, 1182–1195 (2007).
    [Crossref]
  41. J. Bobin, J.-L. Starck, and R. Ottensamer, “Compressed sensing in astronomy,” IEEE Journal of Selected Topics in Signal Processing 2, 718–726 (2008).
    [Crossref]
  42. M. A. Herman and T. Strohmer, “High-resolution radar via compressed sensing,” IEEE Trans. Signal Process. 57, 2275–2284 (2009).
    [Crossref]
  43. M. M. Marim, M. Atlan, E. Angelini, and J.-C. Olivo-Marin, “Compressed sensing with off-axis frequency-shifting holography,” Optics Letters 35, 871–873 (2010).
    [Crossref] [PubMed]
  44. M. F. Duarte and R. G. Baraniuk, “Spectral compressive sensing,” Applied and Computational Harmonic Analysis 35, 111–129 (2013).
    [Crossref]
  45. R. Baraniuk, V. Cevher, M. Duarte, and C. Hegde, “Model-based compressive sensing,” IEEE Trans. Inf. Theory 56, 1982–2001 (2010).
    [Crossref]
  46. S. Becker, J. Bobin, and E. Candès, “NESTA: A Fast and Accurate First-Order Method for Sparse Recovery,” Journal on Imaging Sciences 4, 1–39 (2011).
    [Crossref]
  47. Y. Ling, X. Yao, and C. P. Hendon, “Highly phase-stable 200 kHz swept-source optical coherence tomography based on KTN electro-optic deflector,” Biomedical Optics Express 8, 3687–3699 (2017).
    [Crossref] [PubMed]
  48. R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express 17, 8926–8940 (2009).
    [Crossref] [PubMed]
  49. J. Whitaker, H. Raju, C. Taylor, and C. A. Rinaldi, “Accelerated idioventricular rhythm after left atrial tachycardia ablation as a marker of acute coronary ischemia,” HeartRhythm Case Reports 1, 99–102 (2015).
    [Crossref] [PubMed]
  50. E. M. Aliot, W. G. Stevenson, J. M. Almendral-Garrote, F. Bogun, C. H. Calkins, E. Delacretaz, P. D. Bella, G. Hindricks, P. Jaïs, M. E. Josephson, J. Kautzner, G. N. Kay, K.-H. Kuck, B. B. Lerman, F. Marchlinski, V. Reddy, M.-J. Schalij, R. Schilling, K. Soejima, and D. Wilber, “EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias: Developed in a partnership with the European Heart Rhythm Association (EHRA), a Registered Branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA),” EP Europace 11, 771–817 (2009).
    [Crossref]
  51. D. Xu, Y. Huang, and J. U. Kang, “Real-time compressive sensing spectral domain optical coherence tomography,” Opt. Lett. 39, 76–79 (2014).
    [Crossref]
  52. S. Moon and Z. Chen, “Phase-stability optimization of swept-source optical coherence tomography,” Biomed. Opt. Express 9, 5280–5295 (2018).
    [Crossref] [PubMed]
  53. M. S. Asif and J. Romberg, “Sparse recovery of streaming signals usingl1-homotopy,” IEEE Trans. Signal Processing 62, 4209–4223 (2014).
    [Crossref]
  54. A. Kulkarni and T. Mohsenin, “Accelerating compressive sensing reconstruction OMP algorithm with CPU, GPU, FPGA and domain specific many-core,” in Proceedings of 2015 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 970–973.

2018 (2)

W. Chen, C. Du, and Y. Pan, “Cerebral capillary flow imaging by wavelength-division-multiplexing swept-source optical Doppler tomography,” Journal of Biophotonics 11, e201800004(2018).
[Crossref] [PubMed]

S. Moon and Z. Chen, “Phase-stability optimization of swept-source optical coherence tomography,” Biomed. Opt. Express 9, 5280–5295 (2018).
[Crossref] [PubMed]

2017 (5)

Y. Ling, X. Yao, and C. P. Hendon, “Highly phase-stable 200 kHz swept-source optical coherence tomography based on KTN electro-optic deflector,” Biomedical Optics Express 8, 3687–3699 (2017).
[Crossref] [PubMed]

W. Meiniel, Y. Gan, J.-C. Olivo-Marin, and E. Angelini, “A sparsity-based simplification method for segmentation of spectral-domain optical coherence tomography images,” Proc. SPIE 10394, 1039406 (2017).

C. K. Mididoddi, F. Bai, G. Wang, J. Liu, S. Gibson, and C. Wang, “High-throughput photonic time-stretch optical coherence tomography with data compression,” IEEE Photonics Journal 9, 1–15 (2017).
[Crossref]

Y. Ling, Y. Gan, X. Yao, and C. P. Hendon, “Phase-noise analysis of swept-source optical coherence tomography systems,” Optics Letters 42, 1333–1336 (2017).
[Crossref] [PubMed]

T. Klein and R. Huber, “High-speed OCT light sources and systems [Invited],” Biomedical Optics Express 8, 828–859 (2017).
[Crossref]

2016 (3)

Z. Shangguan, Y. Shen, P. Li, and Z. Ding, “Wavenumber calibration and phase measurement in swept source optical coherence tomography (in Chinese),” Acta Physica Sinica 65, 034201 (2016).

S. Song, W. Wei, B.-Y. Hsieh, I. Pelivanov, T. T. Shen, M. O’Donnell, and R. K. Wang, “Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate,” Applied Physics Letters 108, 191104 (2016).
[Crossref]

S. Kim, P. D. Raphael, J. S. Oghalai, and B. E. Applegate, “High-speed spectral calibration by complex FIR filter in phase-sensitive optical coherence tomography,” Biomedical Optics Express 7, 1430–1444 (2016).
[Crossref] [PubMed]

2015 (8)

X. Wei, A. K. S. Lau, Y. Xu, K. K. Tsia, and K. K. Y. Wong, “28 MHz swept source at 1.0 μm for ultrafast quantitative phase imaging,” Biomedical Optics Express 6, 3855–3864 (2015).
[Crossref]

M. Singh, C. Wu, C.-H. Liu, J. Li, A. Schill, A. Nair, and K. V. Larin, “Phase-sensitive optical coherence elastography at 1.5 million A-Lines per second,” Optics Letters 40, 2588–2591 (2015).
[Crossref] [PubMed]

S. Amarakoon, J. H. De Jong, B. Braaf, S. Yzer, T. Missotten, M. E. van Velthoven, and J. F. de Boer, “Phase-resolved doppler optical coherence tomographic features in retinal angiomatous proliferation,” American Journal of Ophthalmology 160, 1044–1054 (2015).
[Crossref] [PubMed]

R. F. Spaide, J. G. Fujimoto, and N. K. Waheed, “Image artifacts in optical coherence tomography angiography,” Retina 35, 2163–2180 (2015).
[Crossref] [PubMed]

H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proceedings of the National Academy of Sciences 112, 3128–3133 (2015).
[Crossref]

A. Zhang, Q. Zhang, C.-L. Chen, and R. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. of Biomedical Optics 20, 100901 (2015).
[Crossref]

S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: A review,” Journal of Biophotonics 8, 279–302 (2015).
[Crossref]

J. Whitaker, H. Raju, C. Taylor, and C. A. Rinaldi, “Accelerated idioventricular rhythm after left atrial tachycardia ablation as a marker of acute coronary ischemia,” HeartRhythm Case Reports 1, 99–102 (2015).
[Crossref] [PubMed]

2014 (6)

M. S. Asif and J. Romberg, “Sparse recovery of streaming signals usingl1-homotopy,” IEEE Trans. Signal Processing 62, 4209–4223 (2014).
[Crossref]

D. Xu, Y. Huang, and J. U. Kang, “Real-time compressive sensing spectral domain optical coherence tomography,” Opt. Lett. 39, 76–79 (2014).
[Crossref]

R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Progress in Retinal and Eye Research 41, 26–43 (2014).
[Crossref] [PubMed]

S. Wang and K. V. Larin, “Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics,” Optics Letters 39, 41–44 (2014).
[Crossref]

D. M. Schwartz, J. Fingler, D. Y. Kim, R. J. Zawadzki, L. S. Morse, S. S. Park, S. E. Fraser, and J. S. Werner, “Phase-variance optical coherence tomography: A technique for noninvasive angiography,” Ophthalmology 121, 180–187 (2014).
[Crossref]

W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomedical Optics Express 5, 2963–2977 (2014).
[Crossref] [PubMed]

2013 (1)

M. F. Duarte and R. G. Baraniuk, “Spectral compressive sensing,” Applied and Computational Harmonic Analysis 35, 111–129 (2013).
[Crossref]

2012 (1)

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomedical Optics Express 3, 2733–2751 (2012).
[Crossref] [PubMed]

2011 (1)

S. Becker, J. Bobin, and E. Candès, “NESTA: A Fast and Accurate First-Order Method for Sparse Recovery,” Journal on Imaging Sciences 4, 1–39 (2011).
[Crossref]

2010 (6)

R. Baraniuk, V. Cevher, M. Duarte, and C. Hegde, “Model-based compressive sensing,” IEEE Trans. Inf. Theory 56, 1982–2001 (2010).
[Crossref]

M. M. Marim, M. Atlan, E. Angelini, and J.-C. Olivo-Marin, “Compressed sensing with off-axis frequency-shifting holography,” Optics Letters 35, 871–873 (2010).
[Crossref] [PubMed]

N. Mohan, I. Stojanovic, W. C. Karl, B. E. A. Saleh, and M. C. Teich, “Compressed sensing in optical coherence tomography,” Proc. SPIE 7570, 75700L (2010).
[Crossref]

X. Liu and J. U. Kang, “SD-OCT Compressive: the application of compressed sensing in spectral domain optical coherence tomography,” Optics Express 18, 22010–22019 (2010).
[Crossref]

E. Lebed, P. J. Mackenzie, M. V. Sarunic, and M. F. Beg, “Rapid volumetric OCT image acquisition using Compressive Sampling,” Optics Express 18, 21003–21012 (2010).
[Crossref] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “OCT Multi-Megahertz: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Optics Express 18, 14685–14704 (2010).
[Crossref]

2009 (4)

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Optics Express 17, 14880–14894 (2009).
[Crossref] [PubMed]

M. A. Herman and T. Strohmer, “High-resolution radar via compressed sensing,” IEEE Trans. Signal Process. 57, 2275–2284 (2009).
[Crossref]

E. M. Aliot, W. G. Stevenson, J. M. Almendral-Garrote, F. Bogun, C. H. Calkins, E. Delacretaz, P. D. Bella, G. Hindricks, P. Jaïs, M. E. Josephson, J. Kautzner, G. N. Kay, K.-H. Kuck, B. B. Lerman, F. Marchlinski, V. Reddy, M.-J. Schalij, R. Schilling, K. Soejima, and D. Wilber, “EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias: Developed in a partnership with the European Heart Rhythm Association (EHRA), a Registered Branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA),” EP Europace 11, 771–817 (2009).
[Crossref]

R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express 17, 8926–8940 (2009).
[Crossref] [PubMed]

2008 (4)

J. Bobin, J.-L. Starck, and R. Ottensamer, “Compressed sensing in astronomy,” IEEE Journal of Selected Topics in Signal Processing 2, 718–726 (2008).
[Crossref]

L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Optics Express 16, 11438–11452 (2008).
[Crossref] [PubMed]

Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” Optics Express 16, 12350–12361 (2008).
[Crossref] [PubMed]

X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties, Optics Express 16, 11052–11065 (2008).
[Crossref] [PubMed]

2007 (3)

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Optics Express 15, 4083–4097 (2007).
[Crossref] [PubMed]

E. Candès and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Probl. 23, 969 (2007).
[Crossref]

M. Lustig, D. Donoho, and J. M. Pauly, “MRI Sparse: The application of compressed sensing for rapid MR imaging,” Magnetic Resonance in Medicine 58, 1182–1195 (2007).
[Crossref]

2006 (3)

E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Information Theory 52, 489–509 (2006).
[Crossref]

D. Donoho, “Compressed sensing,” IEEE Trans. Information Theory 52, 1289–1306 (2006).
[Crossref]

R. A. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Optics Express 14, 3225–3237 (2006).
[Crossref] [PubMed]

2005 (1)

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Optics Express 13, 10652–10664 (2005).
[Crossref] [PubMed]

2003 (1)

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Optics Express 11, 2953–2963 (2003).
[Crossref] [PubMed]

2001 (1)

D. L. Donoho and X. Huo, “Uncertainty principles and ideal atomic decomposition,” IEEE Trans. Inf. Theory 47, 2845–2862 (2001).
[Crossref]

2000 (1)

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Optics Letters 25, 114–116 (2000).
[Crossref]

1997 (1)

B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr 4+:forsterite laser,” Optics Letters 22, 1704–1706 (1997).
[Crossref]

Akiba, M.

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Optics Express 13, 10652–10664 (2005).
[Crossref] [PubMed]

Aliot, E. M.

E. M. Aliot, W. G. Stevenson, J. M. Almendral-Garrote, F. Bogun, C. H. Calkins, E. Delacretaz, P. D. Bella, G. Hindricks, P. Jaïs, M. E. Josephson, J. Kautzner, G. N. Kay, K.-H. Kuck, B. B. Lerman, F. Marchlinski, V. Reddy, M.-J. Schalij, R. Schilling, K. Soejima, and D. Wilber, “EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias: Developed in a partnership with the European Heart Rhythm Association (EHRA), a Registered Branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA),” EP Europace 11, 771–817 (2009).
[Crossref]

Almendral-Garrote, J. M.

E. M. Aliot, W. G. Stevenson, J. M. Almendral-Garrote, F. Bogun, C. H. Calkins, E. Delacretaz, P. D. Bella, G. Hindricks, P. Jaïs, M. E. Josephson, J. Kautzner, G. N. Kay, K.-H. Kuck, B. B. Lerman, F. Marchlinski, V. Reddy, M.-J. Schalij, R. Schilling, K. Soejima, and D. Wilber, “EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias: Developed in a partnership with the European Heart Rhythm Association (EHRA), a Registered Branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA),” EP Europace 11, 771–817 (2009).
[Crossref]

Amarakoon, S.

S. Amarakoon, J. H. De Jong, B. Braaf, S. Yzer, T. Missotten, M. E. van Velthoven, and J. F. de Boer, “Phase-resolved doppler optical coherence tomographic features in retinal angiomatous proliferation,” American Journal of Ophthalmology 160, 1044–1054 (2015).
[Crossref] [PubMed]

An, L.

R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express 17, 8926–8940 (2009).
[Crossref] [PubMed]

L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Optics Express 16, 11438–11452 (2008).
[Crossref] [PubMed]

Angelini, E.

W. Meiniel, Y. Gan, J.-C. Olivo-Marin, and E. Angelini, “A sparsity-based simplification method for segmentation of spectral-domain optical coherence tomography images,” Proc. SPIE 10394, 1039406 (2017).

M. M. Marim, M. Atlan, E. Angelini, and J.-C. Olivo-Marin, “Compressed sensing with off-axis frequency-shifting holography,” Optics Letters 35, 871–873 (2010).
[Crossref] [PubMed]

Angelini, E. D.

W. Meiniel, Y. Gan, C. P. Hendon, J.-C. Olivo-Marin, A. Laine, and E. D. Angelini, “Sparsity-based simplification of spectral-domain optical coherence tomography images of cardiac samples,” in Proceedings of 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), (IEEE, 2016), pp. 373–376.
[Crossref]

Applegate, B. E.

S. Kim, P. D. Raphael, J. S. Oghalai, and B. E. Applegate, “High-speed spectral calibration by complex FIR filter in phase-sensitive optical coherence tomography,” Biomedical Optics Express 7, 1430–1444 (2016).
[Crossref] [PubMed]

H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proceedings of the National Academy of Sciences 112, 3128–3133 (2015).
[Crossref]

Asif, M. S.

M. S. Asif and J. Romberg, “Sparse recovery of streaming signals usingl1-homotopy,” IEEE Trans. Signal Processing 62, 4209–4223 (2014).
[Crossref]

Atlan, M.

M. M. Marim, M. Atlan, E. Angelini, and J.-C. Olivo-Marin, “Compressed sensing with off-axis frequency-shifting holography,” Optics Letters 35, 871–873 (2010).
[Crossref] [PubMed]

Bai, F.

C. K. Mididoddi, F. Bai, G. Wang, J. Liu, S. Gibson, and C. Wang, “High-throughput photonic time-stretch optical coherence tomography with data compression,” IEEE Photonics Journal 9, 1–15 (2017).
[Crossref]

Baraniuk, R.

R. Baraniuk, V. Cevher, M. Duarte, and C. Hegde, “Model-based compressive sensing,” IEEE Trans. Inf. Theory 56, 1982–2001 (2010).
[Crossref]

Baraniuk, R. G.

M. F. Duarte and R. G. Baraniuk, “Spectral compressive sensing,” Applied and Computational Harmonic Analysis 35, 111–129 (2013).
[Crossref]

Becker, S.

S. Becker, J. Bobin, and E. Candès, “NESTA: A Fast and Accurate First-Order Method for Sparse Recovery,” Journal on Imaging Sciences 4, 1–39 (2011).
[Crossref]

Beg, M. F.

E. Lebed, P. J. Mackenzie, M. V. Sarunic, and M. F. Beg, “Rapid volumetric OCT image acquisition using Compressive Sampling,” Optics Express 18, 21003–21012 (2010).
[Crossref] [PubMed]

Bella, P. D.

E. M. Aliot, W. G. Stevenson, J. M. Almendral-Garrote, F. Bogun, C. H. Calkins, E. Delacretaz, P. D. Bella, G. Hindricks, P. Jaïs, M. E. Josephson, J. Kautzner, G. N. Kay, K.-H. Kuck, B. B. Lerman, F. Marchlinski, V. Reddy, M.-J. Schalij, R. Schilling, K. Soejima, and D. Wilber, “EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias: Developed in a partnership with the European Heart Rhythm Association (EHRA), a Registered Branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA),” EP Europace 11, 771–817 (2009).
[Crossref]

Biedermann, B. R.

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “OCT Multi-Megahertz: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Optics Express 18, 14685–14704 (2010).
[Crossref]

Blatter, C.

R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Progress in Retinal and Eye Research 41, 26–43 (2014).
[Crossref] [PubMed]

Bobin, J.

S. Becker, J. Bobin, and E. Candès, “NESTA: A Fast and Accurate First-Order Method for Sparse Recovery,” Journal on Imaging Sciences 4, 1–39 (2011).
[Crossref]

J. Bobin, J.-L. Starck, and R. Ottensamer, “Compressed sensing in astronomy,” IEEE Journal of Selected Topics in Signal Processing 2, 718–726 (2008).
[Crossref]

Bogun, F.

E. M. Aliot, W. G. Stevenson, J. M. Almendral-Garrote, F. Bogun, C. H. Calkins, E. Delacretaz, P. D. Bella, G. Hindricks, P. Jaïs, M. E. Josephson, J. Kautzner, G. N. Kay, K.-H. Kuck, B. B. Lerman, F. Marchlinski, V. Reddy, M.-J. Schalij, R. Schilling, K. Soejima, and D. Wilber, “EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias: Developed in a partnership with the European Heart Rhythm Association (EHRA), a Registered Branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA),” EP Europace 11, 771–817 (2009).
[Crossref]

Boppart, S. A.

X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties, Optics Express 16, 11052–11065 (2008).
[Crossref] [PubMed]

Bouma, B. E.

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Optics Express 11, 2953–2963 (2003).
[Crossref] [PubMed]

B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr 4+:forsterite laser,” Optics Letters 22, 1704–1706 (1997).
[Crossref]

Braaf, B.

S. Amarakoon, J. H. De Jong, B. Braaf, S. Yzer, T. Missotten, M. E. van Velthoven, and J. F. de Boer, “Phase-resolved doppler optical coherence tomographic features in retinal angiomatous proliferation,” American Journal of Ophthalmology 160, 1044–1054 (2015).
[Crossref] [PubMed]

Cable, A. E.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomedical Optics Express 3, 2733–2751 (2012).
[Crossref] [PubMed]

Calkins, C. H.

E. M. Aliot, W. G. Stevenson, J. M. Almendral-Garrote, F. Bogun, C. H. Calkins, E. Delacretaz, P. D. Bella, G. Hindricks, P. Jaïs, M. E. Josephson, J. Kautzner, G. N. Kay, K.-H. Kuck, B. B. Lerman, F. Marchlinski, V. Reddy, M.-J. Schalij, R. Schilling, K. Soejima, and D. Wilber, “EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias: Developed in a partnership with the European Heart Rhythm Association (EHRA), a Registered Branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA),” EP Europace 11, 771–817 (2009).
[Crossref]

Candès, E.

S. Becker, J. Bobin, and E. Candès, “NESTA: A Fast and Accurate First-Order Method for Sparse Recovery,” Journal on Imaging Sciences 4, 1–39 (2011).
[Crossref]

E. Candès and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Probl. 23, 969 (2007).
[Crossref]

E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Information Theory 52, 489–509 (2006).
[Crossref]

Cevher, V.

R. Baraniuk, V. Cevher, M. Duarte, and C. Hegde, “Model-based compressive sensing,” IEEE Trans. Inf. Theory 56, 1982–2001 (2010).
[Crossref]

Chan, K.-P.

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Optics Express 13, 10652–10664 (2005).
[Crossref] [PubMed]

Chaney, E. J.

X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties, Optics Express 16, 11052–11065 (2008).
[Crossref] [PubMed]

Chen, C.-L.

A. Zhang, Q. Zhang, C.-L. Chen, and R. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. of Biomedical Optics 20, 100901 (2015).
[Crossref]

Chen, W.

W. Chen, C. Du, and Y. Pan, “Cerebral capillary flow imaging by wavelength-division-multiplexing swept-source optical Doppler tomography,” Journal of Biophotonics 11, e201800004(2018).
[Crossref] [PubMed]

Chen, Z.

S. Moon and Z. Chen, “Phase-stability optimization of swept-source optical coherence tomography,” Biomed. Opt. Express 9, 5280–5295 (2018).
[Crossref] [PubMed]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Optics Letters 25, 114–116 (2000).
[Crossref]

Chong, C.

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Optics Express 13, 10652–10664 (2005).
[Crossref] [PubMed]

Crecea, V.

X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties, Optics Express 16, 11052–11065 (2008).
[Crossref] [PubMed]

Davis, A. M.

Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” Optics Express 16, 12350–12361 (2008).
[Crossref] [PubMed]

de Boer, J. F.

S. Amarakoon, J. H. De Jong, B. Braaf, S. Yzer, T. Missotten, M. E. van Velthoven, and J. F. de Boer, “Phase-resolved doppler optical coherence tomographic features in retinal angiomatous proliferation,” American Journal of Ophthalmology 160, 1044–1054 (2015).
[Crossref] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Optics Express 11, 2953–2963 (2003).
[Crossref] [PubMed]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Optics Letters 25, 114–116 (2000).
[Crossref]

Delacretaz, E.

E. M. Aliot, W. G. Stevenson, J. M. Almendral-Garrote, F. Bogun, C. H. Calkins, E. Delacretaz, P. D. Bella, G. Hindricks, P. Jaïs, M. E. Josephson, J. Kautzner, G. N. Kay, K.-H. Kuck, B. B. Lerman, F. Marchlinski, V. Reddy, M.-J. Schalij, R. Schilling, K. Soejima, and D. Wilber, “EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias: Developed in a partnership with the European Heart Rhythm Association (EHRA), a Registered Branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA),” EP Europace 11, 771–817 (2009).
[Crossref]

Ding, Z.

Z. Shangguan, Y. Shen, P. Li, and Z. Ding, “Wavenumber calibration and phase measurement in swept source optical coherence tomography (in Chinese),” Acta Physica Sinica 65, 034201 (2016).

Donoho, D.

M. Lustig, D. Donoho, and J. M. Pauly, “MRI Sparse: The application of compressed sensing for rapid MR imaging,” Magnetic Resonance in Medicine 58, 1182–1195 (2007).
[Crossref]

D. Donoho, “Compressed sensing,” IEEE Trans. Information Theory 52, 1289–1306 (2006).
[Crossref]

Donoho, D. L.

D. L. Donoho and X. Huo, “Uncertainty principles and ideal atomic decomposition,” IEEE Trans. Inf. Theory 47, 2845–2862 (2001).
[Crossref]

Draxinger, W.

W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomedical Optics Express 5, 2963–2977 (2014).
[Crossref] [PubMed]

Du, C.

W. Chen, C. Du, and Y. Pan, “Cerebral capillary flow imaging by wavelength-division-multiplexing swept-source optical Doppler tomography,” Journal of Biophotonics 11, e201800004(2018).
[Crossref] [PubMed]

Duarte, M.

R. Baraniuk, V. Cevher, M. Duarte, and C. Hegde, “Model-based compressive sensing,” IEEE Trans. Inf. Theory 56, 1982–2001 (2010).
[Crossref]

Duarte, M. F.

M. F. Duarte and R. G. Baraniuk, “Spectral compressive sensing,” Applied and Computational Harmonic Analysis 35, 111–129 (2013).
[Crossref]

Duker, J. S.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomedical Optics Express 3, 2733–2751 (2012).
[Crossref] [PubMed]

Eigenwillig, C. M.

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “OCT Multi-Megahertz: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Optics Express 18, 14685–14704 (2010).
[Crossref]

Ellerbee, A. K.

H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proceedings of the National Academy of Sciences 112, 3128–3133 (2015).
[Crossref]

Fingler, J.

D. M. Schwartz, J. Fingler, D. Y. Kim, R. J. Zawadzki, L. S. Morse, S. S. Park, S. E. Fraser, and J. S. Werner, “Phase-variance optical coherence tomography: A technique for noninvasive angiography,” Ophthalmology 121, 180–187 (2014).
[Crossref]

Fraser, S. E.

D. M. Schwartz, J. Fingler, D. Y. Kim, R. J. Zawadzki, L. S. Morse, S. S. Park, S. E. Fraser, and J. S. Werner, “Phase-variance optical coherence tomography: A technique for noninvasive angiography,” Ophthalmology 121, 180–187 (2014).
[Crossref]

Fujimoto, J. G.

R. F. Spaide, J. G. Fujimoto, and N. K. Waheed, “Image artifacts in optical coherence tomography angiography,” Retina 35, 2163–2180 (2015).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomedical Optics Express 3, 2733–2751 (2012).
[Crossref] [PubMed]

R. A. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Optics Express 14, 3225–3237 (2006).
[Crossref] [PubMed]

B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr 4+:forsterite laser,” Optics Letters 22, 1704–1706 (1997).
[Crossref]

Gan, Y.

Y. Ling, Y. Gan, X. Yao, and C. P. Hendon, “Phase-noise analysis of swept-source optical coherence tomography systems,” Optics Letters 42, 1333–1336 (2017).
[Crossref] [PubMed]

W. Meiniel, Y. Gan, J.-C. Olivo-Marin, and E. Angelini, “A sparsity-based simplification method for segmentation of spectral-domain optical coherence tomography images,” Proc. SPIE 10394, 1039406 (2017).

W. Meiniel, Y. Gan, C. P. Hendon, J.-C. Olivo-Marin, A. Laine, and E. D. Angelini, “Sparsity-based simplification of spectral-domain optical coherence tomography images of cardiac samples,” in Proceedings of 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), (IEEE, 2016), pp. 373–376.
[Crossref]

Gibson, S.

C. K. Mididoddi, F. Bai, G. Wang, J. Liu, S. Gibson, and C. Wang, “High-throughput photonic time-stretch optical coherence tomography with data compression,” IEEE Photonics Journal 9, 1–15 (2017).
[Crossref]

Golubovic, B.

B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr 4+:forsterite laser,” Optics Letters 22, 1704–1706 (1997).
[Crossref]

Gora, M.

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Optics Express 17, 14880–14894 (2009).
[Crossref] [PubMed]

Gruber, A.

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Optics Express 15, 4083–4097 (2007).
[Crossref] [PubMed]

Grulkowski, I.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomedical Optics Express 3, 2733–2751 (2012).
[Crossref] [PubMed]

Hanson, S. R.

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Optics Express 15, 4083–4097 (2007).
[Crossref] [PubMed]

Hegde, C.

R. Baraniuk, V. Cevher, M. Duarte, and C. Hegde, “Model-based compressive sensing,” IEEE Trans. Inf. Theory 56, 1982–2001 (2010).
[Crossref]

Hendon, C. P.

Y. Ling, X. Yao, and C. P. Hendon, “Highly phase-stable 200 kHz swept-source optical coherence tomography based on KTN electro-optic deflector,” Biomedical Optics Express 8, 3687–3699 (2017).
[Crossref] [PubMed]

Y. Ling, Y. Gan, X. Yao, and C. P. Hendon, “Phase-noise analysis of swept-source optical coherence tomography systems,” Optics Letters 42, 1333–1336 (2017).
[Crossref] [PubMed]

W. Meiniel, Y. Gan, C. P. Hendon, J.-C. Olivo-Marin, A. Laine, and E. D. Angelini, “Sparsity-based simplification of spectral-domain optical coherence tomography images of cardiac samples,” in Proceedings of 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), (IEEE, 2016), pp. 373–376.
[Crossref]

Herman, M. A.

M. A. Herman and T. Strohmer, “High-resolution radar via compressed sensing,” IEEE Trans. Signal Process. 57, 2275–2284 (2009).
[Crossref]

Hindricks, G.

E. M. Aliot, W. G. Stevenson, J. M. Almendral-Garrote, F. Bogun, C. H. Calkins, E. Delacretaz, P. D. Bella, G. Hindricks, P. Jaïs, M. E. Josephson, J. Kautzner, G. N. Kay, K.-H. Kuck, B. B. Lerman, F. Marchlinski, V. Reddy, M.-J. Schalij, R. Schilling, K. Soejima, and D. Wilber, “EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias: Developed in a partnership with the European Heart Rhythm Association (EHRA), a Registered Branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA),” EP Europace 11, 771–817 (2009).
[Crossref]

Hsieh, B.-Y.

S. Song, W. Wei, B.-Y. Hsieh, I. Pelivanov, T. T. Shen, M. O’Donnell, and R. K. Wang, “Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate,” Applied Physics Letters 108, 191104 (2016).
[Crossref]

Huang, Y.

Huber, R.

T. Klein and R. Huber, “High-speed OCT light sources and systems [Invited],” Biomedical Optics Express 8, 828–859 (2017).
[Crossref]

W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomedical Optics Express 5, 2963–2977 (2014).
[Crossref] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “OCT Multi-Megahertz: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Optics Express 18, 14685–14704 (2010).
[Crossref]

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Optics Express 17, 14880–14894 (2009).
[Crossref] [PubMed]

Huber, R. A.

R. A. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Optics Express 14, 3225–3237 (2006).
[Crossref] [PubMed]

Huo, X.

D. L. Donoho and X. Huo, “Uncertainty principles and ideal atomic decomposition,” IEEE Trans. Inf. Theory 47, 2845–2862 (2001).
[Crossref]

Hurst, S.

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Optics Express 15, 4083–4097 (2007).
[Crossref] [PubMed]

Iftimia, N.

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Optics Express 11, 2953–2963 (2003).
[Crossref] [PubMed]

Itoh, M.

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Optics Express 13, 10652–10664 (2005).
[Crossref] [PubMed]

Izatt, J. A.

Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” Optics Express 16, 12350–12361 (2008).
[Crossref] [PubMed]

Jacques, S. L.

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Optics Express 15, 4083–4097 (2007).
[Crossref] [PubMed]

Jaïs, P.

E. M. Aliot, W. G. Stevenson, J. M. Almendral-Garrote, F. Bogun, C. H. Calkins, E. Delacretaz, P. D. Bella, G. Hindricks, P. Jaïs, M. E. Josephson, J. Kautzner, G. N. Kay, K.-H. Kuck, B. B. Lerman, F. Marchlinski, V. Reddy, M.-J. Schalij, R. Schilling, K. Soejima, and D. Wilber, “EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias: Developed in a partnership with the European Heart Rhythm Association (EHRA), a Registered Branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA),” EP Europace 11, 771–817 (2009).
[Crossref]

Jayaraman, V.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomedical Optics Express 3, 2733–2751 (2012).
[Crossref] [PubMed]

Jiang, J.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomedical Optics Express 3, 2733–2751 (2012).
[Crossref] [PubMed]

Jong, J. H. De

S. Amarakoon, J. H. De Jong, B. Braaf, S. Yzer, T. Missotten, M. E. van Velthoven, and J. F. de Boer, “Phase-resolved doppler optical coherence tomographic features in retinal angiomatous proliferation,” American Journal of Ophthalmology 160, 1044–1054 (2015).
[Crossref] [PubMed]

Josephson, M. E.

E. M. Aliot, W. G. Stevenson, J. M. Almendral-Garrote, F. Bogun, C. H. Calkins, E. Delacretaz, P. D. Bella, G. Hindricks, P. Jaïs, M. E. Josephson, J. Kautzner, G. N. Kay, K.-H. Kuck, B. B. Lerman, F. Marchlinski, V. Reddy, M.-J. Schalij, R. Schilling, K. Soejima, and D. Wilber, “EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias: Developed in a partnership with the European Heart Rhythm Association (EHRA), a Registered Branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA),” EP Europace 11, 771–817 (2009).
[Crossref]

Kaluzny, B. J.

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Optics Express 17, 14880–14894 (2009).
[Crossref] [PubMed]

Kang, J. U.

D. Xu, Y. Huang, and J. U. Kang, “Real-time compressive sensing spectral domain optical coherence tomography,” Opt. Lett. 39, 76–79 (2014).
[Crossref]

X. Liu and J. U. Kang, “SD-OCT Compressive: the application of compressed sensing in spectral domain optical coherence tomography,” Optics Express 18, 22010–22019 (2010).
[Crossref]

Karl, W. C.

N. Mohan, I. Stojanovic, W. C. Karl, B. E. A. Saleh, and M. C. Teich, “Compressed sensing in optical coherence tomography,” Proc. SPIE 7570, 75700L (2010).
[Crossref]

Karnowski, K.

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Optics Express 17, 14880–14894 (2009).
[Crossref] [PubMed]

Karpf, S.

W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomedical Optics Express 5, 2963–2977 (2014).
[Crossref] [PubMed]

Kautzner, J.

E. M. Aliot, W. G. Stevenson, J. M. Almendral-Garrote, F. Bogun, C. H. Calkins, E. Delacretaz, P. D. Bella, G. Hindricks, P. Jaïs, M. E. Josephson, J. Kautzner, G. N. Kay, K.-H. Kuck, B. B. Lerman, F. Marchlinski, V. Reddy, M.-J. Schalij, R. Schilling, K. Soejima, and D. Wilber, “EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias: Developed in a partnership with the European Heart Rhythm Association (EHRA), a Registered Branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA),” EP Europace 11, 771–817 (2009).
[Crossref]

Kay, G. N.

E. M. Aliot, W. G. Stevenson, J. M. Almendral-Garrote, F. Bogun, C. H. Calkins, E. Delacretaz, P. D. Bella, G. Hindricks, P. Jaïs, M. E. Josephson, J. Kautzner, G. N. Kay, K.-H. Kuck, B. B. Lerman, F. Marchlinski, V. Reddy, M.-J. Schalij, R. Schilling, K. Soejima, and D. Wilber, “EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias: Developed in a partnership with the European Heart Rhythm Association (EHRA), a Registered Branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA),” EP Europace 11, 771–817 (2009).
[Crossref]

Kim, D. Y.

D. M. Schwartz, J. Fingler, D. Y. Kim, R. J. Zawadzki, L. S. Morse, S. S. Park, S. E. Fraser, and J. S. Werner, “Phase-variance optical coherence tomography: A technique for noninvasive angiography,” Ophthalmology 121, 180–187 (2014).
[Crossref]

Kim, S.

S. Kim, P. D. Raphael, J. S. Oghalai, and B. E. Applegate, “High-speed spectral calibration by complex FIR filter in phase-sensitive optical coherence tomography,” Biomedical Optics Express 7, 1430–1444 (2016).
[Crossref] [PubMed]

Klein, T.

T. Klein and R. Huber, “High-speed OCT light sources and systems [Invited],” Biomedical Optics Express 8, 828–859 (2017).
[Crossref]

W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomedical Optics Express 5, 2963–2977 (2014).
[Crossref] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “OCT Multi-Megahertz: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Optics Express 18, 14685–14704 (2010).
[Crossref]

Kowalczyk, A.

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Optics Express 17, 14880–14894 (2009).
[Crossref] [PubMed]

Kuck, K.-H.

E. M. Aliot, W. G. Stevenson, J. M. Almendral-Garrote, F. Bogun, C. H. Calkins, E. Delacretaz, P. D. Bella, G. Hindricks, P. Jaïs, M. E. Josephson, J. Kautzner, G. N. Kay, K.-H. Kuck, B. B. Lerman, F. Marchlinski, V. Reddy, M.-J. Schalij, R. Schilling, K. Soejima, and D. Wilber, “EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias: Developed in a partnership with the European Heart Rhythm Association (EHRA), a Registered Branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA),” EP Europace 11, 771–817 (2009).
[Crossref]

Kulkarni, A.

A. Kulkarni and T. Mohsenin, “Accelerating compressive sensing reconstruction OMP algorithm with CPU, GPU, FPGA and domain specific many-core,” in Proceedings of 2015 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 970–973.

Laine, A.

W. Meiniel, Y. Gan, C. P. Hendon, J.-C. Olivo-Marin, A. Laine, and E. D. Angelini, “Sparsity-based simplification of spectral-domain optical coherence tomography images of cardiac samples,” in Proceedings of 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), (IEEE, 2016), pp. 373–376.
[Crossref]

Larin, K. V.

M. Singh, C. Wu, C.-H. Liu, J. Li, A. Schill, A. Nair, and K. V. Larin, “Phase-sensitive optical coherence elastography at 1.5 million A-Lines per second,” Optics Letters 40, 2588–2591 (2015).
[Crossref] [PubMed]

S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: A review,” Journal of Biophotonics 8, 279–302 (2015).
[Crossref]

S. Wang and K. V. Larin, “Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics,” Optics Letters 39, 41–44 (2014).
[Crossref]

Lau, A. K. S.

X. Wei, A. K. S. Lau, Y. Xu, K. K. Tsia, and K. K. Y. Wong, “28 MHz swept source at 1.0 μm for ultrafast quantitative phase imaging,” Biomedical Optics Express 6, 3855–3864 (2015).
[Crossref]

Lebed, E.

E. Lebed, P. J. Mackenzie, M. V. Sarunic, and M. F. Beg, “Rapid volumetric OCT image acquisition using Compressive Sampling,” Optics Express 18, 21003–21012 (2010).
[Crossref] [PubMed]

Lee, H. Y.

H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proceedings of the National Academy of Sciences 112, 3128–3133 (2015).
[Crossref]

Leitgeb, R. A.

R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Progress in Retinal and Eye Research 41, 26–43 (2014).
[Crossref] [PubMed]

Lerman, B. B.

E. M. Aliot, W. G. Stevenson, J. M. Almendral-Garrote, F. Bogun, C. H. Calkins, E. Delacretaz, P. D. Bella, G. Hindricks, P. Jaïs, M. E. Josephson, J. Kautzner, G. N. Kay, K.-H. Kuck, B. B. Lerman, F. Marchlinski, V. Reddy, M.-J. Schalij, R. Schilling, K. Soejima, and D. Wilber, “EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias: Developed in a partnership with the European Heart Rhythm Association (EHRA), a Registered Branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA),” EP Europace 11, 771–817 (2009).
[Crossref]

Li, J.

M. Singh, C. Wu, C.-H. Liu, J. Li, A. Schill, A. Nair, and K. V. Larin, “Phase-sensitive optical coherence elastography at 1.5 million A-Lines per second,” Optics Letters 40, 2588–2591 (2015).
[Crossref] [PubMed]

Li, P.

Z. Shangguan, Y. Shen, P. Li, and Z. Ding, “Wavenumber calibration and phase measurement in swept source optical coherence tomography (in Chinese),” Acta Physica Sinica 65, 034201 (2016).

Liang, X.

X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties, Optics Express 16, 11052–11065 (2008).
[Crossref] [PubMed]

Ling, Y.

Y. Ling, Y. Gan, X. Yao, and C. P. Hendon, “Phase-noise analysis of swept-source optical coherence tomography systems,” Optics Letters 42, 1333–1336 (2017).
[Crossref] [PubMed]

Y. Ling, X. Yao, and C. P. Hendon, “Highly phase-stable 200 kHz swept-source optical coherence tomography based on KTN electro-optic deflector,” Biomedical Optics Express 8, 3687–3699 (2017).
[Crossref] [PubMed]

Liu, C.-H.

M. Singh, C. Wu, C.-H. Liu, J. Li, A. Schill, A. Nair, and K. V. Larin, “Phase-sensitive optical coherence elastography at 1.5 million A-Lines per second,” Optics Letters 40, 2588–2591 (2015).
[Crossref] [PubMed]

Liu, J.

C. K. Mididoddi, F. Bai, G. Wang, J. Liu, S. Gibson, and C. Wang, “High-throughput photonic time-stretch optical coherence tomography with data compression,” IEEE Photonics Journal 9, 1–15 (2017).
[Crossref]

Liu, J. J.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomedical Optics Express 3, 2733–2751 (2012).
[Crossref] [PubMed]

Liu, X.

X. Liu and J. U. Kang, “SD-OCT Compressive: the application of compressed sensing in spectral domain optical coherence tomography,” Optics Express 18, 22010–22019 (2010).
[Crossref]

Lu, C. D.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomedical Optics Express 3, 2733–2751 (2012).
[Crossref] [PubMed]

Lustig, M.

M. Lustig, D. Donoho, and J. M. Pauly, “MRI Sparse: The application of compressed sensing for rapid MR imaging,” Magnetic Resonance in Medicine 58, 1182–1195 (2007).
[Crossref]

Ma, Z.

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Optics Express 15, 4083–4097 (2007).
[Crossref] [PubMed]

Mackenzie, P. J.

E. Lebed, P. J. Mackenzie, M. V. Sarunic, and M. F. Beg, “Rapid volumetric OCT image acquisition using Compressive Sampling,” Optics Express 18, 21003–21012 (2010).
[Crossref] [PubMed]

Madjarova, V. D.

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Optics Express 13, 10652–10664 (2005).
[Crossref] [PubMed]

Makita, S.

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Optics Express 13, 10652–10664 (2005).
[Crossref] [PubMed]

Marchlinski, F.

E. M. Aliot, W. G. Stevenson, J. M. Almendral-Garrote, F. Bogun, C. H. Calkins, E. Delacretaz, P. D. Bella, G. Hindricks, P. Jaïs, M. E. Josephson, J. Kautzner, G. N. Kay, K.-H. Kuck, B. B. Lerman, F. Marchlinski, V. Reddy, M.-J. Schalij, R. Schilling, K. Soejima, and D. Wilber, “EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias: Developed in a partnership with the European Heart Rhythm Association (EHRA), a Registered Branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA),” EP Europace 11, 771–817 (2009).
[Crossref]

Marim, M. M.

M. M. Marim, M. Atlan, E. Angelini, and J.-C. Olivo-Marin, “Compressed sensing with off-axis frequency-shifting holography,” Optics Letters 35, 871–873 (2010).
[Crossref] [PubMed]

Meiniel, W.

W. Meiniel, Y. Gan, J.-C. Olivo-Marin, and E. Angelini, “A sparsity-based simplification method for segmentation of spectral-domain optical coherence tomography images,” Proc. SPIE 10394, 1039406 (2017).

W. Meiniel, Y. Gan, C. P. Hendon, J.-C. Olivo-Marin, A. Laine, and E. D. Angelini, “Sparsity-based simplification of spectral-domain optical coherence tomography images of cardiac samples,” in Proceedings of 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), (IEEE, 2016), pp. 373–376.
[Crossref]

Mididoddi, C. K.

C. K. Mididoddi, F. Bai, G. Wang, J. Liu, S. Gibson, and C. Wang, “High-throughput photonic time-stretch optical coherence tomography with data compression,” IEEE Photonics Journal 9, 1–15 (2017).
[Crossref]

Missotten, T.

S. Amarakoon, J. H. De Jong, B. Braaf, S. Yzer, T. Missotten, M. E. van Velthoven, and J. F. de Boer, “Phase-resolved doppler optical coherence tomographic features in retinal angiomatous proliferation,” American Journal of Ophthalmology 160, 1044–1054 (2015).
[Crossref] [PubMed]

Mohan, N.

N. Mohan, I. Stojanovic, W. C. Karl, B. E. A. Saleh, and M. C. Teich, “Compressed sensing in optical coherence tomography,” Proc. SPIE 7570, 75700L (2010).
[Crossref]

Mohsenin, T.

A. Kulkarni and T. Mohsenin, “Accelerating compressive sensing reconstruction OMP algorithm with CPU, GPU, FPGA and domain specific many-core,” in Proceedings of 2015 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 970–973.

Moon, S.

Morosawa, A.

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Optics Express 13, 10652–10664 (2005).
[Crossref] [PubMed]

Morse, L. S.

D. M. Schwartz, J. Fingler, D. Y. Kim, R. J. Zawadzki, L. S. Morse, S. S. Park, S. E. Fraser, and J. S. Werner, “Phase-variance optical coherence tomography: A technique for noninvasive angiography,” Ophthalmology 121, 180–187 (2014).
[Crossref]

Nair, A.

M. Singh, C. Wu, C.-H. Liu, J. Li, A. Schill, A. Nair, and K. V. Larin, “Phase-sensitive optical coherence elastography at 1.5 million A-Lines per second,” Optics Letters 40, 2588–2591 (2015).
[Crossref] [PubMed]

Nelson, J. S.

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Optics Letters 25, 114–116 (2000).
[Crossref]

O’Donnell, M.

S. Song, W. Wei, B.-Y. Hsieh, I. Pelivanov, T. T. Shen, M. O’Donnell, and R. K. Wang, “Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate,” Applied Physics Letters 108, 191104 (2016).
[Crossref]

Oghalai, J. S.

S. Kim, P. D. Raphael, J. S. Oghalai, and B. E. Applegate, “High-speed spectral calibration by complex FIR filter in phase-sensitive optical coherence tomography,” Biomedical Optics Express 7, 1430–1444 (2016).
[Crossref] [PubMed]

H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proceedings of the National Academy of Sciences 112, 3128–3133 (2015).
[Crossref]

Oldenburg, A. L.

X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties, Optics Express 16, 11052–11065 (2008).
[Crossref] [PubMed]

Olivo-Marin, J.-C.

W. Meiniel, Y. Gan, J.-C. Olivo-Marin, and E. Angelini, “A sparsity-based simplification method for segmentation of spectral-domain optical coherence tomography images,” Proc. SPIE 10394, 1039406 (2017).

M. M. Marim, M. Atlan, E. Angelini, and J.-C. Olivo-Marin, “Compressed sensing with off-axis frequency-shifting holography,” Optics Letters 35, 871–873 (2010).
[Crossref] [PubMed]

W. Meiniel, Y. Gan, C. P. Hendon, J.-C. Olivo-Marin, A. Laine, and E. D. Angelini, “Sparsity-based simplification of spectral-domain optical coherence tomography images of cardiac samples,” in Proceedings of 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), (IEEE, 2016), pp. 373–376.
[Crossref]

Ottensamer, R.

J. Bobin, J.-L. Starck, and R. Ottensamer, “Compressed sensing in astronomy,” IEEE Journal of Selected Topics in Signal Processing 2, 718–726 (2008).
[Crossref]

Pan, Y.

W. Chen, C. Du, and Y. Pan, “Cerebral capillary flow imaging by wavelength-division-multiplexing swept-source optical Doppler tomography,” Journal of Biophotonics 11, e201800004(2018).
[Crossref] [PubMed]

Park, J.

H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proceedings of the National Academy of Sciences 112, 3128–3133 (2015).
[Crossref]

Park, S. S.

D. M. Schwartz, J. Fingler, D. Y. Kim, R. J. Zawadzki, L. S. Morse, S. S. Park, S. E. Fraser, and J. S. Werner, “Phase-variance optical coherence tomography: A technique for noninvasive angiography,” Ophthalmology 121, 180–187 (2014).
[Crossref]

Pauly, J. M.

M. Lustig, D. Donoho, and J. M. Pauly, “MRI Sparse: The application of compressed sensing for rapid MR imaging,” Magnetic Resonance in Medicine 58, 1182–1195 (2007).
[Crossref]

Pelivanov, I.

S. Song, W. Wei, B.-Y. Hsieh, I. Pelivanov, T. T. Shen, M. O’Donnell, and R. K. Wang, “Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate,” Applied Physics Letters 108, 191104 (2016).
[Crossref]

Pfeiffer, T.

W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomedical Optics Express 5, 2963–2977 (2014).
[Crossref] [PubMed]

Potsaid, B.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomedical Optics Express 3, 2733–2751 (2012).
[Crossref] [PubMed]

Raju, H.

J. Whitaker, H. Raju, C. Taylor, and C. A. Rinaldi, “Accelerated idioventricular rhythm after left atrial tachycardia ablation as a marker of acute coronary ischemia,” HeartRhythm Case Reports 1, 99–102 (2015).
[Crossref] [PubMed]

Raphael, P. D.

S. Kim, P. D. Raphael, J. S. Oghalai, and B. E. Applegate, “High-speed spectral calibration by complex FIR filter in phase-sensitive optical coherence tomography,” Biomedical Optics Express 7, 1430–1444 (2016).
[Crossref] [PubMed]

H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proceedings of the National Academy of Sciences 112, 3128–3133 (2015).
[Crossref]

Reddy, V.

E. M. Aliot, W. G. Stevenson, J. M. Almendral-Garrote, F. Bogun, C. H. Calkins, E. Delacretaz, P. D. Bella, G. Hindricks, P. Jaïs, M. E. Josephson, J. Kautzner, G. N. Kay, K.-H. Kuck, B. B. Lerman, F. Marchlinski, V. Reddy, M.-J. Schalij, R. Schilling, K. Soejima, and D. Wilber, “EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias: Developed in a partnership with the European Heart Rhythm Association (EHRA), a Registered Branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA),” EP Europace 11, 771–817 (2009).
[Crossref]

Rinaldi, C. A.

J. Whitaker, H. Raju, C. Taylor, and C. A. Rinaldi, “Accelerated idioventricular rhythm after left atrial tachycardia ablation as a marker of acute coronary ischemia,” HeartRhythm Case Reports 1, 99–102 (2015).
[Crossref] [PubMed]

Romberg, J.

M. S. Asif and J. Romberg, “Sparse recovery of streaming signals usingl1-homotopy,” IEEE Trans. Signal Processing 62, 4209–4223 (2014).
[Crossref]

E. Candès and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Probl. 23, 969 (2007).
[Crossref]

E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Information Theory 52, 489–509 (2006).
[Crossref]

Sakai, T.

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Optics Express 13, 10652–10664 (2005).
[Crossref] [PubMed]

Saleh, B. E. A.

N. Mohan, I. Stojanovic, W. C. Karl, B. E. A. Saleh, and M. C. Teich, “Compressed sensing in optical coherence tomography,” Proc. SPIE 7570, 75700L (2010).
[Crossref]

Sarunic, M. V.

E. Lebed, P. J. Mackenzie, M. V. Sarunic, and M. F. Beg, “Rapid volumetric OCT image acquisition using Compressive Sampling,” Optics Express 18, 21003–21012 (2010).
[Crossref] [PubMed]

Saxer, C.

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Optics Letters 25, 114–116 (2000).
[Crossref]

Schalij, M.-J.

E. M. Aliot, W. G. Stevenson, J. M. Almendral-Garrote, F. Bogun, C. H. Calkins, E. Delacretaz, P. D. Bella, G. Hindricks, P. Jaïs, M. E. Josephson, J. Kautzner, G. N. Kay, K.-H. Kuck, B. B. Lerman, F. Marchlinski, V. Reddy, M.-J. Schalij, R. Schilling, K. Soejima, and D. Wilber, “EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias: Developed in a partnership with the European Heart Rhythm Association (EHRA), a Registered Branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA),” EP Europace 11, 771–817 (2009).
[Crossref]

Schill, A.

M. Singh, C. Wu, C.-H. Liu, J. Li, A. Schill, A. Nair, and K. V. Larin, “Phase-sensitive optical coherence elastography at 1.5 million A-Lines per second,” Optics Letters 40, 2588–2591 (2015).
[Crossref] [PubMed]

Schilling, R.

E. M. Aliot, W. G. Stevenson, J. M. Almendral-Garrote, F. Bogun, C. H. Calkins, E. Delacretaz, P. D. Bella, G. Hindricks, P. Jaïs, M. E. Josephson, J. Kautzner, G. N. Kay, K.-H. Kuck, B. B. Lerman, F. Marchlinski, V. Reddy, M.-J. Schalij, R. Schilling, K. Soejima, and D. Wilber, “EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias: Developed in a partnership with the European Heart Rhythm Association (EHRA), a Registered Branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA),” EP Europace 11, 771–817 (2009).
[Crossref]

Schmetterer, L.

R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Progress in Retinal and Eye Research 41, 26–43 (2014).
[Crossref] [PubMed]

Schwartz, D. M.

D. M. Schwartz, J. Fingler, D. Y. Kim, R. J. Zawadzki, L. S. Morse, S. S. Park, S. E. Fraser, and J. S. Werner, “Phase-variance optical coherence tomography: A technique for noninvasive angiography,” Ophthalmology 121, 180–187 (2014).
[Crossref]

Shangguan, Z.

Z. Shangguan, Y. Shen, P. Li, and Z. Ding, “Wavenumber calibration and phase measurement in swept source optical coherence tomography (in Chinese),” Acta Physica Sinica 65, 034201 (2016).

Shen, T. T.

S. Song, W. Wei, B.-Y. Hsieh, I. Pelivanov, T. T. Shen, M. O’Donnell, and R. K. Wang, “Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate,” Applied Physics Letters 108, 191104 (2016).
[Crossref]

Shen, Y.

Z. Shangguan, Y. Shen, P. Li, and Z. Ding, “Wavenumber calibration and phase measurement in swept source optical coherence tomography (in Chinese),” Acta Physica Sinica 65, 034201 (2016).

Singh, M.

M. Singh, C. Wu, C.-H. Liu, J. Li, A. Schill, A. Nair, and K. V. Larin, “Phase-sensitive optical coherence elastography at 1.5 million A-Lines per second,” Optics Letters 40, 2588–2591 (2015).
[Crossref] [PubMed]

Soejima, K.

E. M. Aliot, W. G. Stevenson, J. M. Almendral-Garrote, F. Bogun, C. H. Calkins, E. Delacretaz, P. D. Bella, G. Hindricks, P. Jaïs, M. E. Josephson, J. Kautzner, G. N. Kay, K.-H. Kuck, B. B. Lerman, F. Marchlinski, V. Reddy, M.-J. Schalij, R. Schilling, K. Soejima, and D. Wilber, “EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias: Developed in a partnership with the European Heart Rhythm Association (EHRA), a Registered Branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA),” EP Europace 11, 771–817 (2009).
[Crossref]

Song, S.

S. Song, W. Wei, B.-Y. Hsieh, I. Pelivanov, T. T. Shen, M. O’Donnell, and R. K. Wang, “Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate,” Applied Physics Letters 108, 191104 (2016).
[Crossref]

Spaide, R. F.

R. F. Spaide, J. G. Fujimoto, and N. K. Waheed, “Image artifacts in optical coherence tomography angiography,” Retina 35, 2163–2180 (2015).
[Crossref] [PubMed]

Starck, J.-L.

J. Bobin, J.-L. Starck, and R. Ottensamer, “Compressed sensing in astronomy,” IEEE Journal of Selected Topics in Signal Processing 2, 718–726 (2008).
[Crossref]

Stevenson, W. G.

E. M. Aliot, W. G. Stevenson, J. M. Almendral-Garrote, F. Bogun, C. H. Calkins, E. Delacretaz, P. D. Bella, G. Hindricks, P. Jaïs, M. E. Josephson, J. Kautzner, G. N. Kay, K.-H. Kuck, B. B. Lerman, F. Marchlinski, V. Reddy, M.-J. Schalij, R. Schilling, K. Soejima, and D. Wilber, “EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias: Developed in a partnership with the European Heart Rhythm Association (EHRA), a Registered Branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA),” EP Europace 11, 771–817 (2009).
[Crossref]

Stojanovic, I.

N. Mohan, I. Stojanovic, W. C. Karl, B. E. A. Saleh, and M. C. Teich, “Compressed sensing in optical coherence tomography,” Proc. SPIE 7570, 75700L (2010).
[Crossref]

Strohmer, T.

M. A. Herman and T. Strohmer, “High-resolution radar via compressed sensing,” IEEE Trans. Signal Process. 57, 2275–2284 (2009).
[Crossref]

Szkulmowski, M.

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Optics Express 17, 14880–14894 (2009).
[Crossref] [PubMed]

Tao, T.

E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Information Theory 52, 489–509 (2006).
[Crossref]

Tao, Y. K.

Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” Optics Express 16, 12350–12361 (2008).
[Crossref] [PubMed]

Taylor, C.

J. Whitaker, H. Raju, C. Taylor, and C. A. Rinaldi, “Accelerated idioventricular rhythm after left atrial tachycardia ablation as a marker of acute coronary ischemia,” HeartRhythm Case Reports 1, 99–102 (2015).
[Crossref] [PubMed]

Tearney, G. J.

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Optics Express 11, 2953–2963 (2003).
[Crossref] [PubMed]

B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr 4+:forsterite laser,” Optics Letters 22, 1704–1706 (1997).
[Crossref]

Teich, M. C.

N. Mohan, I. Stojanovic, W. C. Karl, B. E. A. Saleh, and M. C. Teich, “Compressed sensing in optical coherence tomography,” Proc. SPIE 7570, 75700L (2010).
[Crossref]

Tsia, K. K.

X. Wei, A. K. S. Lau, Y. Xu, K. K. Tsia, and K. K. Y. Wong, “28 MHz swept source at 1.0 μm for ultrafast quantitative phase imaging,” Biomedical Optics Express 6, 3855–3864 (2015).
[Crossref]

van Velthoven, M. E.

S. Amarakoon, J. H. De Jong, B. Braaf, S. Yzer, T. Missotten, M. E. van Velthoven, and J. F. de Boer, “Phase-resolved doppler optical coherence tomographic features in retinal angiomatous proliferation,” American Journal of Ophthalmology 160, 1044–1054 (2015).
[Crossref] [PubMed]

Waheed, N. K.

R. F. Spaide, J. G. Fujimoto, and N. K. Waheed, “Image artifacts in optical coherence tomography angiography,” Retina 35, 2163–2180 (2015).
[Crossref] [PubMed]

Wang, C.

C. K. Mididoddi, F. Bai, G. Wang, J. Liu, S. Gibson, and C. Wang, “High-throughput photonic time-stretch optical coherence tomography with data compression,” IEEE Photonics Journal 9, 1–15 (2017).
[Crossref]

Wang, G.

C. K. Mididoddi, F. Bai, G. Wang, J. Liu, S. Gibson, and C. Wang, “High-throughput photonic time-stretch optical coherence tomography with data compression,” IEEE Photonics Journal 9, 1–15 (2017).
[Crossref]

Wang, R. K.

S. Song, W. Wei, B.-Y. Hsieh, I. Pelivanov, T. T. Shen, M. O’Donnell, and R. K. Wang, “Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate,” Applied Physics Letters 108, 191104 (2016).
[Crossref]

A. Zhang, Q. Zhang, C.-L. Chen, and R. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. of Biomedical Optics 20, 100901 (2015).
[Crossref]

R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express 17, 8926–8940 (2009).
[Crossref] [PubMed]

L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Optics Express 16, 11438–11452 (2008).
[Crossref] [PubMed]

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Optics Express 15, 4083–4097 (2007).
[Crossref] [PubMed]

Wang, S.

S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: A review,” Journal of Biophotonics 8, 279–302 (2015).
[Crossref]

S. Wang and K. V. Larin, “Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics,” Optics Letters 39, 41–44 (2014).
[Crossref]

Wei, W.

S. Song, W. Wei, B.-Y. Hsieh, I. Pelivanov, T. T. Shen, M. O’Donnell, and R. K. Wang, “Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate,” Applied Physics Letters 108, 191104 (2016).
[Crossref]

Wei, X.

X. Wei, A. K. S. Lau, Y. Xu, K. K. Tsia, and K. K. Y. Wong, “28 MHz swept source at 1.0 μm for ultrafast quantitative phase imaging,” Biomedical Optics Express 6, 3855–3864 (2015).
[Crossref]

Werkmeister, R. M.

R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Progress in Retinal and Eye Research 41, 26–43 (2014).
[Crossref] [PubMed]

Werner, J. S.

D. M. Schwartz, J. Fingler, D. Y. Kim, R. J. Zawadzki, L. S. Morse, S. S. Park, S. E. Fraser, and J. S. Werner, “Phase-variance optical coherence tomography: A technique for noninvasive angiography,” Ophthalmology 121, 180–187 (2014).
[Crossref]

Whitaker, J.

J. Whitaker, H. Raju, C. Taylor, and C. A. Rinaldi, “Accelerated idioventricular rhythm after left atrial tachycardia ablation as a marker of acute coronary ischemia,” HeartRhythm Case Reports 1, 99–102 (2015).
[Crossref] [PubMed]

Wieser, W.

W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomedical Optics Express 5, 2963–2977 (2014).
[Crossref] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “OCT Multi-Megahertz: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Optics Express 18, 14685–14704 (2010).
[Crossref]

Wilber, D.

E. M. Aliot, W. G. Stevenson, J. M. Almendral-Garrote, F. Bogun, C. H. Calkins, E. Delacretaz, P. D. Bella, G. Hindricks, P. Jaïs, M. E. Josephson, J. Kautzner, G. N. Kay, K.-H. Kuck, B. B. Lerman, F. Marchlinski, V. Reddy, M.-J. Schalij, R. Schilling, K. Soejima, and D. Wilber, “EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias: Developed in a partnership with the European Heart Rhythm Association (EHRA), a Registered Branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA),” EP Europace 11, 771–817 (2009).
[Crossref]

Wojtkowski, M.

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Optics Express 17, 14880–14894 (2009).
[Crossref] [PubMed]

R. A. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Optics Express 14, 3225–3237 (2006).
[Crossref] [PubMed]

Wong, K. K. Y.

X. Wei, A. K. S. Lau, Y. Xu, K. K. Tsia, and K. K. Y. Wong, “28 MHz swept source at 1.0 μm for ultrafast quantitative phase imaging,” Biomedical Optics Express 6, 3855–3864 (2015).
[Crossref]

Wu, C.

M. Singh, C. Wu, C.-H. Liu, J. Li, A. Schill, A. Nair, and K. V. Larin, “Phase-sensitive optical coherence elastography at 1.5 million A-Lines per second,” Optics Letters 40, 2588–2591 (2015).
[Crossref] [PubMed]

Xiang, S.

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Optics Letters 25, 114–116 (2000).
[Crossref]

Xu, D.

Xu, Y.

X. Wei, A. K. S. Lau, Y. Xu, K. K. Tsia, and K. K. Y. Wong, “28 MHz swept source at 1.0 μm for ultrafast quantitative phase imaging,” Biomedical Optics Express 6, 3855–3864 (2015).
[Crossref]

Yao, X.

Y. Ling, Y. Gan, X. Yao, and C. P. Hendon, “Phase-noise analysis of swept-source optical coherence tomography systems,” Optics Letters 42, 1333–1336 (2017).
[Crossref] [PubMed]

Y. Ling, X. Yao, and C. P. Hendon, “Highly phase-stable 200 kHz swept-source optical coherence tomography based on KTN electro-optic deflector,” Biomedical Optics Express 8, 3687–3699 (2017).
[Crossref] [PubMed]

Yasuno, Y.

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Optics Express 13, 10652–10664 (2005).
[Crossref] [PubMed]

Yatagai, T.

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Optics Express 13, 10652–10664 (2005).
[Crossref] [PubMed]

Yun, S. H.

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Optics Express 11, 2953–2963 (2003).
[Crossref] [PubMed]

Yzer, S.

S. Amarakoon, J. H. De Jong, B. Braaf, S. Yzer, T. Missotten, M. E. van Velthoven, and J. F. de Boer, “Phase-resolved doppler optical coherence tomographic features in retinal angiomatous proliferation,” American Journal of Ophthalmology 160, 1044–1054 (2015).
[Crossref] [PubMed]

Zawadzki, R. J.

D. M. Schwartz, J. Fingler, D. Y. Kim, R. J. Zawadzki, L. S. Morse, S. S. Park, S. E. Fraser, and J. S. Werner, “Phase-variance optical coherence tomography: A technique for noninvasive angiography,” Ophthalmology 121, 180–187 (2014).
[Crossref]

Zhang, A.

A. Zhang, Q. Zhang, C.-L. Chen, and R. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. of Biomedical Optics 20, 100901 (2015).
[Crossref]

Zhang, Q.

A. Zhang, Q. Zhang, C.-L. Chen, and R. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. of Biomedical Optics 20, 100901 (2015).
[Crossref]

Zhao, Y.

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Optics Letters 25, 114–116 (2000).
[Crossref]

Acta Physica Sinica (1)

Z. Shangguan, Y. Shen, P. Li, and Z. Ding, “Wavenumber calibration and phase measurement in swept source optical coherence tomography (in Chinese),” Acta Physica Sinica 65, 034201 (2016).

American Journal of Ophthalmology (1)

S. Amarakoon, J. H. De Jong, B. Braaf, S. Yzer, T. Missotten, M. E. van Velthoven, and J. F. de Boer, “Phase-resolved doppler optical coherence tomographic features in retinal angiomatous proliferation,” American Journal of Ophthalmology 160, 1044–1054 (2015).
[Crossref] [PubMed]

Applied and Computational Harmonic Analysis (1)

M. F. Duarte and R. G. Baraniuk, “Spectral compressive sensing,” Applied and Computational Harmonic Analysis 35, 111–129 (2013).
[Crossref]

Applied Physics Letters (1)

S. Song, W. Wei, B.-Y. Hsieh, I. Pelivanov, T. T. Shen, M. O’Donnell, and R. K. Wang, “Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate,” Applied Physics Letters 108, 191104 (2016).
[Crossref]

Biomed. Opt. Express (1)

Biomedical Optics Express (6)

Y. Ling, X. Yao, and C. P. Hendon, “Highly phase-stable 200 kHz swept-source optical coherence tomography based on KTN electro-optic deflector,” Biomedical Optics Express 8, 3687–3699 (2017).
[Crossref] [PubMed]

T. Klein and R. Huber, “High-speed OCT light sources and systems [Invited],” Biomedical Optics Express 8, 828–859 (2017).
[Crossref]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomedical Optics Express 3, 2733–2751 (2012).
[Crossref] [PubMed]

X. Wei, A. K. S. Lau, Y. Xu, K. K. Tsia, and K. K. Y. Wong, “28 MHz swept source at 1.0 μm for ultrafast quantitative phase imaging,” Biomedical Optics Express 6, 3855–3864 (2015).
[Crossref]

S. Kim, P. D. Raphael, J. S. Oghalai, and B. E. Applegate, “High-speed spectral calibration by complex FIR filter in phase-sensitive optical coherence tomography,” Biomedical Optics Express 7, 1430–1444 (2016).
[Crossref] [PubMed]

W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomedical Optics Express 5, 2963–2977 (2014).
[Crossref] [PubMed]

EP Europace (1)

E. M. Aliot, W. G. Stevenson, J. M. Almendral-Garrote, F. Bogun, C. H. Calkins, E. Delacretaz, P. D. Bella, G. Hindricks, P. Jaïs, M. E. Josephson, J. Kautzner, G. N. Kay, K.-H. Kuck, B. B. Lerman, F. Marchlinski, V. Reddy, M.-J. Schalij, R. Schilling, K. Soejima, and D. Wilber, “EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias: Developed in a partnership with the European Heart Rhythm Association (EHRA), a Registered Branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA),” EP Europace 11, 771–817 (2009).
[Crossref]

HeartRhythm Case Reports (1)

J. Whitaker, H. Raju, C. Taylor, and C. A. Rinaldi, “Accelerated idioventricular rhythm after left atrial tachycardia ablation as a marker of acute coronary ischemia,” HeartRhythm Case Reports 1, 99–102 (2015).
[Crossref] [PubMed]

IEEE Journal of Selected Topics in Signal Processing (1)

J. Bobin, J.-L. Starck, and R. Ottensamer, “Compressed sensing in astronomy,” IEEE Journal of Selected Topics in Signal Processing 2, 718–726 (2008).
[Crossref]

IEEE Photonics Journal (1)

C. K. Mididoddi, F. Bai, G. Wang, J. Liu, S. Gibson, and C. Wang, “High-throughput photonic time-stretch optical coherence tomography with data compression,” IEEE Photonics Journal 9, 1–15 (2017).
[Crossref]

IEEE Trans. Inf. Theory (2)

D. L. Donoho and X. Huo, “Uncertainty principles and ideal atomic decomposition,” IEEE Trans. Inf. Theory 47, 2845–2862 (2001).
[Crossref]

R. Baraniuk, V. Cevher, M. Duarte, and C. Hegde, “Model-based compressive sensing,” IEEE Trans. Inf. Theory 56, 1982–2001 (2010).
[Crossref]

IEEE Trans. Information Theory (2)

E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Information Theory 52, 489–509 (2006).
[Crossref]

D. Donoho, “Compressed sensing,” IEEE Trans. Information Theory 52, 1289–1306 (2006).
[Crossref]

IEEE Trans. Signal Process. (1)

M. A. Herman and T. Strohmer, “High-resolution radar via compressed sensing,” IEEE Trans. Signal Process. 57, 2275–2284 (2009).
[Crossref]

IEEE Trans. Signal Processing (1)

M. S. Asif and J. Romberg, “Sparse recovery of streaming signals usingl1-homotopy,” IEEE Trans. Signal Processing 62, 4209–4223 (2014).
[Crossref]

Inverse Probl. (1)

E. Candès and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Probl. 23, 969 (2007).
[Crossref]

J. of Biomedical Optics (1)

A. Zhang, Q. Zhang, C.-L. Chen, and R. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. of Biomedical Optics 20, 100901 (2015).
[Crossref]

Journal of Biophotonics (2)

S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: A review,” Journal of Biophotonics 8, 279–302 (2015).
[Crossref]

W. Chen, C. Du, and Y. Pan, “Cerebral capillary flow imaging by wavelength-division-multiplexing swept-source optical Doppler tomography,” Journal of Biophotonics 11, e201800004(2018).
[Crossref] [PubMed]

Journal on Imaging Sciences (1)

S. Becker, J. Bobin, and E. Candès, “NESTA: A Fast and Accurate First-Order Method for Sparse Recovery,” Journal on Imaging Sciences 4, 1–39 (2011).
[Crossref]

Magnetic Resonance in Medicine (1)

M. Lustig, D. Donoho, and J. M. Pauly, “MRI Sparse: The application of compressed sensing for rapid MR imaging,” Magnetic Resonance in Medicine 58, 1182–1195 (2007).
[Crossref]

Ophthalmology (1)

D. M. Schwartz, J. Fingler, D. Y. Kim, R. J. Zawadzki, L. S. Morse, S. S. Park, S. E. Fraser, and J. S. Werner, “Phase-variance optical coherence tomography: A technique for noninvasive angiography,” Ophthalmology 121, 180–187 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Optics Express (11)

X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties, Optics Express 16, 11052–11065 (2008).
[Crossref] [PubMed]

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Optics Express 15, 4083–4097 (2007).
[Crossref] [PubMed]

R. A. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Optics Express 14, 3225–3237 (2006).
[Crossref] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Optics Express 11, 2953–2963 (2003).
[Crossref] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “OCT Multi-Megahertz: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Optics Express 18, 14685–14704 (2010).
[Crossref]

L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Optics Express 16, 11438–11452 (2008).
[Crossref] [PubMed]

Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” Optics Express 16, 12350–12361 (2008).
[Crossref] [PubMed]

X. Liu and J. U. Kang, “SD-OCT Compressive: the application of compressed sensing in spectral domain optical coherence tomography,” Optics Express 18, 22010–22019 (2010).
[Crossref]

E. Lebed, P. J. Mackenzie, M. V. Sarunic, and M. F. Beg, “Rapid volumetric OCT image acquisition using Compressive Sampling,” Optics Express 18, 21003–21012 (2010).
[Crossref] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Optics Express 13, 10652–10664 (2005).
[Crossref] [PubMed]

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Optics Express 17, 14880–14894 (2009).
[Crossref] [PubMed]

Optics Letters (6)

M. Singh, C. Wu, C.-H. Liu, J. Li, A. Schill, A. Nair, and K. V. Larin, “Phase-sensitive optical coherence elastography at 1.5 million A-Lines per second,” Optics Letters 40, 2588–2591 (2015).
[Crossref] [PubMed]

B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr 4+:forsterite laser,” Optics Letters 22, 1704–1706 (1997).
[Crossref]

Y. Ling, Y. Gan, X. Yao, and C. P. Hendon, “Phase-noise analysis of swept-source optical coherence tomography systems,” Optics Letters 42, 1333–1336 (2017).
[Crossref] [PubMed]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Optics Letters 25, 114–116 (2000).
[Crossref]

S. Wang and K. V. Larin, “Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics,” Optics Letters 39, 41–44 (2014).
[Crossref]

M. M. Marim, M. Atlan, E. Angelini, and J.-C. Olivo-Marin, “Compressed sensing with off-axis frequency-shifting holography,” Optics Letters 35, 871–873 (2010).
[Crossref] [PubMed]

Proc. SPIE (2)

N. Mohan, I. Stojanovic, W. C. Karl, B. E. A. Saleh, and M. C. Teich, “Compressed sensing in optical coherence tomography,” Proc. SPIE 7570, 75700L (2010).
[Crossref]

W. Meiniel, Y. Gan, J.-C. Olivo-Marin, and E. Angelini, “A sparsity-based simplification method for segmentation of spectral-domain optical coherence tomography images,” Proc. SPIE 10394, 1039406 (2017).

Proceedings of the National Academy of Sciences (1)

H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proceedings of the National Academy of Sciences 112, 3128–3133 (2015).
[Crossref]

Progress in Retinal and Eye Research (1)

R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Progress in Retinal and Eye Research 41, 26–43 (2014).
[Crossref] [PubMed]

Retina (1)

R. F. Spaide, J. G. Fujimoto, and N. K. Waheed, “Image artifacts in optical coherence tomography angiography,” Retina 35, 2163–2180 (2015).
[Crossref] [PubMed]

Other (2)

W. Meiniel, Y. Gan, C. P. Hendon, J.-C. Olivo-Marin, A. Laine, and E. D. Angelini, “Sparsity-based simplification of spectral-domain optical coherence tomography images of cardiac samples,” in Proceedings of 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), (IEEE, 2016), pp. 373–376.
[Crossref]

A. Kulkarni and T. Mohsenin, “Accelerating compressive sensing reconstruction OMP algorithm with CPU, GPU, FPGA and domain specific many-core,” in Proceedings of 2015 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 970–973.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Exemplary calibration signals acquired in a typical SS-OCT. (a) 1D visualization of one calibration A-line. (b) 1D Fourier Transform of (a) (logarithmic view). (c) 2D visualization of a calibration B-scan. The inset shows the magnified view, which manifests server jitter. (d) 2D Fourier Transform of (c) (logarithmic view).
Fig. 2
Fig. 2 (a) The SS-OCT setup. Two channels are digitized: (b) OCT channel and (c) calibration channel. (d) The schematic of the hardware-based sub-sampling. The OCT channel is fully digitized by the first DAQ board, while the calibration channel is sub-sampled by the second DAQ. Both digitized signals are later transferred to the host PC. (e) The detailed reconstruction work flow for calibration B-scans. Depending on the size of the sub-sampling mask, the original B-scan will be segmented and randomly sub-sampled at the acquisition. Each segment is reconstructed by using NESTA algorithm and concatenated to form the reconstructed calibration B-scan.
Fig. 3
Fig. 3 (Numerical Simulation) Correlation coefficient r ¯ x , x ^ between the reconstructed signal x ^ and the original signal x at (a) 200 MS/s and (b) 1.6GS/s. The solid blue curves in (a) and (b) give the levels that are corresponding to r ¯ x , x ^ = 0.9. (c) The evolution of r ¯ x , x ^ against sub-sampling rate P / M for different mask width Nk. (d) The required sub-sampling rate for good reconstruction (to achieve r ¯ x , x ^ = 0.9) fits linearlyagainst log M / M, which agrees with our prediction made in Eq. 5.
Fig. 4
Fig. 4 The proposed CS-enabled calibration method requires less data bandwidth without compromising phase stability. (a) The Full calibration signal. (b) The experimentally obtained sub-sampled calibration signal (red squares) and its reconstruction (black solid line). (c) The k-t curves extracted from the full calibration signal and the reconstructed signal. The error, whose amplitude is less than 0.1% of that of the original signal over the entire spectrum, is also plotted. The histogram of the instantaneous phase angles obtained from the peak location of OCT images by using full calibration signal and reconstructed signal are presented in (d) and (e). The standard deviation of the distribution is 4.53 mrad and 4.49 mrad, respectively.
Fig. 5
Fig. 5 The results of the vibrational test. (a) The instantaneous phase evolution over 2 ms and (b) the vibrational spectra obtained by the proposed system along with the controls. The low frequency region (blue boxed) in (b) is magnified and replotted in the inset. The results of using pre-measured calibration (red dash lines) show excessive phase noise in both time domain and spectral domain, while the others present comparable performances to that of using the full calibration. It is worth noting that we could achieve a lower sub-sampling rate ( P / M) by using a larger mask width (Nk) without compromising the performance. The measured noise floor for the proposed system is below 10 pm.
Fig. 6
Fig. 6 The results of the flow velocity measure. (a) The original OCT image of the flow phantom. Its 1D DFT in fast axis direction is given in (e), where we could spot the Doppler frequency shift due to the presence of the intralipid flow. The resultant OMAG images by using full calibration, pre-measured calibration, and proposed CS-based remapping schemes are given in (b), (c) and (d), respectively. In panel (c), the artifacts due to the timing jitter is pointed out by yellow arrows and yellow box. (f)The computed Doppler image by using proposed CS-based remapping. The averaged (4 adjacent A-lines) depth profile at the red line’s location is plotted in (g).
Fig. 7
Fig. 7 The blood flow detection in ex vivo swine left marginal artery. (a) Volumetric OCT image overlaid with corresponding OMAG image. The cross-sectional views in yz and xz planes are shown in (b) and (c), respectively. The white scale bars represent for 1 mm in each direction.
Fig. 8
Fig. 8 The mis-synchronization due to the usage of two DAQ boards. (a) The raw phase angles obtained by CS recalibration over time and (b) their histogram. A fixed phase jump could be observed in (a), and the histogram in (b) shows two distinct peak with similar distribution. This phase jump is caused by the one pixel shift during the simultaneous triggering of the two DAQ baords. The numerically corrected phase angles (CS-based calibration) are plotted against that of (c) pre-measured calibration and (d) full calibration. The CS-based calibration shows a significantly superior phase stability to that of the pre-measured calibration and a comparable result to that of the full calibration.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

x ^ = argmin x M Ψ * x 1 s . t . Φ x = y
P S μ ( Φ , Ψ ) 2 log  M
x ^ = argmin x M F 1 x 1 s . t . Φ x = y .
I [ m ] = A cos  ( 2 k [ m ] z d ) .
P M S log  M M
r x , x ^ = Σ i = 1 n ( x i x ¯ ) ( x ^ i x ¯ ) Σ i = 1 n ( x i x ¯ ) 2 Σ i = 1 n ( x ^ i x ¯ ) 2

Metrics