Abstract

The possibilities that offer the holographic optical elements for photovoltaic and “see through display” applications open new windows for holographic recording materials. In this sense, some specific characteristics are required for each particular application. Waveguides are one of the key elements for these applications. Photopolymers are one of the most competitive candidates for waveguide fabrication. In this work, we evaluate the performance of one example from each of three families of photopolymer material in fabrication of a 633nm waveguide. Firstly, polyvinyl alcohol acrylamide, PVA/AA, the second one, a nanoparticle-thiol-ene, NPC, and on the last place a penta/hexa-acrylate based polymer with dispersed nematic liquid crystal molecules, PDLC. We study the critical role of the material and in particular, spatial resolution for this application.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Effects of chain-transferring thiol functionalities on the performance of nanoparticle-polymer composite volume gratings

Jinxin Guo, Ryuta Fujii, Takanori Ono, Jürgen Klepp, Christian Pruner, Martin Fally, and Yasuo Tomita
Opt. Lett. 39(23) 6743-6746 (2014)

Dimensional changes in slanted diffraction gratings recorded in photopolymers

R. Fernández, S. Gallego, V. Navarro-Fuster, C. Neipp, J. Francés, S. Fenoll, I. Pascual, and A. Beléndez
Opt. Mater. Express 6(11) 3455-3468 (2016)

Measurement of polymerization-shrinkage evolution during curing in photopolymer with a white-light Fabry-Pérot interferometer

Masaru Kawana, Jun-ichiro Takahashi, Jinxin Guo, and Yasuo Tomita
Opt. Express 23(12) 15356-15364 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage; (Springer–Verlag, 2000).
  2. M. Infusino, A. De Luca, V. Barna, R. Caputo, and C. Umeton, “Periodic and aperiodic liquid crystal-polymer composite structures realized via spatial light modulator direct holography,” Opt. Express 20(21), 23138–23143 (2012).
    [Crossref] [PubMed]
  3. R. Fernández, S. Gallego, A. Márquez, J. Francés, V. Navarro-Fuster, and I. Pascual, “Diffractive lenses recorded in absorbent photopolymers,” Opt. Express 24(2), 1559–1572 (2016).
    [Crossref] [PubMed]
  4. J. M. Miller, N. de Beaucoudrey, P. Chavel, J. Turunen, and E. Cambril, “Design and fabrication of binary slanted surface-relief gratings for a planar optical interconnection,” Appl. Opt. 36(23), 5717–5727 (1997).
    [Crossref] [PubMed]
  5. M. Miki, R. Ohira, and Y. Tomita, “Optical properties of electrically tunable two-dimensional photonic lattice structures formed in a holographic polymer-dispersed liquid crystal film: analysis and experiment,” Materials (Basel) 7(5), 3677–3698 (2014).
    [Crossref] [PubMed]
  6. K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, eds., Holographic Data Storage: From Theory to Practical Systems (John Wiley & Sons, Ltd., 2010).
  7. E. Leite, I. Naydenova, S. Mintova, L. Leclercq, and V. Toal, “Photopolymerizable nanocomposites for holographic recording and sensor application,” Appl. Opt. 49(19), 3652–3660 (2010).
    [Crossref] [PubMed]
  8. I. Naydenova, H. Akbari, C. Dalton, M. Y. M. Ilyas, C. P. T. Wei, V. Toal, and S. Martin, Photopolymer Holographic Optical Elements for Application in Solar Energy Concentrators, Holography - Basic principles and contemporary applications, Dr. Emilia Mihaylova (Ed., InTech, 2013).
  9. J. Y. Hong, C.-K. Lee, S. Lee, B. Lee, D. Yoo, C. Jang, J. Kim, J. Jeong, and B. Lee, “See-through optical combiner for augmented reality head-mounted display: index-matched anisotropic crystal lens,” Sci. Rep. 7(1), 2753 (2017).
    [Crossref] [PubMed]
  10. E. Tolstik, O. Romanov, V. Matusevich, A. Tolstik, and R. Kowarschik, “Formation of self-trapping waveguides in bulk PMMA media doped with Phenanthrenequinone,” Opt. Express 22(3), 3228–3233 (2014).
    [Crossref] [PubMed]
  11. H. Li, Y. Qi, J. P. Ryle, and J. T. Sheridan, “Self-written waveguides in a dry acrylamide/polyvinyl alcohol photopolymer material,” Appl. Opt. 53(34), 8086–8094 (2014).
    [Crossref] [PubMed]
  12. J. Marín-Sáez, J. Atencia, D. Chemisana, and M.-V. Collados, “Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications,” Opt. Express 24(6), A720–A730 (2016).
    [Crossref] [PubMed]
  13. J. Guo, M. R. Gleeson, and J. T. Sheridan, “A review of the optimisation of photopolymer materials for holographic data storage,” Physics Research International 2012, 803439 (2012).
  14. G. Li, D. Lee, Y. Jeong, J. Cho, and B. Lee, “Holographic display for see-through augmented reality using mirror-lens holographic optical element,” Opt. Lett. 41(11), 2486–2489 (2016).
    [Crossref] [PubMed]
  15. N. Zhang, J. Liu, J. Han, X. Li, F. Yang, X. Wang, B. Hu, and Y. Wang, “Improved holographic waveguide display system,” Appl. Opt. 54(12), 3645–3649 (2015).
    [Crossref]
  16. J. A. Piao, G. Li, M. Lan Piao, and N. Kim, “Full Color Holographic Optical Element Fabrication for Waveguide-type Head Mounted Display Using Photopolymer,” J. Opt. Soc. Korea 17(3), 242–248 (2013).
    [Crossref]
  17. C. Neipp, J. Francés, F. J. Martínez, R. Fernández, M. L. Alvarez, S. Bleda, M. Ortuño, and S. Gallego, “Optimization of Photopolymer Materials for the Fabrication of a Holographic Waveguide,” Polymers (Basel) 9(9), 395 (2017).
  18. J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17(6), 1108–1114 (2000).
    [Crossref] [PubMed]
  19. M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25(3), 396–406 (2008).
    [Crossref]
  20. R. Fernández, S. Gallego, V. Navarro-Fuster, C. Neipp, J. Francés, S. Fenoll, I. Pascual, and A. Beléndez, “Dimensional changes in slanted diffraction gratings recorded in photopolymers,” Opt. Mater. Express 6(11), 3455–3468 (2016).
    [Crossref]
  21. E. Hata and Y. Tomita, “Order-of-magnitude polymerization-shrinkage suppression of volume gratings recorded in nanoparticle-polymer composites,” Opt. Lett. 35(3), 396–398 (2010).
    [Crossref] [PubMed]
  22. E. Hata, K. Mitsube, K. Momose, and Y. Tomita, “Holographic nanoparticle-polymer composites based on step-growth thiol-ene photopolymerization,” Opt. Mater. Express 1(2), 207–222 (2011).
    [Crossref]
  23. E. Hata and Y. Tomita, “Stoichiometric thiol-to-ene ratio dependences of refractive index modulation and shrinkage of volume gratings recorded in photopolymerizable nanoparticle-polymer composites based onstep-growth polymerization,” Opt. Mater. Express 1(6), 1113–1120 (2011).
    [Crossref]
  24. M. Ortuño, M. Riquelme, S. Gallego, A. Márquez, I. Pascual, and A. Beléndez, “Overmodulation control in the optimization of a H-PDLC device with ethyl eosin as dye,” International Journal of Polymer Science 2013, 357963 (2013).
  25. C. Meka, R. Jallapuram, I. Naydenova, S. Martin, and V. Toal, “Development of a panchromatic acrylamide-based photopolymer for multicolor reflection holography,” Appl. Opt. 49(8), 1400–1405 (2010).
    [Crossref] [PubMed]
  26. D. Yu, H. Liu, D. Mao, Y. Geng, W. Wang, L. Sun, and J. Lv, “Enhancement of spectrum strength in holographic sensing in nanozeolites dispersed acrylamide photopolymer,” Opt. Express 23(22), 29113–29126 (2015).
    [Crossref] [PubMed]
  27. F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Thickness variation of self-processing acrylamide-based photopolymer and reflection holography,” Opt. Eng. 40(4), 533–539 (2001).
    [Crossref]
  28. S. Gallego, R. Fernández, A. Márquez, M. Ortuño, C. Neipp, M. R. Gleeson, J. T. Sheridan, and A. Beléndez, “Two diffusion photopolymer for sharp diffractive optical elements recording,” Opt. Lett. 40(14), 3221–3224 (2015).
    [Crossref] [PubMed]
  29. M. Moothanchery, I. Naydenova, and V. Toal, “Studies of shrinkage as a result of holographic recording in acrylamide-basedphotopolymer film,” Appl. Phys., A Mater. Sci. Process. 104(3), 899–902 (2011).
    [Crossref]
  30. F.-K. Bruder, T. Fäcke, and T. Rölle, “The Chemistry and Physics of Bayfol HX Film holographic Photopolymer,” Polymers (Basel) 9(12), 472 (2017).
    [Crossref]
  31. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Labs Tech. J. 48(9), 2909–2947 (1969).
    [Crossref]
  32. S. Gallego, M. Ortuño, A. Márquez, R. Fernández, M. Álvarez, I. Pascual, and A. Beléndez, “Influence of thickness on the holographic parameters of h-pdlc materials,” Int. J. Polym. Sci. 2014, 528287 (2014).
    [Crossref]
  33. M. Jazbinšek, I. Drevensek-Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90(8), 3831–3837 (2001).
    [Crossref]

2017 (3)

J. Y. Hong, C.-K. Lee, S. Lee, B. Lee, D. Yoo, C. Jang, J. Kim, J. Jeong, and B. Lee, “See-through optical combiner for augmented reality head-mounted display: index-matched anisotropic crystal lens,” Sci. Rep. 7(1), 2753 (2017).
[Crossref] [PubMed]

C. Neipp, J. Francés, F. J. Martínez, R. Fernández, M. L. Alvarez, S. Bleda, M. Ortuño, and S. Gallego, “Optimization of Photopolymer Materials for the Fabrication of a Holographic Waveguide,” Polymers (Basel) 9(9), 395 (2017).

F.-K. Bruder, T. Fäcke, and T. Rölle, “The Chemistry and Physics of Bayfol HX Film holographic Photopolymer,” Polymers (Basel) 9(12), 472 (2017).
[Crossref]

2016 (4)

2015 (3)

2014 (4)

E. Tolstik, O. Romanov, V. Matusevich, A. Tolstik, and R. Kowarschik, “Formation of self-trapping waveguides in bulk PMMA media doped with Phenanthrenequinone,” Opt. Express 22(3), 3228–3233 (2014).
[Crossref] [PubMed]

H. Li, Y. Qi, J. P. Ryle, and J. T. Sheridan, “Self-written waveguides in a dry acrylamide/polyvinyl alcohol photopolymer material,” Appl. Opt. 53(34), 8086–8094 (2014).
[Crossref] [PubMed]

M. Miki, R. Ohira, and Y. Tomita, “Optical properties of electrically tunable two-dimensional photonic lattice structures formed in a holographic polymer-dispersed liquid crystal film: analysis and experiment,” Materials (Basel) 7(5), 3677–3698 (2014).
[Crossref] [PubMed]

S. Gallego, M. Ortuño, A. Márquez, R. Fernández, M. Álvarez, I. Pascual, and A. Beléndez, “Influence of thickness on the holographic parameters of h-pdlc materials,” Int. J. Polym. Sci. 2014, 528287 (2014).
[Crossref]

2013 (2)

M. Ortuño, M. Riquelme, S. Gallego, A. Márquez, I. Pascual, and A. Beléndez, “Overmodulation control in the optimization of a H-PDLC device with ethyl eosin as dye,” International Journal of Polymer Science 2013, 357963 (2013).

J. A. Piao, G. Li, M. Lan Piao, and N. Kim, “Full Color Holographic Optical Element Fabrication for Waveguide-type Head Mounted Display Using Photopolymer,” J. Opt. Soc. Korea 17(3), 242–248 (2013).
[Crossref]

2012 (2)

M. Infusino, A. De Luca, V. Barna, R. Caputo, and C. Umeton, “Periodic and aperiodic liquid crystal-polymer composite structures realized via spatial light modulator direct holography,” Opt. Express 20(21), 23138–23143 (2012).
[Crossref] [PubMed]

J. Guo, M. R. Gleeson, and J. T. Sheridan, “A review of the optimisation of photopolymer materials for holographic data storage,” Physics Research International 2012, 803439 (2012).

2011 (3)

2010 (3)

2008 (1)

2001 (2)

M. Jazbinšek, I. Drevensek-Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90(8), 3831–3837 (2001).
[Crossref]

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Thickness variation of self-processing acrylamide-based photopolymer and reflection holography,” Opt. Eng. 40(4), 533–539 (2001).
[Crossref]

2000 (1)

1997 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Labs Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Alvarez, M. L.

C. Neipp, J. Francés, F. J. Martínez, R. Fernández, M. L. Alvarez, S. Bleda, M. Ortuño, and S. Gallego, “Optimization of Photopolymer Materials for the Fabrication of a Holographic Waveguide,” Polymers (Basel) 9(9), 395 (2017).

Álvarez, M.

S. Gallego, M. Ortuño, A. Márquez, R. Fernández, M. Álvarez, I. Pascual, and A. Beléndez, “Influence of thickness on the holographic parameters of h-pdlc materials,” Int. J. Polym. Sci. 2014, 528287 (2014).
[Crossref]

Atencia, J.

Barna, V.

Beléndez, A.

R. Fernández, S. Gallego, V. Navarro-Fuster, C. Neipp, J. Francés, S. Fenoll, I. Pascual, and A. Beléndez, “Dimensional changes in slanted diffraction gratings recorded in photopolymers,” Opt. Mater. Express 6(11), 3455–3468 (2016).
[Crossref]

S. Gallego, R. Fernández, A. Márquez, M. Ortuño, C. Neipp, M. R. Gleeson, J. T. Sheridan, and A. Beléndez, “Two diffusion photopolymer for sharp diffractive optical elements recording,” Opt. Lett. 40(14), 3221–3224 (2015).
[Crossref] [PubMed]

S. Gallego, M. Ortuño, A. Márquez, R. Fernández, M. Álvarez, I. Pascual, and A. Beléndez, “Influence of thickness on the holographic parameters of h-pdlc materials,” Int. J. Polym. Sci. 2014, 528287 (2014).
[Crossref]

M. Ortuño, M. Riquelme, S. Gallego, A. Márquez, I. Pascual, and A. Beléndez, “Overmodulation control in the optimization of a H-PDLC device with ethyl eosin as dye,” International Journal of Polymer Science 2013, 357963 (2013).

Bleda, S.

C. Neipp, J. Francés, F. J. Martínez, R. Fernández, M. L. Alvarez, S. Bleda, M. Ortuño, and S. Gallego, “Optimization of Photopolymer Materials for the Fabrication of a Holographic Waveguide,” Polymers (Basel) 9(9), 395 (2017).

Bruder, F.-K.

F.-K. Bruder, T. Fäcke, and T. Rölle, “The Chemistry and Physics of Bayfol HX Film holographic Photopolymer,” Polymers (Basel) 9(12), 472 (2017).
[Crossref]

Cambril, E.

Caputo, R.

Chavel, P.

Chemisana, D.

Cho, J.

Close, C. E.

Collados, M.-V.

Crawford, G. P.

M. Jazbinšek, I. Drevensek-Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90(8), 3831–3837 (2001).
[Crossref]

de Beaucoudrey, N.

De Luca, A.

Drevensek-Olenik, I.

M. Jazbinšek, I. Drevensek-Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90(8), 3831–3837 (2001).
[Crossref]

Fäcke, T.

F.-K. Bruder, T. Fäcke, and T. Rölle, “The Chemistry and Physics of Bayfol HX Film holographic Photopolymer,” Polymers (Basel) 9(12), 472 (2017).
[Crossref]

Fenoll, S.

Fernández, R.

Fontecchio, A. K.

M. Jazbinšek, I. Drevensek-Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90(8), 3831–3837 (2001).
[Crossref]

Francés, J.

Gallego, S.

C. Neipp, J. Francés, F. J. Martínez, R. Fernández, M. L. Alvarez, S. Bleda, M. Ortuño, and S. Gallego, “Optimization of Photopolymer Materials for the Fabrication of a Holographic Waveguide,” Polymers (Basel) 9(9), 395 (2017).

R. Fernández, S. Gallego, V. Navarro-Fuster, C. Neipp, J. Francés, S. Fenoll, I. Pascual, and A. Beléndez, “Dimensional changes in slanted diffraction gratings recorded in photopolymers,” Opt. Mater. Express 6(11), 3455–3468 (2016).
[Crossref]

R. Fernández, S. Gallego, A. Márquez, J. Francés, V. Navarro-Fuster, and I. Pascual, “Diffractive lenses recorded in absorbent photopolymers,” Opt. Express 24(2), 1559–1572 (2016).
[Crossref] [PubMed]

S. Gallego, R. Fernández, A. Márquez, M. Ortuño, C. Neipp, M. R. Gleeson, J. T. Sheridan, and A. Beléndez, “Two diffusion photopolymer for sharp diffractive optical elements recording,” Opt. Lett. 40(14), 3221–3224 (2015).
[Crossref] [PubMed]

S. Gallego, M. Ortuño, A. Márquez, R. Fernández, M. Álvarez, I. Pascual, and A. Beléndez, “Influence of thickness on the holographic parameters of h-pdlc materials,” Int. J. Polym. Sci. 2014, 528287 (2014).
[Crossref]

M. Ortuño, M. Riquelme, S. Gallego, A. Márquez, I. Pascual, and A. Beléndez, “Overmodulation control in the optimization of a H-PDLC device with ethyl eosin as dye,” International Journal of Polymer Science 2013, 357963 (2013).

Geng, Y.

Gleeson, M. R.

Guo, J.

J. Guo, M. R. Gleeson, and J. T. Sheridan, “A review of the optimisation of photopolymer materials for holographic data storage,” Physics Research International 2012, 803439 (2012).

Han, J.

Hata, E.

Hong, J. Y.

J. Y. Hong, C.-K. Lee, S. Lee, B. Lee, D. Yoo, C. Jang, J. Kim, J. Jeong, and B. Lee, “See-through optical combiner for augmented reality head-mounted display: index-matched anisotropic crystal lens,” Sci. Rep. 7(1), 2753 (2017).
[Crossref] [PubMed]

Hu, B.

Infusino, M.

Jallapuram, R.

Jang, C.

J. Y. Hong, C.-K. Lee, S. Lee, B. Lee, D. Yoo, C. Jang, J. Kim, J. Jeong, and B. Lee, “See-through optical combiner for augmented reality head-mounted display: index-matched anisotropic crystal lens,” Sci. Rep. 7(1), 2753 (2017).
[Crossref] [PubMed]

Jazbinšek, M.

M. Jazbinšek, I. Drevensek-Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90(8), 3831–3837 (2001).
[Crossref]

Jeong, J.

J. Y. Hong, C.-K. Lee, S. Lee, B. Lee, D. Yoo, C. Jang, J. Kim, J. Jeong, and B. Lee, “See-through optical combiner for augmented reality head-mounted display: index-matched anisotropic crystal lens,” Sci. Rep. 7(1), 2753 (2017).
[Crossref] [PubMed]

Jeong, Y.

Kelly, J. V.

Kim, J.

J. Y. Hong, C.-K. Lee, S. Lee, B. Lee, D. Yoo, C. Jang, J. Kim, J. Jeong, and B. Lee, “See-through optical combiner for augmented reality head-mounted display: index-matched anisotropic crystal lens,” Sci. Rep. 7(1), 2753 (2017).
[Crossref] [PubMed]

Kim, N.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Labs Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Kowarschik, R.

Lan Piao, M.

Lawrence, J. R.

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Thickness variation of self-processing acrylamide-based photopolymer and reflection holography,” Opt. Eng. 40(4), 533–539 (2001).
[Crossref]

J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17(6), 1108–1114 (2000).
[Crossref] [PubMed]

Leclercq, L.

Lee, B.

J. Y. Hong, C.-K. Lee, S. Lee, B. Lee, D. Yoo, C. Jang, J. Kim, J. Jeong, and B. Lee, “See-through optical combiner for augmented reality head-mounted display: index-matched anisotropic crystal lens,” Sci. Rep. 7(1), 2753 (2017).
[Crossref] [PubMed]

J. Y. Hong, C.-K. Lee, S. Lee, B. Lee, D. Yoo, C. Jang, J. Kim, J. Jeong, and B. Lee, “See-through optical combiner for augmented reality head-mounted display: index-matched anisotropic crystal lens,” Sci. Rep. 7(1), 2753 (2017).
[Crossref] [PubMed]

G. Li, D. Lee, Y. Jeong, J. Cho, and B. Lee, “Holographic display for see-through augmented reality using mirror-lens holographic optical element,” Opt. Lett. 41(11), 2486–2489 (2016).
[Crossref] [PubMed]

Lee, C.-K.

J. Y. Hong, C.-K. Lee, S. Lee, B. Lee, D. Yoo, C. Jang, J. Kim, J. Jeong, and B. Lee, “See-through optical combiner for augmented reality head-mounted display: index-matched anisotropic crystal lens,” Sci. Rep. 7(1), 2753 (2017).
[Crossref] [PubMed]

Lee, D.

Lee, S.

J. Y. Hong, C.-K. Lee, S. Lee, B. Lee, D. Yoo, C. Jang, J. Kim, J. Jeong, and B. Lee, “See-through optical combiner for augmented reality head-mounted display: index-matched anisotropic crystal lens,” Sci. Rep. 7(1), 2753 (2017).
[Crossref] [PubMed]

Leite, E.

Li, G.

Li, H.

Li, X.

Liu, H.

Liu, J.

Liu, S.

Lv, J.

Mao, D.

Marín-Sáez, J.

Márquez, A.

R. Fernández, S. Gallego, A. Márquez, J. Francés, V. Navarro-Fuster, and I. Pascual, “Diffractive lenses recorded in absorbent photopolymers,” Opt. Express 24(2), 1559–1572 (2016).
[Crossref] [PubMed]

S. Gallego, R. Fernández, A. Márquez, M. Ortuño, C. Neipp, M. R. Gleeson, J. T. Sheridan, and A. Beléndez, “Two diffusion photopolymer for sharp diffractive optical elements recording,” Opt. Lett. 40(14), 3221–3224 (2015).
[Crossref] [PubMed]

S. Gallego, M. Ortuño, A. Márquez, R. Fernández, M. Álvarez, I. Pascual, and A. Beléndez, “Influence of thickness on the holographic parameters of h-pdlc materials,” Int. J. Polym. Sci. 2014, 528287 (2014).
[Crossref]

M. Ortuño, M. Riquelme, S. Gallego, A. Márquez, I. Pascual, and A. Beléndez, “Overmodulation control in the optimization of a H-PDLC device with ethyl eosin as dye,” International Journal of Polymer Science 2013, 357963 (2013).

Martin, S.

Martínez, F. J.

C. Neipp, J. Francés, F. J. Martínez, R. Fernández, M. L. Alvarez, S. Bleda, M. Ortuño, and S. Gallego, “Optimization of Photopolymer Materials for the Fabrication of a Holographic Waveguide,” Polymers (Basel) 9(9), 395 (2017).

Matusevich, V.

Meka, C.

Miki, M.

M. Miki, R. Ohira, and Y. Tomita, “Optical properties of electrically tunable two-dimensional photonic lattice structures formed in a holographic polymer-dispersed liquid crystal film: analysis and experiment,” Materials (Basel) 7(5), 3677–3698 (2014).
[Crossref] [PubMed]

Miller, J. M.

Mintova, S.

Mitsube, K.

Momose, K.

Moothanchery, M.

M. Moothanchery, I. Naydenova, and V. Toal, “Studies of shrinkage as a result of holographic recording in acrylamide-basedphotopolymer film,” Appl. Phys., A Mater. Sci. Process. 104(3), 899–902 (2011).
[Crossref]

Navarro-Fuster, V.

Naydenova, I.

Neipp, C.

O’Neill, F. T.

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Thickness variation of self-processing acrylamide-based photopolymer and reflection holography,” Opt. Eng. 40(4), 533–539 (2001).
[Crossref]

Ohira, R.

M. Miki, R. Ohira, and Y. Tomita, “Optical properties of electrically tunable two-dimensional photonic lattice structures formed in a holographic polymer-dispersed liquid crystal film: analysis and experiment,” Materials (Basel) 7(5), 3677–3698 (2014).
[Crossref] [PubMed]

Ortuño, M.

C. Neipp, J. Francés, F. J. Martínez, R. Fernández, M. L. Alvarez, S. Bleda, M. Ortuño, and S. Gallego, “Optimization of Photopolymer Materials for the Fabrication of a Holographic Waveguide,” Polymers (Basel) 9(9), 395 (2017).

S. Gallego, R. Fernández, A. Márquez, M. Ortuño, C. Neipp, M. R. Gleeson, J. T. Sheridan, and A. Beléndez, “Two diffusion photopolymer for sharp diffractive optical elements recording,” Opt. Lett. 40(14), 3221–3224 (2015).
[Crossref] [PubMed]

S. Gallego, M. Ortuño, A. Márquez, R. Fernández, M. Álvarez, I. Pascual, and A. Beléndez, “Influence of thickness on the holographic parameters of h-pdlc materials,” Int. J. Polym. Sci. 2014, 528287 (2014).
[Crossref]

M. Ortuño, M. Riquelme, S. Gallego, A. Márquez, I. Pascual, and A. Beléndez, “Overmodulation control in the optimization of a H-PDLC device with ethyl eosin as dye,” International Journal of Polymer Science 2013, 357963 (2013).

Pascual, I.

R. Fernández, S. Gallego, V. Navarro-Fuster, C. Neipp, J. Francés, S. Fenoll, I. Pascual, and A. Beléndez, “Dimensional changes in slanted diffraction gratings recorded in photopolymers,” Opt. Mater. Express 6(11), 3455–3468 (2016).
[Crossref]

R. Fernández, S. Gallego, A. Márquez, J. Francés, V. Navarro-Fuster, and I. Pascual, “Diffractive lenses recorded in absorbent photopolymers,” Opt. Express 24(2), 1559–1572 (2016).
[Crossref] [PubMed]

S. Gallego, M. Ortuño, A. Márquez, R. Fernández, M. Álvarez, I. Pascual, and A. Beléndez, “Influence of thickness on the holographic parameters of h-pdlc materials,” Int. J. Polym. Sci. 2014, 528287 (2014).
[Crossref]

M. Ortuño, M. Riquelme, S. Gallego, A. Márquez, I. Pascual, and A. Beléndez, “Overmodulation control in the optimization of a H-PDLC device with ethyl eosin as dye,” International Journal of Polymer Science 2013, 357963 (2013).

Piao, J. A.

Qi, Y.

Riquelme, M.

M. Ortuño, M. Riquelme, S. Gallego, A. Márquez, I. Pascual, and A. Beléndez, “Overmodulation control in the optimization of a H-PDLC device with ethyl eosin as dye,” International Journal of Polymer Science 2013, 357963 (2013).

Rölle, T.

F.-K. Bruder, T. Fäcke, and T. Rölle, “The Chemistry and Physics of Bayfol HX Film holographic Photopolymer,” Polymers (Basel) 9(12), 472 (2017).
[Crossref]

Romanov, O.

Ryle, J. P.

Sabol, D.

Sheridan, J. T.

Sun, L.

Toal, V.

Tolstik, A.

Tolstik, E.

Tomita, Y.

Turunen, J.

Umeton, C.

Wang, W.

Wang, X.

Wang, Y.

Yang, F.

Yoo, D.

J. Y. Hong, C.-K. Lee, S. Lee, B. Lee, D. Yoo, C. Jang, J. Kim, J. Jeong, and B. Lee, “See-through optical combiner for augmented reality head-mounted display: index-matched anisotropic crystal lens,” Sci. Rep. 7(1), 2753 (2017).
[Crossref] [PubMed]

Yu, D.

Zgonik, M.

M. Jazbinšek, I. Drevensek-Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90(8), 3831–3837 (2001).
[Crossref]

Zhang, N.

Appl. Opt. (5)

Appl. Phys., A Mater. Sci. Process. (1)

M. Moothanchery, I. Naydenova, and V. Toal, “Studies of shrinkage as a result of holographic recording in acrylamide-basedphotopolymer film,” Appl. Phys., A Mater. Sci. Process. 104(3), 899–902 (2011).
[Crossref]

Bell Labs Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Labs Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Int. J. Polym. Sci. (1)

S. Gallego, M. Ortuño, A. Márquez, R. Fernández, M. Álvarez, I. Pascual, and A. Beléndez, “Influence of thickness on the holographic parameters of h-pdlc materials,” Int. J. Polym. Sci. 2014, 528287 (2014).
[Crossref]

International Journal of Polymer Science (1)

M. Ortuño, M. Riquelme, S. Gallego, A. Márquez, I. Pascual, and A. Beléndez, “Overmodulation control in the optimization of a H-PDLC device with ethyl eosin as dye,” International Journal of Polymer Science 2013, 357963 (2013).

J. Appl. Phys. (1)

M. Jazbinšek, I. Drevensek-Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90(8), 3831–3837 (2001).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Opt. Soc. Korea (1)

Materials (Basel) (1)

M. Miki, R. Ohira, and Y. Tomita, “Optical properties of electrically tunable two-dimensional photonic lattice structures formed in a holographic polymer-dispersed liquid crystal film: analysis and experiment,” Materials (Basel) 7(5), 3677–3698 (2014).
[Crossref] [PubMed]

Opt. Eng. (1)

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Thickness variation of self-processing acrylamide-based photopolymer and reflection holography,” Opt. Eng. 40(4), 533–539 (2001).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Opt. Mater. Express (3)

Physics Research International (1)

J. Guo, M. R. Gleeson, and J. T. Sheridan, “A review of the optimisation of photopolymer materials for holographic data storage,” Physics Research International 2012, 803439 (2012).

Polymers (Basel) (2)

C. Neipp, J. Francés, F. J. Martínez, R. Fernández, M. L. Alvarez, S. Bleda, M. Ortuño, and S. Gallego, “Optimization of Photopolymer Materials for the Fabrication of a Holographic Waveguide,” Polymers (Basel) 9(9), 395 (2017).

F.-K. Bruder, T. Fäcke, and T. Rölle, “The Chemistry and Physics of Bayfol HX Film holographic Photopolymer,” Polymers (Basel) 9(12), 472 (2017).
[Crossref]

Sci. Rep. (1)

J. Y. Hong, C.-K. Lee, S. Lee, B. Lee, D. Yoo, C. Jang, J. Kim, J. Jeong, and B. Lee, “See-through optical combiner for augmented reality head-mounted display: index-matched anisotropic crystal lens,” Sci. Rep. 7(1), 2753 (2017).
[Crossref] [PubMed]

Other (3)

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage; (Springer–Verlag, 2000).

I. Naydenova, H. Akbari, C. Dalton, M. Y. M. Ilyas, C. P. T. Wei, V. Toal, and S. Martin, Photopolymer Holographic Optical Elements for Application in Solar Energy Concentrators, Holography - Basic principles and contemporary applications, Dr. Emilia Mihaylova (Ed., InTech, 2013).

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, eds., Holographic Data Storage: From Theory to Practical Systems (John Wiley & Sons, Ltd., 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 - Grating coupler. Slanted Grating recorded in Photopolymer (n1 = 1.49) over glass substrate (n2 = 1.51) and the graphical relation between the diffraction, transmitted and grating vectors.
Fig. 2
Fig. 2 Ewald’s sphere and recording (right) and read out (left) geometries for three slanted gratings. Geometry A: designed for normal incidence of red light. Geometry B: less inclination of the grating fringes. Geometry C: higher inclination of the grating fringes. In the middle down graphical comparison of the three gratings vectors.
Fig. 3
Fig. 3 TE as a function of the recording time for unslanted gratings for different spatial frequencies recorded in PVA/AA photopolymer.
Fig. 4
Fig. 4 Angular responses of the grating-coupler recorded at PVA/AA material. a) Geometry A, TE as function of the incidence angle in air b) Geometry B, TE as function of the incidence angle in air c) Image of the waveguide using Geometry B at readout 633 nm.
Fig. 5
Fig. 5 TE as a function of the recording time for symmetric gratings for different spatial frequencies recorded in the thiol-ene based NPC material of 21 µm thickness.
Fig. 6
Fig. 6 Bragg-detuning curves for NPC materials with a) the geometry A, b) the geometry B and c) the geometry C at readout 632 nm.
Fig. 7
Fig. 7 TE as a function of the recording time for the waveguide for geometry A, 1700 lines/mm and geometry B, 2000 lines/mm, for PLC photopolymer layers 35-39 µm thick.
Fig. 8
Fig. 8 a) Angular response of an overmodulated waveguide recorded in PDLC material using geometry A with thickness of 54 µm. b) Diagram of the HOE behavior under solar light. c) Image of the HOE under normal sun light.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ-ρ=K

Metrics