Abstract

Gain-profile tracing (GPT) is a useful strategy of distributed sensing in BOTDA technique for achieving high spatial resolution, which has not been used for the dynamic strain measurement previously. In this paper, we propose a modified gain-profile tracing (MGPT) technique for fast dynamic strain measurement while maintaining the advantage of high spatial resolution. This technique is based on a modified pump pulse modulation scheme and the slope-assisted demodulation method. The time consumption using MGPT technique for a single pump pulse measurement of dynamic strain is less by 25% than the conventional GPT technique. The spatial resolution of our BOTDA system using MGPT technique is 50cm and maximal frequency of dynamic strain detection could be up to 53.5 Hz for 248m sensing length. In the experiments, we measure two vibration events spacing 50 cm with the frequency of 14.0 Hz and 17.0 Hz in a 248 m single-mode fiber. The proposed method is a potential real-time dynamic alternative for distributed structural health monitoring.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA

Dexin Ba, Benzhang Wang, Dengwang Zhou, Mingjing Yin, Yongkang Dong, Hui Li, Zhiwei Lu, and Zhigang Fan
Opt. Express 24(9) 9781-9793 (2016)

Strain-induced vibration and temperature sensing BOTDA system combined frequency sweeping and slope-assisted techniques

Junhui Hu, Lan Xia, Li Yang, Wenwen Quan, and Xuping Zhang
Opt. Express 24(12) 13610-13620 (2016)

Polarization independent fast BOTDA based on pump frequency modulation and cyclic coding

Hua Zheng, Jingdong Zhang, Tao Zhu, Guolu Yin, Yongzhong Bai, Dingrong Qu, Xianbin Huang, and Feng Qiu
Opt. Express 26(14) 18270-18278 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990).
    [Crossref] [PubMed]
  2. X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
    [Crossref] [PubMed]
  3. D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25(14), 913–915 (1989).
    [Crossref]
  4. T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1(5), 107–108 (1989).
    [Crossref]
  5. Y. Dong, H. Zhang, L. Chen, and X. Bao, “2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair,” Appl. Opt. 51(9), 1229–1235 (2012).
    [Crossref] [PubMed]
  6. A. W. Brown, B. G. Colpitts, and K. Brown, “Dark-pulse Brillouin optical time-domain sensor with 20-mm spatial resolution,” J. Lightwave Technol. 25(1), 381–386 (2007).
    [Crossref]
  7. M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
    [Crossref] [PubMed]
  8. T. Sperber, A. Eyal, M. Tur, and L. Thévenaz, “High spatial resolution distributed sensing in optical fibers by Brillouin gain-profile tracing,” Opt. Express 18(8), 8671–8679 (2010).
    [Crossref] [PubMed]
  9. Y. Dong, L. Chen, and X. Bao, “Extending the sensing range of Brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs,” J. Lightwave Technol. 30(8), 1161–1167 (2012).
    [Crossref]
  10. M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol. 21(9), 094024 (2010).
    [Crossref]
  11. X. Angulo-Vinuesa, S. Martin-Lopez, P. Corredera, and M. Gonzalez-Herraez, “Raman-assisted Brillouin optical time-domain analysis with sub-meter resolution over 100 km,” Opt. Express 20(11), 12147–12154 (2012).
    [Crossref] [PubMed]
  12. J. Urricelqui, A. Zornoza, M. Sagues, and A. Loayssa, “Dynamic BOTDA measurements based on Brillouin phase-shift and RF demodulation,” Opt. Express 20(24), 26942–26949 (2012).
    [Crossref] [PubMed]
  13. Y. Peled, A. Motil, and M. Tur, “Fast Brillouin optical time domain analysis for dynamic sensing,” Opt. Express 20(8), 8584–8591 (2012).
    [Crossref] [PubMed]
  14. Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
    [Crossref]
  15. Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011).
    [Crossref] [PubMed]
  16. A. Minardo, A. Coscetta, R. Bernini, and L. Zeni, “Heterodyne slope-assisted Brillouin optical time-domain analysis for dynamic strain measurements,” J. Opt. 18(2), 025606 (2016).
    [Crossref]
  17. J. Hu, L. Xia, L. Yang, W. Quan, and X. Zhang, “Strain-induced vibration and temperature sensing BOTDA system combined frequency sweeping and slope-assisted techniques,” Opt. Express 24(12), 13610–13620 (2016).
    [Crossref] [PubMed]
  18. A. Motil, O. Danon, Y. Peled, and M. Tur, “Pump-power-independent double slope-assisted distributed and fast Brillouin fiber-optic sensor,” IEEE Photonics Technol. Lett. 26(8), 797–800 (2014).
    [Crossref]
  19. D. Ba, B. Wang, D. Zhou, M. Yin, Y. Dong, H. Li, Z. Lu, and Z. Fan, “Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA,” Opt. Express 24(9), 9781–9793 (2016).
    [Crossref] [PubMed]

2016 (3)

2014 (1)

A. Motil, O. Danon, Y. Peled, and M. Tur, “Pump-power-independent double slope-assisted distributed and fast Brillouin fiber-optic sensor,” IEEE Photonics Technol. Lett. 26(8), 797–800 (2014).
[Crossref]

2013 (1)

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

2012 (6)

2011 (1)

2010 (3)

2007 (1)

1990 (1)

1989 (2)

D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25(14), 913–915 (1989).
[Crossref]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1(5), 107–108 (1989).
[Crossref]

Angulo-Vinuesa, X.

Ba, D.

D. Ba, B. Wang, D. Zhou, M. Yin, Y. Dong, H. Li, Z. Lu, and Z. Fan, “Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA,” Opt. Express 24(9), 9781–9793 (2016).
[Crossref] [PubMed]

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

Bao, X.

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

Y. Dong, L. Chen, and X. Bao, “Extending the sensing range of Brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs,” J. Lightwave Technol. 30(8), 1161–1167 (2012).
[Crossref]

Y. Dong, H. Zhang, L. Chen, and X. Bao, “2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair,” Appl. Opt. 51(9), 1229–1235 (2012).
[Crossref] [PubMed]

Bernini, R.

A. Minardo, A. Coscetta, R. Bernini, and L. Zeni, “Heterodyne slope-assisted Brillouin optical time-domain analysis for dynamic strain measurements,” J. Opt. 18(2), 025606 (2016).
[Crossref]

Bolognini, G.

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol. 21(9), 094024 (2010).
[Crossref]

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
[Crossref] [PubMed]

Brown, A. W.

Brown, K.

Chen, L.

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

Y. Dong, H. Zhang, L. Chen, and X. Bao, “2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair,” Appl. Opt. 51(9), 1229–1235 (2012).
[Crossref] [PubMed]

Y. Dong, L. Chen, and X. Bao, “Extending the sensing range of Brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs,” J. Lightwave Technol. 30(8), 1161–1167 (2012).
[Crossref]

Colpitts, B. G.

Corredera, P.

Coscetta, A.

A. Minardo, A. Coscetta, R. Bernini, and L. Zeni, “Heterodyne slope-assisted Brillouin optical time-domain analysis for dynamic strain measurements,” J. Opt. 18(2), 025606 (2016).
[Crossref]

Culverhouse, D.

D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25(14), 913–915 (1989).
[Crossref]

Danon, O.

A. Motil, O. Danon, Y. Peled, and M. Tur, “Pump-power-independent double slope-assisted distributed and fast Brillouin fiber-optic sensor,” IEEE Photonics Technol. Lett. 26(8), 797–800 (2014).
[Crossref]

Di Pasquale, F.

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol. 21(9), 094024 (2010).
[Crossref]

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
[Crossref] [PubMed]

Dong, Y.

Eyal, A.

Fan, Z.

Farahi, F.

D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25(14), 913–915 (1989).
[Crossref]

Gonzalez-Herraez, M.

Horiguchi, T.

T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990).
[Crossref] [PubMed]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1(5), 107–108 (1989).
[Crossref]

Hu, J.

Jackson, D. A.

D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25(14), 913–915 (1989).
[Crossref]

Jiang, T.

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

Kurashima, T.

T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990).
[Crossref] [PubMed]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1(5), 107–108 (1989).
[Crossref]

Li, H.

D. Ba, B. Wang, D. Zhou, M. Yin, Y. Dong, H. Li, Z. Lu, and Z. Fan, “Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA,” Opt. Express 24(9), 9781–9793 (2016).
[Crossref] [PubMed]

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

Loayssa, A.

Lu, Z.

D. Ba, B. Wang, D. Zhou, M. Yin, Y. Dong, H. Li, Z. Lu, and Z. Fan, “Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA,” Opt. Express 24(9), 9781–9793 (2016).
[Crossref] [PubMed]

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

Martin-Lopez, S.

Minardo, A.

A. Minardo, A. Coscetta, R. Bernini, and L. Zeni, “Heterodyne slope-assisted Brillouin optical time-domain analysis for dynamic strain measurements,” J. Opt. 18(2), 025606 (2016).
[Crossref]

Motil, A.

Pannell, C. N.

D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25(14), 913–915 (1989).
[Crossref]

Peled, Y.

Quan, W.

Sagues, M.

Soto, M. A.

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
[Crossref] [PubMed]

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol. 21(9), 094024 (2010).
[Crossref]

Sperber, T.

Tateda, M.

T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990).
[Crossref] [PubMed]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1(5), 107–108 (1989).
[Crossref]

Thévenaz, L.

Tur, M.

Urricelqui, J.

Wang, B.

Xia, L.

Yang, L.

Yaron, L.

Yin, M.

Zeni, L.

A. Minardo, A. Coscetta, R. Bernini, and L. Zeni, “Heterodyne slope-assisted Brillouin optical time-domain analysis for dynamic strain measurements,” J. Opt. 18(2), 025606 (2016).
[Crossref]

Zhang, H.

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

Y. Dong, H. Zhang, L. Chen, and X. Bao, “2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair,” Appl. Opt. 51(9), 1229–1235 (2012).
[Crossref] [PubMed]

Zhang, X.

Zhou, D.

D. Ba, B. Wang, D. Zhou, M. Yin, Y. Dong, H. Li, Z. Lu, and Z. Fan, “Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA,” Opt. Express 24(9), 9781–9793 (2016).
[Crossref] [PubMed]

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

Zhu, C.

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

Zornoza, A.

Appl. Opt. (1)

Electron. Lett. (1)

D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25(14), 913–915 (1989).
[Crossref]

IEEE Photonics J. (1)

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (2)

A. Motil, O. Danon, Y. Peled, and M. Tur, “Pump-power-independent double slope-assisted distributed and fast Brillouin fiber-optic sensor,” IEEE Photonics Technol. Lett. 26(8), 797–800 (2014).
[Crossref]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1(5), 107–108 (1989).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. (1)

A. Minardo, A. Coscetta, R. Bernini, and L. Zeni, “Heterodyne slope-assisted Brillouin optical time-domain analysis for dynamic strain measurements,” J. Opt. 18(2), 025606 (2016).
[Crossref]

Meas. Sci. Technol. (1)

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol. 21(9), 094024 (2010).
[Crossref]

Opt. Express (7)

Opt. Lett. (2)

Sensors (Basel) (1)

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Principle of the MGPT-BOTDA measurement. (a) The pump pulse injects into the FUT. (b) The rising edge of pump pulse moves to the midpoint of the fiber. (c) The falling edge of the pump pulse moves to the midpoint of the FUT. (d) The falling edge of the pump pulse travels the second half of the FUT. The power difference Δpower in (b) and (d) equals the integral of the Brillouin gain where the rising edge travels from the position of (a) to that of (b) and the falling edge travels from position of (c) to that of (d).
Fig. 2
Fig. 2 Comparison of the time-domain trace of probe light using MGPT and GPT techniques respectively.
Fig. 3
Fig. 3 (a) Brillouin gain spectrum under the strain of 0με and 400με. (b) The gain to strain curve with the fixed optical frequency difference between the pump and probe waves (10.719GHz).
Fig. 4
Fig. 4 Experimental setup: EOM: electro optic modulator, EDFA: erbium doped fiber amplifier, PS: polarization scrambler, FUT: fiber under test, PC: polarization controller, CIR: circulator, ATT: attenuator, PD: photodiode, DAQ: data acquisition
Fig. 5
Fig. 5 (a) Time-domain trace for probe light employ MGPT technique and GPT technique. (b) Experimental curves of Brillouin gain to strain (G-ε).
Fig. 6
Fig. 6 The layout of the fiber sections applied dynamic strain: 248m FUT, comprising 3 sections of the SMF fiber. The first section is a 231m spool. Two vibration events of 1m lengths with 0.5m spacing are generated by two motor-driven elliptical cams. The minimum or maximum of the strain are obtained when the cam is parallel with or perpendicular to the optical fiber. Length of the last fiber section is 14.5m.
Fig. 7
Fig. 7 (a) The 100 collected time-domain traces of the dynamic strain, indicated by color axis (in arbitrary units). (b) A single trace of the Brillouin gain profile in a 25m fiber segment (10m to 35m from the input end of the FUT). (c) The time traces of the vibration point with two different amplitudes and frequencies. (d) The frequency-domain amplitude spectrum of the dynamic strain.
Fig. 8
Fig. 8 Pulse waveforms of 1.24μs pulse generated from the pulse generator with a rise-time of 730ps and a fall-time of 780ps.
Fig. 9
Fig. 9 Scheme of the probe wave and pump pulses sequence for a high-spatial-resolution BOTDA. (i.e. differential double-pulse, gain profile tracing, modified gain profile tracing)

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

P probe (z)={ P 0 exp[ 0 z I P G( z' )dz' ]( 0z L 2 ) P 0 exp[ z L I P G( z' )dz' ]( L 2 zL )
P det (t)={ P 0 exp[ 0 v g t/2 I P G( z' )dz' ]( 0t L v g ) P 0 exp[ v g t/2 -L/2 v g t/2 I P G( z' )dz' ]( L v g <t< 2L v g ) P 0 exp[ v g t/2 -L/2 L I P G( z' )dz' ]( 2L v g t 3L v g )
d[ ln( P det ) ] dt ={ ( v g I P 2 )G( L v g t/2 )(0t L v g ) ( v g I P 2 )G( 3L 2 v g t/2 )( 2L v g t 3L v g )
Δ z MGPT =( v g /2 ) t rising/fallingtime
G( v B ( t,z ) )= g 0 ( Γ B /2 ) 2 ( f pp v B ( t,z ) ) 2 + ( Γ B /2 ) 2
v B (t,z)= v 0 +kε(t,z)
ΔZ=max{ v g t edge 2 , v g 2Δ f det , v g 2Δ f sample }
T GPT = N avg N freq (4L/ v g )
T MGPT = N avg (3L/ v g )
R= T MGPT T GPT = 3 N avg·MGPT 4 N avg·GPT N freq
f max = v g 6L N avg

Metrics