Abstract

The combined action of the pyroelectric (PY) and photovoltaic (PV) effects, exhibited by z-cut LiNbO3:Fe substrates, has been investigated for particle trapping and patterning applications. The novel hybrid procedure provides new possibilities and versatility to optoelectronic manipulation on LiNbO3 substrates. It has allowed obtaining periodic and arbitrary 2D patterns whose particle density distribution is correlated with the light intensity profile but can be tuned through ΔT according to the relative strength of the PV and PY effects. A relevant result is that the PY and PV contributions compete for a ΔT range of 1-20 °C, very accessible for experiments. Moreover, the synergy of the PY and PV has provided two additional remarkable applications: i) A method to measure the PV field, key magnitude for photovoltaic optoelectronic tweezers. Using this method, the minimum field needed to obtain a particle pattern has been determined, resulting relatively high, E~60 kV/cm, and so, requiring highly doped crystals when only using the PV effect. ii) An strategy combining the PY and PV to get particle patterning in samples inactive for PV trapping when the PV field value is under that threshold.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Efficient photo-induced dielectrophoretic particle trapping on Fe:LiNbO3 for arbitrary two dimensional patterning

Juan F. Muñoz-Martínez, Iris Elvira, Mariano Jubera, Angel García-Cabañes, José Bruno Ramiro, Cándido Arregui, and Mercedes Carrascosa
Opt. Mater. Express 5(5) 1137-1146 (2015)

Multiplexing and switching of virtual electrodes in optoelectronic tweezers based on lithium niobate

Stefan Glaesener, Michael Esseling, and Cornelia Denz
Opt. Lett. 37(18) 3744-3746 (2012)

Optoelectronic tweezers under arbitrary illumination patterns: theoretical simulations and comparison to experiment

Cándido Arregui, José Bruno Ramiro, Ángel Alcázar, Ángel Méndez, Héctor Burgos, Ángel García-Cabañes, and Mercedes Carrascosa
Opt. Express 22(23) 29099-29110 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [Crossref] [PubMed]
  2. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
    [Crossref] [PubMed]
  3. A. García-Cabañes, A. Blázquez-Castro, L. Arizmendi, F. Agulló-López, and M. Carrascosa, “Recent achievements on photovoltaic optoelectronic tweezers based on lithium niobate,” Crystals 8(2), 65 (2018).
    [Crossref]
  4. J. Villarroel, H. Burgos, A. García-Cabañes, M. Carrascosa, A. Blázquez-Castro, and F. Agulló-López, “Photovoltaic versus optical tweezers,” Opt. Express 19(24), 24320–24330 (2011).
    [Crossref] [PubMed]
  5. M. Carrascosa, A. García-Cabañes, M. Jubera, J. B. Ramiro, and F. Agulló-López, “LiNbO3: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects,” Appl. Phys. Rev. 2(4), 040605 (2015).
    [Crossref]
  6. B. Sturmann and V. Fridkin, Photovoltaic and photorefractive effects in noncentosymetric materials (Gordon and Breach Science publishers, 1992).
  7. E. M. De Miguel, J. Limeres, M. Carrascosa, and L. Arizmendi, “Study of developing thermal fixed holograms in lithium niobate,” J. Opt. Soc. Am. B 17(7), 1140–1146 (2000).
    [Crossref]
  8. T. B. Jones, Electromechanics of particles (Cambridge University, 1995).
  9. H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
    [Crossref]
  10. X. Zhang, J. Wang, B. Tang, X. Tan, R. A. Rupp, L. Pan, Y. Kong, Q. Sun, and J. Xu, “Optical trapping and manipulation of metallic micro/nanoparticles via photorefractive crystals,” Opt. Express 17(12), 9981–9988 (2009).
    [Crossref] [PubMed]
  11. M. Esseling, F. Holtmann, M. Woerdemann, and C. Denz, “Two-dimensional dielectrophoretic particle trapping in a hybrid crystal/PDMS-system,” Opt. Express 18(16), 17404–17411 (2010).
    [Crossref] [PubMed]
  12. M. Esseling, A. Zaltron, C. Sada, and C. Denz, “Charge sensor and particle trap based on z-cut lithium niobate,” Appl. Phys. Lett. 103(6), 061115 (2013).
    [Crossref]
  13. J. F. Muñoz-Martínez, I. Elvira, M. Jubera, A. García-Cabañes, J. B. Ramiro, C. Arregui, and M. Carrascosa, “Efficient photo-induced dielectrophoretic particle trapping on Fe:LiNbO3 for arbitrary two dimensional patterning,” Opt. Mater. Express 5(5), 1137–1146 (2015).
    [Crossref]
  14. M. Esseling, Photorefractive optoelectronic tweezers and their applications (Springer Theses, 2015).
  15. J. F. Muñoz-Martínez, M. Jubera, J. Matarrubia, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Diffractive optical devices produced by light-assisted trapping of nanoparticles,” Opt. Lett. 41(2), 432–435 (2016).
    [Crossref] [PubMed]
  16. L. Chen, S. Li, B. Fan, W. Yan, D. Wang, L. Shi, H. Chen, D. Ban, and S. Sun, “Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates,” Sci. Rep. 6(1), 29166 (2016).
    [Crossref] [PubMed]
  17. B. Fan, F. Li, L. Chen, L. Shi, W. Yan, Y. Zhang, S. Li, X. Wang, and H. Chen, “Photovoltaic manipulation of water microdroplets on a hydrophobic LiNbO3 substrate,” Phys. Rev. Appl. 7(6), 064010 (2017).
    [Crossref]
  18. I. Elvira, J. F. Muñoz-Martínez, M. Jubera, A. García-Cabañes, J. L. Bella, P. Haro-González, M. A. Díaz-García, F. Agulló-López, and M. Carrascosa, “Plasmonic enhancement in the fluorescence of organic and biological molecules by photovoltaic tweezing assembly,” Adv. Mater. Technol. 2(8), 1700024 (2017).
    [Crossref]
  19. M. Jubera, I. Elvira, A. García-Cabañes, J. L. Bella, and M. Carrascosa, “Trapping and patternig of biological objects using photovoltaic tweezers,” Appl. Phys. Lett. 108(2), 023703 (2016).
    [Crossref]
  20. S. Grilli and P. Ferraro, “Dielectrophoretic trapping of suspended particles by selective pyroelectric effect in lithium niobate crystals,” Appl. Phys. Lett. 92(23), 232902 (2008).
    [Crossref]
  21. A. Gallego, A. García-Cabañes, M. Carrascosa, and L. Arizmendi, “Pyroelectric trapping and arrangement of nanoparticles in lithium niobate opposite domain structures,” J. Phys. Chem. C 120(1), 731–736 (2016).
    [Crossref]
  22. A. Räuber, “Chemistry and physics of lithium niobate”, in Current Topics in Material Science, E. Kaldis Ed. (North-Holland Pub. Co., 1978) Chap.7.
  23. R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
    [Crossref]
  24. S. Grilli, S. Coppola, G. Nasti, V. Vespini, G. Gentile, V. Ambrogi, C. Carfagna, and P. Ferraro, “Hybrid ferroelectric polymer micro fluidic device for dielectrophoretic self-assembling of nanoparticles,” RSC Advances 4(6), 2851–2857 (2014).
    [Crossref]
  25. J. Faba, A. Puerto, J. F. Muñoz-Martínez, A. Méndez, A. Alcazar, A. García-Cabañes, and M. Carrascosa, “Nanoparticle manipulation and trapping by the synergy between the photovoltaic and pyroelectric effects,” J. Phys. Conf. Ser. 867, 012038 (2017).
    [Crossref]
  26. L. Chen, B. Fan, W. Yan, S. Li, L. Shi, and H. Chen, “Photo-assisted splitting of dielectric microdroplets in a LN-based sandwich structure,” Opt. Lett. 41(19), 4558–4561 (2016).
    [Crossref] [PubMed]
  27. A. Savage, “Pyroelectricty and spontaneous polarization in LiNbO3,” J. Appl. Phys. 37(8), 3071–3072 (1966).
    [Crossref]
  28. H. Kurz, E. Krätzig, W. Keune, H. Engelman, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-methods, moossbauer-methods and EPR-methods,” Appl. Phys. 12(4), 355–368 (1977).
    [Crossref]
  29. F. Johann and E. Soergel, “Quantitative measurement of the surface charge density,” Appl. Phys. Lett. 95(23), 232906 (2009).
    [Crossref]
  30. I. Nee, M. Müller, K. Buse, and E. Krätzig, “Role of iron in lithium-niobate crystals for dark-storage time of holograms,” J. Appl. Phys. 88(7), 4282–4286 (2000).
    [Crossref]
  31. N. V. Sastry and M. M. Raj, “Densities, speeds of sound, viscosities, dielectric constants, and refractive indices for 1-heptanol + hexane and + heptaneat 303.15 and 313.15 K,” J. Chem. Eng. Data 41(3), 612–618 (1996).
    [Crossref]
  32. J. Matarrubia, A. García-Cabañes, J. L. Plaza, F. Agulló-López, and M. Carrascosa, “Optimization of particle trapping and patterning via photovoltaic tweezers: role of light modulation and particle size,” J. Phys. D Appl. Phys. 47(26), 265101 (2014).
    [Crossref]
  33. L. Lucchetti, K. Kushnir, V. Reshetnyak, F. Ciciulla, A. Zaltron, C. Sada, and F. Simoni, “Light-induced electric field generated by photovoltaic substrates investigated through liquid crystal reorientation,” Opt. Mater. 73, 64–69 (2017).
    [Crossref]
  34. A. Habibpourmoghadam, L. Jiao, V. Reshetnyak, D. R. Evans, and A. Lorenz, “Optical manipulation and defect creation in a liquid crystal on a photoresponsive surface,” Phys. Rev. E 96(2-1), 022701 (2017).
    [Crossref] [PubMed]
  35. A. Habibpourmoghadam, L. Lucchetti, D. R. Evans, V. Y. Reshetnyak, F. Omairat, S. L. Schafforz, and A. Lorenz, “Laser-induced erasable patterns in a N* liquid crystal on an iron doped lithium niobate surface,” Opt. Express 25(21), 26148–26159 (2017).
    [Crossref] [PubMed]
  36. J. Gorecki, V. Apostolopoulos, J. Y. Ou, S. Mailis, and N. Papasimakis, “Optical gating of graphene on photoconductive Fe:LiNbO3,” ACS Nano 12(6), 5940–5945 (2018).
    [Crossref] [PubMed]

2018 (2)

A. García-Cabañes, A. Blázquez-Castro, L. Arizmendi, F. Agulló-López, and M. Carrascosa, “Recent achievements on photovoltaic optoelectronic tweezers based on lithium niobate,” Crystals 8(2), 65 (2018).
[Crossref]

J. Gorecki, V. Apostolopoulos, J. Y. Ou, S. Mailis, and N. Papasimakis, “Optical gating of graphene on photoconductive Fe:LiNbO3,” ACS Nano 12(6), 5940–5945 (2018).
[Crossref] [PubMed]

2017 (6)

L. Lucchetti, K. Kushnir, V. Reshetnyak, F. Ciciulla, A. Zaltron, C. Sada, and F. Simoni, “Light-induced electric field generated by photovoltaic substrates investigated through liquid crystal reorientation,” Opt. Mater. 73, 64–69 (2017).
[Crossref]

A. Habibpourmoghadam, L. Jiao, V. Reshetnyak, D. R. Evans, and A. Lorenz, “Optical manipulation and defect creation in a liquid crystal on a photoresponsive surface,” Phys. Rev. E 96(2-1), 022701 (2017).
[Crossref] [PubMed]

A. Habibpourmoghadam, L. Lucchetti, D. R. Evans, V. Y. Reshetnyak, F. Omairat, S. L. Schafforz, and A. Lorenz, “Laser-induced erasable patterns in a N* liquid crystal on an iron doped lithium niobate surface,” Opt. Express 25(21), 26148–26159 (2017).
[Crossref] [PubMed]

J. Faba, A. Puerto, J. F. Muñoz-Martínez, A. Méndez, A. Alcazar, A. García-Cabañes, and M. Carrascosa, “Nanoparticle manipulation and trapping by the synergy between the photovoltaic and pyroelectric effects,” J. Phys. Conf. Ser. 867, 012038 (2017).
[Crossref]

B. Fan, F. Li, L. Chen, L. Shi, W. Yan, Y. Zhang, S. Li, X. Wang, and H. Chen, “Photovoltaic manipulation of water microdroplets on a hydrophobic LiNbO3 substrate,” Phys. Rev. Appl. 7(6), 064010 (2017).
[Crossref]

I. Elvira, J. F. Muñoz-Martínez, M. Jubera, A. García-Cabañes, J. L. Bella, P. Haro-González, M. A. Díaz-García, F. Agulló-López, and M. Carrascosa, “Plasmonic enhancement in the fluorescence of organic and biological molecules by photovoltaic tweezing assembly,” Adv. Mater. Technol. 2(8), 1700024 (2017).
[Crossref]

2016 (5)

M. Jubera, I. Elvira, A. García-Cabañes, J. L. Bella, and M. Carrascosa, “Trapping and patternig of biological objects using photovoltaic tweezers,” Appl. Phys. Lett. 108(2), 023703 (2016).
[Crossref]

J. F. Muñoz-Martínez, M. Jubera, J. Matarrubia, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Diffractive optical devices produced by light-assisted trapping of nanoparticles,” Opt. Lett. 41(2), 432–435 (2016).
[Crossref] [PubMed]

L. Chen, S. Li, B. Fan, W. Yan, D. Wang, L. Shi, H. Chen, D. Ban, and S. Sun, “Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates,” Sci. Rep. 6(1), 29166 (2016).
[Crossref] [PubMed]

L. Chen, B. Fan, W. Yan, S. Li, L. Shi, and H. Chen, “Photo-assisted splitting of dielectric microdroplets in a LN-based sandwich structure,” Opt. Lett. 41(19), 4558–4561 (2016).
[Crossref] [PubMed]

A. Gallego, A. García-Cabañes, M. Carrascosa, and L. Arizmendi, “Pyroelectric trapping and arrangement of nanoparticles in lithium niobate opposite domain structures,” J. Phys. Chem. C 120(1), 731–736 (2016).
[Crossref]

2015 (2)

J. F. Muñoz-Martínez, I. Elvira, M. Jubera, A. García-Cabañes, J. B. Ramiro, C. Arregui, and M. Carrascosa, “Efficient photo-induced dielectrophoretic particle trapping on Fe:LiNbO3 for arbitrary two dimensional patterning,” Opt. Mater. Express 5(5), 1137–1146 (2015).
[Crossref]

M. Carrascosa, A. García-Cabañes, M. Jubera, J. B. Ramiro, and F. Agulló-López, “LiNbO3: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects,” Appl. Phys. Rev. 2(4), 040605 (2015).
[Crossref]

2014 (2)

S. Grilli, S. Coppola, G. Nasti, V. Vespini, G. Gentile, V. Ambrogi, C. Carfagna, and P. Ferraro, “Hybrid ferroelectric polymer micro fluidic device for dielectrophoretic self-assembling of nanoparticles,” RSC Advances 4(6), 2851–2857 (2014).
[Crossref]

J. Matarrubia, A. García-Cabañes, J. L. Plaza, F. Agulló-López, and M. Carrascosa, “Optimization of particle trapping and patterning via photovoltaic tweezers: role of light modulation and particle size,” J. Phys. D Appl. Phys. 47(26), 265101 (2014).
[Crossref]

2013 (1)

M. Esseling, A. Zaltron, C. Sada, and C. Denz, “Charge sensor and particle trap based on z-cut lithium niobate,” Appl. Phys. Lett. 103(6), 061115 (2013).
[Crossref]

2011 (1)

2010 (1)

2009 (2)

2008 (1)

S. Grilli and P. Ferraro, “Dielectrophoretic trapping of suspended particles by selective pyroelectric effect in lithium niobate crystals,” Appl. Phys. Lett. 92(23), 232902 (2008).
[Crossref]

2007 (1)

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
[Crossref]

2005 (1)

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

2003 (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

2000 (2)

E. M. De Miguel, J. Limeres, M. Carrascosa, and L. Arizmendi, “Study of developing thermal fixed holograms in lithium niobate,” J. Opt. Soc. Am. B 17(7), 1140–1146 (2000).
[Crossref]

I. Nee, M. Müller, K. Buse, and E. Krätzig, “Role of iron in lithium-niobate crystals for dark-storage time of holograms,” J. Appl. Phys. 88(7), 4282–4286 (2000).
[Crossref]

1996 (1)

N. V. Sastry and M. M. Raj, “Densities, speeds of sound, viscosities, dielectric constants, and refractive indices for 1-heptanol + hexane and + heptaneat 303.15 and 313.15 K,” J. Chem. Eng. Data 41(3), 612–618 (1996).
[Crossref]

1985 (1)

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

1977 (1)

H. Kurz, E. Krätzig, W. Keune, H. Engelman, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-methods, moossbauer-methods and EPR-methods,” Appl. Phys. 12(4), 355–368 (1977).
[Crossref]

1966 (1)

A. Savage, “Pyroelectricty and spontaneous polarization in LiNbO3,” J. Appl. Phys. 37(8), 3071–3072 (1966).
[Crossref]

Adleman, J. R.

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
[Crossref]

Agulló-López, F.

A. García-Cabañes, A. Blázquez-Castro, L. Arizmendi, F. Agulló-López, and M. Carrascosa, “Recent achievements on photovoltaic optoelectronic tweezers based on lithium niobate,” Crystals 8(2), 65 (2018).
[Crossref]

I. Elvira, J. F. Muñoz-Martínez, M. Jubera, A. García-Cabañes, J. L. Bella, P. Haro-González, M. A. Díaz-García, F. Agulló-López, and M. Carrascosa, “Plasmonic enhancement in the fluorescence of organic and biological molecules by photovoltaic tweezing assembly,” Adv. Mater. Technol. 2(8), 1700024 (2017).
[Crossref]

J. F. Muñoz-Martínez, M. Jubera, J. Matarrubia, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Diffractive optical devices produced by light-assisted trapping of nanoparticles,” Opt. Lett. 41(2), 432–435 (2016).
[Crossref] [PubMed]

M. Carrascosa, A. García-Cabañes, M. Jubera, J. B. Ramiro, and F. Agulló-López, “LiNbO3: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects,” Appl. Phys. Rev. 2(4), 040605 (2015).
[Crossref]

J. Matarrubia, A. García-Cabañes, J. L. Plaza, F. Agulló-López, and M. Carrascosa, “Optimization of particle trapping and patterning via photovoltaic tweezers: role of light modulation and particle size,” J. Phys. D Appl. Phys. 47(26), 265101 (2014).
[Crossref]

J. Villarroel, H. Burgos, A. García-Cabañes, M. Carrascosa, A. Blázquez-Castro, and F. Agulló-López, “Photovoltaic versus optical tweezers,” Opt. Express 19(24), 24320–24330 (2011).
[Crossref] [PubMed]

Alcazar, A.

J. Faba, A. Puerto, J. F. Muñoz-Martínez, A. Méndez, A. Alcazar, A. García-Cabañes, and M. Carrascosa, “Nanoparticle manipulation and trapping by the synergy between the photovoltaic and pyroelectric effects,” J. Phys. Conf. Ser. 867, 012038 (2017).
[Crossref]

Ambrogi, V.

S. Grilli, S. Coppola, G. Nasti, V. Vespini, G. Gentile, V. Ambrogi, C. Carfagna, and P. Ferraro, “Hybrid ferroelectric polymer micro fluidic device for dielectrophoretic self-assembling of nanoparticles,” RSC Advances 4(6), 2851–2857 (2014).
[Crossref]

Apostolopoulos, V.

J. Gorecki, V. Apostolopoulos, J. Y. Ou, S. Mailis, and N. Papasimakis, “Optical gating of graphene on photoconductive Fe:LiNbO3,” ACS Nano 12(6), 5940–5945 (2018).
[Crossref] [PubMed]

Arizmendi, L.

A. García-Cabañes, A. Blázquez-Castro, L. Arizmendi, F. Agulló-López, and M. Carrascosa, “Recent achievements on photovoltaic optoelectronic tweezers based on lithium niobate,” Crystals 8(2), 65 (2018).
[Crossref]

A. Gallego, A. García-Cabañes, M. Carrascosa, and L. Arizmendi, “Pyroelectric trapping and arrangement of nanoparticles in lithium niobate opposite domain structures,” J. Phys. Chem. C 120(1), 731–736 (2016).
[Crossref]

E. M. De Miguel, J. Limeres, M. Carrascosa, and L. Arizmendi, “Study of developing thermal fixed holograms in lithium niobate,” J. Opt. Soc. Am. B 17(7), 1140–1146 (2000).
[Crossref]

Arregui, C.

Ban, D.

L. Chen, S. Li, B. Fan, W. Yan, D. Wang, L. Shi, H. Chen, D. Ban, and S. Sun, “Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates,” Sci. Rep. 6(1), 29166 (2016).
[Crossref] [PubMed]

Bella, J. L.

I. Elvira, J. F. Muñoz-Martínez, M. Jubera, A. García-Cabañes, J. L. Bella, P. Haro-González, M. A. Díaz-García, F. Agulló-López, and M. Carrascosa, “Plasmonic enhancement in the fluorescence of organic and biological molecules by photovoltaic tweezing assembly,” Adv. Mater. Technol. 2(8), 1700024 (2017).
[Crossref]

M. Jubera, I. Elvira, A. García-Cabañes, J. L. Bella, and M. Carrascosa, “Trapping and patternig of biological objects using photovoltaic tweezers,” Appl. Phys. Lett. 108(2), 023703 (2016).
[Crossref]

Blázquez-Castro, A.

A. García-Cabañes, A. Blázquez-Castro, L. Arizmendi, F. Agulló-López, and M. Carrascosa, “Recent achievements on photovoltaic optoelectronic tweezers based on lithium niobate,” Crystals 8(2), 65 (2018).
[Crossref]

J. Villarroel, H. Burgos, A. García-Cabañes, M. Carrascosa, A. Blázquez-Castro, and F. Agulló-López, “Photovoltaic versus optical tweezers,” Opt. Express 19(24), 24320–24330 (2011).
[Crossref] [PubMed]

Burgos, H.

Buse, K.

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
[Crossref]

I. Nee, M. Müller, K. Buse, and E. Krätzig, “Role of iron in lithium-niobate crystals for dark-storage time of holograms,” J. Appl. Phys. 88(7), 4282–4286 (2000).
[Crossref]

Carfagna, C.

S. Grilli, S. Coppola, G. Nasti, V. Vespini, G. Gentile, V. Ambrogi, C. Carfagna, and P. Ferraro, “Hybrid ferroelectric polymer micro fluidic device for dielectrophoretic self-assembling of nanoparticles,” RSC Advances 4(6), 2851–2857 (2014).
[Crossref]

Carrascosa, M.

A. García-Cabañes, A. Blázquez-Castro, L. Arizmendi, F. Agulló-López, and M. Carrascosa, “Recent achievements on photovoltaic optoelectronic tweezers based on lithium niobate,” Crystals 8(2), 65 (2018).
[Crossref]

J. Faba, A. Puerto, J. F. Muñoz-Martínez, A. Méndez, A. Alcazar, A. García-Cabañes, and M. Carrascosa, “Nanoparticle manipulation and trapping by the synergy between the photovoltaic and pyroelectric effects,” J. Phys. Conf. Ser. 867, 012038 (2017).
[Crossref]

I. Elvira, J. F. Muñoz-Martínez, M. Jubera, A. García-Cabañes, J. L. Bella, P. Haro-González, M. A. Díaz-García, F. Agulló-López, and M. Carrascosa, “Plasmonic enhancement in the fluorescence of organic and biological molecules by photovoltaic tweezing assembly,” Adv. Mater. Technol. 2(8), 1700024 (2017).
[Crossref]

M. Jubera, I. Elvira, A. García-Cabañes, J. L. Bella, and M. Carrascosa, “Trapping and patternig of biological objects using photovoltaic tweezers,” Appl. Phys. Lett. 108(2), 023703 (2016).
[Crossref]

A. Gallego, A. García-Cabañes, M. Carrascosa, and L. Arizmendi, “Pyroelectric trapping and arrangement of nanoparticles in lithium niobate opposite domain structures,” J. Phys. Chem. C 120(1), 731–736 (2016).
[Crossref]

J. F. Muñoz-Martínez, M. Jubera, J. Matarrubia, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Diffractive optical devices produced by light-assisted trapping of nanoparticles,” Opt. Lett. 41(2), 432–435 (2016).
[Crossref] [PubMed]

J. F. Muñoz-Martínez, I. Elvira, M. Jubera, A. García-Cabañes, J. B. Ramiro, C. Arregui, and M. Carrascosa, “Efficient photo-induced dielectrophoretic particle trapping on Fe:LiNbO3 for arbitrary two dimensional patterning,” Opt. Mater. Express 5(5), 1137–1146 (2015).
[Crossref]

M. Carrascosa, A. García-Cabañes, M. Jubera, J. B. Ramiro, and F. Agulló-López, “LiNbO3: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects,” Appl. Phys. Rev. 2(4), 040605 (2015).
[Crossref]

J. Matarrubia, A. García-Cabañes, J. L. Plaza, F. Agulló-López, and M. Carrascosa, “Optimization of particle trapping and patterning via photovoltaic tweezers: role of light modulation and particle size,” J. Phys. D Appl. Phys. 47(26), 265101 (2014).
[Crossref]

J. Villarroel, H. Burgos, A. García-Cabañes, M. Carrascosa, A. Blázquez-Castro, and F. Agulló-López, “Photovoltaic versus optical tweezers,” Opt. Express 19(24), 24320–24330 (2011).
[Crossref] [PubMed]

E. M. De Miguel, J. Limeres, M. Carrascosa, and L. Arizmendi, “Study of developing thermal fixed holograms in lithium niobate,” J. Opt. Soc. Am. B 17(7), 1140–1146 (2000).
[Crossref]

Chen, H.

B. Fan, F. Li, L. Chen, L. Shi, W. Yan, Y. Zhang, S. Li, X. Wang, and H. Chen, “Photovoltaic manipulation of water microdroplets on a hydrophobic LiNbO3 substrate,” Phys. Rev. Appl. 7(6), 064010 (2017).
[Crossref]

L. Chen, S. Li, B. Fan, W. Yan, D. Wang, L. Shi, H. Chen, D. Ban, and S. Sun, “Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates,” Sci. Rep. 6(1), 29166 (2016).
[Crossref] [PubMed]

L. Chen, B. Fan, W. Yan, S. Li, L. Shi, and H. Chen, “Photo-assisted splitting of dielectric microdroplets in a LN-based sandwich structure,” Opt. Lett. 41(19), 4558–4561 (2016).
[Crossref] [PubMed]

Chen, L.

B. Fan, F. Li, L. Chen, L. Shi, W. Yan, Y. Zhang, S. Li, X. Wang, and H. Chen, “Photovoltaic manipulation of water microdroplets on a hydrophobic LiNbO3 substrate,” Phys. Rev. Appl. 7(6), 064010 (2017).
[Crossref]

L. Chen, S. Li, B. Fan, W. Yan, D. Wang, L. Shi, H. Chen, D. Ban, and S. Sun, “Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates,” Sci. Rep. 6(1), 29166 (2016).
[Crossref] [PubMed]

L. Chen, B. Fan, W. Yan, S. Li, L. Shi, and H. Chen, “Photo-assisted splitting of dielectric microdroplets in a LN-based sandwich structure,” Opt. Lett. 41(19), 4558–4561 (2016).
[Crossref] [PubMed]

Chiou, P. Y.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

Ciciulla, F.

L. Lucchetti, K. Kushnir, V. Reshetnyak, F. Ciciulla, A. Zaltron, C. Sada, and F. Simoni, “Light-induced electric field generated by photovoltaic substrates investigated through liquid crystal reorientation,” Opt. Mater. 73, 64–69 (2017).
[Crossref]

Coppola, S.

S. Grilli, S. Coppola, G. Nasti, V. Vespini, G. Gentile, V. Ambrogi, C. Carfagna, and P. Ferraro, “Hybrid ferroelectric polymer micro fluidic device for dielectrophoretic self-assembling of nanoparticles,” RSC Advances 4(6), 2851–2857 (2014).
[Crossref]

De Miguel, E. M.

Denz, C.

M. Esseling, A. Zaltron, C. Sada, and C. Denz, “Charge sensor and particle trap based on z-cut lithium niobate,” Appl. Phys. Lett. 103(6), 061115 (2013).
[Crossref]

M. Esseling, F. Holtmann, M. Woerdemann, and C. Denz, “Two-dimensional dielectrophoretic particle trapping in a hybrid crystal/PDMS-system,” Opt. Express 18(16), 17404–17411 (2010).
[Crossref] [PubMed]

Díaz-García, M. A.

I. Elvira, J. F. Muñoz-Martínez, M. Jubera, A. García-Cabañes, J. L. Bella, P. Haro-González, M. A. Díaz-García, F. Agulló-López, and M. Carrascosa, “Plasmonic enhancement in the fluorescence of organic and biological molecules by photovoltaic tweezing assembly,” Adv. Mater. Technol. 2(8), 1700024 (2017).
[Crossref]

Dischler, B.

H. Kurz, E. Krätzig, W. Keune, H. Engelman, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-methods, moossbauer-methods and EPR-methods,” Appl. Phys. 12(4), 355–368 (1977).
[Crossref]

Eggert, H. A.

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
[Crossref]

Elvira, I.

I. Elvira, J. F. Muñoz-Martínez, M. Jubera, A. García-Cabañes, J. L. Bella, P. Haro-González, M. A. Díaz-García, F. Agulló-López, and M. Carrascosa, “Plasmonic enhancement in the fluorescence of organic and biological molecules by photovoltaic tweezing assembly,” Adv. Mater. Technol. 2(8), 1700024 (2017).
[Crossref]

M. Jubera, I. Elvira, A. García-Cabañes, J. L. Bella, and M. Carrascosa, “Trapping and patternig of biological objects using photovoltaic tweezers,” Appl. Phys. Lett. 108(2), 023703 (2016).
[Crossref]

J. F. Muñoz-Martínez, I. Elvira, M. Jubera, A. García-Cabañes, J. B. Ramiro, C. Arregui, and M. Carrascosa, “Efficient photo-induced dielectrophoretic particle trapping on Fe:LiNbO3 for arbitrary two dimensional patterning,” Opt. Mater. Express 5(5), 1137–1146 (2015).
[Crossref]

Engelman, H.

H. Kurz, E. Krätzig, W. Keune, H. Engelman, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-methods, moossbauer-methods and EPR-methods,” Appl. Phys. 12(4), 355–368 (1977).
[Crossref]

Esseling, M.

M. Esseling, A. Zaltron, C. Sada, and C. Denz, “Charge sensor and particle trap based on z-cut lithium niobate,” Appl. Phys. Lett. 103(6), 061115 (2013).
[Crossref]

M. Esseling, F. Holtmann, M. Woerdemann, and C. Denz, “Two-dimensional dielectrophoretic particle trapping in a hybrid crystal/PDMS-system,” Opt. Express 18(16), 17404–17411 (2010).
[Crossref] [PubMed]

Evans, D. R.

A. Habibpourmoghadam, L. Jiao, V. Reshetnyak, D. R. Evans, and A. Lorenz, “Optical manipulation and defect creation in a liquid crystal on a photoresponsive surface,” Phys. Rev. E 96(2-1), 022701 (2017).
[Crossref] [PubMed]

A. Habibpourmoghadam, L. Lucchetti, D. R. Evans, V. Y. Reshetnyak, F. Omairat, S. L. Schafforz, and A. Lorenz, “Laser-induced erasable patterns in a N* liquid crystal on an iron doped lithium niobate surface,” Opt. Express 25(21), 26148–26159 (2017).
[Crossref] [PubMed]

Faba, J.

J. Faba, A. Puerto, J. F. Muñoz-Martínez, A. Méndez, A. Alcazar, A. García-Cabañes, and M. Carrascosa, “Nanoparticle manipulation and trapping by the synergy between the photovoltaic and pyroelectric effects,” J. Phys. Conf. Ser. 867, 012038 (2017).
[Crossref]

Fan, B.

B. Fan, F. Li, L. Chen, L. Shi, W. Yan, Y. Zhang, S. Li, X. Wang, and H. Chen, “Photovoltaic manipulation of water microdroplets on a hydrophobic LiNbO3 substrate,” Phys. Rev. Appl. 7(6), 064010 (2017).
[Crossref]

L. Chen, S. Li, B. Fan, W. Yan, D. Wang, L. Shi, H. Chen, D. Ban, and S. Sun, “Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates,” Sci. Rep. 6(1), 29166 (2016).
[Crossref] [PubMed]

L. Chen, B. Fan, W. Yan, S. Li, L. Shi, and H. Chen, “Photo-assisted splitting of dielectric microdroplets in a LN-based sandwich structure,” Opt. Lett. 41(19), 4558–4561 (2016).
[Crossref] [PubMed]

Ferraro, P.

S. Grilli, S. Coppola, G. Nasti, V. Vespini, G. Gentile, V. Ambrogi, C. Carfagna, and P. Ferraro, “Hybrid ferroelectric polymer micro fluidic device for dielectrophoretic self-assembling of nanoparticles,” RSC Advances 4(6), 2851–2857 (2014).
[Crossref]

S. Grilli and P. Ferraro, “Dielectrophoretic trapping of suspended particles by selective pyroelectric effect in lithium niobate crystals,” Appl. Phys. Lett. 92(23), 232902 (2008).
[Crossref]

Gallego, A.

A. Gallego, A. García-Cabañes, M. Carrascosa, and L. Arizmendi, “Pyroelectric trapping and arrangement of nanoparticles in lithium niobate opposite domain structures,” J. Phys. Chem. C 120(1), 731–736 (2016).
[Crossref]

García-Cabañes, A.

A. García-Cabañes, A. Blázquez-Castro, L. Arizmendi, F. Agulló-López, and M. Carrascosa, “Recent achievements on photovoltaic optoelectronic tweezers based on lithium niobate,” Crystals 8(2), 65 (2018).
[Crossref]

I. Elvira, J. F. Muñoz-Martínez, M. Jubera, A. García-Cabañes, J. L. Bella, P. Haro-González, M. A. Díaz-García, F. Agulló-López, and M. Carrascosa, “Plasmonic enhancement in the fluorescence of organic and biological molecules by photovoltaic tweezing assembly,” Adv. Mater. Technol. 2(8), 1700024 (2017).
[Crossref]

J. Faba, A. Puerto, J. F. Muñoz-Martínez, A. Méndez, A. Alcazar, A. García-Cabañes, and M. Carrascosa, “Nanoparticle manipulation and trapping by the synergy between the photovoltaic and pyroelectric effects,” J. Phys. Conf. Ser. 867, 012038 (2017).
[Crossref]

A. Gallego, A. García-Cabañes, M. Carrascosa, and L. Arizmendi, “Pyroelectric trapping and arrangement of nanoparticles in lithium niobate opposite domain structures,” J. Phys. Chem. C 120(1), 731–736 (2016).
[Crossref]

M. Jubera, I. Elvira, A. García-Cabañes, J. L. Bella, and M. Carrascosa, “Trapping and patternig of biological objects using photovoltaic tweezers,” Appl. Phys. Lett. 108(2), 023703 (2016).
[Crossref]

J. F. Muñoz-Martínez, M. Jubera, J. Matarrubia, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Diffractive optical devices produced by light-assisted trapping of nanoparticles,” Opt. Lett. 41(2), 432–435 (2016).
[Crossref] [PubMed]

M. Carrascosa, A. García-Cabañes, M. Jubera, J. B. Ramiro, and F. Agulló-López, “LiNbO3: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects,” Appl. Phys. Rev. 2(4), 040605 (2015).
[Crossref]

J. F. Muñoz-Martínez, I. Elvira, M. Jubera, A. García-Cabañes, J. B. Ramiro, C. Arregui, and M. Carrascosa, “Efficient photo-induced dielectrophoretic particle trapping on Fe:LiNbO3 for arbitrary two dimensional patterning,” Opt. Mater. Express 5(5), 1137–1146 (2015).
[Crossref]

J. Matarrubia, A. García-Cabañes, J. L. Plaza, F. Agulló-López, and M. Carrascosa, “Optimization of particle trapping and patterning via photovoltaic tweezers: role of light modulation and particle size,” J. Phys. D Appl. Phys. 47(26), 265101 (2014).
[Crossref]

J. Villarroel, H. Burgos, A. García-Cabañes, M. Carrascosa, A. Blázquez-Castro, and F. Agulló-López, “Photovoltaic versus optical tweezers,” Opt. Express 19(24), 24320–24330 (2011).
[Crossref] [PubMed]

Gaylord, T. K.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

Gentile, G.

S. Grilli, S. Coppola, G. Nasti, V. Vespini, G. Gentile, V. Ambrogi, C. Carfagna, and P. Ferraro, “Hybrid ferroelectric polymer micro fluidic device for dielectrophoretic self-assembling of nanoparticles,” RSC Advances 4(6), 2851–2857 (2014).
[Crossref]

Gonser, U.

H. Kurz, E. Krätzig, W. Keune, H. Engelman, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-methods, moossbauer-methods and EPR-methods,” Appl. Phys. 12(4), 355–368 (1977).
[Crossref]

Gorecki, J.

J. Gorecki, V. Apostolopoulos, J. Y. Ou, S. Mailis, and N. Papasimakis, “Optical gating of graphene on photoconductive Fe:LiNbO3,” ACS Nano 12(6), 5940–5945 (2018).
[Crossref] [PubMed]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Grilli, S.

S. Grilli, S. Coppola, G. Nasti, V. Vespini, G. Gentile, V. Ambrogi, C. Carfagna, and P. Ferraro, “Hybrid ferroelectric polymer micro fluidic device for dielectrophoretic self-assembling of nanoparticles,” RSC Advances 4(6), 2851–2857 (2014).
[Crossref]

S. Grilli and P. Ferraro, “Dielectrophoretic trapping of suspended particles by selective pyroelectric effect in lithium niobate crystals,” Appl. Phys. Lett. 92(23), 232902 (2008).
[Crossref]

Habibpourmoghadam, A.

A. Habibpourmoghadam, L. Jiao, V. Reshetnyak, D. R. Evans, and A. Lorenz, “Optical manipulation and defect creation in a liquid crystal on a photoresponsive surface,” Phys. Rev. E 96(2-1), 022701 (2017).
[Crossref] [PubMed]

A. Habibpourmoghadam, L. Lucchetti, D. R. Evans, V. Y. Reshetnyak, F. Omairat, S. L. Schafforz, and A. Lorenz, “Laser-induced erasable patterns in a N* liquid crystal on an iron doped lithium niobate surface,” Opt. Express 25(21), 26148–26159 (2017).
[Crossref] [PubMed]

Haro-González, P.

I. Elvira, J. F. Muñoz-Martínez, M. Jubera, A. García-Cabañes, J. L. Bella, P. Haro-González, M. A. Díaz-García, F. Agulló-López, and M. Carrascosa, “Plasmonic enhancement in the fluorescence of organic and biological molecules by photovoltaic tweezing assembly,” Adv. Mater. Technol. 2(8), 1700024 (2017).
[Crossref]

Holtmann, F.

Jiao, L.

A. Habibpourmoghadam, L. Jiao, V. Reshetnyak, D. R. Evans, and A. Lorenz, “Optical manipulation and defect creation in a liquid crystal on a photoresponsive surface,” Phys. Rev. E 96(2-1), 022701 (2017).
[Crossref] [PubMed]

Johann, F.

F. Johann and E. Soergel, “Quantitative measurement of the surface charge density,” Appl. Phys. Lett. 95(23), 232906 (2009).
[Crossref]

Jubera, M.

I. Elvira, J. F. Muñoz-Martínez, M. Jubera, A. García-Cabañes, J. L. Bella, P. Haro-González, M. A. Díaz-García, F. Agulló-López, and M. Carrascosa, “Plasmonic enhancement in the fluorescence of organic and biological molecules by photovoltaic tweezing assembly,” Adv. Mater. Technol. 2(8), 1700024 (2017).
[Crossref]

M. Jubera, I. Elvira, A. García-Cabañes, J. L. Bella, and M. Carrascosa, “Trapping and patternig of biological objects using photovoltaic tweezers,” Appl. Phys. Lett. 108(2), 023703 (2016).
[Crossref]

J. F. Muñoz-Martínez, M. Jubera, J. Matarrubia, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Diffractive optical devices produced by light-assisted trapping of nanoparticles,” Opt. Lett. 41(2), 432–435 (2016).
[Crossref] [PubMed]

M. Carrascosa, A. García-Cabañes, M. Jubera, J. B. Ramiro, and F. Agulló-López, “LiNbO3: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects,” Appl. Phys. Rev. 2(4), 040605 (2015).
[Crossref]

J. F. Muñoz-Martínez, I. Elvira, M. Jubera, A. García-Cabañes, J. B. Ramiro, C. Arregui, and M. Carrascosa, “Efficient photo-induced dielectrophoretic particle trapping on Fe:LiNbO3 for arbitrary two dimensional patterning,” Opt. Mater. Express 5(5), 1137–1146 (2015).
[Crossref]

Keune, W.

H. Kurz, E. Krätzig, W. Keune, H. Engelman, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-methods, moossbauer-methods and EPR-methods,” Appl. Phys. 12(4), 355–368 (1977).
[Crossref]

Kong, Y.

Krätzig, E.

I. Nee, M. Müller, K. Buse, and E. Krätzig, “Role of iron in lithium-niobate crystals for dark-storage time of holograms,” J. Appl. Phys. 88(7), 4282–4286 (2000).
[Crossref]

H. Kurz, E. Krätzig, W. Keune, H. Engelman, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-methods, moossbauer-methods and EPR-methods,” Appl. Phys. 12(4), 355–368 (1977).
[Crossref]

Kuhnert, F. Y.

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
[Crossref]

Kurz, H.

H. Kurz, E. Krätzig, W. Keune, H. Engelman, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-methods, moossbauer-methods and EPR-methods,” Appl. Phys. 12(4), 355–368 (1977).
[Crossref]

Kushnir, K.

L. Lucchetti, K. Kushnir, V. Reshetnyak, F. Ciciulla, A. Zaltron, C. Sada, and F. Simoni, “Light-induced electric field generated by photovoltaic substrates investigated through liquid crystal reorientation,” Opt. Mater. 73, 64–69 (2017).
[Crossref]

Li, F.

B. Fan, F. Li, L. Chen, L. Shi, W. Yan, Y. Zhang, S. Li, X. Wang, and H. Chen, “Photovoltaic manipulation of water microdroplets on a hydrophobic LiNbO3 substrate,” Phys. Rev. Appl. 7(6), 064010 (2017).
[Crossref]

Li, S.

B. Fan, F. Li, L. Chen, L. Shi, W. Yan, Y. Zhang, S. Li, X. Wang, and H. Chen, “Photovoltaic manipulation of water microdroplets on a hydrophobic LiNbO3 substrate,” Phys. Rev. Appl. 7(6), 064010 (2017).
[Crossref]

L. Chen, S. Li, B. Fan, W. Yan, D. Wang, L. Shi, H. Chen, D. Ban, and S. Sun, “Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates,” Sci. Rep. 6(1), 29166 (2016).
[Crossref] [PubMed]

L. Chen, B. Fan, W. Yan, S. Li, L. Shi, and H. Chen, “Photo-assisted splitting of dielectric microdroplets in a LN-based sandwich structure,” Opt. Lett. 41(19), 4558–4561 (2016).
[Crossref] [PubMed]

Limeres, J.

Lorenz, A.

A. Habibpourmoghadam, L. Jiao, V. Reshetnyak, D. R. Evans, and A. Lorenz, “Optical manipulation and defect creation in a liquid crystal on a photoresponsive surface,” Phys. Rev. E 96(2-1), 022701 (2017).
[Crossref] [PubMed]

A. Habibpourmoghadam, L. Lucchetti, D. R. Evans, V. Y. Reshetnyak, F. Omairat, S. L. Schafforz, and A. Lorenz, “Laser-induced erasable patterns in a N* liquid crystal on an iron doped lithium niobate surface,” Opt. Express 25(21), 26148–26159 (2017).
[Crossref] [PubMed]

Lucchetti, L.

A. Habibpourmoghadam, L. Lucchetti, D. R. Evans, V. Y. Reshetnyak, F. Omairat, S. L. Schafforz, and A. Lorenz, “Laser-induced erasable patterns in a N* liquid crystal on an iron doped lithium niobate surface,” Opt. Express 25(21), 26148–26159 (2017).
[Crossref] [PubMed]

L. Lucchetti, K. Kushnir, V. Reshetnyak, F. Ciciulla, A. Zaltron, C. Sada, and F. Simoni, “Light-induced electric field generated by photovoltaic substrates investigated through liquid crystal reorientation,” Opt. Mater. 73, 64–69 (2017).
[Crossref]

Mailis, S.

J. Gorecki, V. Apostolopoulos, J. Y. Ou, S. Mailis, and N. Papasimakis, “Optical gating of graphene on photoconductive Fe:LiNbO3,” ACS Nano 12(6), 5940–5945 (2018).
[Crossref] [PubMed]

Matarrubia, J.

J. F. Muñoz-Martínez, M. Jubera, J. Matarrubia, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Diffractive optical devices produced by light-assisted trapping of nanoparticles,” Opt. Lett. 41(2), 432–435 (2016).
[Crossref] [PubMed]

J. Matarrubia, A. García-Cabañes, J. L. Plaza, F. Agulló-López, and M. Carrascosa, “Optimization of particle trapping and patterning via photovoltaic tweezers: role of light modulation and particle size,” J. Phys. D Appl. Phys. 47(26), 265101 (2014).
[Crossref]

Méndez, A.

J. Faba, A. Puerto, J. F. Muñoz-Martínez, A. Méndez, A. Alcazar, A. García-Cabañes, and M. Carrascosa, “Nanoparticle manipulation and trapping by the synergy between the photovoltaic and pyroelectric effects,” J. Phys. Conf. Ser. 867, 012038 (2017).
[Crossref]

Müller, M.

I. Nee, M. Müller, K. Buse, and E. Krätzig, “Role of iron in lithium-niobate crystals for dark-storage time of holograms,” J. Appl. Phys. 88(7), 4282–4286 (2000).
[Crossref]

Muñoz-Martínez, J. F.

I. Elvira, J. F. Muñoz-Martínez, M. Jubera, A. García-Cabañes, J. L. Bella, P. Haro-González, M. A. Díaz-García, F. Agulló-López, and M. Carrascosa, “Plasmonic enhancement in the fluorescence of organic and biological molecules by photovoltaic tweezing assembly,” Adv. Mater. Technol. 2(8), 1700024 (2017).
[Crossref]

J. Faba, A. Puerto, J. F. Muñoz-Martínez, A. Méndez, A. Alcazar, A. García-Cabañes, and M. Carrascosa, “Nanoparticle manipulation and trapping by the synergy between the photovoltaic and pyroelectric effects,” J. Phys. Conf. Ser. 867, 012038 (2017).
[Crossref]

J. F. Muñoz-Martínez, M. Jubera, J. Matarrubia, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Diffractive optical devices produced by light-assisted trapping of nanoparticles,” Opt. Lett. 41(2), 432–435 (2016).
[Crossref] [PubMed]

J. F. Muñoz-Martínez, I. Elvira, M. Jubera, A. García-Cabañes, J. B. Ramiro, C. Arregui, and M. Carrascosa, “Efficient photo-induced dielectrophoretic particle trapping on Fe:LiNbO3 for arbitrary two dimensional patterning,” Opt. Mater. Express 5(5), 1137–1146 (2015).
[Crossref]

Nasti, G.

S. Grilli, S. Coppola, G. Nasti, V. Vespini, G. Gentile, V. Ambrogi, C. Carfagna, and P. Ferraro, “Hybrid ferroelectric polymer micro fluidic device for dielectrophoretic self-assembling of nanoparticles,” RSC Advances 4(6), 2851–2857 (2014).
[Crossref]

Nee, I.

I. Nee, M. Müller, K. Buse, and E. Krätzig, “Role of iron in lithium-niobate crystals for dark-storage time of holograms,” J. Appl. Phys. 88(7), 4282–4286 (2000).
[Crossref]

Ohta, A. T.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

Omairat, F.

Ou, J. Y.

J. Gorecki, V. Apostolopoulos, J. Y. Ou, S. Mailis, and N. Papasimakis, “Optical gating of graphene on photoconductive Fe:LiNbO3,” ACS Nano 12(6), 5940–5945 (2018).
[Crossref] [PubMed]

Pan, L.

Papasimakis, N.

J. Gorecki, V. Apostolopoulos, J. Y. Ou, S. Mailis, and N. Papasimakis, “Optical gating of graphene on photoconductive Fe:LiNbO3,” ACS Nano 12(6), 5940–5945 (2018).
[Crossref] [PubMed]

Plaza, J. L.

J. Matarrubia, A. García-Cabañes, J. L. Plaza, F. Agulló-López, and M. Carrascosa, “Optimization of particle trapping and patterning via photovoltaic tweezers: role of light modulation and particle size,” J. Phys. D Appl. Phys. 47(26), 265101 (2014).
[Crossref]

Psaltis, D.

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
[Crossref]

Puerto, A.

J. Faba, A. Puerto, J. F. Muñoz-Martínez, A. Méndez, A. Alcazar, A. García-Cabañes, and M. Carrascosa, “Nanoparticle manipulation and trapping by the synergy between the photovoltaic and pyroelectric effects,” J. Phys. Conf. Ser. 867, 012038 (2017).
[Crossref]

Raj, M. M.

N. V. Sastry and M. M. Raj, “Densities, speeds of sound, viscosities, dielectric constants, and refractive indices for 1-heptanol + hexane and + heptaneat 303.15 and 313.15 K,” J. Chem. Eng. Data 41(3), 612–618 (1996).
[Crossref]

Ramiro, J. B.

J. F. Muñoz-Martínez, I. Elvira, M. Jubera, A. García-Cabañes, J. B. Ramiro, C. Arregui, and M. Carrascosa, “Efficient photo-induced dielectrophoretic particle trapping on Fe:LiNbO3 for arbitrary two dimensional patterning,” Opt. Mater. Express 5(5), 1137–1146 (2015).
[Crossref]

M. Carrascosa, A. García-Cabañes, M. Jubera, J. B. Ramiro, and F. Agulló-López, “LiNbO3: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects,” Appl. Phys. Rev. 2(4), 040605 (2015).
[Crossref]

Räuber, A.

H. Kurz, E. Krätzig, W. Keune, H. Engelman, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-methods, moossbauer-methods and EPR-methods,” Appl. Phys. 12(4), 355–368 (1977).
[Crossref]

Reshetnyak, V.

L. Lucchetti, K. Kushnir, V. Reshetnyak, F. Ciciulla, A. Zaltron, C. Sada, and F. Simoni, “Light-induced electric field generated by photovoltaic substrates investigated through liquid crystal reorientation,” Opt. Mater. 73, 64–69 (2017).
[Crossref]

A. Habibpourmoghadam, L. Jiao, V. Reshetnyak, D. R. Evans, and A. Lorenz, “Optical manipulation and defect creation in a liquid crystal on a photoresponsive surface,” Phys. Rev. E 96(2-1), 022701 (2017).
[Crossref] [PubMed]

Reshetnyak, V. Y.

Rupp, R. A.

Sada, C.

L. Lucchetti, K. Kushnir, V. Reshetnyak, F. Ciciulla, A. Zaltron, C. Sada, and F. Simoni, “Light-induced electric field generated by photovoltaic substrates investigated through liquid crystal reorientation,” Opt. Mater. 73, 64–69 (2017).
[Crossref]

M. Esseling, A. Zaltron, C. Sada, and C. Denz, “Charge sensor and particle trap based on z-cut lithium niobate,” Appl. Phys. Lett. 103(6), 061115 (2013).
[Crossref]

Sastry, N. V.

N. V. Sastry and M. M. Raj, “Densities, speeds of sound, viscosities, dielectric constants, and refractive indices for 1-heptanol + hexane and + heptaneat 303.15 and 313.15 K,” J. Chem. Eng. Data 41(3), 612–618 (1996).
[Crossref]

Savage, A.

A. Savage, “Pyroelectricty and spontaneous polarization in LiNbO3,” J. Appl. Phys. 37(8), 3071–3072 (1966).
[Crossref]

Schafforz, S. L.

Shi, L.

B. Fan, F. Li, L. Chen, L. Shi, W. Yan, Y. Zhang, S. Li, X. Wang, and H. Chen, “Photovoltaic manipulation of water microdroplets on a hydrophobic LiNbO3 substrate,” Phys. Rev. Appl. 7(6), 064010 (2017).
[Crossref]

L. Chen, S. Li, B. Fan, W. Yan, D. Wang, L. Shi, H. Chen, D. Ban, and S. Sun, “Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates,” Sci. Rep. 6(1), 29166 (2016).
[Crossref] [PubMed]

L. Chen, B. Fan, W. Yan, S. Li, L. Shi, and H. Chen, “Photo-assisted splitting of dielectric microdroplets in a LN-based sandwich structure,” Opt. Lett. 41(19), 4558–4561 (2016).
[Crossref] [PubMed]

Simoni, F.

L. Lucchetti, K. Kushnir, V. Reshetnyak, F. Ciciulla, A. Zaltron, C. Sada, and F. Simoni, “Light-induced electric field generated by photovoltaic substrates investigated through liquid crystal reorientation,” Opt. Mater. 73, 64–69 (2017).
[Crossref]

Soergel, E.

F. Johann and E. Soergel, “Quantitative measurement of the surface charge density,” Appl. Phys. Lett. 95(23), 232906 (2009).
[Crossref]

Sun, Q.

Sun, S.

L. Chen, S. Li, B. Fan, W. Yan, D. Wang, L. Shi, H. Chen, D. Ban, and S. Sun, “Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates,” Sci. Rep. 6(1), 29166 (2016).
[Crossref] [PubMed]

Tan, X.

Tang, B.

Vespini, V.

S. Grilli, S. Coppola, G. Nasti, V. Vespini, G. Gentile, V. Ambrogi, C. Carfagna, and P. Ferraro, “Hybrid ferroelectric polymer micro fluidic device for dielectrophoretic self-assembling of nanoparticles,” RSC Advances 4(6), 2851–2857 (2014).
[Crossref]

Villarroel, J.

Wang, D.

L. Chen, S. Li, B. Fan, W. Yan, D. Wang, L. Shi, H. Chen, D. Ban, and S. Sun, “Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates,” Sci. Rep. 6(1), 29166 (2016).
[Crossref] [PubMed]

Wang, J.

Wang, X.

B. Fan, F. Li, L. Chen, L. Shi, W. Yan, Y. Zhang, S. Li, X. Wang, and H. Chen, “Photovoltaic manipulation of water microdroplets on a hydrophobic LiNbO3 substrate,” Phys. Rev. Appl. 7(6), 064010 (2017).
[Crossref]

Weis, R. S.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

Woerdemann, M.

Wu, M. C.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

Xu, J.

Yan, W.

B. Fan, F. Li, L. Chen, L. Shi, W. Yan, Y. Zhang, S. Li, X. Wang, and H. Chen, “Photovoltaic manipulation of water microdroplets on a hydrophobic LiNbO3 substrate,” Phys. Rev. Appl. 7(6), 064010 (2017).
[Crossref]

L. Chen, S. Li, B. Fan, W. Yan, D. Wang, L. Shi, H. Chen, D. Ban, and S. Sun, “Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates,” Sci. Rep. 6(1), 29166 (2016).
[Crossref] [PubMed]

L. Chen, B. Fan, W. Yan, S. Li, L. Shi, and H. Chen, “Photo-assisted splitting of dielectric microdroplets in a LN-based sandwich structure,” Opt. Lett. 41(19), 4558–4561 (2016).
[Crossref] [PubMed]

Zaltron, A.

L. Lucchetti, K. Kushnir, V. Reshetnyak, F. Ciciulla, A. Zaltron, C. Sada, and F. Simoni, “Light-induced electric field generated by photovoltaic substrates investigated through liquid crystal reorientation,” Opt. Mater. 73, 64–69 (2017).
[Crossref]

M. Esseling, A. Zaltron, C. Sada, and C. Denz, “Charge sensor and particle trap based on z-cut lithium niobate,” Appl. Phys. Lett. 103(6), 061115 (2013).
[Crossref]

Zhang, X.

Zhang, Y.

B. Fan, F. Li, L. Chen, L. Shi, W. Yan, Y. Zhang, S. Li, X. Wang, and H. Chen, “Photovoltaic manipulation of water microdroplets on a hydrophobic LiNbO3 substrate,” Phys. Rev. Appl. 7(6), 064010 (2017).
[Crossref]

ACS Nano (1)

J. Gorecki, V. Apostolopoulos, J. Y. Ou, S. Mailis, and N. Papasimakis, “Optical gating of graphene on photoconductive Fe:LiNbO3,” ACS Nano 12(6), 5940–5945 (2018).
[Crossref] [PubMed]

Adv. Mater. Technol. (1)

I. Elvira, J. F. Muñoz-Martínez, M. Jubera, A. García-Cabañes, J. L. Bella, P. Haro-González, M. A. Díaz-García, F. Agulló-López, and M. Carrascosa, “Plasmonic enhancement in the fluorescence of organic and biological molecules by photovoltaic tweezing assembly,” Adv. Mater. Technol. 2(8), 1700024 (2017).
[Crossref]

Appl. Phys. (1)

H. Kurz, E. Krätzig, W. Keune, H. Engelman, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-methods, moossbauer-methods and EPR-methods,” Appl. Phys. 12(4), 355–368 (1977).
[Crossref]

Appl. Phys. Lett. (5)

F. Johann and E. Soergel, “Quantitative measurement of the surface charge density,” Appl. Phys. Lett. 95(23), 232906 (2009).
[Crossref]

M. Jubera, I. Elvira, A. García-Cabañes, J. L. Bella, and M. Carrascosa, “Trapping and patternig of biological objects using photovoltaic tweezers,” Appl. Phys. Lett. 108(2), 023703 (2016).
[Crossref]

S. Grilli and P. Ferraro, “Dielectrophoretic trapping of suspended particles by selective pyroelectric effect in lithium niobate crystals,” Appl. Phys. Lett. 92(23), 232902 (2008).
[Crossref]

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
[Crossref]

M. Esseling, A. Zaltron, C. Sada, and C. Denz, “Charge sensor and particle trap based on z-cut lithium niobate,” Appl. Phys. Lett. 103(6), 061115 (2013).
[Crossref]

Appl. Phys. Rev. (1)

M. Carrascosa, A. García-Cabañes, M. Jubera, J. B. Ramiro, and F. Agulló-López, “LiNbO3: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects,” Appl. Phys. Rev. 2(4), 040605 (2015).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

Crystals (1)

A. García-Cabañes, A. Blázquez-Castro, L. Arizmendi, F. Agulló-López, and M. Carrascosa, “Recent achievements on photovoltaic optoelectronic tweezers based on lithium niobate,” Crystals 8(2), 65 (2018).
[Crossref]

J. Appl. Phys. (2)

A. Savage, “Pyroelectricty and spontaneous polarization in LiNbO3,” J. Appl. Phys. 37(8), 3071–3072 (1966).
[Crossref]

I. Nee, M. Müller, K. Buse, and E. Krätzig, “Role of iron in lithium-niobate crystals for dark-storage time of holograms,” J. Appl. Phys. 88(7), 4282–4286 (2000).
[Crossref]

J. Chem. Eng. Data (1)

N. V. Sastry and M. M. Raj, “Densities, speeds of sound, viscosities, dielectric constants, and refractive indices for 1-heptanol + hexane and + heptaneat 303.15 and 313.15 K,” J. Chem. Eng. Data 41(3), 612–618 (1996).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

A. Gallego, A. García-Cabañes, M. Carrascosa, and L. Arizmendi, “Pyroelectric trapping and arrangement of nanoparticles in lithium niobate opposite domain structures,” J. Phys. Chem. C 120(1), 731–736 (2016).
[Crossref]

J. Phys. Conf. Ser. (1)

J. Faba, A. Puerto, J. F. Muñoz-Martínez, A. Méndez, A. Alcazar, A. García-Cabañes, and M. Carrascosa, “Nanoparticle manipulation and trapping by the synergy between the photovoltaic and pyroelectric effects,” J. Phys. Conf. Ser. 867, 012038 (2017).
[Crossref]

J. Phys. D Appl. Phys. (1)

J. Matarrubia, A. García-Cabañes, J. L. Plaza, F. Agulló-López, and M. Carrascosa, “Optimization of particle trapping and patterning via photovoltaic tweezers: role of light modulation and particle size,” J. Phys. D Appl. Phys. 47(26), 265101 (2014).
[Crossref]

Nature (2)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. (1)

L. Lucchetti, K. Kushnir, V. Reshetnyak, F. Ciciulla, A. Zaltron, C. Sada, and F. Simoni, “Light-induced electric field generated by photovoltaic substrates investigated through liquid crystal reorientation,” Opt. Mater. 73, 64–69 (2017).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. Appl. (1)

B. Fan, F. Li, L. Chen, L. Shi, W. Yan, Y. Zhang, S. Li, X. Wang, and H. Chen, “Photovoltaic manipulation of water microdroplets on a hydrophobic LiNbO3 substrate,” Phys. Rev. Appl. 7(6), 064010 (2017).
[Crossref]

Phys. Rev. E (1)

A. Habibpourmoghadam, L. Jiao, V. Reshetnyak, D. R. Evans, and A. Lorenz, “Optical manipulation and defect creation in a liquid crystal on a photoresponsive surface,” Phys. Rev. E 96(2-1), 022701 (2017).
[Crossref] [PubMed]

RSC Advances (1)

S. Grilli, S. Coppola, G. Nasti, V. Vespini, G. Gentile, V. Ambrogi, C. Carfagna, and P. Ferraro, “Hybrid ferroelectric polymer micro fluidic device for dielectrophoretic self-assembling of nanoparticles,” RSC Advances 4(6), 2851–2857 (2014).
[Crossref]

Sci. Rep. (1)

L. Chen, S. Li, B. Fan, W. Yan, D. Wang, L. Shi, H. Chen, D. Ban, and S. Sun, “Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates,” Sci. Rep. 6(1), 29166 (2016).
[Crossref] [PubMed]

Other (4)

M. Esseling, Photorefractive optoelectronic tweezers and their applications (Springer Theses, 2015).

A. Räuber, “Chemistry and physics of lithium niobate”, in Current Topics in Material Science, E. Kaldis Ed. (North-Holland Pub. Co., 1978) Chap.7.

T. B. Jones, Electromechanics of particles (Cambridge University, 1995).

B. Sturmann and V. Fridkin, Photovoltaic and photorefractive effects in noncentosymetric materials (Gordon and Breach Science publishers, 1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematics of the surface charge induced in the substrate + z face (see inset) by the PVE (left), PYE (center) and both of them (right) for (a) ΔT<0 °C, and (b) ΔT>0 °C.
Fig. 2
Fig. 2 (a) Optical setup used to illuminate the sample (first step): P1 and P2 are linear polarizers; SF is a spatial filter; L1 and L2 are lenses; M1, M2 and M3 are plane mirrors, and PSLM is a reflection phase spatial light modulator. (b) In the second step the sample, at a temperature T1, is immersed in the suspension of the Ag nanoparticle kept at a temperature T2 during 30 seconds in absence of any illumination.
Fig. 3
Fig. 3 Photographs of Ag NP patterns deposited on the + c sample surface after illumination with a fringe light pattern (green fringes on the right side of the figure) at different temperature change: (a) ΔT = 0 °C, (b) ΔT = –5 °C, (c) ΔT = –8 °C (d) ΔT = –10 °C, (e) ΔT = –15 °C, (f) ΔT = –20 °C. The exposition time is 10 minutes and the light pattern intensity is 1.6 mW/cm2. On the right of each figure, the corresponding particle density profiles are shown (see text). The fringes have a spatial periodicity of 300 µm.
Fig. 4
Fig. 4 Photographs of Ag NP patterns deposited on the + z surface with an arbitrary light pattern at (a) ΔT = 0 °C, (b) ΔT = –10 °C (corresponding to a negative pattern). The exposition time was 10 minutes and the light pattern intensity was 1.6 mW/cm2.
Fig. 5
Fig. 5 Temperature difference (right axis) to obtain a negative pattern and (left axis) edge PV field closed to the crystal as a function of the light exposure time (see text). The light intensity used in the experiments is 1.6 mW/cm2. The inset image is a representative negative pattern corresponding to the indicated point. The solid line is an exponential fit to the data and the dashed red line represent the threshold value.
Fig. 6
Fig. 6 Photographs of Ag NP patterns deposited on the + c surface of sample 3 using a fringe light pattern (green fringes) at different temperature changes: (a) ΔT = 0 °C, (b) ΔT = + 1 °C. The exposition time is 15 minutes and the light pattern intensity is 1.6 mW/cm2. On the right of each figure, the corresponding particle density profiles are shown (see text). The fringes have a periodicity of 300 µm.

Tables (2)

Tables Icon

Table 1 Parameters related to the iron impurity for LiNbO3 substrates used in the experiments.

Tables Icon

Table 2 Impurity concentration and PV parameters of sample 3.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

j PV =eα( I hν ) l PV
E PV = j PV eμn = l PV [ Fe 3+ ]γ μ
τ= ε ε 0 eμn = ε ε 0 [ Fe 3+ ]γ eμsI[ Fe 2+ ]
σ PY =Δσ=nΔ P S = c p ΔT
f DEP =( pE )
E PV = | σ PV | 2ε ε 0 = | σ PY | 2ε ε 0 = c p ΔT 2ε ε 0
E PV = E sat ( 1 e t τ )

Metrics