Abstract

We propose and demonstrate a novel approach for measuring the modal attenuation of the splice loss of a purely LP11 mode group by using a Rayleigh-based OTDR with a dynamic modal crosstalk (XT) suppression technique for few-mode fibers (FMFs). With the proposed approach, the Brillouin loss interaction with a Brillouin Stokes beam co-propagating with the OTDR probe removes the modal XT caused at the modal conversion point and suppresses the accumulated modal XT that is detected. A preliminary experiment is demonstrated using spliced FMFs with a core-offset. Experiments revealed that the proposed technique can accurately measure the splice loss variations of a purely LP11 mode group.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneous measurement of mode dependent loss and mode coupling in few mode fibers by analyzing the Rayleigh backscattering amplitudes

Feng Liu, Guijun Hu, Congcong Song, Weicheng Chen, Cuiguang Chen, and Jiake Chen
Appl. Opt. 57(30) 8894-8902 (2018)

Measurement of mode coupling distribution along a few-mode fiber using a synchronous multi-channel OTDR

Masataka Nakazawa, Masato Yoshida, and Toshihiko Hirooka
Opt. Express 22(25) 31299-31309 (2014)

Few-mode fiber based distributed curvature sensor through quasi-single-mode Brillouin frequency shift

Hao Wu, Ruoxu Wang, Deming Liu, Songnian Fu, Can Zhao, Huifeng Wei, Weijun Tong, Perry Ping Shum, and Ming Tang
Opt. Lett. 41(7) 1514-1517 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. Morioka, “New generation optical infrastructure technologies: 'EXAT initiative' towards 2020 and beyond” Proc. OECC2009, FT4 (2009).
  2. A. Lobato, F. Ferreira, M. Kuschnerov, D. van den Borne, S. L. Jansen, A. Napoli, B. Spinnler, and B. Lankl, “Impact of mode coupling on the mode-dependent loss tolerance in few-mode fiber transmission,” Opt. Express 20(28), 29776–29783 (2012).
    [Crossref] [PubMed]
  3. S. Warm and K. Petermann, “Splice loss requirements in multi-mode fiber mode-division-multiplex transmission links,” Opt. Express 21(1), 519–532 (2013).
    [Crossref] [PubMed]
  4. K. Ozaki, M. Ohashi, H. Kubota, and Y. Miyoshi, “Effective mode field diameter definition and splice loss estimation of LP11 mode in few mode fibers” Asia Communications and Photonics Conference, ATh3A.98 (2014).
  5. M. Nakazawa, M. Yoshida, and T. Hirooka, “Measurement of mode coupling distribution along a few-mode fiber using a synchronous multi-channel OTDR,” Opt. Express 22(25), 31299–31309 (2014).
    [Crossref] [PubMed]
  6. M. Yoshida, T. Hirooka, and M. Nakazawa, “Mode coupling measurement at a splice point between few-mode fibers using a synchronous multi-channel OTDR,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th1J.4.
  7. H. Kubota, Y. Miyoshi, M. Ohashi, T. Mori, T. Matsui, and K. Nakajima, “Mode-dependent loss measurement of a two-mode fiber using a conventional OTDR,” IEICE Commun. Express 5(11), 429–434 (2016).
    [Crossref]
  8. D. Yu, S. Fu, M. Tang, and D. Liu, “Mode-dependent characteristics of Rayleigh backscattering in weakly-coupled few-mode fiber,” Opt. Commun. 346, 15–20 (2015).
    [Crossref]
  9. D. Yu, S. Fu, Z. Cao, M. Tang, L. Deng, D. Liu, I. Giles, T. Koonen, and C. Okonkwo, “Characterization of Rayleigh backscattering arising in various two-mode fibers,” Opt. Express 24(11), 12192–12201 (2016).
    [Crossref] [PubMed]
  10. Z. Wang, H. Wu, X. Hu, N. Zhao, Z. Yang, F. Tan, J. Zhao, Q. Mo, and G. Li, “Rayleigh backscattering in few-mode optical fibers” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper W4F.6.
  11. H. Takahashi, K. Toge, T. Oda, and T. Manabe, “Inter-modal crosstalk manipulation for Brillouin gain measurement based few-mode fiber sensors” Proc. APOS2018, Mon 4 (2018)
  12. G. P. Agrawal, Nonlinear Fiber Optics 4th ed. (Springer, 2006).
  13. K. Shimizu, T. Horiguchi, and Y. Koyamada, “Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components,” J. Lightwave Technol. 10(7), 982–987 (1992).
    [Crossref]
  14. L. Gruner-Nielsen, Y. Sun, J. W. Nicholson, D. Jakobsen, K. G. Jespersen, R. Lingle, and B. Palsdottir, “Few mode transmission fiber with low DGD, low mode coupling, and low loss,” J. Lightwave Technol. 30(23), 3693–3698 (2012).
    [Crossref]

2016 (2)

H. Kubota, Y. Miyoshi, M. Ohashi, T. Mori, T. Matsui, and K. Nakajima, “Mode-dependent loss measurement of a two-mode fiber using a conventional OTDR,” IEICE Commun. Express 5(11), 429–434 (2016).
[Crossref]

D. Yu, S. Fu, Z. Cao, M. Tang, L. Deng, D. Liu, I. Giles, T. Koonen, and C. Okonkwo, “Characterization of Rayleigh backscattering arising in various two-mode fibers,” Opt. Express 24(11), 12192–12201 (2016).
[Crossref] [PubMed]

2015 (1)

D. Yu, S. Fu, M. Tang, and D. Liu, “Mode-dependent characteristics of Rayleigh backscattering in weakly-coupled few-mode fiber,” Opt. Commun. 346, 15–20 (2015).
[Crossref]

2014 (1)

2013 (1)

2012 (2)

1992 (1)

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components,” J. Lightwave Technol. 10(7), 982–987 (1992).
[Crossref]

Cao, Z.

Deng, L.

Ferreira, F.

Fu, S.

D. Yu, S. Fu, Z. Cao, M. Tang, L. Deng, D. Liu, I. Giles, T. Koonen, and C. Okonkwo, “Characterization of Rayleigh backscattering arising in various two-mode fibers,” Opt. Express 24(11), 12192–12201 (2016).
[Crossref] [PubMed]

D. Yu, S. Fu, M. Tang, and D. Liu, “Mode-dependent characteristics of Rayleigh backscattering in weakly-coupled few-mode fiber,” Opt. Commun. 346, 15–20 (2015).
[Crossref]

Giles, I.

Gruner-Nielsen, L.

Hirooka, T.

Horiguchi, T.

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components,” J. Lightwave Technol. 10(7), 982–987 (1992).
[Crossref]

Jakobsen, D.

Jansen, S. L.

Jespersen, K. G.

Koonen, T.

Koyamada, Y.

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components,” J. Lightwave Technol. 10(7), 982–987 (1992).
[Crossref]

Kubota, H.

H. Kubota, Y. Miyoshi, M. Ohashi, T. Mori, T. Matsui, and K. Nakajima, “Mode-dependent loss measurement of a two-mode fiber using a conventional OTDR,” IEICE Commun. Express 5(11), 429–434 (2016).
[Crossref]

Kuschnerov, M.

Lankl, B.

Lingle, R.

Liu, D.

D. Yu, S. Fu, Z. Cao, M. Tang, L. Deng, D. Liu, I. Giles, T. Koonen, and C. Okonkwo, “Characterization of Rayleigh backscattering arising in various two-mode fibers,” Opt. Express 24(11), 12192–12201 (2016).
[Crossref] [PubMed]

D. Yu, S. Fu, M. Tang, and D. Liu, “Mode-dependent characteristics of Rayleigh backscattering in weakly-coupled few-mode fiber,” Opt. Commun. 346, 15–20 (2015).
[Crossref]

Lobato, A.

Matsui, T.

H. Kubota, Y. Miyoshi, M. Ohashi, T. Mori, T. Matsui, and K. Nakajima, “Mode-dependent loss measurement of a two-mode fiber using a conventional OTDR,” IEICE Commun. Express 5(11), 429–434 (2016).
[Crossref]

Miyoshi, Y.

H. Kubota, Y. Miyoshi, M. Ohashi, T. Mori, T. Matsui, and K. Nakajima, “Mode-dependent loss measurement of a two-mode fiber using a conventional OTDR,” IEICE Commun. Express 5(11), 429–434 (2016).
[Crossref]

Mori, T.

H. Kubota, Y. Miyoshi, M. Ohashi, T. Mori, T. Matsui, and K. Nakajima, “Mode-dependent loss measurement of a two-mode fiber using a conventional OTDR,” IEICE Commun. Express 5(11), 429–434 (2016).
[Crossref]

Nakajima, K.

H. Kubota, Y. Miyoshi, M. Ohashi, T. Mori, T. Matsui, and K. Nakajima, “Mode-dependent loss measurement of a two-mode fiber using a conventional OTDR,” IEICE Commun. Express 5(11), 429–434 (2016).
[Crossref]

Nakazawa, M.

Napoli, A.

Nicholson, J. W.

Ohashi, M.

H. Kubota, Y. Miyoshi, M. Ohashi, T. Mori, T. Matsui, and K. Nakajima, “Mode-dependent loss measurement of a two-mode fiber using a conventional OTDR,” IEICE Commun. Express 5(11), 429–434 (2016).
[Crossref]

Okonkwo, C.

Palsdottir, B.

Petermann, K.

Shimizu, K.

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components,” J. Lightwave Technol. 10(7), 982–987 (1992).
[Crossref]

Spinnler, B.

Sun, Y.

Tang, M.

D. Yu, S. Fu, Z. Cao, M. Tang, L. Deng, D. Liu, I. Giles, T. Koonen, and C. Okonkwo, “Characterization of Rayleigh backscattering arising in various two-mode fibers,” Opt. Express 24(11), 12192–12201 (2016).
[Crossref] [PubMed]

D. Yu, S. Fu, M. Tang, and D. Liu, “Mode-dependent characteristics of Rayleigh backscattering in weakly-coupled few-mode fiber,” Opt. Commun. 346, 15–20 (2015).
[Crossref]

van den Borne, D.

Warm, S.

Yoshida, M.

Yu, D.

D. Yu, S. Fu, Z. Cao, M. Tang, L. Deng, D. Liu, I. Giles, T. Koonen, and C. Okonkwo, “Characterization of Rayleigh backscattering arising in various two-mode fibers,” Opt. Express 24(11), 12192–12201 (2016).
[Crossref] [PubMed]

D. Yu, S. Fu, M. Tang, and D. Liu, “Mode-dependent characteristics of Rayleigh backscattering in weakly-coupled few-mode fiber,” Opt. Commun. 346, 15–20 (2015).
[Crossref]

IEICE Commun. Express (1)

H. Kubota, Y. Miyoshi, M. Ohashi, T. Mori, T. Matsui, and K. Nakajima, “Mode-dependent loss measurement of a two-mode fiber using a conventional OTDR,” IEICE Commun. Express 5(11), 429–434 (2016).
[Crossref]

J. Lightwave Technol. (2)

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components,” J. Lightwave Technol. 10(7), 982–987 (1992).
[Crossref]

L. Gruner-Nielsen, Y. Sun, J. W. Nicholson, D. Jakobsen, K. G. Jespersen, R. Lingle, and B. Palsdottir, “Few mode transmission fiber with low DGD, low mode coupling, and low loss,” J. Lightwave Technol. 30(23), 3693–3698 (2012).
[Crossref]

Opt. Commun. (1)

D. Yu, S. Fu, M. Tang, and D. Liu, “Mode-dependent characteristics of Rayleigh backscattering in weakly-coupled few-mode fiber,” Opt. Commun. 346, 15–20 (2015).
[Crossref]

Opt. Express (4)

Other (6)

T. Morioka, “New generation optical infrastructure technologies: 'EXAT initiative' towards 2020 and beyond” Proc. OECC2009, FT4 (2009).

K. Ozaki, M. Ohashi, H. Kubota, and Y. Miyoshi, “Effective mode field diameter definition and splice loss estimation of LP11 mode in few mode fibers” Asia Communications and Photonics Conference, ATh3A.98 (2014).

M. Yoshida, T. Hirooka, and M. Nakazawa, “Mode coupling measurement at a splice point between few-mode fibers using a synchronous multi-channel OTDR,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th1J.4.

Z. Wang, H. Wu, X. Hu, N. Zhao, Z. Yang, F. Tan, J. Zhao, Q. Mo, and G. Li, “Rayleigh backscattering in few-mode optical fibers” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper W4F.6.

H. Takahashi, K. Toge, T. Oda, and T. Manabe, “Inter-modal crosstalk manipulation for Brillouin gain measurement based few-mode fiber sensors” Proc. APOS2018, Mon 4 (2018)

G. P. Agrawal, Nonlinear Fiber Optics 4th ed. (Springer, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic illustration of modal attenuation measurement by Rayleigh-based OTDR with dynamic modal crosstalk suppression method.
Fig. 2
Fig. 2 Configuration of (a) Rayleigh based OTDR with dynamic crosstalk suppression method, (b) mode MUX/DEMUX.
Fig. 3
Fig. 3 Configuration of spliced GI-FMF.
Fig. 4
Fig. 4 Brillouin loss spectra at (a) 500 m, (b) 700 m, and (c) 1000 m. The black and red lines are Brillouin loss spectra of Rayleigh backscattering measured at the mode MUX/DEMUX port for LP11 and LP01, respectively.
Fig. 5
Fig. 5 Rayleigh backscattering traces measured with mode MUX/DEMUX port for (a) LP11 and (b) LP01. The black and gray lines, respectively, show Rayleigh traces with and without a Brillouin Stokes beam. Figure 5(c) and 5(d) show enlarged views of the Rayleigh backscattering in Fig. 5(a) and 5(b).
Fig. 6
Fig. 6 Measured modal attenuation of (a), (c) 1 μm and (b), (d) 2 μm core offset obtained by changing the angle of the phase plate of the LP11 mode measured by (a), (b) with and (c), (d) without Brillouin Stokes. The red and black symbols, respectively, show the splice losses measured by the LP11a and LP11b port of the mode MUX/DEMUX.

Tables (1)

Tables Icon

Table 1 Comparison of LP11 splices loss with and without Brillouin Stokes beam

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P 01 z = g B0101 ( f B ) P 01 P B 01 α 01 P 01 ,
P 11 z = g B1101 ( f B ) P 11 P B 01 α 11 P 11 .

Metrics