Abstract

For advanced imaging systems, e.g., projection systems for optical lithography, spatially varying aberration calibration is of utmost importance to achieve uniform imaging performance over the entire field-of-view (FOV). Here we present an efficient, accurate, and robust spatially varying aberration calibration method using a pair of 2-dimensional periodic pinhole array masks: the first mask in the object plane and the second mask in the image plane. Our method divides the entire FOV of the imaging system into partially overlapping subregions by using a measurement system consisting of an additional imaging system and a camera sensor. Each subregion, which covers several mask periods, is imaged onto a distinct camera pixel by the measurement system. Our method measures “Airy disc”-like patterns simultaneously in all subregions by scanning the second mask relative to the first mask over one mask period. The number of subregions is equal to the number of camera pixels, and the sampling number of the measured patterns is equal to the scanning step number. The aberrations can be retrieved from the patterns measured in through-focus planes using an iterative optimization algorithm. In this paper, we performed experimental validation on a realistic lithography machine and demonstrate that our method is capable of retrieving the coefficients of 37 aberration terms, expressed as Zernike polynomials, with a sensitivity at nanometer scale.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Characterization of spatially varying aberrations for wide field-of-view microscopy

Guoan Zheng, Xiaoze Ou, Roarke Horstmeyer, and Changhuei Yang
Opt. Express 21(13) 15131-15143 (2013)

Robust level-set-based inverse lithography

Yijiang Shen, Ningning Jia, Ngai Wong, and Edmund Y. Lam
Opt. Express 19(6) 5511-5521 (2011)

Enhancing the performance of the light field microscope using wavefront coding

Noy Cohen, Samuel Yang, Aaron Andalman, Michael Broxton, Logan Grosenick, Karl Deisseroth, Mark Horowitz, and Marc Levoy
Opt. Express 22(20) 24817-24839 (2014)

References

  • View by:
  • |
  • |
  • |

  1. W. J. Bates, “A wavefront shearing interferometer,” Proc. Phys. Soc. 59, 940 (1947).
    [Crossref]
  2. R. Kingslake, “The interferometer patterns due to the primary aberrations,” Transactions Opt. Soc. 27, 94 (1925).
    [Crossref]
  3. D. R. Neal, J. Copland, and D. A. Neal, “Shack-hartmann wavefront sensor precision and accuracy,” in Advanced Characterization Techniques for Optical, Semiconductor, and Data Storage Components, vol. 4779 (International Society for Optics and Photonics, 2002), pp. 148–161.
    [Crossref]
  4. B. C. Platt and R. Shack, “History and principles of shack-hartmann wavefront sensing,” J. Refract. Surg. 17, S573–S577 (2001).
    [PubMed]
  5. R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng. 21, 215829 (1982).
    [Crossref]
  6. J. R. Fienup, J. C. Marron, T. J. Schulz, and J. H. Seldin, “Hubble space telescope characterized by using phase-retrieval algorithms,” Appl. Opt. 32, 1747–1767 (1993).
    [Crossref] [PubMed]
  7. J. E. Krist and C. J. Burrows, “Phase-retrieval analysis of pre- and post-repair hubble space telescope images,” Appl. Opt. 34, 4951–4964 (1995).
    [Crossref] [PubMed]
  8. R. G. Paxman, T. J. Schulz, and J. R. Fienup, “Joint estimation of object and aberrations by using phase diversity,” J. Opt. Soc. Am. A 9, 1072–1085 (1992).
    [Crossref]
  9. G. Zheng, X. Ou, R. Horstmeyer, and C. Yang, “Characterization of spatially varying aberrations for wide field-of-view microscopy,” Opt. Express 21, 15131–15143 (2013).
    [Crossref] [PubMed]
  10. S. van Haver, W. M. J. Coene, K. D’havé, N. Geypen, P. van Adrichem, L. de Winter, A. J. E. M. Janssen, and S. Cheng, “Wafer-based aberration metrology for lithographic systems using overlay measurements on targets imaged from phase-shift gratings,” Appl. Opt. 53, 2562–2582 (2014).
    [Crossref] [PubMed]
  11. T. Hagiwara, N. Kondo, I. Hiroshi, K. Suzuki, and N. Magome, “Development of aerial image based aberration measurement technique,” in Optical Microlithography XVIII, vol. 5754 (International Society for Optics and Photonics, 2004), pp. 1659–1670.
    [Crossref]
  12. T. Hagiwara, N. Kondo, I. Hiroshi, K. Suzuki, and N. Magome, “Development of aerial image based aberration measurement technique,” in Optical Microlithography XVIII, vol. 5754 (International Society for Optics and Photonics, 2004), pp. 1659–1670.
    [Crossref]
  13. C. Van der Avoort, J. J. M. Braat, P. Dirksen, and A. J. E. M. Janssen, “Aberration retrieval from the intensity point-spread function in the focal region using the extended nijboer–zernike approach,” J. Mod. Opt. 52, 1695–1728 (2005).
    [Crossref]
  14. S. van Haver, J. J. Braat, P. Dirksen, and A. J. Janssen, “High-na aberration retrieval with the extended nijboer-zernike vector diffraction theory,” J. Eur. Opt. Soc. 1, 06004 (2006).
  15. M. Loktev and Y. Shao, “Projection lens testing with moiré effect,” in Metrology, Inspection, and Process Control for Microlithography XXXI, vol. 10145 (International Society for Optics and Photonics, 2017), p. 101452S.
    [Crossref]
  16. H. H. Hopkins, “On the diffraction theory of optical images,” Proc. R. Soc. Lond. A 217, 408–432 (1953).
    [Crossref]
  17. M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Elsevier, 2013).
  18. Y. Lian and X. Zhou, “Fast and accurate computation of partially coherent imaging by stacked pupil shift operator,” in Photomask Technology 2009, vol. 7488 (International Society for Optics and Photonics, 2009), p. 74883G.
    [Crossref]
  19. X. Wu, S. Liu, W. Liu, T. Zhou, and L. Wang, “Comparison of three tcc calculation algorithms for partially coherent imaging simulation,” in Sixth International Symposium on Precision Engineering Measurements and Instrumentation, vol. 7544 (International Society for Optics and Photonics, 2010), p. 75440Z.
    [Crossref]
  20. R. K. Tyson, “Conversion of zernike aberration coefficients to seidel and higher-order power-series aberration coefficients,” Opt. Lett. 7, 262–264 (1982).
    [Crossref] [PubMed]
  21. D. J. Lee, M. C. Roggemann, and B. M. Welsh, “Cramér–Rao analysis of phase-diverse wave-front sensing,” J. Opt. Soc. Am. A 16, 1005–1015 (1999).
    [Crossref]
  22. B. H. Dean and C. W. Bowers, “Diversity selection for phase-diverse phase retrieval,” J. Opt. Soc. Am. A 20, 1490–1504 (2003).
    [Crossref]
  23. O. El Gawhary, A. Wiegmann, N. Kumar, S. F. Pereira, and H. P. Urbach, “Through-focus phase retrieval and its connection to the spatial correlation for propagating fields,” Opt. Express 21, 5550–5560 (2013).
    [Crossref] [PubMed]
  24. A. Polo, S. F. Pereira, and P. H. Urbach, “Theoretical analysis for best defocus measurement plane for robust phase retrieval,” Opt. Lett. 38, 812–814 (2013).
    [Crossref] [PubMed]
  25. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976).
    [Crossref]

2014 (1)

2013 (3)

2006 (1)

S. van Haver, J. J. Braat, P. Dirksen, and A. J. Janssen, “High-na aberration retrieval with the extended nijboer-zernike vector diffraction theory,” J. Eur. Opt. Soc. 1, 06004 (2006).

2005 (1)

C. Van der Avoort, J. J. M. Braat, P. Dirksen, and A. J. E. M. Janssen, “Aberration retrieval from the intensity point-spread function in the focal region using the extended nijboer–zernike approach,” J. Mod. Opt. 52, 1695–1728 (2005).
[Crossref]

2003 (1)

2001 (1)

B. C. Platt and R. Shack, “History and principles of shack-hartmann wavefront sensing,” J. Refract. Surg. 17, S573–S577 (2001).
[PubMed]

1999 (1)

1995 (1)

1993 (1)

1992 (1)

1982 (2)

1976 (1)

1953 (1)

H. H. Hopkins, “On the diffraction theory of optical images,” Proc. R. Soc. Lond. A 217, 408–432 (1953).
[Crossref]

1947 (1)

W. J. Bates, “A wavefront shearing interferometer,” Proc. Phys. Soc. 59, 940 (1947).
[Crossref]

1925 (1)

R. Kingslake, “The interferometer patterns due to the primary aberrations,” Transactions Opt. Soc. 27, 94 (1925).
[Crossref]

Bates, W. J.

W. J. Bates, “A wavefront shearing interferometer,” Proc. Phys. Soc. 59, 940 (1947).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Elsevier, 2013).

Bowers, C. W.

Braat, J. J.

S. van Haver, J. J. Braat, P. Dirksen, and A. J. Janssen, “High-na aberration retrieval with the extended nijboer-zernike vector diffraction theory,” J. Eur. Opt. Soc. 1, 06004 (2006).

Braat, J. J. M.

C. Van der Avoort, J. J. M. Braat, P. Dirksen, and A. J. E. M. Janssen, “Aberration retrieval from the intensity point-spread function in the focal region using the extended nijboer–zernike approach,” J. Mod. Opt. 52, 1695–1728 (2005).
[Crossref]

Burrows, C. J.

Cheng, S.

Coene, W. M. J.

Copland, J.

D. R. Neal, J. Copland, and D. A. Neal, “Shack-hartmann wavefront sensor precision and accuracy,” in Advanced Characterization Techniques for Optical, Semiconductor, and Data Storage Components, vol. 4779 (International Society for Optics and Photonics, 2002), pp. 148–161.
[Crossref]

D’havé, K.

de Winter, L.

Dean, B. H.

Dirksen, P.

S. van Haver, J. J. Braat, P. Dirksen, and A. J. Janssen, “High-na aberration retrieval with the extended nijboer-zernike vector diffraction theory,” J. Eur. Opt. Soc. 1, 06004 (2006).

C. Van der Avoort, J. J. M. Braat, P. Dirksen, and A. J. E. M. Janssen, “Aberration retrieval from the intensity point-spread function in the focal region using the extended nijboer–zernike approach,” J. Mod. Opt. 52, 1695–1728 (2005).
[Crossref]

El Gawhary, O.

Fienup, J. R.

Geypen, N.

Gonsalves, R. A.

R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng. 21, 215829 (1982).
[Crossref]

Hagiwara, T.

T. Hagiwara, N. Kondo, I. Hiroshi, K. Suzuki, and N. Magome, “Development of aerial image based aberration measurement technique,” in Optical Microlithography XVIII, vol. 5754 (International Society for Optics and Photonics, 2004), pp. 1659–1670.
[Crossref]

T. Hagiwara, N. Kondo, I. Hiroshi, K. Suzuki, and N. Magome, “Development of aerial image based aberration measurement technique,” in Optical Microlithography XVIII, vol. 5754 (International Society for Optics and Photonics, 2004), pp. 1659–1670.
[Crossref]

Hiroshi, I.

T. Hagiwara, N. Kondo, I. Hiroshi, K. Suzuki, and N. Magome, “Development of aerial image based aberration measurement technique,” in Optical Microlithography XVIII, vol. 5754 (International Society for Optics and Photonics, 2004), pp. 1659–1670.
[Crossref]

T. Hagiwara, N. Kondo, I. Hiroshi, K. Suzuki, and N. Magome, “Development of aerial image based aberration measurement technique,” in Optical Microlithography XVIII, vol. 5754 (International Society for Optics and Photonics, 2004), pp. 1659–1670.
[Crossref]

Hopkins, H. H.

H. H. Hopkins, “On the diffraction theory of optical images,” Proc. R. Soc. Lond. A 217, 408–432 (1953).
[Crossref]

Horstmeyer, R.

Janssen, A. J.

S. van Haver, J. J. Braat, P. Dirksen, and A. J. Janssen, “High-na aberration retrieval with the extended nijboer-zernike vector diffraction theory,” J. Eur. Opt. Soc. 1, 06004 (2006).

Janssen, A. J. E. M.

S. van Haver, W. M. J. Coene, K. D’havé, N. Geypen, P. van Adrichem, L. de Winter, A. J. E. M. Janssen, and S. Cheng, “Wafer-based aberration metrology for lithographic systems using overlay measurements on targets imaged from phase-shift gratings,” Appl. Opt. 53, 2562–2582 (2014).
[Crossref] [PubMed]

C. Van der Avoort, J. J. M. Braat, P. Dirksen, and A. J. E. M. Janssen, “Aberration retrieval from the intensity point-spread function in the focal region using the extended nijboer–zernike approach,” J. Mod. Opt. 52, 1695–1728 (2005).
[Crossref]

Kingslake, R.

R. Kingslake, “The interferometer patterns due to the primary aberrations,” Transactions Opt. Soc. 27, 94 (1925).
[Crossref]

Kondo, N.

T. Hagiwara, N. Kondo, I. Hiroshi, K. Suzuki, and N. Magome, “Development of aerial image based aberration measurement technique,” in Optical Microlithography XVIII, vol. 5754 (International Society for Optics and Photonics, 2004), pp. 1659–1670.
[Crossref]

T. Hagiwara, N. Kondo, I. Hiroshi, K. Suzuki, and N. Magome, “Development of aerial image based aberration measurement technique,” in Optical Microlithography XVIII, vol. 5754 (International Society for Optics and Photonics, 2004), pp. 1659–1670.
[Crossref]

Krist, J. E.

Kumar, N.

Lee, D. J.

Lian, Y.

Y. Lian and X. Zhou, “Fast and accurate computation of partially coherent imaging by stacked pupil shift operator,” in Photomask Technology 2009, vol. 7488 (International Society for Optics and Photonics, 2009), p. 74883G.
[Crossref]

Liu, S.

X. Wu, S. Liu, W. Liu, T. Zhou, and L. Wang, “Comparison of three tcc calculation algorithms for partially coherent imaging simulation,” in Sixth International Symposium on Precision Engineering Measurements and Instrumentation, vol. 7544 (International Society for Optics and Photonics, 2010), p. 75440Z.
[Crossref]

Liu, W.

X. Wu, S. Liu, W. Liu, T. Zhou, and L. Wang, “Comparison of three tcc calculation algorithms for partially coherent imaging simulation,” in Sixth International Symposium on Precision Engineering Measurements and Instrumentation, vol. 7544 (International Society for Optics and Photonics, 2010), p. 75440Z.
[Crossref]

Loktev, M.

M. Loktev and Y. Shao, “Projection lens testing with moiré effect,” in Metrology, Inspection, and Process Control for Microlithography XXXI, vol. 10145 (International Society for Optics and Photonics, 2017), p. 101452S.
[Crossref]

Magome, N.

T. Hagiwara, N. Kondo, I. Hiroshi, K. Suzuki, and N. Magome, “Development of aerial image based aberration measurement technique,” in Optical Microlithography XVIII, vol. 5754 (International Society for Optics and Photonics, 2004), pp. 1659–1670.
[Crossref]

T. Hagiwara, N. Kondo, I. Hiroshi, K. Suzuki, and N. Magome, “Development of aerial image based aberration measurement technique,” in Optical Microlithography XVIII, vol. 5754 (International Society for Optics and Photonics, 2004), pp. 1659–1670.
[Crossref]

Marron, J. C.

Neal, D. A.

D. R. Neal, J. Copland, and D. A. Neal, “Shack-hartmann wavefront sensor precision and accuracy,” in Advanced Characterization Techniques for Optical, Semiconductor, and Data Storage Components, vol. 4779 (International Society for Optics and Photonics, 2002), pp. 148–161.
[Crossref]

Neal, D. R.

D. R. Neal, J. Copland, and D. A. Neal, “Shack-hartmann wavefront sensor precision and accuracy,” in Advanced Characterization Techniques for Optical, Semiconductor, and Data Storage Components, vol. 4779 (International Society for Optics and Photonics, 2002), pp. 148–161.
[Crossref]

Noll, R. J.

Ou, X.

Paxman, R. G.

Pereira, S. F.

Platt, B. C.

B. C. Platt and R. Shack, “History and principles of shack-hartmann wavefront sensing,” J. Refract. Surg. 17, S573–S577 (2001).
[PubMed]

Polo, A.

Roggemann, M. C.

Schulz, T. J.

Seldin, J. H.

Shack, R.

B. C. Platt and R. Shack, “History and principles of shack-hartmann wavefront sensing,” J. Refract. Surg. 17, S573–S577 (2001).
[PubMed]

Shao, Y.

M. Loktev and Y. Shao, “Projection lens testing with moiré effect,” in Metrology, Inspection, and Process Control for Microlithography XXXI, vol. 10145 (International Society for Optics and Photonics, 2017), p. 101452S.
[Crossref]

Suzuki, K.

T. Hagiwara, N. Kondo, I. Hiroshi, K. Suzuki, and N. Magome, “Development of aerial image based aberration measurement technique,” in Optical Microlithography XVIII, vol. 5754 (International Society for Optics and Photonics, 2004), pp. 1659–1670.
[Crossref]

T. Hagiwara, N. Kondo, I. Hiroshi, K. Suzuki, and N. Magome, “Development of aerial image based aberration measurement technique,” in Optical Microlithography XVIII, vol. 5754 (International Society for Optics and Photonics, 2004), pp. 1659–1670.
[Crossref]

Tyson, R. K.

Urbach, H. P.

Urbach, P. H.

van Adrichem, P.

Van der Avoort, C.

C. Van der Avoort, J. J. M. Braat, P. Dirksen, and A. J. E. M. Janssen, “Aberration retrieval from the intensity point-spread function in the focal region using the extended nijboer–zernike approach,” J. Mod. Opt. 52, 1695–1728 (2005).
[Crossref]

van Haver, S.

Wang, L.

X. Wu, S. Liu, W. Liu, T. Zhou, and L. Wang, “Comparison of three tcc calculation algorithms for partially coherent imaging simulation,” in Sixth International Symposium on Precision Engineering Measurements and Instrumentation, vol. 7544 (International Society for Optics and Photonics, 2010), p. 75440Z.
[Crossref]

Welsh, B. M.

Wiegmann, A.

Wolf, E.

M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Elsevier, 2013).

Wu, X.

X. Wu, S. Liu, W. Liu, T. Zhou, and L. Wang, “Comparison of three tcc calculation algorithms for partially coherent imaging simulation,” in Sixth International Symposium on Precision Engineering Measurements and Instrumentation, vol. 7544 (International Society for Optics and Photonics, 2010), p. 75440Z.
[Crossref]

Yang, C.

Zheng, G.

Zhou, T.

X. Wu, S. Liu, W. Liu, T. Zhou, and L. Wang, “Comparison of three tcc calculation algorithms for partially coherent imaging simulation,” in Sixth International Symposium on Precision Engineering Measurements and Instrumentation, vol. 7544 (International Society for Optics and Photonics, 2010), p. 75440Z.
[Crossref]

Zhou, X.

Y. Lian and X. Zhou, “Fast and accurate computation of partially coherent imaging by stacked pupil shift operator,” in Photomask Technology 2009, vol. 7488 (International Society for Optics and Photonics, 2009), p. 74883G.
[Crossref]

Appl. Opt. (3)

J. Eur. Opt. Soc. (1)

S. van Haver, J. J. Braat, P. Dirksen, and A. J. Janssen, “High-na aberration retrieval with the extended nijboer-zernike vector diffraction theory,” J. Eur. Opt. Soc. 1, 06004 (2006).

J. Mod. Opt. (1)

C. Van der Avoort, J. J. M. Braat, P. Dirksen, and A. J. E. M. Janssen, “Aberration retrieval from the intensity point-spread function in the focal region using the extended nijboer–zernike approach,” J. Mod. Opt. 52, 1695–1728 (2005).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

J. Refract. Surg. (1)

B. C. Platt and R. Shack, “History and principles of shack-hartmann wavefront sensing,” J. Refract. Surg. 17, S573–S577 (2001).
[PubMed]

Opt. Eng. (1)

R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng. 21, 215829 (1982).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Proc. Phys. Soc. (1)

W. J. Bates, “A wavefront shearing interferometer,” Proc. Phys. Soc. 59, 940 (1947).
[Crossref]

Proc. R. Soc. Lond. A (1)

H. H. Hopkins, “On the diffraction theory of optical images,” Proc. R. Soc. Lond. A 217, 408–432 (1953).
[Crossref]

Transactions Opt. Soc. (1)

R. Kingslake, “The interferometer patterns due to the primary aberrations,” Transactions Opt. Soc. 27, 94 (1925).
[Crossref]

Other (7)

D. R. Neal, J. Copland, and D. A. Neal, “Shack-hartmann wavefront sensor precision and accuracy,” in Advanced Characterization Techniques for Optical, Semiconductor, and Data Storage Components, vol. 4779 (International Society for Optics and Photonics, 2002), pp. 148–161.
[Crossref]

M. Loktev and Y. Shao, “Projection lens testing with moiré effect,” in Metrology, Inspection, and Process Control for Microlithography XXXI, vol. 10145 (International Society for Optics and Photonics, 2017), p. 101452S.
[Crossref]

T. Hagiwara, N. Kondo, I. Hiroshi, K. Suzuki, and N. Magome, “Development of aerial image based aberration measurement technique,” in Optical Microlithography XVIII, vol. 5754 (International Society for Optics and Photonics, 2004), pp. 1659–1670.
[Crossref]

T. Hagiwara, N. Kondo, I. Hiroshi, K. Suzuki, and N. Magome, “Development of aerial image based aberration measurement technique,” in Optical Microlithography XVIII, vol. 5754 (International Society for Optics and Photonics, 2004), pp. 1659–1670.
[Crossref]

M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Elsevier, 2013).

Y. Lian and X. Zhou, “Fast and accurate computation of partially coherent imaging by stacked pupil shift operator,” in Photomask Technology 2009, vol. 7488 (International Society for Optics and Photonics, 2009), p. 74883G.
[Crossref]

X. Wu, S. Liu, W. Liu, T. Zhou, and L. Wang, “Comparison of three tcc calculation algorithms for partially coherent imaging simulation,” in Sixth International Symposium on Precision Engineering Measurements and Instrumentation, vol. 7544 (International Society for Optics and Photonics, 2010), p. 75440Z.
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1       Illustration of the scanning measurement process using experimental data.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup and concept of the method. (a): Schematic plot of the experimental setup. A lithographic system consists of a illumination system (Kohler illumination) and a telecentric imaging system. The first mask and the second mask are in the object plane and in the image plane, respectively. The measurement system consists of an additional imaging system and a camera sensor, of which the second mask is in the object plane. (b): Demonstration of the imaging and measurement process in a subregion, which is defined as a region the first mask that is imaged by the combined lithographic system and measurement system onto a single pixel of the camera. The second mask is superposed with the image of the first mask. Because their pitches are identical, a point of the “PSF-like” pattern in each period of the transmitted image is measured (see the insertions) by the pinhole in each period of the second mask. To measure the entire “PSF-like” pattern, the second mask needs to be scanned over a one period, along the directions depicted by the arrows, relative to the image of the first mask.
Fig. 2
Fig. 2 Demonstration of the scanning measurement process in various through-focal planes using experiment data. (a): The sequence of camera measurements at 125 scanning positions in the focal plane (z = 0 um) and two defocused planes (z = ±25 um). The FOV of the lithographic system with size 32 mm × 55 mm is projected onto the camera sensor. This area is sampled by 16 × 25 pixels as we downsample the original camera measurements by a factor of 20. (b): The PSF-like” patterns measured by the corresponding pixels depicted by the orange squared boxes in (a). Each pattern with size 4.5 μm × 4.5 μm is sampled by 25 × 25 scanning positions. The patterns measured by different pixels show significantly more difference in the defocused planes than in the focal plane.
Fig. 3
Fig. 3 Variation of the residual wavefront error versus the locations of the measurement planes. The gray graph is the mean and the standard deviation of the original wavefront error used for simulating the measurements. The blue and the red graphs are the mean and the standard deviation of the residual wavefront errors corresponding to the aberration coefficients retrieved from 7 sets of simulated measurements in three planes (z = 0, ±z′) and in five planes (z = 0, ±0.8π, ±z′) respectively. The vertical axis is in the unit of wavelength λ and the horizontal axis is the normalized z coordinate in the unit of λ/(πNA2).
Fig. 4
Fig. 4 Comparison of the errors of the retrieved aberration coefficients. The measurements are simulated using 37 aberration coefficients. The gray curve is the mean and the standard deviation of the original aberration coefficients. The red and the blue curves are the errors of the aberration coefficients retrieved from the noisy measurements and from the noise free measurements respectively. In this plot we use 7 sets of aberration coefficients. The vertical axis is in base-10 logarithmic scale and the horizontal axis is the Noll’s Zernike index. Left: Results using the first 15 coefficients. Right:Results using the total 37 coefficients.
Fig. 5
Fig. 5 Comparison of the errors of the retrieved aberration coefficients. The measurements are simulated using 37 aberration coefficients. The gray curve is the mean and the standard deviation of the original aberration coefficients. The red and the blue curves are the errors of the aberration coefficients retrieved from the measurements simulated using periodic squared pinhole array with pinhole size 1.0 μm and 2.5 μm respectively. In this plot we use 7 sets of aberration coefficients. The vertical axis is in base-10 logarithmic scale and the horizontal axis is the Noll’s Zernike index. Left: Results using the first 15 coefficients. Right: Results using the total 37 coefficients.
Fig. 6
Fig. 6 Comparison between the experimental measurements (a) and the predictions calculated using the retrieved aberration coefficients (b). We retrieve the first 15 aberration coefficients from 4 experimental measurements taken in 4 image planes at z = ±2.78 μm and z = ±25 μm respectively, and we then model the predictions in these 4 image planes and another 2 image planes at z = ±13.89 μm (in the black boxes).
Fig. 7
Fig. 7 Comparison between the defocus aberration calibrated using interferometry (a) and retrieved from scanning measurements using our method (b) in the full FOV. (c) and (d): the x and y cross-section of the calibrated result (black curve) in (a) and the retrieved results (red/blue curve) in (b). The defocus aberration is relative to the location of the focal plane. The focal plane’s location error leads to an offset of the defocus aberration, which can be corrected manually.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

W i , z ( r i 1 , r i 2 ) = W o ( r o 1 , r o 2 ) T o ( r o 1 ) T o ( r o 2 ) * H z ( r i 1 , r o 1 ) H z ( r i 2 , r o 2 ) * d 2 r o 1 d 2 r o 2 ,
I z ( r c ) = W i , z ( r i 1 , r i 2 ) T i ( r i 1 ) T i ( r i 2 ) * H ( r c , r i 1 ) H ( r c , r i 2 ) * d 2 r i 1 d 2 r i 2 ,
I z ( r c ) = W o ( r o 1 , r o 2 ) T o ( r o 1 ) T o ( r o 2 ) * G z ( r o 1 , r c ) G z ( r o 2 , r c ) * d 2 r o 1 d 2 r o 2 ,
G z ( r o , r c ) = H z ( r i , r o ) T i ( r i ) H ( r c , r i ) d 2 r i .
G z ( r o ; r c ) = H z ( r i r o ; r c ) T i ( r i ) H ( r i ) d 2 r i .
I z ( r s ; r c ) = S ^ ( r o 1 r o 2 ) T o ( r o 1 r s ) T o ( r o 2 r s ) * G z ( r o 1 , r c ) G z ( r o 2 , r c ) * d 2 r o 1 d 2 r o 2 .
I z ( r s , r c ) = | T o ( r o r s ) G z ( r o , r c ) d 2 r o | 2 ,
I z ( r s , r c ) = | T o ( r o r s ) | 2 | G z ( r o , r c ) | 2 d 2 r o .
H z ( r s , r c ) = { exp [ i 2 π Φ ( ρ , r c ) ] exp ( i z | ρ | 2 ) } ( r s ) ,
Φ ( ρ , r c ) = m , n α n m ( r c ) Z n m ( ρ ) ,
( α n m ) = z [ I z ( r s ) I z ( r s ; α n m ) ] 2 d 2 r s .
( α n m ) α n m = z 2 [ I z ( r s ) I z ( r s ; α n m ) ] I z ( r s ; α n m ) α n m d 2 r s .
I z ( r s ; α n m ) = | T o ( r s ) | 2 * | G z ( r s ) | 2 ,
G z ( r s ) = H z ( r s , α n m ) [ T i ( r s ) H ( r s ) ] ,
I z ( r s ; α n m ) α n m = | T o ( r s ) | 2 * 2 { G z ( r s ) * { H z ( r s ; α n m ) α n m [ T i ( r s ) H ( r s ) ] } } ,
H z ( r s ; α n m ) α n m = { i 2 π Z n m ( ρ ) exp [ i 2 π Φ ( ρ ) ] exp ( i z | ρ | 2 ) } ( r s ) .

Metrics