Abstract

We demonstrate terahertz (THz) lens-free in-line holography on a chip in order to achieve 40 μm spatial resolution corresponding to ~0.7λ with a numerical aperture of ~0.87. We believe that this is the first time that sub-wavelength resolution in THz holography and the 40 μm resolution were both far better than what was already reported. The setup is based on a self-developed high-power continuous wave THz laser at 5.24 THz (λ = 57.25 μm) and a high-resolution microbolometer detector array (640 × 512 pixels) with a pitch of 17 μm. This on-chip in-line holography, however, suffers from the twin-image artifacts which obfuscate the reconstruction. To address this problem, we propose an iterative optimization framework, where the conventional object constraint and the L1 sparsity constraint can be combined to efficiently reconstruct the complex amplitude distribution of the sample. Note that the proposed framework and the sparsity-based algorithm can be applied to holography in other wavebands without limitation of wavelength. We demonstrate the success of this sparsity-based on-chip holography by imaging biological samples (i.e., a dragonfly wing and a bauhinia leaf).

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz in-line digital holography of dragonfly hindwing: amplitude and phase reconstruction at enhanced resolution by extrapolation

Lu Rong, Tatiana Latychevskaia, Dayong Wang, Xun Zhou, Haochong Huang, Zeyu Li, and Yunxin Wang
Opt. Express 22(14) 17236-17245 (2014)

Resolution and quality enhancement in terahertz in-line holography by sub-pixel sampling with double-distance reconstruction

Zeyu Li, Lei Li, Yu Qin, Guangbin Li, Du Wang, and Xun Zhou
Opt. Express 24(18) 21134-21146 (2016)

Studies on the sparsifying operator in compressive digital holography

Stijn Bettens, Hao Yan, David Blinder, Heidi Ottevaere, Colas Schretter, and Peter Schelkens
Opt. Express 25(16) 18656-18676 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. M. Mittleman, “Twenty years of terahertz imaging [Invited],” Opt. Express 26(8), 9417–9431 (2018).
    [Crossref] [PubMed]
  2. S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150(1-6), 22–26 (1998).
    [Crossref]
  3. H. Chen, Z. Wu, Z. Li, Z. Luo, X. Jiang, Z. Wen, L. Zhu, X. Zhou, H. Li, Z. Shang, Z. Zhang, K. Zhang, G. Liang, S. Jiang, L. Du, and G. Chen, “Sub-wavelength tight-focusing of terahertz waves by polarization-independent high-numerical-aperture dielectric metalens,” Opt. Express 26(23), 29817–29825 (2018).
    [Crossref] [PubMed]
  4. H. H. Nguyen Pham, S. Hisatake, O. V. Minin, T. Nagatsuma, and I. V. Minin, “Enhancement of spatial resolution of terahertz imaging systems based on terajet generation by dielectric cube,” APL Photonics 2(5), 056106 (2017).
    [Crossref]
  5. N. V. Chernomyrdin, M. E. Frolov, S. P. Lebedev, I. V. Reshetov, I. E. Spektor, V. L. Tolstoguzov, V. E. Karasik, A. M. Khorokhorov, K. I. Koshelev, A. O. Schadko, S. O. Yurchenko, and K. I. Zaytsev, “Wide-aperture aspherical lens for high-resolution terahertz imaging,” Rev. Sci. Instrum. 88(1), 014703 (2017).
    [Crossref] [PubMed]
  6. A. S. Hemphill, Y. Shen, Y. Liu, and L. V. Wang, “High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping,” Appl. Phys. Lett. 111(22), 221109 (2017).
    [Crossref] [PubMed]
  7. E. Hack and P. Zolliker, “Terahertz holography for imaging amplitude and phase objects,” Opt. Express 22(13), 16079–16086 (2014).
    [Crossref] [PubMed]
  8. P. Zolliker and E. Hack, “THz holography in reflection using a high resolution microbolometer array,” Opt. Express 23(9), 10957–10967 (2015).
    [Crossref] [PubMed]
  9. L. Rong, T. Latychevskaia, D. Wang, X. Zhou, H. Huang, Z. Li, and Y. Wang, “Terahertz in-line digital holography of dragonfly hindwing: amplitude and phase reconstruction at enhanced resolution by extrapolation,” Opt. Express 22(14), 17236–17245 (2014).
    [Crossref] [PubMed]
  10. L. Rong, T. Latychevskaia, C. Chen, D. Wang, Z. Yu, X. Zhou, Z. Li, H. Huang, Y. Wang, and Z. Zhou, “Terahertz in-line digital holography of human hepatocellular carcinoma tissue,” Sci. Rep. 5(1), 8445 (2015).
    [Crossref] [PubMed]
  11. Z. Li, L. Li, Y. Qin, G. Li, D. Wang, and X. Zhou, “Resolution and quality enhancement in terahertz in-line holography by sub-pixel sampling with double-distance reconstruction,” Opt. Express 24(18), 21134–21146 (2016).
    [Crossref] [PubMed]
  12. H. Huang, L. Rong, D. Wang, W. Li, Q. Deng, B. Li, Y. Wang, Z. Zhan, X. Wang, and W. Wu, “Synthetic aperture in terahertz in-line digital holography for resolution enhancement,” Appl. Opt. 55(3), A43–A48 (2016).
    [Crossref] [PubMed]
  13. H. C. Huang, D. Y. Wang, L. Rong, S. Panezai, D. L. Zhang, P. Y. Qiu, L. Gao, H. Gao, H. K. Zheng, and Z. Y. Zheng, “Continuous-wave off-axis and in-line terahertz digital holography with phase unwrapping and phase autofocusing,” Opt. Commun. 426, 612–622 (2018).
    [Crossref]
  14. Q. H. Deng, W. H. Li, X. M. Wang, Z. Y. Li, H. C. Huang, C. L. Shen, Z. Q. Zhan, R. J. Zou, T. Jiang, and W. D. Wu, “High-resolution terahertz inline digital holography based on quantum cascade laser,” Opt. Eng. 56(11), 1 (2017).
    [Crossref]
  15. M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5(1), 13566 (2015).
    [Crossref] [PubMed]
  16. W. Bishara, T. W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18(11), 11181–11191 (2010).
    [Crossref] [PubMed]
  17. L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 59140 (2005).
    [Crossref]
  18. T. Latychevskaia and H. W. Fink, “Solution to the twin image problem in holography,” Phys. Rev. Lett. 98(23), 233901 (2007).
    [Crossref] [PubMed]
  19. L. Denis, D. Lorenz, E. Thiébaut, C. Fournier, and D. Trede, “Inline hologram reconstruction with sparsity constraints,” Opt. Lett. 34(22), 3475–3477 (2009).
    [Crossref] [PubMed]
  20. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17(15), 13040–13049 (2009).
    [Crossref] [PubMed]
  21. Y. D. Li, Q. Li, J. Q. Hu, and Y. P. Zhao, “Compressive sensing algorithm for 2D reconstruction of THz digital holography,” Chin. Opt. Lett. 13(s1), S11101 (2015).
    [Crossref]
  22. J. Song, C. Leon Swisher, H. Im, S. Jeong, D. Pathania, Y. Iwamoto, M. Pivovarov, R. Weissleder, and H. Lee, “Sparsity-Based Pixel Super Resolution for Lens-Free Digital In-line Holography,” Sci. Rep. 6(1), 24681 (2016).
    [Crossref] [PubMed]
  23. Y. Rivenson, Y. Wu, H. Wang, Y. Zhang, A. Feizi, and A. Ozcan, “Sparsity-based multi-height phase recovery in holographic microscopy,” Sci. Rep. 6(1), 37862 (2016).
    [Crossref] [PubMed]
  24. B. D. Haeffele, R. Stahl, G. Vanmeerbeeck and R. Vidal, “Efficient reconstruction of holographic lens-free images by sparse phase recovery,” Springer, Cham 10434, 109–117 (2017).
  25. W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-Image-Free Holography: A Compressive Sensing Approach,” Phys. Rev. Lett. 121(9), 093902 (2018).
    [Crossref] [PubMed]
  26. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–246 (1972).
  27. Z. W. Wen, C. Yang, X. Liu, and S. Marchesini, “Alternating direction methods for classical and ptychographic phase retrieval,” Inverse Probl. 28(11), 115010 (2012).
    [Crossref]
  28. D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. Lond. A Math. Phys. Sci. 197(1051), 454–487 (1949).
  29. T. Latychevskaia and H. W. Fink, “Reconstruction of purely absorbing, absorbing and phase-shifting, and strong phase-shifting objects from their single-shot in-line holograms,” Appl. Opt. 54(13), 3925–3932 (2015).
    [Crossref]
  30. H. E. Güven, A. Güngör, and M. Çetin, “An Augmented Lagrangian Method for Complex-Valued Compressed SAR Imaging,” IEEE Trans. Comput. Imaging 2(3), 235–250 (2016).
    [Crossref]

2018 (4)

H. C. Huang, D. Y. Wang, L. Rong, S. Panezai, D. L. Zhang, P. Y. Qiu, L. Gao, H. Gao, H. K. Zheng, and Z. Y. Zheng, “Continuous-wave off-axis and in-line terahertz digital holography with phase unwrapping and phase autofocusing,” Opt. Commun. 426, 612–622 (2018).
[Crossref]

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-Image-Free Holography: A Compressive Sensing Approach,” Phys. Rev. Lett. 121(9), 093902 (2018).
[Crossref] [PubMed]

D. M. Mittleman, “Twenty years of terahertz imaging [Invited],” Opt. Express 26(8), 9417–9431 (2018).
[Crossref] [PubMed]

H. Chen, Z. Wu, Z. Li, Z. Luo, X. Jiang, Z. Wen, L. Zhu, X. Zhou, H. Li, Z. Shang, Z. Zhang, K. Zhang, G. Liang, S. Jiang, L. Du, and G. Chen, “Sub-wavelength tight-focusing of terahertz waves by polarization-independent high-numerical-aperture dielectric metalens,” Opt. Express 26(23), 29817–29825 (2018).
[Crossref] [PubMed]

2017 (4)

Q. H. Deng, W. H. Li, X. M. Wang, Z. Y. Li, H. C. Huang, C. L. Shen, Z. Q. Zhan, R. J. Zou, T. Jiang, and W. D. Wu, “High-resolution terahertz inline digital holography based on quantum cascade laser,” Opt. Eng. 56(11), 1 (2017).
[Crossref]

H. H. Nguyen Pham, S. Hisatake, O. V. Minin, T. Nagatsuma, and I. V. Minin, “Enhancement of spatial resolution of terahertz imaging systems based on terajet generation by dielectric cube,” APL Photonics 2(5), 056106 (2017).
[Crossref]

N. V. Chernomyrdin, M. E. Frolov, S. P. Lebedev, I. V. Reshetov, I. E. Spektor, V. L. Tolstoguzov, V. E. Karasik, A. M. Khorokhorov, K. I. Koshelev, A. O. Schadko, S. O. Yurchenko, and K. I. Zaytsev, “Wide-aperture aspherical lens for high-resolution terahertz imaging,” Rev. Sci. Instrum. 88(1), 014703 (2017).
[Crossref] [PubMed]

A. S. Hemphill, Y. Shen, Y. Liu, and L. V. Wang, “High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping,” Appl. Phys. Lett. 111(22), 221109 (2017).
[Crossref] [PubMed]

2016 (5)

J. Song, C. Leon Swisher, H. Im, S. Jeong, D. Pathania, Y. Iwamoto, M. Pivovarov, R. Weissleder, and H. Lee, “Sparsity-Based Pixel Super Resolution for Lens-Free Digital In-line Holography,” Sci. Rep. 6(1), 24681 (2016).
[Crossref] [PubMed]

Y. Rivenson, Y. Wu, H. Wang, Y. Zhang, A. Feizi, and A. Ozcan, “Sparsity-based multi-height phase recovery in holographic microscopy,” Sci. Rep. 6(1), 37862 (2016).
[Crossref] [PubMed]

H. E. Güven, A. Güngör, and M. Çetin, “An Augmented Lagrangian Method for Complex-Valued Compressed SAR Imaging,” IEEE Trans. Comput. Imaging 2(3), 235–250 (2016).
[Crossref]

H. Huang, L. Rong, D. Wang, W. Li, Q. Deng, B. Li, Y. Wang, Z. Zhan, X. Wang, and W. Wu, “Synthetic aperture in terahertz in-line digital holography for resolution enhancement,” Appl. Opt. 55(3), A43–A48 (2016).
[Crossref] [PubMed]

Z. Li, L. Li, Y. Qin, G. Li, D. Wang, and X. Zhou, “Resolution and quality enhancement in terahertz in-line holography by sub-pixel sampling with double-distance reconstruction,” Opt. Express 24(18), 21134–21146 (2016).
[Crossref] [PubMed]

2015 (5)

T. Latychevskaia and H. W. Fink, “Reconstruction of purely absorbing, absorbing and phase-shifting, and strong phase-shifting objects from their single-shot in-line holograms,” Appl. Opt. 54(13), 3925–3932 (2015).
[Crossref]

P. Zolliker and E. Hack, “THz holography in reflection using a high resolution microbolometer array,” Opt. Express 23(9), 10957–10967 (2015).
[Crossref] [PubMed]

Y. D. Li, Q. Li, J. Q. Hu, and Y. P. Zhao, “Compressive sensing algorithm for 2D reconstruction of THz digital holography,” Chin. Opt. Lett. 13(s1), S11101 (2015).
[Crossref]

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5(1), 13566 (2015).
[Crossref] [PubMed]

L. Rong, T. Latychevskaia, C. Chen, D. Wang, Z. Yu, X. Zhou, Z. Li, H. Huang, Y. Wang, and Z. Zhou, “Terahertz in-line digital holography of human hepatocellular carcinoma tissue,” Sci. Rep. 5(1), 8445 (2015).
[Crossref] [PubMed]

2014 (2)

2012 (1)

Z. W. Wen, C. Yang, X. Liu, and S. Marchesini, “Alternating direction methods for classical and ptychographic phase retrieval,” Inverse Probl. 28(11), 115010 (2012).
[Crossref]

2010 (1)

2009 (2)

2007 (1)

T. Latychevskaia and H. W. Fink, “Solution to the twin image problem in holography,” Phys. Rev. Lett. 98(23), 233901 (2007).
[Crossref] [PubMed]

2005 (1)

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 59140 (2005).
[Crossref]

1998 (1)

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150(1-6), 22–26 (1998).
[Crossref]

1972 (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–246 (1972).

1949 (1)

D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. Lond. A Math. Phys. Sci. 197(1051), 454–487 (1949).

Bartalini, S.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5(1), 13566 (2015).
[Crossref] [PubMed]

Bishara, W.

Brady, D. J.

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-Image-Free Holography: A Compressive Sensing Approach,” Phys. Rev. Lett. 121(9), 093902 (2018).
[Crossref] [PubMed]

D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17(15), 13040–13049 (2009).
[Crossref] [PubMed]

Brener, I.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150(1-6), 22–26 (1998).
[Crossref]

Cang, J.

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-Image-Free Holography: A Compressive Sensing Approach,” Phys. Rev. Lett. 121(9), 093902 (2018).
[Crossref] [PubMed]

Cao, L.

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-Image-Free Holography: A Compressive Sensing Approach,” Phys. Rev. Lett. 121(9), 093902 (2018).
[Crossref] [PubMed]

Çetin, M.

H. E. Güven, A. Güngör, and M. Çetin, “An Augmented Lagrangian Method for Complex-Valued Compressed SAR Imaging,” IEEE Trans. Comput. Imaging 2(3), 235–250 (2016).
[Crossref]

Chen, C.

L. Rong, T. Latychevskaia, C. Chen, D. Wang, Z. Yu, X. Zhou, Z. Li, H. Huang, Y. Wang, and Z. Zhou, “Terahertz in-line digital holography of human hepatocellular carcinoma tissue,” Sci. Rep. 5(1), 8445 (2015).
[Crossref] [PubMed]

Chen, G.

Chen, H.

Chernomyrdin, N. V.

N. V. Chernomyrdin, M. E. Frolov, S. P. Lebedev, I. V. Reshetov, I. E. Spektor, V. L. Tolstoguzov, V. E. Karasik, A. M. Khorokhorov, K. I. Koshelev, A. O. Schadko, S. O. Yurchenko, and K. I. Zaytsev, “Wide-aperture aspherical lens for high-resolution terahertz imaging,” Rev. Sci. Instrum. 88(1), 014703 (2017).
[Crossref] [PubMed]

Choi, K.

Cicchi, R.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5(1), 13566 (2015).
[Crossref] [PubMed]

Consolino, L.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5(1), 13566 (2015).
[Crossref] [PubMed]

Coskun, A. F.

De Natale, P.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5(1), 13566 (2015).
[Crossref] [PubMed]

Deng, Q.

Deng, Q. H.

Q. H. Deng, W. H. Li, X. M. Wang, Z. Y. Li, H. C. Huang, C. L. Shen, Z. Q. Zhan, R. J. Zou, T. Jiang, and W. D. Wu, “High-resolution terahertz inline digital holography based on quantum cascade laser,” Opt. Eng. 56(11), 1 (2017).
[Crossref]

Denis, L.

L. Denis, D. Lorenz, E. Thiébaut, C. Fournier, and D. Trede, “Inline hologram reconstruction with sparsity constraints,” Opt. Lett. 34(22), 3475–3477 (2009).
[Crossref] [PubMed]

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 59140 (2005).
[Crossref]

Du, L.

Ducottet, C.

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 59140 (2005).
[Crossref]

Feizi, A.

Y. Rivenson, Y. Wu, H. Wang, Y. Zhang, A. Feizi, and A. Ozcan, “Sparsity-based multi-height phase recovery in holographic microscopy,” Sci. Rep. 6(1), 37862 (2016).
[Crossref] [PubMed]

Fink, H. W.

Fournel, T.

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 59140 (2005).
[Crossref]

Fournier, C.

L. Denis, D. Lorenz, E. Thiébaut, C. Fournier, and D. Trede, “Inline hologram reconstruction with sparsity constraints,” Opt. Lett. 34(22), 3475–3477 (2009).
[Crossref] [PubMed]

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 59140 (2005).
[Crossref]

Frolov, M. E.

N. V. Chernomyrdin, M. E. Frolov, S. P. Lebedev, I. V. Reshetov, I. E. Spektor, V. L. Tolstoguzov, V. E. Karasik, A. M. Khorokhorov, K. I. Koshelev, A. O. Schadko, S. O. Yurchenko, and K. I. Zaytsev, “Wide-aperture aspherical lens for high-resolution terahertz imaging,” Rev. Sci. Instrum. 88(1), 014703 (2017).
[Crossref] [PubMed]

Gabor, D.

D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. Lond. A Math. Phys. Sci. 197(1051), 454–487 (1949).

Gao, H.

H. C. Huang, D. Y. Wang, L. Rong, S. Panezai, D. L. Zhang, P. Y. Qiu, L. Gao, H. Gao, H. K. Zheng, and Z. Y. Zheng, “Continuous-wave off-axis and in-line terahertz digital holography with phase unwrapping and phase autofocusing,” Opt. Commun. 426, 612–622 (2018).
[Crossref]

Gao, L.

H. C. Huang, D. Y. Wang, L. Rong, S. Panezai, D. L. Zhang, P. Y. Qiu, L. Gao, H. Gao, H. K. Zheng, and Z. Y. Zheng, “Continuous-wave off-axis and in-line terahertz digital holography with phase unwrapping and phase autofocusing,” Opt. Commun. 426, 612–622 (2018).
[Crossref]

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–246 (1972).

Güngör, A.

H. E. Güven, A. Güngör, and M. Çetin, “An Augmented Lagrangian Method for Complex-Valued Compressed SAR Imaging,” IEEE Trans. Comput. Imaging 2(3), 235–250 (2016).
[Crossref]

Güven, H. E.

H. E. Güven, A. Güngör, and M. Çetin, “An Augmented Lagrangian Method for Complex-Valued Compressed SAR Imaging,” IEEE Trans. Comput. Imaging 2(3), 235–250 (2016).
[Crossref]

Hack, E.

Hemphill, A. S.

A. S. Hemphill, Y. Shen, Y. Liu, and L. V. Wang, “High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping,” Appl. Phys. Lett. 111(22), 221109 (2017).
[Crossref] [PubMed]

Hisatake, S.

H. H. Nguyen Pham, S. Hisatake, O. V. Minin, T. Nagatsuma, and I. V. Minin, “Enhancement of spatial resolution of terahertz imaging systems based on terajet generation by dielectric cube,” APL Photonics 2(5), 056106 (2017).
[Crossref]

Horisaki, R.

Hu, J. Q.

Y. D. Li, Q. Li, J. Q. Hu, and Y. P. Zhao, “Compressive sensing algorithm for 2D reconstruction of THz digital holography,” Chin. Opt. Lett. 13(s1), S11101 (2015).
[Crossref]

Huang, H.

Huang, H. C.

H. C. Huang, D. Y. Wang, L. Rong, S. Panezai, D. L. Zhang, P. Y. Qiu, L. Gao, H. Gao, H. K. Zheng, and Z. Y. Zheng, “Continuous-wave off-axis and in-line terahertz digital holography with phase unwrapping and phase autofocusing,” Opt. Commun. 426, 612–622 (2018).
[Crossref]

Q. H. Deng, W. H. Li, X. M. Wang, Z. Y. Li, H. C. Huang, C. L. Shen, Z. Q. Zhan, R. J. Zou, T. Jiang, and W. D. Wu, “High-resolution terahertz inline digital holography based on quantum cascade laser,” Opt. Eng. 56(11), 1 (2017).
[Crossref]

Hunsche, S.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150(1-6), 22–26 (1998).
[Crossref]

Im, H.

J. Song, C. Leon Swisher, H. Im, S. Jeong, D. Pathania, Y. Iwamoto, M. Pivovarov, R. Weissleder, and H. Lee, “Sparsity-Based Pixel Super Resolution for Lens-Free Digital In-line Holography,” Sci. Rep. 6(1), 24681 (2016).
[Crossref] [PubMed]

Iwamoto, Y.

J. Song, C. Leon Swisher, H. Im, S. Jeong, D. Pathania, Y. Iwamoto, M. Pivovarov, R. Weissleder, and H. Lee, “Sparsity-Based Pixel Super Resolution for Lens-Free Digital In-line Holography,” Sci. Rep. 6(1), 24681 (2016).
[Crossref] [PubMed]

Jeong, S.

J. Song, C. Leon Swisher, H. Im, S. Jeong, D. Pathania, Y. Iwamoto, M. Pivovarov, R. Weissleder, and H. Lee, “Sparsity-Based Pixel Super Resolution for Lens-Free Digital In-line Holography,” Sci. Rep. 6(1), 24681 (2016).
[Crossref] [PubMed]

Jiang, S.

Jiang, T.

Q. H. Deng, W. H. Li, X. M. Wang, Z. Y. Li, H. C. Huang, C. L. Shen, Z. Q. Zhan, R. J. Zou, T. Jiang, and W. D. Wu, “High-resolution terahertz inline digital holography based on quantum cascade laser,” Opt. Eng. 56(11), 1 (2017).
[Crossref]

Jiang, X.

Jin, G.

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-Image-Free Holography: A Compressive Sensing Approach,” Phys. Rev. Lett. 121(9), 093902 (2018).
[Crossref] [PubMed]

Karasik, V. E.

N. V. Chernomyrdin, M. E. Frolov, S. P. Lebedev, I. V. Reshetov, I. E. Spektor, V. L. Tolstoguzov, V. E. Karasik, A. M. Khorokhorov, K. I. Koshelev, A. O. Schadko, S. O. Yurchenko, and K. I. Zaytsev, “Wide-aperture aspherical lens for high-resolution terahertz imaging,” Rev. Sci. Instrum. 88(1), 014703 (2017).
[Crossref] [PubMed]

Khorokhorov, A. M.

N. V. Chernomyrdin, M. E. Frolov, S. P. Lebedev, I. V. Reshetov, I. E. Spektor, V. L. Tolstoguzov, V. E. Karasik, A. M. Khorokhorov, K. I. Koshelev, A. O. Schadko, S. O. Yurchenko, and K. I. Zaytsev, “Wide-aperture aspherical lens for high-resolution terahertz imaging,” Rev. Sci. Instrum. 88(1), 014703 (2017).
[Crossref] [PubMed]

Koch, M.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150(1-6), 22–26 (1998).
[Crossref]

Koshelev, K. I.

N. V. Chernomyrdin, M. E. Frolov, S. P. Lebedev, I. V. Reshetov, I. E. Spektor, V. L. Tolstoguzov, V. E. Karasik, A. M. Khorokhorov, K. I. Koshelev, A. O. Schadko, S. O. Yurchenko, and K. I. Zaytsev, “Wide-aperture aspherical lens for high-resolution terahertz imaging,” Rev. Sci. Instrum. 88(1), 014703 (2017).
[Crossref] [PubMed]

Latychevskaia, T.

Lebedev, S. P.

N. V. Chernomyrdin, M. E. Frolov, S. P. Lebedev, I. V. Reshetov, I. E. Spektor, V. L. Tolstoguzov, V. E. Karasik, A. M. Khorokhorov, K. I. Koshelev, A. O. Schadko, S. O. Yurchenko, and K. I. Zaytsev, “Wide-aperture aspherical lens for high-resolution terahertz imaging,” Rev. Sci. Instrum. 88(1), 014703 (2017).
[Crossref] [PubMed]

Lee, H.

J. Song, C. Leon Swisher, H. Im, S. Jeong, D. Pathania, Y. Iwamoto, M. Pivovarov, R. Weissleder, and H. Lee, “Sparsity-Based Pixel Super Resolution for Lens-Free Digital In-line Holography,” Sci. Rep. 6(1), 24681 (2016).
[Crossref] [PubMed]

Leon Swisher, C.

J. Song, C. Leon Swisher, H. Im, S. Jeong, D. Pathania, Y. Iwamoto, M. Pivovarov, R. Weissleder, and H. Lee, “Sparsity-Based Pixel Super Resolution for Lens-Free Digital In-line Holography,” Sci. Rep. 6(1), 24681 (2016).
[Crossref] [PubMed]

Li, B.

Li, G.

Li, H.

Li, L.

Li, Q.

Y. D. Li, Q. Li, J. Q. Hu, and Y. P. Zhao, “Compressive sensing algorithm for 2D reconstruction of THz digital holography,” Chin. Opt. Lett. 13(s1), S11101 (2015).
[Crossref]

Li, W.

Li, W. H.

Q. H. Deng, W. H. Li, X. M. Wang, Z. Y. Li, H. C. Huang, C. L. Shen, Z. Q. Zhan, R. J. Zou, T. Jiang, and W. D. Wu, “High-resolution terahertz inline digital holography based on quantum cascade laser,” Opt. Eng. 56(11), 1 (2017).
[Crossref]

Li, Y. D.

Y. D. Li, Q. Li, J. Q. Hu, and Y. P. Zhao, “Compressive sensing algorithm for 2D reconstruction of THz digital holography,” Chin. Opt. Lett. 13(s1), S11101 (2015).
[Crossref]

Li, Z.

Li, Z. Y.

Q. H. Deng, W. H. Li, X. M. Wang, Z. Y. Li, H. C. Huang, C. L. Shen, Z. Q. Zhan, R. J. Zou, T. Jiang, and W. D. Wu, “High-resolution terahertz inline digital holography based on quantum cascade laser,” Opt. Eng. 56(11), 1 (2017).
[Crossref]

Liang, G.

Lim, S.

Liu, X.

Z. W. Wen, C. Yang, X. Liu, and S. Marchesini, “Alternating direction methods for classical and ptychographic phase retrieval,” Inverse Probl. 28(11), 115010 (2012).
[Crossref]

Liu, Y.

A. S. Hemphill, Y. Shen, Y. Liu, and L. V. Wang, “High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping,” Appl. Phys. Lett. 111(22), 221109 (2017).
[Crossref] [PubMed]

Locatelli, M.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5(1), 13566 (2015).
[Crossref] [PubMed]

Lorenz, D.

Luo, Z.

Marchesini, S.

Z. W. Wen, C. Yang, X. Liu, and S. Marchesini, “Alternating direction methods for classical and ptychographic phase retrieval,” Inverse Probl. 28(11), 115010 (2012).
[Crossref]

Marks, D. L.

Minin, I. V.

H. H. Nguyen Pham, S. Hisatake, O. V. Minin, T. Nagatsuma, and I. V. Minin, “Enhancement of spatial resolution of terahertz imaging systems based on terajet generation by dielectric cube,” APL Photonics 2(5), 056106 (2017).
[Crossref]

Minin, O. V.

H. H. Nguyen Pham, S. Hisatake, O. V. Minin, T. Nagatsuma, and I. V. Minin, “Enhancement of spatial resolution of terahertz imaging systems based on terajet generation by dielectric cube,” APL Photonics 2(5), 056106 (2017).
[Crossref]

Mittleman, D. M.

Nagatsuma, T.

H. H. Nguyen Pham, S. Hisatake, O. V. Minin, T. Nagatsuma, and I. V. Minin, “Enhancement of spatial resolution of terahertz imaging systems based on terajet generation by dielectric cube,” APL Photonics 2(5), 056106 (2017).
[Crossref]

Nguyen Pham, H. H.

H. H. Nguyen Pham, S. Hisatake, O. V. Minin, T. Nagatsuma, and I. V. Minin, “Enhancement of spatial resolution of terahertz imaging systems based on terajet generation by dielectric cube,” APL Photonics 2(5), 056106 (2017).
[Crossref]

Nuss, M. C.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150(1-6), 22–26 (1998).
[Crossref]

Ozcan, A.

Y. Rivenson, Y. Wu, H. Wang, Y. Zhang, A. Feizi, and A. Ozcan, “Sparsity-based multi-height phase recovery in holographic microscopy,” Sci. Rep. 6(1), 37862 (2016).
[Crossref] [PubMed]

W. Bishara, T. W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18(11), 11181–11191 (2010).
[Crossref] [PubMed]

Panezai, S.

H. C. Huang, D. Y. Wang, L. Rong, S. Panezai, D. L. Zhang, P. Y. Qiu, L. Gao, H. Gao, H. K. Zheng, and Z. Y. Zheng, “Continuous-wave off-axis and in-line terahertz digital holography with phase unwrapping and phase autofocusing,” Opt. Commun. 426, 612–622 (2018).
[Crossref]

Pathania, D.

J. Song, C. Leon Swisher, H. Im, S. Jeong, D. Pathania, Y. Iwamoto, M. Pivovarov, R. Weissleder, and H. Lee, “Sparsity-Based Pixel Super Resolution for Lens-Free Digital In-line Holography,” Sci. Rep. 6(1), 24681 (2016).
[Crossref] [PubMed]

Pavone, F.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5(1), 13566 (2015).
[Crossref] [PubMed]

Pivovarov, M.

J. Song, C. Leon Swisher, H. Im, S. Jeong, D. Pathania, Y. Iwamoto, M. Pivovarov, R. Weissleder, and H. Lee, “Sparsity-Based Pixel Super Resolution for Lens-Free Digital In-line Holography,” Sci. Rep. 6(1), 24681 (2016).
[Crossref] [PubMed]

Qin, Y.

Qiu, P. Y.

H. C. Huang, D. Y. Wang, L. Rong, S. Panezai, D. L. Zhang, P. Y. Qiu, L. Gao, H. Gao, H. K. Zheng, and Z. Y. Zheng, “Continuous-wave off-axis and in-line terahertz digital holography with phase unwrapping and phase autofocusing,” Opt. Commun. 426, 612–622 (2018).
[Crossref]

Ravaro, M.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5(1), 13566 (2015).
[Crossref] [PubMed]

Reshetov, I. V.

N. V. Chernomyrdin, M. E. Frolov, S. P. Lebedev, I. V. Reshetov, I. E. Spektor, V. L. Tolstoguzov, V. E. Karasik, A. M. Khorokhorov, K. I. Koshelev, A. O. Schadko, S. O. Yurchenko, and K. I. Zaytsev, “Wide-aperture aspherical lens for high-resolution terahertz imaging,” Rev. Sci. Instrum. 88(1), 014703 (2017).
[Crossref] [PubMed]

Rivenson, Y.

Y. Rivenson, Y. Wu, H. Wang, Y. Zhang, A. Feizi, and A. Ozcan, “Sparsity-based multi-height phase recovery in holographic microscopy,” Sci. Rep. 6(1), 37862 (2016).
[Crossref] [PubMed]

Rong, L.

H. C. Huang, D. Y. Wang, L. Rong, S. Panezai, D. L. Zhang, P. Y. Qiu, L. Gao, H. Gao, H. K. Zheng, and Z. Y. Zheng, “Continuous-wave off-axis and in-line terahertz digital holography with phase unwrapping and phase autofocusing,” Opt. Commun. 426, 612–622 (2018).
[Crossref]

H. Huang, L. Rong, D. Wang, W. Li, Q. Deng, B. Li, Y. Wang, Z. Zhan, X. Wang, and W. Wu, “Synthetic aperture in terahertz in-line digital holography for resolution enhancement,” Appl. Opt. 55(3), A43–A48 (2016).
[Crossref] [PubMed]

L. Rong, T. Latychevskaia, C. Chen, D. Wang, Z. Yu, X. Zhou, Z. Li, H. Huang, Y. Wang, and Z. Zhou, “Terahertz in-line digital holography of human hepatocellular carcinoma tissue,” Sci. Rep. 5(1), 8445 (2015).
[Crossref] [PubMed]

L. Rong, T. Latychevskaia, D. Wang, X. Zhou, H. Huang, Z. Li, and Y. Wang, “Terahertz in-line digital holography of dragonfly hindwing: amplitude and phase reconstruction at enhanced resolution by extrapolation,” Opt. Express 22(14), 17236–17245 (2014).
[Crossref] [PubMed]

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–246 (1972).

Schadko, A. O.

N. V. Chernomyrdin, M. E. Frolov, S. P. Lebedev, I. V. Reshetov, I. E. Spektor, V. L. Tolstoguzov, V. E. Karasik, A. M. Khorokhorov, K. I. Koshelev, A. O. Schadko, S. O. Yurchenko, and K. I. Zaytsev, “Wide-aperture aspherical lens for high-resolution terahertz imaging,” Rev. Sci. Instrum. 88(1), 014703 (2017).
[Crossref] [PubMed]

Shang, Z.

Shen, C. L.

Q. H. Deng, W. H. Li, X. M. Wang, Z. Y. Li, H. C. Huang, C. L. Shen, Z. Q. Zhan, R. J. Zou, T. Jiang, and W. D. Wu, “High-resolution terahertz inline digital holography based on quantum cascade laser,” Opt. Eng. 56(11), 1 (2017).
[Crossref]

Shen, Y.

A. S. Hemphill, Y. Shen, Y. Liu, and L. V. Wang, “High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping,” Appl. Phys. Lett. 111(22), 221109 (2017).
[Crossref] [PubMed]

Song, J.

J. Song, C. Leon Swisher, H. Im, S. Jeong, D. Pathania, Y. Iwamoto, M. Pivovarov, R. Weissleder, and H. Lee, “Sparsity-Based Pixel Super Resolution for Lens-Free Digital In-line Holography,” Sci. Rep. 6(1), 24681 (2016).
[Crossref] [PubMed]

Spektor, I. E.

N. V. Chernomyrdin, M. E. Frolov, S. P. Lebedev, I. V. Reshetov, I. E. Spektor, V. L. Tolstoguzov, V. E. Karasik, A. M. Khorokhorov, K. I. Koshelev, A. O. Schadko, S. O. Yurchenko, and K. I. Zaytsev, “Wide-aperture aspherical lens for high-resolution terahertz imaging,” Rev. Sci. Instrum. 88(1), 014703 (2017).
[Crossref] [PubMed]

Su, T. W.

Thiébaut, E.

Tolstoguzov, V. L.

N. V. Chernomyrdin, M. E. Frolov, S. P. Lebedev, I. V. Reshetov, I. E. Spektor, V. L. Tolstoguzov, V. E. Karasik, A. M. Khorokhorov, K. I. Koshelev, A. O. Schadko, S. O. Yurchenko, and K. I. Zaytsev, “Wide-aperture aspherical lens for high-resolution terahertz imaging,” Rev. Sci. Instrum. 88(1), 014703 (2017).
[Crossref] [PubMed]

Trede, D.

Vitiello, M. S.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5(1), 13566 (2015).
[Crossref] [PubMed]

Wang, D.

Wang, D. Y.

H. C. Huang, D. Y. Wang, L. Rong, S. Panezai, D. L. Zhang, P. Y. Qiu, L. Gao, H. Gao, H. K. Zheng, and Z. Y. Zheng, “Continuous-wave off-axis and in-line terahertz digital holography with phase unwrapping and phase autofocusing,” Opt. Commun. 426, 612–622 (2018).
[Crossref]

Wang, H.

Y. Rivenson, Y. Wu, H. Wang, Y. Zhang, A. Feizi, and A. Ozcan, “Sparsity-based multi-height phase recovery in holographic microscopy,” Sci. Rep. 6(1), 37862 (2016).
[Crossref] [PubMed]

Wang, L. V.

A. S. Hemphill, Y. Shen, Y. Liu, and L. V. Wang, “High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping,” Appl. Phys. Lett. 111(22), 221109 (2017).
[Crossref] [PubMed]

Wang, X.

Wang, X. M.

Q. H. Deng, W. H. Li, X. M. Wang, Z. Y. Li, H. C. Huang, C. L. Shen, Z. Q. Zhan, R. J. Zou, T. Jiang, and W. D. Wu, “High-resolution terahertz inline digital holography based on quantum cascade laser,” Opt. Eng. 56(11), 1 (2017).
[Crossref]

Wang, Y.

Weissleder, R.

J. Song, C. Leon Swisher, H. Im, S. Jeong, D. Pathania, Y. Iwamoto, M. Pivovarov, R. Weissleder, and H. Lee, “Sparsity-Based Pixel Super Resolution for Lens-Free Digital In-line Holography,” Sci. Rep. 6(1), 24681 (2016).
[Crossref] [PubMed]

Wen, Z.

Wen, Z. W.

Z. W. Wen, C. Yang, X. Liu, and S. Marchesini, “Alternating direction methods for classical and ptychographic phase retrieval,” Inverse Probl. 28(11), 115010 (2012).
[Crossref]

Wu, W.

Wu, W. D.

Q. H. Deng, W. H. Li, X. M. Wang, Z. Y. Li, H. C. Huang, C. L. Shen, Z. Q. Zhan, R. J. Zou, T. Jiang, and W. D. Wu, “High-resolution terahertz inline digital holography based on quantum cascade laser,” Opt. Eng. 56(11), 1 (2017).
[Crossref]

Wu, Y.

Y. Rivenson, Y. Wu, H. Wang, Y. Zhang, A. Feizi, and A. Ozcan, “Sparsity-based multi-height phase recovery in holographic microscopy,” Sci. Rep. 6(1), 37862 (2016).
[Crossref] [PubMed]

Wu, Z.

Yang, C.

Z. W. Wen, C. Yang, X. Liu, and S. Marchesini, “Alternating direction methods for classical and ptychographic phase retrieval,” Inverse Probl. 28(11), 115010 (2012).
[Crossref]

Yu, Z.

L. Rong, T. Latychevskaia, C. Chen, D. Wang, Z. Yu, X. Zhou, Z. Li, H. Huang, Y. Wang, and Z. Zhou, “Terahertz in-line digital holography of human hepatocellular carcinoma tissue,” Sci. Rep. 5(1), 8445 (2015).
[Crossref] [PubMed]

Yurchenko, S. O.

N. V. Chernomyrdin, M. E. Frolov, S. P. Lebedev, I. V. Reshetov, I. E. Spektor, V. L. Tolstoguzov, V. E. Karasik, A. M. Khorokhorov, K. I. Koshelev, A. O. Schadko, S. O. Yurchenko, and K. I. Zaytsev, “Wide-aperture aspherical lens for high-resolution terahertz imaging,” Rev. Sci. Instrum. 88(1), 014703 (2017).
[Crossref] [PubMed]

Zaytsev, K. I.

N. V. Chernomyrdin, M. E. Frolov, S. P. Lebedev, I. V. Reshetov, I. E. Spektor, V. L. Tolstoguzov, V. E. Karasik, A. M. Khorokhorov, K. I. Koshelev, A. O. Schadko, S. O. Yurchenko, and K. I. Zaytsev, “Wide-aperture aspherical lens for high-resolution terahertz imaging,” Rev. Sci. Instrum. 88(1), 014703 (2017).
[Crossref] [PubMed]

Zhan, Z.

Zhan, Z. Q.

Q. H. Deng, W. H. Li, X. M. Wang, Z. Y. Li, H. C. Huang, C. L. Shen, Z. Q. Zhan, R. J. Zou, T. Jiang, and W. D. Wu, “High-resolution terahertz inline digital holography based on quantum cascade laser,” Opt. Eng. 56(11), 1 (2017).
[Crossref]

Zhang, D. L.

H. C. Huang, D. Y. Wang, L. Rong, S. Panezai, D. L. Zhang, P. Y. Qiu, L. Gao, H. Gao, H. K. Zheng, and Z. Y. Zheng, “Continuous-wave off-axis and in-line terahertz digital holography with phase unwrapping and phase autofocusing,” Opt. Commun. 426, 612–622 (2018).
[Crossref]

Zhang, H.

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-Image-Free Holography: A Compressive Sensing Approach,” Phys. Rev. Lett. 121(9), 093902 (2018).
[Crossref] [PubMed]

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-Image-Free Holography: A Compressive Sensing Approach,” Phys. Rev. Lett. 121(9), 093902 (2018).
[Crossref] [PubMed]

Zhang, K.

Zhang, W.

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-Image-Free Holography: A Compressive Sensing Approach,” Phys. Rev. Lett. 121(9), 093902 (2018).
[Crossref] [PubMed]

Zhang, Y.

Y. Rivenson, Y. Wu, H. Wang, Y. Zhang, A. Feizi, and A. Ozcan, “Sparsity-based multi-height phase recovery in holographic microscopy,” Sci. Rep. 6(1), 37862 (2016).
[Crossref] [PubMed]

Zhang, Z.

Zhao, Y. P.

Y. D. Li, Q. Li, J. Q. Hu, and Y. P. Zhao, “Compressive sensing algorithm for 2D reconstruction of THz digital holography,” Chin. Opt. Lett. 13(s1), S11101 (2015).
[Crossref]

Zheng, H. K.

H. C. Huang, D. Y. Wang, L. Rong, S. Panezai, D. L. Zhang, P. Y. Qiu, L. Gao, H. Gao, H. K. Zheng, and Z. Y. Zheng, “Continuous-wave off-axis and in-line terahertz digital holography with phase unwrapping and phase autofocusing,” Opt. Commun. 426, 612–622 (2018).
[Crossref]

Zheng, Z. Y.

H. C. Huang, D. Y. Wang, L. Rong, S. Panezai, D. L. Zhang, P. Y. Qiu, L. Gao, H. Gao, H. K. Zheng, and Z. Y. Zheng, “Continuous-wave off-axis and in-line terahertz digital holography with phase unwrapping and phase autofocusing,” Opt. Commun. 426, 612–622 (2018).
[Crossref]

Zhou, X.

Zhou, Z.

L. Rong, T. Latychevskaia, C. Chen, D. Wang, Z. Yu, X. Zhou, Z. Li, H. Huang, Y. Wang, and Z. Zhou, “Terahertz in-line digital holography of human hepatocellular carcinoma tissue,” Sci. Rep. 5(1), 8445 (2015).
[Crossref] [PubMed]

Zhu, L.

Zolliker, P.

Zou, R. J.

Q. H. Deng, W. H. Li, X. M. Wang, Z. Y. Li, H. C. Huang, C. L. Shen, Z. Q. Zhan, R. J. Zou, T. Jiang, and W. D. Wu, “High-resolution terahertz inline digital holography based on quantum cascade laser,” Opt. Eng. 56(11), 1 (2017).
[Crossref]

APL Photonics (1)

H. H. Nguyen Pham, S. Hisatake, O. V. Minin, T. Nagatsuma, and I. V. Minin, “Enhancement of spatial resolution of terahertz imaging systems based on terajet generation by dielectric cube,” APL Photonics 2(5), 056106 (2017).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

A. S. Hemphill, Y. Shen, Y. Liu, and L. V. Wang, “High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping,” Appl. Phys. Lett. 111(22), 221109 (2017).
[Crossref] [PubMed]

Chin. Opt. Lett. (1)

Y. D. Li, Q. Li, J. Q. Hu, and Y. P. Zhao, “Compressive sensing algorithm for 2D reconstruction of THz digital holography,” Chin. Opt. Lett. 13(s1), S11101 (2015).
[Crossref]

IEEE Trans. Comput. Imaging (1)

H. E. Güven, A. Güngör, and M. Çetin, “An Augmented Lagrangian Method for Complex-Valued Compressed SAR Imaging,” IEEE Trans. Comput. Imaging 2(3), 235–250 (2016).
[Crossref]

Inverse Probl. (1)

Z. W. Wen, C. Yang, X. Liu, and S. Marchesini, “Alternating direction methods for classical and ptychographic phase retrieval,” Inverse Probl. 28(11), 115010 (2012).
[Crossref]

Opt. Commun. (2)

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150(1-6), 22–26 (1998).
[Crossref]

H. C. Huang, D. Y. Wang, L. Rong, S. Panezai, D. L. Zhang, P. Y. Qiu, L. Gao, H. Gao, H. K. Zheng, and Z. Y. Zheng, “Continuous-wave off-axis and in-line terahertz digital holography with phase unwrapping and phase autofocusing,” Opt. Commun. 426, 612–622 (2018).
[Crossref]

Opt. Eng. (1)

Q. H. Deng, W. H. Li, X. M. Wang, Z. Y. Li, H. C. Huang, C. L. Shen, Z. Q. Zhan, R. J. Zou, T. Jiang, and W. D. Wu, “High-resolution terahertz inline digital holography based on quantum cascade laser,” Opt. Eng. 56(11), 1 (2017).
[Crossref]

Opt. Express (8)

D. M. Mittleman, “Twenty years of terahertz imaging [Invited],” Opt. Express 26(8), 9417–9431 (2018).
[Crossref] [PubMed]

Z. Li, L. Li, Y. Qin, G. Li, D. Wang, and X. Zhou, “Resolution and quality enhancement in terahertz in-line holography by sub-pixel sampling with double-distance reconstruction,” Opt. Express 24(18), 21134–21146 (2016).
[Crossref] [PubMed]

W. Bishara, T. W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18(11), 11181–11191 (2010).
[Crossref] [PubMed]

H. Chen, Z. Wu, Z. Li, Z. Luo, X. Jiang, Z. Wen, L. Zhu, X. Zhou, H. Li, Z. Shang, Z. Zhang, K. Zhang, G. Liang, S. Jiang, L. Du, and G. Chen, “Sub-wavelength tight-focusing of terahertz waves by polarization-independent high-numerical-aperture dielectric metalens,” Opt. Express 26(23), 29817–29825 (2018).
[Crossref] [PubMed]

E. Hack and P. Zolliker, “Terahertz holography for imaging amplitude and phase objects,” Opt. Express 22(13), 16079–16086 (2014).
[Crossref] [PubMed]

P. Zolliker and E. Hack, “THz holography in reflection using a high resolution microbolometer array,” Opt. Express 23(9), 10957–10967 (2015).
[Crossref] [PubMed]

L. Rong, T. Latychevskaia, D. Wang, X. Zhou, H. Huang, Z. Li, and Y. Wang, “Terahertz in-line digital holography of dragonfly hindwing: amplitude and phase reconstruction at enhanced resolution by extrapolation,” Opt. Express 22(14), 17236–17245 (2014).
[Crossref] [PubMed]

D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17(15), 13040–13049 (2009).
[Crossref] [PubMed]

Opt. Lett. (1)

Optik (Stuttg.) (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–246 (1972).

Phys. Rev. Lett. (2)

T. Latychevskaia and H. W. Fink, “Solution to the twin image problem in holography,” Phys. Rev. Lett. 98(23), 233901 (2007).
[Crossref] [PubMed]

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-Image-Free Holography: A Compressive Sensing Approach,” Phys. Rev. Lett. 121(9), 093902 (2018).
[Crossref] [PubMed]

Proc. R. Soc. Lond. A Math. Phys. Sci. (1)

D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. Lond. A Math. Phys. Sci. 197(1051), 454–487 (1949).

Proc. SPIE (1)

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 59140 (2005).
[Crossref]

Rev. Sci. Instrum. (1)

N. V. Chernomyrdin, M. E. Frolov, S. P. Lebedev, I. V. Reshetov, I. E. Spektor, V. L. Tolstoguzov, V. E. Karasik, A. M. Khorokhorov, K. I. Koshelev, A. O. Schadko, S. O. Yurchenko, and K. I. Zaytsev, “Wide-aperture aspherical lens for high-resolution terahertz imaging,” Rev. Sci. Instrum. 88(1), 014703 (2017).
[Crossref] [PubMed]

Sci. Rep. (4)

L. Rong, T. Latychevskaia, C. Chen, D. Wang, Z. Yu, X. Zhou, Z. Li, H. Huang, Y. Wang, and Z. Zhou, “Terahertz in-line digital holography of human hepatocellular carcinoma tissue,” Sci. Rep. 5(1), 8445 (2015).
[Crossref] [PubMed]

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5(1), 13566 (2015).
[Crossref] [PubMed]

J. Song, C. Leon Swisher, H. Im, S. Jeong, D. Pathania, Y. Iwamoto, M. Pivovarov, R. Weissleder, and H. Lee, “Sparsity-Based Pixel Super Resolution for Lens-Free Digital In-line Holography,” Sci. Rep. 6(1), 24681 (2016).
[Crossref] [PubMed]

Y. Rivenson, Y. Wu, H. Wang, Y. Zhang, A. Feizi, and A. Ozcan, “Sparsity-based multi-height phase recovery in holographic microscopy,” Sci. Rep. 6(1), 37862 (2016).
[Crossref] [PubMed]

Other (1)

B. D. Haeffele, R. Stahl, G. Vanmeerbeeck and R. Vidal, “Efficient reconstruction of holographic lens-free images by sparse phase recovery,” Springer, Cham 10434, 109–117 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic layout (a) and real picture (b) of the experiment setup. PM1 and PM2 are gold-coated confocal off-axis parabolic mirrors with the focal length of 50.8 mm and 101.6 mm, respectively. An output THz laser beam of ~10 mm in diameter is expanded and collimated to ~20 mm so that the detector array can be completely covered by THz wave. The wave scattered by the sample forms the object wave while the unscattered part of the illumination forms the reference wave. The resulting interference pattern is called an in-line hologram.
Fig. 2
Fig. 2 Flow chart of the SBMC algorithm. Projection operator Ps is referred to positive absorption constraint in our reconstruction.
Fig. 3
Fig. 3 Simulated amplitude (a), phase (b) and corresponding hologram (c) of ‘THz’ object.
Fig. 4
Fig. 4 Reconstruction results. (a), (e) Distributions of amplitude and phase by conventional AS backpropagation method. The twin-image artifacts marked by the red arrow are very serious. (b), (f) Distributions of amplitude and phase by SBB method after 20 iterations. The twin-image artifacts still exist around the sample. (c), (g) Distributions of amplitude and phase by SBB method after 50 iterations. (d), (h) Distributions of amplitude and phase by SBMC method after 20 iterations. The recovered distributions are completely twin-image free and very consistent with the original ones.
Fig. 5
Fig. 5 Amplitude error (a) and phase error (b) between the simulated object and the recovered one with SBB method and SBMC method respectively.
Fig. 6
Fig. 6 Optical microscopic images (10 × ) and corresponding reconstruction of resolution targets by SBMC method with 20 iterations. (a), (d) Optical microscopic images (10 × ) of 50 μm and 40 μm resolution targets. (b), (c) Reconstructed complex amplitude distributions of 50 μm resolution targets. (e), (f) Reconstructed complex amplitude distributions of 40 μm resolution targets. Three lines can be clearly distinguished.
Fig. 7
Fig. 7 A dragonfly wing and its constructions at z = 2.41 mm. (a), (e) Optical microscopic image (5 × ) and the normalized hologram. (b), (f) Reconstructed complex amplitude distributions by conventional AS backpropagation method. The obvious out of focus twin-image artifacts are marked by red arrows. (c), (g) Reconstructed complex amplitude distributions by SBB method after 50 iterations. The reconstruction quality is enhanced, but some bright artifacts around the object still exist. (d), (h) Reconstructed complex amplitude distributions by SBMC method after 20 iterations. Benefiting from the positive absorption constraint, the reconstruction quality, as well as the convergence speed, are further improved.
Fig. 8
Fig. 8 Reconstructed phase distributions at z = 2.41 mm (a), z = 2.53 mm (b) and z = 2.60 mm (c), respectively. The regions marked by the red dotted lines are in focus.
Fig. 9
Fig. 9 A bauhinia leaf and its constructions at z = 2.2 mm. (a), (e) Optical microscopic image (5 × ) and the normalized hologram. (b), (f) Reconstructed complex amplitude distributions by conventional AS backpropagation method. The reconstruction is disturbed by the unwanted twin-image artifacts. (c), (g) Reconstructed complex amplitude distributions by SBB method after 50 iterations. There are still some bright artifacts. (d), (h) Reconstructed complex amplitude distributions by SBMC method after 20 iterations. The twin-image artifacts are well suppressed, and the contour of the leaf is very clear.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

min X L(X)= 1 2 ||H| T(z)X || | 2 2 s.t. P s (X)=X,
min X,W L(X,W)= 1 2 ||HWT(z)X| | 2 2 s.t. P s (X)=X,| W |=1,
X k+1 =arg min X L(X, W k ),
W k+1 =arg min W L( X k+1 ,W).
X k+1 =arg min X L(X, W k )= P s (T(z)*(H W k )),
W k+1 =arg min W L( X k+1 ,W)= T(z)* X k+1 | T(z)* X k+1 | .
min X,W,μ L(X,W,μ)= 1 2 ||HWT(z)(X+μ1)| | 2 2 +τ X 1 s.t.| W |=1,
μ k+1 =arg min μ L( X k , W k ,μ)= 1 mn T(z)*(H W k ) X k ,1 ,
W k+1 =arg min W L( X k ,W, μ k+1 )= T(z)*( X k + μ k+1 1) | T(z)*( X k + μ k+1 1) | ,
X k+1 =arg min X L(X, W k+1 , μ k+1 )=SF T τ (T(z)*(H W k+1 ) μ k+1 1),
SF T τ (Z)[i,j]={ (| Z[i,j] |τ) Z[i,j] | Z[i,j] | 0 | Z[i,j] |>τ | Z[i,j] |τ .
μ k+1 =arg min μ L( X k , W k ,μ)= 1 mn | T(z)*(H W k ) X k |,1 .
τ= 1 mn T(z)*(H W 1 ) μ 1 1,1 .
min X,W,μ L(X,W,μ)= 1 2 ||HWT(z)(X+μ1)| | 2 2 +τ X 1 s.t. P s (X)=X,| W |=1.
X k+1 =arg min X L(X, W k+1 , μ k+1 ) = P s (SF T τ (T(z)*(H W k+1 ) μ k+1 1)).
E t = 1 mn | t 0 t 1 |,1 ,
E φ = 1 mn | | φ 0 || φ 1 | |,1 ,

Metrics