Abstract

In this paper, we suggest the improved integration of a holographic display and a Maxwellian-view display using time-division multiplexing and describe an image rendering process for the proposed system. In general, the holographic displays have a resolution limit when used to represent a virtual 3D scene. In the proposed system, the holographic display processed relatively few layers of the virtual 3D scene, while the remaining objects were processed with a Maxwellian-view display to which was applied a Gaussian smoothing filter. Hence, we obtained the retaining holographic image quality, expanding the field of view, and reducing the computation time of the proposed system. The holographic display of the proposed system had an image size of 28 mm × 28 mm with a field of view of 1.02° and a 10.8 mm eye box. The Maxwellian-view display had an image size of 230 mm × 230 mm with a field of view of 22.6 ° and a 0.9 mm eye box diameter. Each display was integrated in time-division multiplexing of 40 Hz, and the proposed system was successfully verified.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Progress in virtual reality and augmented reality based on holographic display

Zehao He, Xiaomeng Sui, Guofan Jin, and Liangcai Cao
Appl. Opt. 58(5) A74-A81 (2019)

References

  • View by:
  • |
  • |
  • |

  1. B. Zou, Y. Liu, M. Guo, and Y. Wang, “EEG-Based Assessment of Stereoscopic 3D Visual Fatigue Caused by Vergence-Accommodation Conflict,” IEEE/OSA J. Disp. Technol. 11, 1076–1083 (2015).
    [Crossref]
  2. S. Ravikumar, K. Akeley, and M. S. Banks, “Creating effective focus cues in multi-plane 3D displays,” Opt. Express 19, 20940 (2011).
    [Crossref] [PubMed]
  3. D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Transactions on Graph. 32, 1–10 (2013).
    [Crossref]
  4. N. Matsuda, A. Fix, and D. Lanman, “Focal surface displays,” ACM Transactions on Graph. 36, 1–14 (2017).
    [Crossref]
  5. S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
    [Crossref] [PubMed]
  6. R. Konrad, N. Padmanaban, K. Molner, E. A. Cooper, and G. Wetzstein, “Accommodation-invariant computational near-eye displays,” ACM Transactions on Graph. 36, 1–12 (2017).
  7. T. Kozacki, “On resolution and viewing of holographic image generated by 3D holographic display,” Opt. express 18, 27118–29 (2010).
    [Crossref]
  8. W. Zaperty and T. Kozacki, “Numerical model of diffraction effects of pixelated phase-only spatial light modulators,” Speckle 2018: VII Int. Conf. on Speckle Metrol. p. 106 (2018).
  9. B. R. W. Gerchberg and W. O. Saxton, “A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures,” Optik 35, 237–246 (1972).
  10. M. Makowski, M. Sypek, I. Ducin, and A. Fajst, “Experimental evaluation of a full-color compact lensless holographic display,” Opt. express 17, 270–275 (2009).
    [Crossref]
  11. G. Westheimer, “Retinal light distribution for circular apertures in Maxwellian view,” J Opt Soc Am 49, 41–44 (1959).
    [Crossref] [PubMed]
  12. J. S. Lee, Y. K. Kim, and Y. H. Won, “See-through display combined with holographic display and Maxwellian display using switchable holographic optical element based on liquid lens,” Opt. Express 26, 19341–19355 (2018).
    [Crossref] [PubMed]
  13. G. Tan, Y.-H. Lee, T. Zhan, J. Yang, S. Liu, D. Zhao, and S.-T. Wu, “Foveated imaging for near-eye displays,” Opt. Express 26, 25076 (2018).
    [Crossref] [PubMed]
  14. H. Sun, Z. Zhao, X. Jin, L. Niu, and L. Zhang, “Depth from defocus and blur for single image,” in IEEE VCIP 2013 – 2013 IEEE International Conference on Visual Communications and Image Processing, (2013).
  15. F. W. Campbell, “The Depth of Field of the Human Eye,” Opt. Acta: Int. J. Opt. 4, 157–164 (1957).
    [Crossref]
  16. J. S. Lee, Y. K. Kim, and Y. H. Won, “Time multiplexing technique of holographic view and Maxwellian view using a liquid lens in the optical see-through head mounted display,” Opt. Express 26, 2149 (2018).
    [Crossref] [PubMed]
  17. Y. Deng and D. Chu, “Coherence properties of different light sources and their effect on the image sharpness and speckle of holographic displays,” Sci. Reports 7, 1–12 (2017).
  18. C. J. Bouwkamp, “Diffraction theory,” Reports on Prog. Phys. 17, 35–100 (1954).
    [Crossref]
  19. C. J. R. Sheppard and M. Hrynevych, “Diffraction by a circular aperture: a generalization of Fresenel diffraction theory,” J Opt Soc Am 9, 274–281 (1992).
    [Crossref]
  20. C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
    [Crossref]
  21. T. Shimobaba and T. Ito, “Random phase-free computer-generated hologram,” Opt. Express 23, 9549–9554 (2015).
    [Crossref] [PubMed]
  22. C.-Y. Chen, W.-C. Li, H.-T. Chang, C.-H. Chuang, and Chang Tsung-Jan, “3-D modified Gerchberg-Saxton algorithm developed for panoramic computer-generated phase-only holographic display,” J. Opt. Soc. Am. B 34, B42–B48 (2017).
    [Crossref]
  23. P. Sun, S. Chang, S. Liu, X. Tao, C. Wang, and Z. Zheng, “Holographic near-eye display system based on double-convergence light Gerchberg-Saxton algorithm,” Opt. Express 26, 30368–30378 (2018).
  24. M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, and A. Kowalczyk, “Performance of the 4k phase-only spatial light modulator in image projection by computer-generated holography,” Photonics Lett. Pol. 8, 26–28 (2016).
  25. H. Takahashi and S. Hirooka, “Stereoscopic see-through retinal projection head-mounted display,” (2008), p. 68031N.
  26. Y. Takaki and N. Fujimoto, “Flexible retinal image formation by holographic Maxwellian-view display,” Opt. Express 26, 22985 (2018).
    [Crossref] [PubMed]
  27. S. Jolly, N. Savidis, B. Datta, V. M. Bove, and D. Smalley, “Progress in off-plane computer-generated waveguide holography for near-to-eye 3D display,” in Proc. SPIE 9771, Practical Holography XXX: Materials and Applications, (2016), March2016, p. 97710L.

2018 (5)

2017 (4)

C.-Y. Chen, W.-C. Li, H.-T. Chang, C.-H. Chuang, and Chang Tsung-Jan, “3-D modified Gerchberg-Saxton algorithm developed for panoramic computer-generated phase-only holographic display,” J. Opt. Soc. Am. B 34, B42–B48 (2017).
[Crossref]

Y. Deng and D. Chu, “Coherence properties of different light sources and their effect on the image sharpness and speckle of holographic displays,” Sci. Reports 7, 1–12 (2017).

N. Matsuda, A. Fix, and D. Lanman, “Focal surface displays,” ACM Transactions on Graph. 36, 1–14 (2017).
[Crossref]

R. Konrad, N. Padmanaban, K. Molner, E. A. Cooper, and G. Wetzstein, “Accommodation-invariant computational near-eye displays,” ACM Transactions on Graph. 36, 1–12 (2017).

2016 (1)

M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, and A. Kowalczyk, “Performance of the 4k phase-only spatial light modulator in image projection by computer-generated holography,” Photonics Lett. Pol. 8, 26–28 (2016).

2015 (2)

B. Zou, Y. Liu, M. Guo, and Y. Wang, “EEG-Based Assessment of Stereoscopic 3D Visual Fatigue Caused by Vergence-Accommodation Conflict,” IEEE/OSA J. Disp. Technol. 11, 1076–1083 (2015).
[Crossref]

T. Shimobaba and T. Ito, “Random phase-free computer-generated hologram,” Opt. Express 23, 9549–9554 (2015).
[Crossref] [PubMed]

2013 (1)

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Transactions on Graph. 32, 1–10 (2013).
[Crossref]

2011 (1)

2010 (1)

2009 (1)

M. Makowski, M. Sypek, I. Ducin, and A. Fajst, “Experimental evaluation of a full-color compact lensless holographic display,” Opt. express 17, 270–275 (2009).
[Crossref]

2008 (1)

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[Crossref] [PubMed]

2005 (1)

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
[Crossref]

1992 (1)

C. J. R. Sheppard and M. Hrynevych, “Diffraction by a circular aperture: a generalization of Fresenel diffraction theory,” J Opt Soc Am 9, 274–281 (1992).
[Crossref]

1972 (1)

B. R. W. Gerchberg and W. O. Saxton, “A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures,” Optik 35, 237–246 (1972).

1959 (1)

G. Westheimer, “Retinal light distribution for circular apertures in Maxwellian view,” J Opt Soc Am 49, 41–44 (1959).
[Crossref] [PubMed]

1957 (1)

F. W. Campbell, “The Depth of Field of the Human Eye,” Opt. Acta: Int. J. Opt. 4, 157–164 (1957).
[Crossref]

1954 (1)

C. J. Bouwkamp, “Diffraction theory,” Reports on Prog. Phys. 17, 35–100 (1954).
[Crossref]

Akeley, K.

Banks, M. S.

Blanche, P. A.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[Crossref] [PubMed]

Bouwkamp, C. J.

C. J. Bouwkamp, “Diffraction theory,” Reports on Prog. Phys. 17, 35–100 (1954).
[Crossref]

Bove, V. M.

S. Jolly, N. Savidis, B. Datta, V. M. Bove, and D. Smalley, “Progress in off-plane computer-generated waveguide holography for near-to-eye 3D display,” in Proc. SPIE 9771, Practical Holography XXX: Materials and Applications, (2016), March2016, p. 97710L.

Cameron, C.

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
[Crossref]

Campbell, F. W.

F. W. Campbell, “The Depth of Field of the Human Eye,” Opt. Acta: Int. J. Opt. 4, 157–164 (1957).
[Crossref]

Chang, H.-T.

Chang, S.

P. Sun, S. Chang, S. Liu, X. Tao, C. Wang, and Z. Zheng, “Holographic near-eye display system based on double-convergence light Gerchberg-Saxton algorithm,” Opt. Express 26, 30368–30378 (2018).

Chen, C.-Y.

Chu, D.

Y. Deng and D. Chu, “Coherence properties of different light sources and their effect on the image sharpness and speckle of holographic displays,” Sci. Reports 7, 1–12 (2017).

Chuang, C.-H.

Cooper, E. A.

R. Konrad, N. Padmanaban, K. Molner, E. A. Cooper, and G. Wetzstein, “Accommodation-invariant computational near-eye displays,” ACM Transactions on Graph. 36, 1–12 (2017).

Datta, B.

S. Jolly, N. Savidis, B. Datta, V. M. Bove, and D. Smalley, “Progress in off-plane computer-generated waveguide holography for near-to-eye 3D display,” in Proc. SPIE 9771, Practical Holography XXX: Materials and Applications, (2016), March2016, p. 97710L.

Deng, Y.

Y. Deng and D. Chu, “Coherence properties of different light sources and their effect on the image sharpness and speckle of holographic displays,” Sci. Reports 7, 1–12 (2017).

Ducin, I.

M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, and A. Kowalczyk, “Performance of the 4k phase-only spatial light modulator in image projection by computer-generated holography,” Photonics Lett. Pol. 8, 26–28 (2016).

M. Makowski, M. Sypek, I. Ducin, and A. Fajst, “Experimental evaluation of a full-color compact lensless holographic display,” Opt. express 17, 270–275 (2009).
[Crossref]

Fajst, A.

M. Makowski, M. Sypek, I. Ducin, and A. Fajst, “Experimental evaluation of a full-color compact lensless holographic display,” Opt. express 17, 270–275 (2009).
[Crossref]

Fix, A.

N. Matsuda, A. Fix, and D. Lanman, “Focal surface displays,” ACM Transactions on Graph. 36, 1–14 (2017).
[Crossref]

Flores, D.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[Crossref] [PubMed]

Fujimoto, N.

Gerchberg, B. R. W.

B. R. W. Gerchberg and W. O. Saxton, “A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures,” Optik 35, 237–246 (1972).

Gu, T.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[Crossref] [PubMed]

Guo, M.

B. Zou, Y. Liu, M. Guo, and Y. Wang, “EEG-Based Assessment of Stereoscopic 3D Visual Fatigue Caused by Vergence-Accommodation Conflict,” IEEE/OSA J. Disp. Technol. 11, 1076–1083 (2015).
[Crossref]

Hilaire, P. St

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[Crossref] [PubMed]

Hirooka, S.

H. Takahashi and S. Hirooka, “Stereoscopic see-through retinal projection head-mounted display,” (2008), p. 68031N.

Hrynevych, M.

C. J. R. Sheppard and M. Hrynevych, “Diffraction by a circular aperture: a generalization of Fresenel diffraction theory,” J Opt Soc Am 9, 274–281 (1992).
[Crossref]

Ito, T.

Jin, X.

H. Sun, Z. Zhao, X. Jin, L. Niu, and L. Zhang, “Depth from defocus and blur for single image,” in IEEE VCIP 2013 – 2013 IEEE International Conference on Visual Communications and Image Processing, (2013).

Jolly, S.

S. Jolly, N. Savidis, B. Datta, V. M. Bove, and D. Smalley, “Progress in off-plane computer-generated waveguide holography for near-to-eye 3D display,” in Proc. SPIE 9771, Practical Holography XXX: Materials and Applications, (2016), March2016, p. 97710L.

Kakarenko, K.

M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, and A. Kowalczyk, “Performance of the 4k phase-only spatial light modulator in image projection by computer-generated holography,” Photonics Lett. Pol. 8, 26–28 (2016).

Kim, Y. K.

Konrad, R.

R. Konrad, N. Padmanaban, K. Molner, E. A. Cooper, and G. Wetzstein, “Accommodation-invariant computational near-eye displays,” ACM Transactions on Graph. 36, 1–12 (2017).

Kowalczyk, A.

M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, and A. Kowalczyk, “Performance of the 4k phase-only spatial light modulator in image projection by computer-generated holography,” Photonics Lett. Pol. 8, 26–28 (2016).

Kozacki, T.

T. Kozacki, “On resolution and viewing of holographic image generated by 3D holographic display,” Opt. express 18, 27118–29 (2010).
[Crossref]

W. Zaperty and T. Kozacki, “Numerical model of diffraction effects of pixelated phase-only spatial light modulators,” Speckle 2018: VII Int. Conf. on Speckle Metrol. p. 106 (2018).

Lanman, D.

N. Matsuda, A. Fix, and D. Lanman, “Focal surface displays,” ACM Transactions on Graph. 36, 1–14 (2017).
[Crossref]

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Transactions on Graph. 32, 1–10 (2013).
[Crossref]

Lee, J. S.

Lee, Y.-H.

Li, G.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[Crossref] [PubMed]

Li, W.-C.

Lin, W.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[Crossref] [PubMed]

Liu, S.

P. Sun, S. Chang, S. Liu, X. Tao, C. Wang, and Z. Zheng, “Holographic near-eye display system based on double-convergence light Gerchberg-Saxton algorithm,” Opt. Express 26, 30368–30378 (2018).

G. Tan, Y.-H. Lee, T. Zhan, J. Yang, S. Liu, D. Zhao, and S.-T. Wu, “Foveated imaging for near-eye displays,” Opt. Express 26, 25076 (2018).
[Crossref] [PubMed]

Liu, Y.

B. Zou, Y. Liu, M. Guo, and Y. Wang, “EEG-Based Assessment of Stereoscopic 3D Visual Fatigue Caused by Vergence-Accommodation Conflict,” IEEE/OSA J. Disp. Technol. 11, 1076–1083 (2015).
[Crossref]

Luebke, D.

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Transactions on Graph. 32, 1–10 (2013).
[Crossref]

Makowski, M.

M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, and A. Kowalczyk, “Performance of the 4k phase-only spatial light modulator in image projection by computer-generated holography,” Photonics Lett. Pol. 8, 26–28 (2016).

M. Makowski, M. Sypek, I. Ducin, and A. Fajst, “Experimental evaluation of a full-color compact lensless holographic display,” Opt. express 17, 270–275 (2009).
[Crossref]

Matsuda, N.

N. Matsuda, A. Fix, and D. Lanman, “Focal surface displays,” ACM Transactions on Graph. 36, 1–14 (2017).
[Crossref]

Molner, K.

R. Konrad, N. Padmanaban, K. Molner, E. A. Cooper, and G. Wetzstein, “Accommodation-invariant computational near-eye displays,” ACM Transactions on Graph. 36, 1–12 (2017).

Niu, L.

H. Sun, Z. Zhao, X. Jin, L. Niu, and L. Zhang, “Depth from defocus and blur for single image,” in IEEE VCIP 2013 – 2013 IEEE International Conference on Visual Communications and Image Processing, (2013).

Norwood, R. A.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[Crossref] [PubMed]

Padmanaban, N.

R. Konrad, N. Padmanaban, K. Molner, E. A. Cooper, and G. Wetzstein, “Accommodation-invariant computational near-eye displays,” ACM Transactions on Graph. 36, 1–12 (2017).

Peyghambarian, N.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[Crossref] [PubMed]

Ravikumar, S.

Rokutanda, S.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[Crossref] [PubMed]

Savidis, N.

S. Jolly, N. Savidis, B. Datta, V. M. Bove, and D. Smalley, “Progress in off-plane computer-generated waveguide holography for near-to-eye 3D display,” in Proc. SPIE 9771, Practical Holography XXX: Materials and Applications, (2016), March2016, p. 97710L.

Saxton, W. O.

B. R. W. Gerchberg and W. O. Saxton, “A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures,” Optik 35, 237–246 (1972).

Sheppard, C. J. R.

C. J. R. Sheppard and M. Hrynevych, “Diffraction by a circular aperture: a generalization of Fresenel diffraction theory,” J Opt Soc Am 9, 274–281 (1992).
[Crossref]

Shimobaba, T.

Slinger, C.

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
[Crossref]

Smalley, D.

S. Jolly, N. Savidis, B. Datta, V. M. Bove, and D. Smalley, “Progress in off-plane computer-generated waveguide holography for near-to-eye 3D display,” in Proc. SPIE 9771, Practical Holography XXX: Materials and Applications, (2016), March2016, p. 97710L.

Stanley, M.

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
[Crossref]

Sun, H.

H. Sun, Z. Zhao, X. Jin, L. Niu, and L. Zhang, “Depth from defocus and blur for single image,” in IEEE VCIP 2013 – 2013 IEEE International Conference on Visual Communications and Image Processing, (2013).

Sun, P.

P. Sun, S. Chang, S. Liu, X. Tao, C. Wang, and Z. Zheng, “Holographic near-eye display system based on double-convergence light Gerchberg-Saxton algorithm,” Opt. Express 26, 30368–30378 (2018).

Suszek, J.

M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, and A. Kowalczyk, “Performance of the 4k phase-only spatial light modulator in image projection by computer-generated holography,” Photonics Lett. Pol. 8, 26–28 (2016).

Sypek, M.

M. Makowski, M. Sypek, I. Ducin, and A. Fajst, “Experimental evaluation of a full-color compact lensless holographic display,” Opt. express 17, 270–275 (2009).
[Crossref]

Takahashi, H.

H. Takahashi and S. Hirooka, “Stereoscopic see-through retinal projection head-mounted display,” (2008), p. 68031N.

Takaki, Y.

Tan, G.

Tao, X.

P. Sun, S. Chang, S. Liu, X. Tao, C. Wang, and Z. Zheng, “Holographic near-eye display system based on double-convergence light Gerchberg-Saxton algorithm,” Opt. Express 26, 30368–30378 (2018).

Tay, S.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[Crossref] [PubMed]

Thomas, J.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[Crossref] [PubMed]

Tsung-Jan, Chang

Tunç, A. V.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[Crossref] [PubMed]

Voorakaranam, R.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[Crossref] [PubMed]

Wang, C.

P. Sun, S. Chang, S. Liu, X. Tao, C. Wang, and Z. Zheng, “Holographic near-eye display system based on double-convergence light Gerchberg-Saxton algorithm,” Opt. Express 26, 30368–30378 (2018).

Wang, P.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[Crossref] [PubMed]

Wang, Y.

B. Zou, Y. Liu, M. Guo, and Y. Wang, “EEG-Based Assessment of Stereoscopic 3D Visual Fatigue Caused by Vergence-Accommodation Conflict,” IEEE/OSA J. Disp. Technol. 11, 1076–1083 (2015).
[Crossref]

Westheimer, G.

G. Westheimer, “Retinal light distribution for circular apertures in Maxwellian view,” J Opt Soc Am 49, 41–44 (1959).
[Crossref] [PubMed]

Wetzstein, G.

R. Konrad, N. Padmanaban, K. Molner, E. A. Cooper, and G. Wetzstein, “Accommodation-invariant computational near-eye displays,” ACM Transactions on Graph. 36, 1–12 (2017).

Won, Y. H.

Wu, S.-T.

Yamamoto, M.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[Crossref] [PubMed]

Yang, J.

Zaperty, W.

W. Zaperty and T. Kozacki, “Numerical model of diffraction effects of pixelated phase-only spatial light modulators,” Speckle 2018: VII Int. Conf. on Speckle Metrol. p. 106 (2018).

Zhan, T.

Zhang, L.

H. Sun, Z. Zhao, X. Jin, L. Niu, and L. Zhang, “Depth from defocus and blur for single image,” in IEEE VCIP 2013 – 2013 IEEE International Conference on Visual Communications and Image Processing, (2013).

Zhao, D.

Zhao, Z.

H. Sun, Z. Zhao, X. Jin, L. Niu, and L. Zhang, “Depth from defocus and blur for single image,” in IEEE VCIP 2013 – 2013 IEEE International Conference on Visual Communications and Image Processing, (2013).

Zheng, Z.

P. Sun, S. Chang, S. Liu, X. Tao, C. Wang, and Z. Zheng, “Holographic near-eye display system based on double-convergence light Gerchberg-Saxton algorithm,” Opt. Express 26, 30368–30378 (2018).

Zou, B.

B. Zou, Y. Liu, M. Guo, and Y. Wang, “EEG-Based Assessment of Stereoscopic 3D Visual Fatigue Caused by Vergence-Accommodation Conflict,” IEEE/OSA J. Disp. Technol. 11, 1076–1083 (2015).
[Crossref]

ACM Transactions on Graph. (3)

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Transactions on Graph. 32, 1–10 (2013).
[Crossref]

N. Matsuda, A. Fix, and D. Lanman, “Focal surface displays,” ACM Transactions on Graph. 36, 1–14 (2017).
[Crossref]

R. Konrad, N. Padmanaban, K. Molner, E. A. Cooper, and G. Wetzstein, “Accommodation-invariant computational near-eye displays,” ACM Transactions on Graph. 36, 1–12 (2017).

Computer (1)

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
[Crossref]

IEEE/OSA J. Disp. Technol. (1)

B. Zou, Y. Liu, M. Guo, and Y. Wang, “EEG-Based Assessment of Stereoscopic 3D Visual Fatigue Caused by Vergence-Accommodation Conflict,” IEEE/OSA J. Disp. Technol. 11, 1076–1083 (2015).
[Crossref]

J Opt Soc Am (2)

G. Westheimer, “Retinal light distribution for circular apertures in Maxwellian view,” J Opt Soc Am 49, 41–44 (1959).
[Crossref] [PubMed]

C. J. R. Sheppard and M. Hrynevych, “Diffraction by a circular aperture: a generalization of Fresenel diffraction theory,” J Opt Soc Am 9, 274–281 (1992).
[Crossref]

J. Opt. Soc. Am. B (1)

Nature (1)

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[Crossref] [PubMed]

Opt. Acta: Int. J. Opt. (1)

F. W. Campbell, “The Depth of Field of the Human Eye,” Opt. Acta: Int. J. Opt. 4, 157–164 (1957).
[Crossref]

Opt. Express (7)

J. S. Lee, Y. K. Kim, and Y. H. Won, “Time multiplexing technique of holographic view and Maxwellian view using a liquid lens in the optical see-through head mounted display,” Opt. Express 26, 2149 (2018).
[Crossref] [PubMed]

J. S. Lee, Y. K. Kim, and Y. H. Won, “See-through display combined with holographic display and Maxwellian display using switchable holographic optical element based on liquid lens,” Opt. Express 26, 19341–19355 (2018).
[Crossref] [PubMed]

G. Tan, Y.-H. Lee, T. Zhan, J. Yang, S. Liu, D. Zhao, and S.-T. Wu, “Foveated imaging for near-eye displays,” Opt. Express 26, 25076 (2018).
[Crossref] [PubMed]

S. Ravikumar, K. Akeley, and M. S. Banks, “Creating effective focus cues in multi-plane 3D displays,” Opt. Express 19, 20940 (2011).
[Crossref] [PubMed]

T. Kozacki, “On resolution and viewing of holographic image generated by 3D holographic display,” Opt. express 18, 27118–29 (2010).
[Crossref]

M. Makowski, M. Sypek, I. Ducin, and A. Fajst, “Experimental evaluation of a full-color compact lensless holographic display,” Opt. express 17, 270–275 (2009).
[Crossref]

P. Sun, S. Chang, S. Liu, X. Tao, C. Wang, and Z. Zheng, “Holographic near-eye display system based on double-convergence light Gerchberg-Saxton algorithm,” Opt. Express 26, 30368–30378 (2018).

T. Shimobaba and T. Ito, “Random phase-free computer-generated hologram,” Opt. Express 23, 9549–9554 (2015).
[Crossref] [PubMed]

Y. Takaki and N. Fujimoto, “Flexible retinal image formation by holographic Maxwellian-view display,” Opt. Express 26, 22985 (2018).
[Crossref] [PubMed]

Optik (1)

B. R. W. Gerchberg and W. O. Saxton, “A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures,” Optik 35, 237–246 (1972).

Photonics Lett. Pol. (1)

M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, and A. Kowalczyk, “Performance of the 4k phase-only spatial light modulator in image projection by computer-generated holography,” Photonics Lett. Pol. 8, 26–28 (2016).

Reports on Prog. Phys. (1)

C. J. Bouwkamp, “Diffraction theory,” Reports on Prog. Phys. 17, 35–100 (1954).
[Crossref]

Sci. Reports (1)

Y. Deng and D. Chu, “Coherence properties of different light sources and their effect on the image sharpness and speckle of holographic displays,” Sci. Reports 7, 1–12 (2017).

Other (4)

H. Sun, Z. Zhao, X. Jin, L. Niu, and L. Zhang, “Depth from defocus and blur for single image,” in IEEE VCIP 2013 – 2013 IEEE International Conference on Visual Communications and Image Processing, (2013).

W. Zaperty and T. Kozacki, “Numerical model of diffraction effects of pixelated phase-only spatial light modulators,” Speckle 2018: VII Int. Conf. on Speckle Metrol. p. 106 (2018).

H. Takahashi and S. Hirooka, “Stereoscopic see-through retinal projection head-mounted display,” (2008), p. 68031N.

S. Jolly, N. Savidis, B. Datta, V. M. Bove, and D. Smalley, “Progress in off-plane computer-generated waveguide holography for near-to-eye 3D display,” in Proc. SPIE 9771, Practical Holography XXX: Materials and Applications, (2016), March2016, p. 97710L.

Supplementary Material (1)

NameDescription
» Visualization 1       Time-division mulitplexing of a Maxwellian-view and hologrpahic display

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Example of foveated images
Fig. 2
Fig. 2 a) Schematic of the proposed system and b) practical configuration of the proposed system
Fig. 3
Fig. 3 Captured results of a holographic image (a),(d) without a pinhole, (b),(e) with a 100 μ pinhole, and (c),(f) with a 200 μ pinhole
Fig. 4
Fig. 4 (a) Amplitude mostly mode and (b) phase mostly mode
Fig. 5
Fig. 5 Modulation transfer function of proposed holographic display.
Fig. 6
Fig. 6 (a),(b) Rendered holographic images, c) PSNR according to the number of iterations.
Fig. 7
Fig. 7 Optical configuration schematic of the eye.
Fig. 8
Fig. 8 (a) Image modeled by computer graphics image, (b) image with the customized Gaussian smoothing filter applied, and (c) result of the image in (b) applied to a Maxwellian-view display.
Fig. 9
Fig. 9 Schematic diagram of time multiplexing technique of the proposed system.
Fig. 10
Fig. 10 (a), (c) Rendered Maxwellian-view image and (b), (c) holographic image applied to proposed system.
Fig. 11
Fig. 11 Maximum image width of (a) the Maxwellian-view display and (b) the holographic display.
Fig. 12
Fig. 12 Expressible depth range of the holographic image (a) 0.5m, (b) 1.5m, and (c) 5.5m.
Fig. 13
Fig. 13 (a),(b) Intended scene image, (b),(e) result of hologram only rendering, and (c),(f) result of the proposed system when digitally merged using an image processing tool (see Visualization 1).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

H ( u , v ) = i λ d exp ( i 2 π λ d ) exp [ i π λ d ( u 2 + v 2 ) ] × h ( x , y ) exp [ i π λ d ( x 2 + y 2 ) ] exp [ i 2 π λ d ( x u + y v ) ] d x d y
Δ u = λ d N x Δ x , Δ v = λ d N y Δ y
C N x log ( Q ) N y log ( Q ) log ( 1 + S / N )
H n ( u , v , z n ) = i = 0 n exp ( i ϕ g s ( u , v ) ) × exp ( i k z n 1 ( λ u ) 2 ( λ v ) 2 )
w = l m f m f ( 1 m 1 z )
O ( x , y ) = O ( x , y ) h ( x , y )
h ( x , y ) = 1 2 π σ 2 exp ( x 2 + y 2 2 σ 2 )
θ h = 2 sin 1 ( λ 2 d x )
w h = N x d x
θ m = 2 tan 1 ( 1 NA )
w m = λ f d x