Abstract

Metalens recently attracts enormous attention due to its microscale figure and versatile functionalities. With the combination of geometric phase and propagation phase, we first wrote the phase equation of bifocal metalens that can high efficiently focus incidence into one or two foci in tandem along longitudinal direction, depending on the polarization of incidence. More importantly, the relative intensity of the two foci can be modulated conveniently by changing the ellipticity of incidence, which is different from previous bifocal metalenses need to be repatterned for each kind of relative intensity [Opt. Express 23, 29855 (2015)]. Besides, the focusing efficiency of the proposed metalens is as high as 72%, and the separate distance between those two foci can be designed at will, which may find itself significant applications in optical tomography technique, optical data storage, and so on.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High numerical aperture multifocal metalens based on Pancharatnam–Berry phase optical elements

Qinmiao Chen, Yan Li, Yanhua Han, Duo Deng, Dahai Yang, Ying Zhang, Yi Liu, and Jianmin Gao
Appl. Opt. 57(27) 7891-7894 (2018)

Ultra-thin circular polarization analyzer based on the metal rectangular split-ring resonators

Rongzhen Li, Zhongyi Guo, Wei Wang, Jingran Zhang, Anjun Zhang, Jianlong Liu, Shiliang Qu, and Jun Gao
Opt. Express 22(23) 27968-27975 (2014)

Arbitrary patterned anisotropic diffractive optical elements using the galvanometer polarization drawing method: application in fabricating polarization-dependent liquid-crystal Fresnel lens cells

Kohei Noda, Jou Matsubara, Kotaro Kawai, Moritsugu Sakamoto, Tomoyuki Sasaki, Nobuhiro Kawatsuki, Kohei Goto, and Hiroshi Ono
Appl. Opt. 56(5) 1302-1309 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. Wang, Z. Guo, K. Zhou, Y. Sun, F. Shen, Y. Li, S. Qu, and S. Liu, “Polarization-independent longitudinal multi-focusing metalens,” Opt. Express 23(23), 29855–29866 (2015).
    [Crossref] [PubMed]
  2. Y. Zhang, R. Zhang, X. Li, L. Ma, C. Liu, C. He, and C. Cheng, “Radially polarized plasmonic vector vortex generated by a metasurface spiral in gold film,” Opt. Express 25(25), 32150–32160 (2017).
    [Crossref] [PubMed]
  3. N. Kou, S. Yu, and L. Li, “Generation of high-order Bessel vortex beam carrying orbital angular momentum using multilayer amplitude-phase-modulated surfaces in radiofrequency domain,” Appl. Phys. Express 10(1), 016701 (2017).
    [Crossref]
  4. X. Zhang, J. Jin, M. Pu, X. Li, X. Ma, P. Gao, Z. Zhao, Y. Wang, C. Wang, and X. Luo, “Ultrahigh-capacity dynamic holographic displays via anisotropic nanoholes,” Nanoscale 9(4), 1409–1415 (2017).
    [Crossref] [PubMed]
  5. X. G. Luo, M. B. Pu, X. Li, and X. L. Ma, “Broadband spin Hall effect of light in single nanoapertures,” Light Sci. Appl. 6(6), e16276 (2017).
    [Crossref] [PubMed]
  6. S. S. Tong, B. Han, and J. P. Tang, “Edge-guided TVp regularization for diffuse optical tomography based on radiative transport equation,” Inverse Probl. 34(11), 115009 (2018).
    [Crossref]
  7. L. Y. Chen, M. C. Pan, and M. C. Pan, “Flexible near-infrared diffuse optical tomography with varied weighting functions of edge-preserving regularization,” Appl. Opt. 52(6), 1173–1182 (2013).
    [Crossref] [PubMed]
  8. D. C. Adams and M. J. Suter, “Processing-based approach for resolving the sample optic axis in endoscopic polarization-sensitive optical coherence tomography,” Opt. Express 26(19), 24917–24927 (2018).
    [Crossref] [PubMed]
  9. S. Horiuchi, A. Fukumoto, and M. Yamamoto, “Analysis of crosstalk-free conditions for a cross-shift multiplexing method in holographic data recording,” Appl. Opt. 57(27), 7805–7810 (2018).
    [Crossref] [PubMed]
  10. M. Salinga, B. Kersting, I. Ronneberger, V. P. Jonnalagadda, X. T. Vu, M. Le Gallo, I. Giannopoulos, O. Cojocaru-Mirédin, R. Mazzarello, and A. Sebastian, “Monatomic phase change memory,” Nat. Mater. 17(8), 681–685 (2018).
    [Crossref] [PubMed]
  11. S. Zhang, M.-H. Kim, F. Aieta, A. She, T. Mansuripur, I. Gabay, M. Khorasaninejad, D. Rousso, X. Wang, M. Troccoli, N. Yu, and F. Capasso, “High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays,” Opt. Express 24(16), 18024–18034 (2016).
    [Crossref] [PubMed]
  12. S. Wang, J. Lai, T. Wu, C. Chen, and J. Sun, “Wide-band achromatic flat focusing lens based on all-dielectric subwavelength metasurface,” Opt. Express 25(6), 7121–7130 (2017).
    [Crossref] [PubMed]
  13. A. K. Azad, A. V. Efimov, S. Ghosh, J. Singleton, A. J. Taylor, and H.-T. Chen, “Ultra-thin metasurface microwave flat lens for broadband applications,” Appl. Phys. Lett. 110(22), 224101 (2017).
    [Crossref] [PubMed]
  14. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
    [Crossref] [PubMed]
  15. M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
    [Crossref] [PubMed]
  16. W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
    [Crossref] [PubMed]
  17. W. T. Chen, A. Y. Zhu, M. Khorasaninejad, Z. Shi, V. Sanjeev, and F. Capasso, “Immersion meta-lenses at visible wavelengths for nanoscale imaging,” Nano Lett. 17(5), 3188–3194 (2017).
    [Crossref] [PubMed]
  18. A. Arbabi, R. M. Briggs, Y. Horie, M. Bagheri, and A. Faraon, “Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers,” Opt. Express 23(26), 33310–33317 (2015).
    [Crossref] [PubMed]
  19. S. Colburn, A. Zhan, and A. Majumdar, “Metasurface optics for full-color computational imaging,” Sci. Adv. 4(2), eaar2114 (2018).
    [Crossref]
  20. M. Jang, Y. Horie, A. Shibukawa, J. Brake, Y. Liu, S. M. Kamali, A. Arbabi, H. Ruan, A. Faraon, and C. Yang, “Wavefront shaping with disorder-engineered metasurfaces,” Nat. Photonics 12(2), 84–90 (2018).
    [Crossref] [PubMed]
  21. P. Wang, N. Mohammad, and R. Menon, “Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6(1), 21545 (2016).
    [Crossref] [PubMed]
  22. R. Ji, K. J. Chen, Y. J. Ni, Y. N. Hua, K.W. Long, and S. L. Zhuang, “Dual-focuses metalens for copolarized and cross-polarized transmission waves,” Adv. Cond. Matter Phys. 2312694 (2018).
    [Crossref]
  23. F. Zhang, M. B. Pu, J. Luo, H. L. Yu, and X. G. Luo, “Symmetry breaking of photonic spin-orbit interactions in metasurfaces,” Guangdian Gongcheng 44(3), 319–325 (2017).
  24. M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16(7), 4595–4600 (2016).
    [Crossref] [PubMed]
  25. X. Z. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Y. Yue, C. W. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3(9), 1201–1206 (2015).
    [Crossref]
  26. J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
    [Crossref] [PubMed]
  27. M. Khorasaninejad and K. B. Crozier, “Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter,” Nat. Commun. 5(1), 5386 (2014).
    [Crossref] [PubMed]
  28. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
    [Crossref] [PubMed]
  29. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
    [Crossref] [PubMed]
  30. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  31. F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
    [Crossref] [PubMed]
  32. X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
    [Crossref] [PubMed]
  33. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
    [Crossref] [PubMed]

2018 (6)

D. C. Adams and M. J. Suter, “Processing-based approach for resolving the sample optic axis in endoscopic polarization-sensitive optical coherence tomography,” Opt. Express 26(19), 24917–24927 (2018).
[Crossref] [PubMed]

S. Horiuchi, A. Fukumoto, and M. Yamamoto, “Analysis of crosstalk-free conditions for a cross-shift multiplexing method in holographic data recording,” Appl. Opt. 57(27), 7805–7810 (2018).
[Crossref] [PubMed]

M. Salinga, B. Kersting, I. Ronneberger, V. P. Jonnalagadda, X. T. Vu, M. Le Gallo, I. Giannopoulos, O. Cojocaru-Mirédin, R. Mazzarello, and A. Sebastian, “Monatomic phase change memory,” Nat. Mater. 17(8), 681–685 (2018).
[Crossref] [PubMed]

S. S. Tong, B. Han, and J. P. Tang, “Edge-guided TVp regularization for diffuse optical tomography based on radiative transport equation,” Inverse Probl. 34(11), 115009 (2018).
[Crossref]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

M. Jang, Y. Horie, A. Shibukawa, J. Brake, Y. Liu, S. M. Kamali, A. Arbabi, H. Ruan, A. Faraon, and C. Yang, “Wavefront shaping with disorder-engineered metasurfaces,” Nat. Photonics 12(2), 84–90 (2018).
[Crossref] [PubMed]

2017 (9)

F. Zhang, M. B. Pu, J. Luo, H. L. Yu, and X. G. Luo, “Symmetry breaking of photonic spin-orbit interactions in metasurfaces,” Guangdian Gongcheng 44(3), 319–325 (2017).

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref] [PubMed]

W. T. Chen, A. Y. Zhu, M. Khorasaninejad, Z. Shi, V. Sanjeev, and F. Capasso, “Immersion meta-lenses at visible wavelengths for nanoscale imaging,” Nano Lett. 17(5), 3188–3194 (2017).
[Crossref] [PubMed]

S. Wang, J. Lai, T. Wu, C. Chen, and J. Sun, “Wide-band achromatic flat focusing lens based on all-dielectric subwavelength metasurface,” Opt. Express 25(6), 7121–7130 (2017).
[Crossref] [PubMed]

A. K. Azad, A. V. Efimov, S. Ghosh, J. Singleton, A. J. Taylor, and H.-T. Chen, “Ultra-thin metasurface microwave flat lens for broadband applications,” Appl. Phys. Lett. 110(22), 224101 (2017).
[Crossref] [PubMed]

Y. Zhang, R. Zhang, X. Li, L. Ma, C. Liu, C. He, and C. Cheng, “Radially polarized plasmonic vector vortex generated by a metasurface spiral in gold film,” Opt. Express 25(25), 32150–32160 (2017).
[Crossref] [PubMed]

N. Kou, S. Yu, and L. Li, “Generation of high-order Bessel vortex beam carrying orbital angular momentum using multilayer amplitude-phase-modulated surfaces in radiofrequency domain,” Appl. Phys. Express 10(1), 016701 (2017).
[Crossref]

X. Zhang, J. Jin, M. Pu, X. Li, X. Ma, P. Gao, Z. Zhao, Y. Wang, C. Wang, and X. Luo, “Ultrahigh-capacity dynamic holographic displays via anisotropic nanoholes,” Nanoscale 9(4), 1409–1415 (2017).
[Crossref] [PubMed]

X. G. Luo, M. B. Pu, X. Li, and X. L. Ma, “Broadband spin Hall effect of light in single nanoapertures,” Light Sci. Appl. 6(6), e16276 (2017).
[Crossref] [PubMed]

2016 (5)

S. Zhang, M.-H. Kim, F. Aieta, A. She, T. Mansuripur, I. Gabay, M. Khorasaninejad, D. Rousso, X. Wang, M. Troccoli, N. Yu, and F. Capasso, “High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays,” Opt. Express 24(16), 18024–18034 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

P. Wang, N. Mohammad, and R. Menon, “Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6(1), 21545 (2016).
[Crossref] [PubMed]

2015 (6)

X. Z. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Y. Yue, C. W. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3(9), 1201–1206 (2015).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

W. Wang, Z. Guo, K. Zhou, Y. Sun, F. Shen, Y. Li, S. Qu, and S. Liu, “Polarization-independent longitudinal multi-focusing metalens,” Opt. Express 23(23), 29855–29866 (2015).
[Crossref] [PubMed]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

A. Arbabi, R. M. Briggs, Y. Horie, M. Bagheri, and A. Faraon, “Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers,” Opt. Express 23(26), 33310–33317 (2015).
[Crossref] [PubMed]

2014 (1)

M. Khorasaninejad and K. B. Crozier, “Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter,” Nat. Commun. 5(1), 5386 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (2)

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

2011 (1)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Adams, D. C.

Aieta, F.

S. Zhang, M.-H. Kim, F. Aieta, A. She, T. Mansuripur, I. Gabay, M. Khorasaninejad, D. Rousso, X. Wang, M. Troccoli, N. Yu, and F. Capasso, “High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays,” Opt. Express 24(16), 18024–18034 (2016).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Arbabi, A.

M. Jang, Y. Horie, A. Shibukawa, J. Brake, Y. Liu, S. M. Kamali, A. Arbabi, H. Ruan, A. Faraon, and C. Yang, “Wavefront shaping with disorder-engineered metasurfaces,” Nat. Photonics 12(2), 84–90 (2018).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

A. Arbabi, R. M. Briggs, Y. Horie, M. Bagheri, and A. Faraon, “Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers,” Opt. Express 23(26), 33310–33317 (2015).
[Crossref] [PubMed]

Azad, A. K.

A. K. Azad, A. V. Efimov, S. Ghosh, J. Singleton, A. J. Taylor, and H.-T. Chen, “Ultra-thin metasurface microwave flat lens for broadband applications,” Appl. Phys. Lett. 110(22), 224101 (2017).
[Crossref] [PubMed]

Bagheri, M.

A. Arbabi, R. M. Briggs, Y. Horie, M. Bagheri, and A. Faraon, “Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers,” Opt. Express 23(26), 33310–33317 (2015).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Balthasar Mueller, J. P.

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref] [PubMed]

Blanchard, R.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Brake, J.

M. Jang, Y. Horie, A. Shibukawa, J. Brake, Y. Liu, S. M. Kamali, A. Arbabi, H. Ruan, A. Faraon, and C. Yang, “Wavefront shaping with disorder-engineered metasurfaces,” Nat. Photonics 12(2), 84–90 (2018).
[Crossref] [PubMed]

Briggs, R. M.

Capasso, F.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

W. T. Chen, A. Y. Zhu, M. Khorasaninejad, Z. Shi, V. Sanjeev, and F. Capasso, “Immersion meta-lenses at visible wavelengths for nanoscale imaging,” Nano Lett. 17(5), 3188–3194 (2017).
[Crossref] [PubMed]

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref] [PubMed]

S. Zhang, M.-H. Kim, F. Aieta, A. She, T. Mansuripur, I. Gabay, M. Khorasaninejad, D. Rousso, X. Wang, M. Troccoli, N. Yu, and F. Capasso, “High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays,” Opt. Express 24(16), 18024–18034 (2016).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Chen, C.

Chen, H.-T.

A. K. Azad, A. V. Efimov, S. Ghosh, J. Singleton, A. J. Taylor, and H.-T. Chen, “Ultra-thin metasurface microwave flat lens for broadband applications,” Appl. Phys. Lett. 110(22), 224101 (2017).
[Crossref] [PubMed]

Chen, L. Y.

Chen, M.

X. Z. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Y. Yue, C. W. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3(9), 1201–1206 (2015).
[Crossref]

Chen, W. T.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

W. T. Chen, A. Y. Zhu, M. Khorasaninejad, Z. Shi, V. Sanjeev, and F. Capasso, “Immersion meta-lenses at visible wavelengths for nanoscale imaging,” Nano Lett. 17(5), 3188–3194 (2017).
[Crossref] [PubMed]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

Chen, X. Z.

X. Z. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Y. Yue, C. W. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3(9), 1201–1206 (2015).
[Crossref]

Cheng, C.

Cojocaru-Mirédin, O.

M. Salinga, B. Kersting, I. Ronneberger, V. P. Jonnalagadda, X. T. Vu, M. Le Gallo, I. Giannopoulos, O. Cojocaru-Mirédin, R. Mazzarello, and A. Sebastian, “Monatomic phase change memory,” Nat. Mater. 17(8), 681–685 (2018).
[Crossref] [PubMed]

Crozier, K. B.

M. Khorasaninejad and K. B. Crozier, “Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter,” Nat. Commun. 5(1), 5386 (2014).
[Crossref] [PubMed]

Devlin, R. C.

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref] [PubMed]

Efimov, A. V.

A. K. Azad, A. V. Efimov, S. Ghosh, J. Singleton, A. J. Taylor, and H.-T. Chen, “Ultra-thin metasurface microwave flat lens for broadband applications,” Appl. Phys. Lett. 110(22), 224101 (2017).
[Crossref] [PubMed]

Faraon, A.

M. Jang, Y. Horie, A. Shibukawa, J. Brake, Y. Liu, S. M. Kamali, A. Arbabi, H. Ruan, A. Faraon, and C. Yang, “Wavefront shaping with disorder-engineered metasurfaces,” Nat. Photonics 12(2), 84–90 (2018).
[Crossref] [PubMed]

A. Arbabi, R. M. Briggs, Y. Horie, M. Bagheri, and A. Faraon, “Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers,” Opt. Express 23(26), 33310–33317 (2015).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Fukumoto, A.

Gabay, I.

Gaburro, Z.

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gao, P.

X. Zhang, J. Jin, M. Pu, X. Li, X. Ma, P. Gao, Z. Zhao, Y. Wang, C. Wang, and X. Luo, “Ultrahigh-capacity dynamic holographic displays via anisotropic nanoholes,” Nanoscale 9(4), 1409–1415 (2017).
[Crossref] [PubMed]

Genevet, P.

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Ghosh, S.

A. K. Azad, A. V. Efimov, S. Ghosh, J. Singleton, A. J. Taylor, and H.-T. Chen, “Ultra-thin metasurface microwave flat lens for broadband applications,” Appl. Phys. Lett. 110(22), 224101 (2017).
[Crossref] [PubMed]

Giannopoulos, I.

M. Salinga, B. Kersting, I. Ronneberger, V. P. Jonnalagadda, X. T. Vu, M. Le Gallo, I. Giannopoulos, O. Cojocaru-Mirédin, R. Mazzarello, and A. Sebastian, “Monatomic phase change memory,” Nat. Mater. 17(8), 681–685 (2018).
[Crossref] [PubMed]

Groever, B.

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref] [PubMed]

Guo, Z.

Han, B.

S. S. Tong, B. Han, and J. P. Tang, “Edge-guided TVp regularization for diffuse optical tomography based on radiative transport equation,” Inverse Probl. 34(11), 115009 (2018).
[Crossref]

He, C.

Horie, Y.

M. Jang, Y. Horie, A. Shibukawa, J. Brake, Y. Liu, S. M. Kamali, A. Arbabi, H. Ruan, A. Faraon, and C. Yang, “Wavefront shaping with disorder-engineered metasurfaces,” Nat. Photonics 12(2), 84–90 (2018).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

A. Arbabi, R. M. Briggs, Y. Horie, M. Bagheri, and A. Faraon, “Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers,” Opt. Express 23(26), 33310–33317 (2015).
[Crossref] [PubMed]

Horiuchi, S.

Jang, M.

M. Jang, Y. Horie, A. Shibukawa, J. Brake, Y. Liu, S. M. Kamali, A. Arbabi, H. Ruan, A. Faraon, and C. Yang, “Wavefront shaping with disorder-engineered metasurfaces,” Nat. Photonics 12(2), 84–90 (2018).
[Crossref] [PubMed]

Jin, J.

X. Zhang, J. Jin, M. Pu, X. Li, X. Ma, P. Gao, Z. Zhao, Y. Wang, C. Wang, and X. Luo, “Ultrahigh-capacity dynamic holographic displays via anisotropic nanoholes,” Nanoscale 9(4), 1409–1415 (2017).
[Crossref] [PubMed]

Jonnalagadda, V. P.

M. Salinga, B. Kersting, I. Ronneberger, V. P. Jonnalagadda, X. T. Vu, M. Le Gallo, I. Giannopoulos, O. Cojocaru-Mirédin, R. Mazzarello, and A. Sebastian, “Monatomic phase change memory,” Nat. Mater. 17(8), 681–685 (2018).
[Crossref] [PubMed]

Kamali, S. M.

M. Jang, Y. Horie, A. Shibukawa, J. Brake, Y. Liu, S. M. Kamali, A. Arbabi, H. Ruan, A. Faraon, and C. Yang, “Wavefront shaping with disorder-engineered metasurfaces,” Nat. Photonics 12(2), 84–90 (2018).
[Crossref] [PubMed]

Kats, M. A.

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kenney, M.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Kersting, B.

M. Salinga, B. Kersting, I. Ronneberger, V. P. Jonnalagadda, X. T. Vu, M. Le Gallo, I. Giannopoulos, O. Cojocaru-Mirédin, R. Mazzarello, and A. Sebastian, “Monatomic phase change memory,” Nat. Mater. 17(8), 681–685 (2018).
[Crossref] [PubMed]

Khorasaninejad, M.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

W. T. Chen, A. Y. Zhu, M. Khorasaninejad, Z. Shi, V. Sanjeev, and F. Capasso, “Immersion meta-lenses at visible wavelengths for nanoscale imaging,” Nano Lett. 17(5), 3188–3194 (2017).
[Crossref] [PubMed]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

S. Zhang, M.-H. Kim, F. Aieta, A. She, T. Mansuripur, I. Gabay, M. Khorasaninejad, D. Rousso, X. Wang, M. Troccoli, N. Yu, and F. Capasso, “High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays,” Opt. Express 24(16), 18024–18034 (2016).
[Crossref] [PubMed]

M. Khorasaninejad and K. B. Crozier, “Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter,” Nat. Commun. 5(1), 5386 (2014).
[Crossref] [PubMed]

Kim, M.-H.

Kou, N.

N. Kou, S. Yu, and L. Li, “Generation of high-order Bessel vortex beam carrying orbital angular momentum using multilayer amplitude-phase-modulated surfaces in radiofrequency domain,” Appl. Phys. Express 10(1), 016701 (2017).
[Crossref]

Lai, J.

Le Gallo, M.

M. Salinga, B. Kersting, I. Ronneberger, V. P. Jonnalagadda, X. T. Vu, M. Le Gallo, I. Giannopoulos, O. Cojocaru-Mirédin, R. Mazzarello, and A. Sebastian, “Monatomic phase change memory,” Nat. Mater. 17(8), 681–685 (2018).
[Crossref] [PubMed]

Lee, E.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

Li, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Li, L.

N. Kou, S. Yu, and L. Li, “Generation of high-order Bessel vortex beam carrying orbital angular momentum using multilayer amplitude-phase-modulated surfaces in radiofrequency domain,” Appl. Phys. Express 10(1), 016701 (2017).
[Crossref]

Li, X.

X. Zhang, J. Jin, M. Pu, X. Li, X. Ma, P. Gao, Z. Zhao, Y. Wang, C. Wang, and X. Luo, “Ultrahigh-capacity dynamic holographic displays via anisotropic nanoholes,” Nanoscale 9(4), 1409–1415 (2017).
[Crossref] [PubMed]

X. G. Luo, M. B. Pu, X. Li, and X. L. Ma, “Broadband spin Hall effect of light in single nanoapertures,” Light Sci. Appl. 6(6), e16276 (2017).
[Crossref] [PubMed]

Y. Zhang, R. Zhang, X. Li, L. Ma, C. Liu, C. He, and C. Cheng, “Radially polarized plasmonic vector vortex generated by a metasurface spiral in gold film,” Opt. Express 25(25), 32150–32160 (2017).
[Crossref] [PubMed]

Li, Y.

Liu, C.

Liu, S.

Liu, Y.

M. Jang, Y. Horie, A. Shibukawa, J. Brake, Y. Liu, S. M. Kamali, A. Arbabi, H. Ruan, A. Faraon, and C. Yang, “Wavefront shaping with disorder-engineered metasurfaces,” Nat. Photonics 12(2), 84–90 (2018).
[Crossref] [PubMed]

Luo, J.

F. Zhang, M. B. Pu, J. Luo, H. L. Yu, and X. G. Luo, “Symmetry breaking of photonic spin-orbit interactions in metasurfaces,” Guangdian Gongcheng 44(3), 319–325 (2017).

Luo, X.

X. Zhang, J. Jin, M. Pu, X. Li, X. Ma, P. Gao, Z. Zhao, Y. Wang, C. Wang, and X. Luo, “Ultrahigh-capacity dynamic holographic displays via anisotropic nanoholes,” Nanoscale 9(4), 1409–1415 (2017).
[Crossref] [PubMed]

Luo, X. G.

X. G. Luo, M. B. Pu, X. Li, and X. L. Ma, “Broadband spin Hall effect of light in single nanoapertures,” Light Sci. Appl. 6(6), e16276 (2017).
[Crossref] [PubMed]

F. Zhang, M. B. Pu, J. Luo, H. L. Yu, and X. G. Luo, “Symmetry breaking of photonic spin-orbit interactions in metasurfaces,” Guangdian Gongcheng 44(3), 319–325 (2017).

Ma, L.

Ma, X.

X. Zhang, J. Jin, M. Pu, X. Li, X. Ma, P. Gao, Z. Zhao, Y. Wang, C. Wang, and X. Luo, “Ultrahigh-capacity dynamic holographic displays via anisotropic nanoholes,” Nanoscale 9(4), 1409–1415 (2017).
[Crossref] [PubMed]

Ma, X. L.

X. G. Luo, M. B. Pu, X. Li, and X. L. Ma, “Broadband spin Hall effect of light in single nanoapertures,” Light Sci. Appl. 6(6), e16276 (2017).
[Crossref] [PubMed]

Mansuripur, T.

Mazzarello, R.

M. Salinga, B. Kersting, I. Ronneberger, V. P. Jonnalagadda, X. T. Vu, M. Le Gallo, I. Giannopoulos, O. Cojocaru-Mirédin, R. Mazzarello, and A. Sebastian, “Monatomic phase change memory,” Nat. Mater. 17(8), 681–685 (2018).
[Crossref] [PubMed]

Mehmood, M. Q.

X. Z. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Y. Yue, C. W. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3(9), 1201–1206 (2015).
[Crossref]

Menon, R.

P. Wang, N. Mohammad, and R. Menon, “Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6(1), 21545 (2016).
[Crossref] [PubMed]

Mishra, I.

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref] [PubMed]

Mohammad, N.

P. Wang, N. Mohammad, and R. Menon, “Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6(1), 21545 (2016).
[Crossref] [PubMed]

Mrejen, M.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Mühlenbernd, H.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Ni, X.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Oh, J.

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Pan, M. C.

Pu, M.

X. Zhang, J. Jin, M. Pu, X. Li, X. Ma, P. Gao, Z. Zhao, Y. Wang, C. Wang, and X. Luo, “Ultrahigh-capacity dynamic holographic displays via anisotropic nanoholes,” Nanoscale 9(4), 1409–1415 (2017).
[Crossref] [PubMed]

Pu, M. B.

X. G. Luo, M. B. Pu, X. Li, and X. L. Ma, “Broadband spin Hall effect of light in single nanoapertures,” Light Sci. Appl. 6(6), e16276 (2017).
[Crossref] [PubMed]

F. Zhang, M. B. Pu, J. Luo, H. L. Yu, and X. G. Luo, “Symmetry breaking of photonic spin-orbit interactions in metasurfaces,” Guangdian Gongcheng 44(3), 319–325 (2017).

Qiu, C. W.

X. Z. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Y. Yue, C. W. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3(9), 1201–1206 (2015).
[Crossref]

Qu, S.

Ronneberger, I.

M. Salinga, B. Kersting, I. Ronneberger, V. P. Jonnalagadda, X. T. Vu, M. Le Gallo, I. Giannopoulos, O. Cojocaru-Mirédin, R. Mazzarello, and A. Sebastian, “Monatomic phase change memory,” Nat. Mater. 17(8), 681–685 (2018).
[Crossref] [PubMed]

Roques-Carmes, C.

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref] [PubMed]

Rousso, D.

Ruan, H.

M. Jang, Y. Horie, A. Shibukawa, J. Brake, Y. Liu, S. M. Kamali, A. Arbabi, H. Ruan, A. Faraon, and C. Yang, “Wavefront shaping with disorder-engineered metasurfaces,” Nat. Photonics 12(2), 84–90 (2018).
[Crossref] [PubMed]

Rubin, N. A.

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref] [PubMed]

Salinga, M.

M. Salinga, B. Kersting, I. Ronneberger, V. P. Jonnalagadda, X. T. Vu, M. Le Gallo, I. Giannopoulos, O. Cojocaru-Mirédin, R. Mazzarello, and A. Sebastian, “Monatomic phase change memory,” Nat. Mater. 17(8), 681–685 (2018).
[Crossref] [PubMed]

Sanjeev, V.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

W. T. Chen, A. Y. Zhu, M. Khorasaninejad, Z. Shi, V. Sanjeev, and F. Capasso, “Immersion meta-lenses at visible wavelengths for nanoscale imaging,” Nano Lett. 17(5), 3188–3194 (2017).
[Crossref] [PubMed]

Sebastian, A.

M. Salinga, B. Kersting, I. Ronneberger, V. P. Jonnalagadda, X. T. Vu, M. Le Gallo, I. Giannopoulos, O. Cojocaru-Mirédin, R. Mazzarello, and A. Sebastian, “Monatomic phase change memory,” Nat. Mater. 17(8), 681–685 (2018).
[Crossref] [PubMed]

She, A.

Shen, F.

Shi, Z.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

W. T. Chen, A. Y. Zhu, M. Khorasaninejad, Z. Shi, V. Sanjeev, and F. Capasso, “Immersion meta-lenses at visible wavelengths for nanoscale imaging,” Nano Lett. 17(5), 3188–3194 (2017).
[Crossref] [PubMed]

Shibukawa, A.

M. Jang, Y. Horie, A. Shibukawa, J. Brake, Y. Liu, S. M. Kamali, A. Arbabi, H. Ruan, A. Faraon, and C. Yang, “Wavefront shaping with disorder-engineered metasurfaces,” Nat. Photonics 12(2), 84–90 (2018).
[Crossref] [PubMed]

Singleton, J.

A. K. Azad, A. V. Efimov, S. Ghosh, J. Singleton, A. J. Taylor, and H.-T. Chen, “Ultra-thin metasurface microwave flat lens for broadband applications,” Appl. Phys. Lett. 110(22), 224101 (2017).
[Crossref] [PubMed]

Sun, J.

Sun, Y.

Suter, M. J.

Tang, J. P.

S. S. Tong, B. Han, and J. P. Tang, “Edge-guided TVp regularization for diffuse optical tomography based on radiative transport equation,” Inverse Probl. 34(11), 115009 (2018).
[Crossref]

Taylor, A. J.

A. K. Azad, A. V. Efimov, S. Ghosh, J. Singleton, A. J. Taylor, and H.-T. Chen, “Ultra-thin metasurface microwave flat lens for broadband applications,” Appl. Phys. Lett. 110(22), 224101 (2017).
[Crossref] [PubMed]

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Tong, S. S.

S. S. Tong, B. Han, and J. P. Tang, “Edge-guided TVp regularization for diffuse optical tomography based on radiative transport equation,” Inverse Probl. 34(11), 115009 (2018).
[Crossref]

Troccoli, M.

Vu, X. T.

M. Salinga, B. Kersting, I. Ronneberger, V. P. Jonnalagadda, X. T. Vu, M. Le Gallo, I. Giannopoulos, O. Cojocaru-Mirédin, R. Mazzarello, and A. Sebastian, “Monatomic phase change memory,” Nat. Mater. 17(8), 681–685 (2018).
[Crossref] [PubMed]

Wang, C.

X. Zhang, J. Jin, M. Pu, X. Li, X. Ma, P. Gao, Z. Zhao, Y. Wang, C. Wang, and X. Luo, “Ultrahigh-capacity dynamic holographic displays via anisotropic nanoholes,” Nanoscale 9(4), 1409–1415 (2017).
[Crossref] [PubMed]

Wang, P.

P. Wang, N. Mohammad, and R. Menon, “Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6(1), 21545 (2016).
[Crossref] [PubMed]

Wang, S.

Wang, W.

Wang, X.

Wang, Y.

X. Zhang, J. Jin, M. Pu, X. Li, X. Ma, P. Gao, Z. Zhao, Y. Wang, C. Wang, and X. Luo, “Ultrahigh-capacity dynamic holographic displays via anisotropic nanoholes,” Nanoscale 9(4), 1409–1415 (2017).
[Crossref] [PubMed]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Wen, D.

X. Z. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Y. Yue, C. W. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3(9), 1201–1206 (2015).
[Crossref]

Wong, Z. J.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Wu, T.

Yamamoto, M.

Yang, C.

M. Jang, Y. Horie, A. Shibukawa, J. Brake, Y. Liu, S. M. Kamali, A. Arbabi, H. Ruan, A. Faraon, and C. Yang, “Wavefront shaping with disorder-engineered metasurfaces,” Nat. Photonics 12(2), 84–90 (2018).
[Crossref] [PubMed]

Yu, H. L.

F. Zhang, M. B. Pu, J. Luo, H. L. Yu, and X. G. Luo, “Symmetry breaking of photonic spin-orbit interactions in metasurfaces,” Guangdian Gongcheng 44(3), 319–325 (2017).

Yu, N.

S. Zhang, M.-H. Kim, F. Aieta, A. She, T. Mansuripur, I. Gabay, M. Khorasaninejad, D. Rousso, X. Wang, M. Troccoli, N. Yu, and F. Capasso, “High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays,” Opt. Express 24(16), 18024–18034 (2016).
[Crossref] [PubMed]

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Yu, S.

N. Kou, S. Yu, and L. Li, “Generation of high-order Bessel vortex beam carrying orbital angular momentum using multilayer amplitude-phase-modulated surfaces in radiofrequency domain,” Appl. Phys. Express 10(1), 016701 (2017).
[Crossref]

Yue, F. Y.

X. Z. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Y. Yue, C. W. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3(9), 1201–1206 (2015).
[Crossref]

Zentgraf, T.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Zhang, F.

F. Zhang, M. B. Pu, J. Luo, H. L. Yu, and X. G. Luo, “Symmetry breaking of photonic spin-orbit interactions in metasurfaces,” Guangdian Gongcheng 44(3), 319–325 (2017).

Zhang, R.

Zhang, S.

S. Zhang, M.-H. Kim, F. Aieta, A. She, T. Mansuripur, I. Gabay, M. Khorasaninejad, D. Rousso, X. Wang, M. Troccoli, N. Yu, and F. Capasso, “High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays,” Opt. Express 24(16), 18024–18034 (2016).
[Crossref] [PubMed]

X. Z. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Y. Yue, C. W. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3(9), 1201–1206 (2015).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Zhang, X.

X. Zhang, J. Jin, M. Pu, X. Li, X. Ma, P. Gao, Z. Zhao, Y. Wang, C. Wang, and X. Luo, “Ultrahigh-capacity dynamic holographic displays via anisotropic nanoholes,” Nanoscale 9(4), 1409–1415 (2017).
[Crossref] [PubMed]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Zhang, Y.

Zhao, Z.

X. Zhang, J. Jin, M. Pu, X. Li, X. Ma, P. Gao, Z. Zhao, Y. Wang, C. Wang, and X. Luo, “Ultrahigh-capacity dynamic holographic displays via anisotropic nanoholes,” Nanoscale 9(4), 1409–1415 (2017).
[Crossref] [PubMed]

Zheng, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Zhou, K.

Zhu, A. Y.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

W. T. Chen, A. Y. Zhu, M. Khorasaninejad, Z. Shi, V. Sanjeev, and F. Capasso, “Immersion meta-lenses at visible wavelengths for nanoscale imaging,” Nano Lett. 17(5), 3188–3194 (2017).
[Crossref] [PubMed]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

X. Z. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Y. Yue, C. W. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3(9), 1201–1206 (2015).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Express (1)

N. Kou, S. Yu, and L. Li, “Generation of high-order Bessel vortex beam carrying orbital angular momentum using multilayer amplitude-phase-modulated surfaces in radiofrequency domain,” Appl. Phys. Express 10(1), 016701 (2017).
[Crossref]

Appl. Phys. Lett. (1)

A. K. Azad, A. V. Efimov, S. Ghosh, J. Singleton, A. J. Taylor, and H.-T. Chen, “Ultra-thin metasurface microwave flat lens for broadband applications,” Appl. Phys. Lett. 110(22), 224101 (2017).
[Crossref] [PubMed]

Guangdian Gongcheng (1)

F. Zhang, M. B. Pu, J. Luo, H. L. Yu, and X. G. Luo, “Symmetry breaking of photonic spin-orbit interactions in metasurfaces,” Guangdian Gongcheng 44(3), 319–325 (2017).

Inverse Probl. (1)

S. S. Tong, B. Han, and J. P. Tang, “Edge-guided TVp regularization for diffuse optical tomography based on radiative transport equation,” Inverse Probl. 34(11), 115009 (2018).
[Crossref]

Light Sci. Appl. (1)

X. G. Luo, M. B. Pu, X. Li, and X. L. Ma, “Broadband spin Hall effect of light in single nanoapertures,” Light Sci. Appl. 6(6), e16276 (2017).
[Crossref] [PubMed]

Nano Lett. (5)

W. T. Chen, A. Y. Zhu, M. Khorasaninejad, Z. Shi, V. Sanjeev, and F. Capasso, “Immersion meta-lenses at visible wavelengths for nanoscale imaging,” Nano Lett. 17(5), 3188–3194 (2017).
[Crossref] [PubMed]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

Nanoscale (1)

X. Zhang, J. Jin, M. Pu, X. Li, X. Ma, P. Gao, Z. Zhao, Y. Wang, C. Wang, and X. Luo, “Ultrahigh-capacity dynamic holographic displays via anisotropic nanoholes,” Nanoscale 9(4), 1409–1415 (2017).
[Crossref] [PubMed]

Nat. Commun. (1)

M. Khorasaninejad and K. B. Crozier, “Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter,” Nat. Commun. 5(1), 5386 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

M. Salinga, B. Kersting, I. Ronneberger, V. P. Jonnalagadda, X. T. Vu, M. Le Gallo, I. Giannopoulos, O. Cojocaru-Mirédin, R. Mazzarello, and A. Sebastian, “Monatomic phase change memory,” Nat. Mater. 17(8), 681–685 (2018).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Jang, Y. Horie, A. Shibukawa, J. Brake, Y. Liu, S. M. Kamali, A. Arbabi, H. Ruan, A. Faraon, and C. Yang, “Wavefront shaping with disorder-engineered metasurfaces,” Nat. Photonics 12(2), 84–90 (2018).
[Crossref] [PubMed]

Opt. Express (6)

Phys. Rev. Lett. (1)

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref] [PubMed]

Sci. Rep. (1)

P. Wang, N. Mohammad, and R. Menon, “Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6(1), 21545 (2016).
[Crossref] [PubMed]

Science (3)

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Other (2)

R. Ji, K. J. Chen, Y. J. Ni, Y. N. Hua, K.W. Long, and S. L. Zhuang, “Dual-focuses metalens for copolarized and cross-polarized transmission waves,” Adv. Cond. Matter Phys. 2312694 (2018).
[Crossref]

S. Colburn, A. Zhan, and A. Majumdar, “Metasurface optics for full-color computational imaging,” Sci. Adv. 4(2), eaar2114 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic illustration of the designed bifocal metalens and its unit cell, the TiO2 nanofin. (a). The metalens focuses collimated incident light into two different focal points under transmission mode. (b-c) Side and top views of the unit cell showing height H, width W, and length L of the nanofin, with unit cell dimensions S×S. (d) The geometric phase is imparted by rotation of the nanofin by angle θ, according to the Pancharatnam-Berry phase. (e) Top view of the designed metalens consisting of nanofins with same height but different cross size and orientation.
Fig. 2
Fig. 2 The simulated propagation phases and amplitudes of the y-polarized transmittance of eight unit cells for x-polarized incident light at the wavelength of 532 nm. The nanofins sizes (L and W) of unit cells from 1 to 4 are L = 278, 280, 82, 104, 118, 136, 274, and 268 nm, and W = 118, 136, 274, 268, 278, 280, 82, and 104 nm.
Fig. 3
Fig. 3 The simulated results of the metalens under the CP incident light. (a-b) The intensity profiles at the x-z plane under the RCP and LCP incident, respectively. (c and e) Simulated focal spots intensity profiles of the metalens in two different focal planes under the RCP and LCP incidence, respectively. (d and f) Corresponding horizontal cuts of focal spots shown in c and e with full width at half-maxima of 320 and 360 nm, respectively.
Fig. 4
Fig. 4 The simulated results of relative intensities of F 1 and F 2 of the present metalens under incident light with different ellipticity γ, where γ=0 represents linear polarization, γ=±1 represent left- and right-handed circular polarization. The symbols, round and diamond, show the relative intensity of F 1 and F 2 VS. ellipticity ranging from [-1, 1].
Fig. 5
Fig. 5 The intensity distributions in the x-z plane of three bifocal metalenses with (a) focal lengths are 10μm and 12μm, (b) focal lengths are 10μm and 13μm, (c) focal lengths are 10μm and 14μm under the illumination of XLP incident light beam.

Tables (1)

Tables Icon

Table 1 The theoretical focal lengths and simulated focal lengths of the designed three bifocal metalenses.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ψ(x,y)= k 0 ( x 2 + y 2 + f 2 f)
ψ σ (x,y)= k 0 [ x 2 + y 2 + (zσd) 2 (zσd)]
ϕ(x,y)= 1 2 [( ψ 1 2 n 1 π)+( ψ 1 2 n 1 π)]
θ(x,y)= 1 4 [( ψ 1 2 n 1 π)( ψ 1 2 n 1 π)]

Metrics