Abstract

A novel method was proposed to monitor the working state (temperature and stress) of sealing glass in electrical penetration assemblies, which was used for electrical connection in containment structures or pressure vessels of nuclear power plants, based on femto-laser inscribed fiber Bragg grating (FBG) sensors. Aging tests under thermal (~200°C) and radiation (~3.5MGy) conditions were carried out to demonstrate the feasibility of FBG in harsh environment. On-line state monitoring experiments were performed under high temperature 100~400°C and high pressure 7 MPa, referring to real conditions in the nuclear reactor. During monitoring, one FBG was embedded in sealing glass and the other was set outside the glass. Experimental and numerical results showed that the femto-laser inscribed FBG sensors could achieve simultaneous temperature and stress monitoring with good accuracy (monitoring deviation less than 10%) and transient response under harsh environment. This work set a base for the long-term real-time diagnosis of electrical penetration assembly in nuclear power plant.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Radiation resistant fiber Bragg grating in random air-line fibers for sensing applications in nuclear reactor cores

Mohamed A.S. Zaghloul, Mohan Wang, Sheng Huang, Cyril Hnatovsky, Dan Grobnic, Stephen Mihailov, Ming-Jun Li, David Carpenter, Lin-Wen Hu, Joshua Daw, Guillaume Laffont, Simon Nehr, and Kevin P. Chen
Opt. Express 26(9) 11775-11786 (2018)

Vulnerability of OFDR-based distributed sensors to high γ-ray doses

S. Rizzolo, A. Boukenter, E. Marin, M. Cannas, J. Perisse, S. Bauer, J-R. Mace, Y. Ouerdane, and S. Girard
Opt. Express 23(15) 18997-19009 (2015)

Instrumentation design for bridge scour monitoring using fiber Bragg grating sensors

Wen Xiong, C. S. Cai, and Xuan Kong
Appl. Opt. 51(5) 547-557 (2012)

References

  • View by:
  • |
  • |
  • |

  1. IEEE Std 317-2013, "IEEE Standard for Electric Penetration Assemblies in Containment Structures for Nuclear Power Generating Stations,”.
  2. M. Li, H. Yan, X. Diao, and Y. Zhang, “Prestress measurement during glass-metal sealing based on a fiber sensor,” Qinghua Daxue Xuebao. Ziran Kexue Ban 58, 664–670 (2018).
  3. S. Rizzolo, J. Périsse, A. Boukenter, Y. Ouerdane, E. Marin, J. R. Macé, M. Cannas, and S. Girard, “Real time monitoring of water level and temperature in storage fuel pools through optical fibre sensors,” Sci. Rep. 7(1), 8766 (2017).
    [Crossref] [PubMed]
  4. C. Cangialosi, Y. Ouerdane, S. Girard, A. Boukenter, M. Cannas, S. Delepinelesoille, J. Bertrand, and P. Paillet, “Hydrogen and radiation induced effects on performances of Raman fiber-based temperature sensors,” in Ofs, (2014), 91576U–91576U–91574.
  5. X. Phéron, S. Girard, A. Boukenter, B. Brichard, S. Delepine-Lesoille, J. Bertrand, and Y. Ouerdane, “High γ-ray dose radiation effects on the performances of Brillouin scattering based optical fiber sensors,” Opt. Express 20(24), 26978–26985 (2012).
    [Crossref] [PubMed]
  6. H. S. Kim, S. H. Yoo, and S. H. Chang, “In situ monitoring of the strain evolution and curing reaction of composite laminates to reduce the thermal residual stress using FBG sensor and dielectrometry,” Compos., Part B Eng. 44(1), 446–452 (2013).
    [Crossref]
  7. B. Pauw, G. Kennedy, K. Tichelen, T. Geernaert, H. Thienpont, and F. Berghmans, “Characterizing Flow-Induced Vibrations of Fuel Assemblies for Future Liquid Metal Cooled Nuclear Reactors Using Quasi-Distributed Fibre-Optic Sensors,” Appl. Sci. (Basel) 7(8), 864 (2017).
    [Crossref]
  8. D. Kinet, K. Chah, A. Gusarov, A. Faustov, L. Areias, I. Troullinos, P. Van Marcke, B. Craeye, E. Coppens, D. Raymaekers, and P. Megret, “Proof of Concept for Temperature and Strain Measurements With Fiber Bragg Gratings Embedded in Supercontainers Designed for Nuclear Waste Storage,” IEEE Trans. Nucl. Sci. 63(3), 1955–1962 (2016).
    [Crossref]
  9. U. J. Dreyer, F. Mezzadri, G. Dutra, T. da Silva, C. A. Bavastri, E. V. da Silva, C. Martelli, and J. C. Cardozo da Silva, “Quasi-Distributed Optical Fiber Transducer for Simultaneous Temperature and Vibration Sensing in High-Power Generators,” IEEE Sens. J. 18(4), 1547–1554 (2018).
    [Crossref]
  10. A. Mohammed and S. Djurovic, “Stator Winding Internal Thermal Stress Monitoring and Analysis Using in-situ FBG Sensing Technology,” IEEE Transactions on Energy Conversion PP, 1–1 (2018).
  11. B. Sarkar, C. Koley, N. K. Roy, and P. Kumbhakar, “Condition monitoring of high voltage transformers using Fiber Bragg Grating Sensor,” Measurement 74, 255–267 (2015).
    [Crossref]
  12. X. Yu, W. Xi, W. Xu, M. Lei, Z. Liu, L. Cui, Y. Song, and S. Wu, “Multi-parameters measurement of EAST PFCs prototype with FBG sensors,” Fusion Eng. Des. 122, 1–7 (2017).
    [Crossref]
  13. G. Laffont, R. Cotillard, N. Roussel, R. Desmarchelier, and S. Rougeault, “Temperature Resistant Fiber Bragg Gratings for On-Line and Structural Health Monitoring of the Next-Generation of Nuclear Reactors,” Sensors (Basel) 18(6), 1791 (2018).
    [Crossref] [PubMed]
  14. M. A. S. Zaghloul, A. Yan, R. Chen, M. J. Li, R. Flammang, M. Heibel, and K. P. Chen, “High Spatial Resolution Radiation Detection Using Distributed Fiber Sensing Technique,” IEEE Trans. Nucl. Sci. 64(9), 2569–2577 (2017).
    [Crossref]
  15. M. A. S. Zaghloul, M. Wang, S. Huang, C. Hnatovsky, D. Grobnic, S. Mihailov, M. J. Li, D. Carpenter, L. W. Hu, J. Daw, G. Laffont, S. Nehr, and K. P. Chen, “Radiation resistant fiber Bragg grating in random air-line fibers for sensing applications in nuclear reactor cores,” Opt. Express 26(9), 11775–11786 (2018).
    [Crossref] [PubMed]
  16. A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41(4), 176–178 (2005).
    [Crossref]
  17. H. Henschel, S. K. Hoeffgen, J. Kuhnhenn, and S. J. Mihailov, “Radiation sensitivity of Bragg gratings written with femtosecond IR lasers,” Proc. SPIE 7316, 433–443 (2009).
  18. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
    [Crossref]
  19. Y. Wang and X. Huang, “Diametric load sensor using a fiber Bragg grating and its differential group delay analysis,” Opt. Quantum Electron. 44(10-11), 483–491 (2012).
    [Crossref]
  20. J. Kuhnhenn, U. Weinand, A. Morana, S. Girard, E. Marin, J. Perisse, J. Genot, J. Grelin, G. Melin, B. Cadier, T. Robin, J.-R. Mace, A. Boukenter, and Y. Ouerdane, “Gamma Radiation Tests of Radiation-Hardened Fiber Bragg Grating Based Sensors for Radiation Environments,” IEEE Trans. Nucl. Sci. 64, 2307–2311 (2017).
    [Crossref]
  21. A. Gusarov and S. K. Hoeffgen, “Radiation Effects on Fiber Gratings,” IEEE Trans. Nucl. Sci. 60(3), 2037–2053 (2013).
    [Crossref]
  22. S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
    [Crossref] [PubMed]
  23. A. Morana, S. Girard, E. Marin, C. Marcandella, P. Paillet, J. Périsse, J.-R. Macé, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels,” Opt. Lett. 39(18), 5313–5316 (2014).
    [Crossref] [PubMed]
  24. A. Morana, S. Girard, E. Marin, J. Perisse, J. S. Genot, J. Kuhnhenn, J. Grelin, L. Hutter, G. Melin, L. Lablonde, T. Robin, B. Cadier, J. R. Mace, A. Boukenter, and Y. Ouerdane, “Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments,” IEEE Trans. Nucl. Sci. 64(1), 68–73 (2017).
    [Crossref]
  25. H. Henschel, S. K. Hoeffgen, J. Kuhnhenn, and U. Weinand, “Influence of manufacturing parameters and temperature on the radiation sensitivity of fiber Bragg gratings,” IEEE Trans. Nucl. Sci. 57(4), 2029–2034 (2010).
    [Crossref]
  26. Y. Zhao and Y. B. Liao, “Discrimination methods and demodulation techniques for fiber Bragg grating sensors,” Opt. Lasers Eng. 41(1), 1–18 (2004).
    [Crossref]
  27. G. Bai-Ou, T. Hwa-Yaw, T. Xiao-Ming, and D. Xiao-Yi, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
    [Crossref]
  28. A. Singh, S. N. Berggren, Y. Zhu, M. Han, and H. Huang, “Simultaneous strain and temperature measurement using a single fiber Bragg grating embedded in a composite laminate,” Smart Mater. Struct. 26(11), 115025 (2017).
    [Crossref]
  29. M. A. S. Zaghloul, M. Wang, G. Milione, M. J. Li, S. Li, Y. K. Huang, T. Wang, and K. P. Chen, “Discrimination of Temperature and Strain in Brillouin Optical Time Domain Analysis Using a Multicore Optical Fiber,” Sensors (Basel) 18(4), 1176 (2018).
    [Crossref] [PubMed]
  30. H. W. Lee, H. J. Park, J. H. Lee, and M. Song, “Accuracy improvement in peak positioning of spectrally distorted fiber Bragg grating sensors by Gaussian curve fitting,” Appl. Opt. 46(12), 2205–2208 (2007).
    [Crossref] [PubMed]
  31. C. C. Chang and S. T. Vohra, “Spectral broadening due to non-uniform strain fields in fibre Bragg grating based transducers,” Electron. Lett. 34(18), 1778–1779 (2002).
    [Crossref]
  32. W. W. Morey, G. Meltz, and J. M. Weiss, “Recent advances in fiber-grating sensors for utility industry applications,” Proceedings of SPIE - The International Society for Optical Engineering, 90–98 (1996).
    [Crossref]

2018 (5)

M. Li, H. Yan, X. Diao, and Y. Zhang, “Prestress measurement during glass-metal sealing based on a fiber sensor,” Qinghua Daxue Xuebao. Ziran Kexue Ban 58, 664–670 (2018).

U. J. Dreyer, F. Mezzadri, G. Dutra, T. da Silva, C. A. Bavastri, E. V. da Silva, C. Martelli, and J. C. Cardozo da Silva, “Quasi-Distributed Optical Fiber Transducer for Simultaneous Temperature and Vibration Sensing in High-Power Generators,” IEEE Sens. J. 18(4), 1547–1554 (2018).
[Crossref]

G. Laffont, R. Cotillard, N. Roussel, R. Desmarchelier, and S. Rougeault, “Temperature Resistant Fiber Bragg Gratings for On-Line and Structural Health Monitoring of the Next-Generation of Nuclear Reactors,” Sensors (Basel) 18(6), 1791 (2018).
[Crossref] [PubMed]

M. A. S. Zaghloul, M. Wang, S. Huang, C. Hnatovsky, D. Grobnic, S. Mihailov, M. J. Li, D. Carpenter, L. W. Hu, J. Daw, G. Laffont, S. Nehr, and K. P. Chen, “Radiation resistant fiber Bragg grating in random air-line fibers for sensing applications in nuclear reactor cores,” Opt. Express 26(9), 11775–11786 (2018).
[Crossref] [PubMed]

M. A. S. Zaghloul, M. Wang, G. Milione, M. J. Li, S. Li, Y. K. Huang, T. Wang, and K. P. Chen, “Discrimination of Temperature and Strain in Brillouin Optical Time Domain Analysis Using a Multicore Optical Fiber,” Sensors (Basel) 18(4), 1176 (2018).
[Crossref] [PubMed]

2017 (7)

A. Morana, S. Girard, E. Marin, J. Perisse, J. S. Genot, J. Kuhnhenn, J. Grelin, L. Hutter, G. Melin, L. Lablonde, T. Robin, B. Cadier, J. R. Mace, A. Boukenter, and Y. Ouerdane, “Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments,” IEEE Trans. Nucl. Sci. 64(1), 68–73 (2017).
[Crossref]

A. Singh, S. N. Berggren, Y. Zhu, M. Han, and H. Huang, “Simultaneous strain and temperature measurement using a single fiber Bragg grating embedded in a composite laminate,” Smart Mater. Struct. 26(11), 115025 (2017).
[Crossref]

M. A. S. Zaghloul, A. Yan, R. Chen, M. J. Li, R. Flammang, M. Heibel, and K. P. Chen, “High Spatial Resolution Radiation Detection Using Distributed Fiber Sensing Technique,” IEEE Trans. Nucl. Sci. 64(9), 2569–2577 (2017).
[Crossref]

J. Kuhnhenn, U. Weinand, A. Morana, S. Girard, E. Marin, J. Perisse, J. Genot, J. Grelin, G. Melin, B. Cadier, T. Robin, J.-R. Mace, A. Boukenter, and Y. Ouerdane, “Gamma Radiation Tests of Radiation-Hardened Fiber Bragg Grating Based Sensors for Radiation Environments,” IEEE Trans. Nucl. Sci. 64, 2307–2311 (2017).
[Crossref]

X. Yu, W. Xi, W. Xu, M. Lei, Z. Liu, L. Cui, Y. Song, and S. Wu, “Multi-parameters measurement of EAST PFCs prototype with FBG sensors,” Fusion Eng. Des. 122, 1–7 (2017).
[Crossref]

S. Rizzolo, J. Périsse, A. Boukenter, Y. Ouerdane, E. Marin, J. R. Macé, M. Cannas, and S. Girard, “Real time monitoring of water level and temperature in storage fuel pools through optical fibre sensors,” Sci. Rep. 7(1), 8766 (2017).
[Crossref] [PubMed]

B. Pauw, G. Kennedy, K. Tichelen, T. Geernaert, H. Thienpont, and F. Berghmans, “Characterizing Flow-Induced Vibrations of Fuel Assemblies for Future Liquid Metal Cooled Nuclear Reactors Using Quasi-Distributed Fibre-Optic Sensors,” Appl. Sci. (Basel) 7(8), 864 (2017).
[Crossref]

2016 (1)

D. Kinet, K. Chah, A. Gusarov, A. Faustov, L. Areias, I. Troullinos, P. Van Marcke, B. Craeye, E. Coppens, D. Raymaekers, and P. Megret, “Proof of Concept for Temperature and Strain Measurements With Fiber Bragg Gratings Embedded in Supercontainers Designed for Nuclear Waste Storage,” IEEE Trans. Nucl. Sci. 63(3), 1955–1962 (2016).
[Crossref]

2015 (1)

B. Sarkar, C. Koley, N. K. Roy, and P. Kumbhakar, “Condition monitoring of high voltage transformers using Fiber Bragg Grating Sensor,” Measurement 74, 255–267 (2015).
[Crossref]

2014 (1)

2013 (2)

H. S. Kim, S. H. Yoo, and S. H. Chang, “In situ monitoring of the strain evolution and curing reaction of composite laminates to reduce the thermal residual stress using FBG sensor and dielectrometry,” Compos., Part B Eng. 44(1), 446–452 (2013).
[Crossref]

A. Gusarov and S. K. Hoeffgen, “Radiation Effects on Fiber Gratings,” IEEE Trans. Nucl. Sci. 60(3), 2037–2053 (2013).
[Crossref]

2012 (3)

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
[Crossref] [PubMed]

X. Phéron, S. Girard, A. Boukenter, B. Brichard, S. Delepine-Lesoille, J. Bertrand, and Y. Ouerdane, “High γ-ray dose radiation effects on the performances of Brillouin scattering based optical fiber sensors,” Opt. Express 20(24), 26978–26985 (2012).
[Crossref] [PubMed]

Y. Wang and X. Huang, “Diametric load sensor using a fiber Bragg grating and its differential group delay analysis,” Opt. Quantum Electron. 44(10-11), 483–491 (2012).
[Crossref]

2010 (1)

H. Henschel, S. K. Hoeffgen, J. Kuhnhenn, and U. Weinand, “Influence of manufacturing parameters and temperature on the radiation sensitivity of fiber Bragg gratings,” IEEE Trans. Nucl. Sci. 57(4), 2029–2034 (2010).
[Crossref]

2009 (1)

H. Henschel, S. K. Hoeffgen, J. Kuhnhenn, and S. J. Mihailov, “Radiation sensitivity of Bragg gratings written with femtosecond IR lasers,” Proc. SPIE 7316, 433–443 (2009).

2007 (1)

2005 (1)

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41(4), 176–178 (2005).
[Crossref]

2004 (1)

Y. Zhao and Y. B. Liao, “Discrimination methods and demodulation techniques for fiber Bragg grating sensors,” Opt. Lasers Eng. 41(1), 1–18 (2004).
[Crossref]

2002 (1)

C. C. Chang and S. T. Vohra, “Spectral broadening due to non-uniform strain fields in fibre Bragg grating based transducers,” Electron. Lett. 34(18), 1778–1779 (2002).
[Crossref]

2000 (1)

G. Bai-Ou, T. Hwa-Yaw, T. Xiao-Ming, and D. Xiao-Yi, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
[Crossref]

1997 (1)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

Areias, L.

D. Kinet, K. Chah, A. Gusarov, A. Faustov, L. Areias, I. Troullinos, P. Van Marcke, B. Craeye, E. Coppens, D. Raymaekers, and P. Megret, “Proof of Concept for Temperature and Strain Measurements With Fiber Bragg Gratings Embedded in Supercontainers Designed for Nuclear Waste Storage,” IEEE Trans. Nucl. Sci. 63(3), 1955–1962 (2016).
[Crossref]

Bai-Ou, G.

G. Bai-Ou, T. Hwa-Yaw, T. Xiao-Ming, and D. Xiao-Yi, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
[Crossref]

Bavastri, C. A.

U. J. Dreyer, F. Mezzadri, G. Dutra, T. da Silva, C. A. Bavastri, E. V. da Silva, C. Martelli, and J. C. Cardozo da Silva, “Quasi-Distributed Optical Fiber Transducer for Simultaneous Temperature and Vibration Sensing in High-Power Generators,” IEEE Sens. J. 18(4), 1547–1554 (2018).
[Crossref]

Bennion, I.

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41(4), 176–178 (2005).
[Crossref]

Berggren, S. N.

A. Singh, S. N. Berggren, Y. Zhu, M. Han, and H. Huang, “Simultaneous strain and temperature measurement using a single fiber Bragg grating embedded in a composite laminate,” Smart Mater. Struct. 26(11), 115025 (2017).
[Crossref]

Berghmans, F.

B. Pauw, G. Kennedy, K. Tichelen, T. Geernaert, H. Thienpont, and F. Berghmans, “Characterizing Flow-Induced Vibrations of Fuel Assemblies for Future Liquid Metal Cooled Nuclear Reactors Using Quasi-Distributed Fibre-Optic Sensors,” Appl. Sci. (Basel) 7(8), 864 (2017).
[Crossref]

Bertrand, J.

Boukenter, A.

S. Rizzolo, J. Périsse, A. Boukenter, Y. Ouerdane, E. Marin, J. R. Macé, M. Cannas, and S. Girard, “Real time monitoring of water level and temperature in storage fuel pools through optical fibre sensors,” Sci. Rep. 7(1), 8766 (2017).
[Crossref] [PubMed]

J. Kuhnhenn, U. Weinand, A. Morana, S. Girard, E. Marin, J. Perisse, J. Genot, J. Grelin, G. Melin, B. Cadier, T. Robin, J.-R. Mace, A. Boukenter, and Y. Ouerdane, “Gamma Radiation Tests of Radiation-Hardened Fiber Bragg Grating Based Sensors for Radiation Environments,” IEEE Trans. Nucl. Sci. 64, 2307–2311 (2017).
[Crossref]

A. Morana, S. Girard, E. Marin, J. Perisse, J. S. Genot, J. Kuhnhenn, J. Grelin, L. Hutter, G. Melin, L. Lablonde, T. Robin, B. Cadier, J. R. Mace, A. Boukenter, and Y. Ouerdane, “Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments,” IEEE Trans. Nucl. Sci. 64(1), 68–73 (2017).
[Crossref]

A. Morana, S. Girard, E. Marin, C. Marcandella, P. Paillet, J. Périsse, J.-R. Macé, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels,” Opt. Lett. 39(18), 5313–5316 (2014).
[Crossref] [PubMed]

X. Phéron, S. Girard, A. Boukenter, B. Brichard, S. Delepine-Lesoille, J. Bertrand, and Y. Ouerdane, “High γ-ray dose radiation effects on the performances of Brillouin scattering based optical fiber sensors,” Opt. Express 20(24), 26978–26985 (2012).
[Crossref] [PubMed]

Brichard, B.

Cadier, B.

A. Morana, S. Girard, E. Marin, J. Perisse, J. S. Genot, J. Kuhnhenn, J. Grelin, L. Hutter, G. Melin, L. Lablonde, T. Robin, B. Cadier, J. R. Mace, A. Boukenter, and Y. Ouerdane, “Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments,” IEEE Trans. Nucl. Sci. 64(1), 68–73 (2017).
[Crossref]

J. Kuhnhenn, U. Weinand, A. Morana, S. Girard, E. Marin, J. Perisse, J. Genot, J. Grelin, G. Melin, B. Cadier, T. Robin, J.-R. Mace, A. Boukenter, and Y. Ouerdane, “Gamma Radiation Tests of Radiation-Hardened Fiber Bragg Grating Based Sensors for Radiation Environments,” IEEE Trans. Nucl. Sci. 64, 2307–2311 (2017).
[Crossref]

Cannas, M.

S. Rizzolo, J. Périsse, A. Boukenter, Y. Ouerdane, E. Marin, J. R. Macé, M. Cannas, and S. Girard, “Real time monitoring of water level and temperature in storage fuel pools through optical fibre sensors,” Sci. Rep. 7(1), 8766 (2017).
[Crossref] [PubMed]

A. Morana, S. Girard, E. Marin, C. Marcandella, P. Paillet, J. Périsse, J.-R. Macé, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels,” Opt. Lett. 39(18), 5313–5316 (2014).
[Crossref] [PubMed]

Cardozo da Silva, J. C.

U. J. Dreyer, F. Mezzadri, G. Dutra, T. da Silva, C. A. Bavastri, E. V. da Silva, C. Martelli, and J. C. Cardozo da Silva, “Quasi-Distributed Optical Fiber Transducer for Simultaneous Temperature and Vibration Sensing in High-Power Generators,” IEEE Sens. J. 18(4), 1547–1554 (2018).
[Crossref]

Carpenter, D.

Chah, K.

D. Kinet, K. Chah, A. Gusarov, A. Faustov, L. Areias, I. Troullinos, P. Van Marcke, B. Craeye, E. Coppens, D. Raymaekers, and P. Megret, “Proof of Concept for Temperature and Strain Measurements With Fiber Bragg Gratings Embedded in Supercontainers Designed for Nuclear Waste Storage,” IEEE Trans. Nucl. Sci. 63(3), 1955–1962 (2016).
[Crossref]

Chang, C. C.

C. C. Chang and S. T. Vohra, “Spectral broadening due to non-uniform strain fields in fibre Bragg grating based transducers,” Electron. Lett. 34(18), 1778–1779 (2002).
[Crossref]

Chang, S. H.

H. S. Kim, S. H. Yoo, and S. H. Chang, “In situ monitoring of the strain evolution and curing reaction of composite laminates to reduce the thermal residual stress using FBG sensor and dielectrometry,” Compos., Part B Eng. 44(1), 446–452 (2013).
[Crossref]

Chen, K. P.

M. A. S. Zaghloul, M. Wang, S. Huang, C. Hnatovsky, D. Grobnic, S. Mihailov, M. J. Li, D. Carpenter, L. W. Hu, J. Daw, G. Laffont, S. Nehr, and K. P. Chen, “Radiation resistant fiber Bragg grating in random air-line fibers for sensing applications in nuclear reactor cores,” Opt. Express 26(9), 11775–11786 (2018).
[Crossref] [PubMed]

M. A. S. Zaghloul, M. Wang, G. Milione, M. J. Li, S. Li, Y. K. Huang, T. Wang, and K. P. Chen, “Discrimination of Temperature and Strain in Brillouin Optical Time Domain Analysis Using a Multicore Optical Fiber,” Sensors (Basel) 18(4), 1176 (2018).
[Crossref] [PubMed]

M. A. S. Zaghloul, A. Yan, R. Chen, M. J. Li, R. Flammang, M. Heibel, and K. P. Chen, “High Spatial Resolution Radiation Detection Using Distributed Fiber Sensing Technique,” IEEE Trans. Nucl. Sci. 64(9), 2569–2577 (2017).
[Crossref]

Chen, R.

M. A. S. Zaghloul, A. Yan, R. Chen, M. J. Li, R. Flammang, M. Heibel, and K. P. Chen, “High Spatial Resolution Radiation Detection Using Distributed Fiber Sensing Technique,” IEEE Trans. Nucl. Sci. 64(9), 2569–2577 (2017).
[Crossref]

Coppens, E.

D. Kinet, K. Chah, A. Gusarov, A. Faustov, L. Areias, I. Troullinos, P. Van Marcke, B. Craeye, E. Coppens, D. Raymaekers, and P. Megret, “Proof of Concept for Temperature and Strain Measurements With Fiber Bragg Gratings Embedded in Supercontainers Designed for Nuclear Waste Storage,” IEEE Trans. Nucl. Sci. 63(3), 1955–1962 (2016).
[Crossref]

Cotillard, R.

G. Laffont, R. Cotillard, N. Roussel, R. Desmarchelier, and S. Rougeault, “Temperature Resistant Fiber Bragg Gratings for On-Line and Structural Health Monitoring of the Next-Generation of Nuclear Reactors,” Sensors (Basel) 18(6), 1791 (2018).
[Crossref] [PubMed]

Craeye, B.

D. Kinet, K. Chah, A. Gusarov, A. Faustov, L. Areias, I. Troullinos, P. Van Marcke, B. Craeye, E. Coppens, D. Raymaekers, and P. Megret, “Proof of Concept for Temperature and Strain Measurements With Fiber Bragg Gratings Embedded in Supercontainers Designed for Nuclear Waste Storage,” IEEE Trans. Nucl. Sci. 63(3), 1955–1962 (2016).
[Crossref]

Cui, L.

X. Yu, W. Xi, W. Xu, M. Lei, Z. Liu, L. Cui, Y. Song, and S. Wu, “Multi-parameters measurement of EAST PFCs prototype with FBG sensors,” Fusion Eng. Des. 122, 1–7 (2017).
[Crossref]

da Silva, E. V.

U. J. Dreyer, F. Mezzadri, G. Dutra, T. da Silva, C. A. Bavastri, E. V. da Silva, C. Martelli, and J. C. Cardozo da Silva, “Quasi-Distributed Optical Fiber Transducer for Simultaneous Temperature and Vibration Sensing in High-Power Generators,” IEEE Sens. J. 18(4), 1547–1554 (2018).
[Crossref]

da Silva, T.

U. J. Dreyer, F. Mezzadri, G. Dutra, T. da Silva, C. A. Bavastri, E. V. da Silva, C. Martelli, and J. C. Cardozo da Silva, “Quasi-Distributed Optical Fiber Transducer for Simultaneous Temperature and Vibration Sensing in High-Power Generators,” IEEE Sens. J. 18(4), 1547–1554 (2018).
[Crossref]

Daw, J.

Delepine-Lesoille, S.

Desmarchelier, R.

G. Laffont, R. Cotillard, N. Roussel, R. Desmarchelier, and S. Rougeault, “Temperature Resistant Fiber Bragg Gratings for On-Line and Structural Health Monitoring of the Next-Generation of Nuclear Reactors,” Sensors (Basel) 18(6), 1791 (2018).
[Crossref] [PubMed]

Diao, X.

M. Li, H. Yan, X. Diao, and Y. Zhang, “Prestress measurement during glass-metal sealing based on a fiber sensor,” Qinghua Daxue Xuebao. Ziran Kexue Ban 58, 664–670 (2018).

Dreyer, U. J.

U. J. Dreyer, F. Mezzadri, G. Dutra, T. da Silva, C. A. Bavastri, E. V. da Silva, C. Martelli, and J. C. Cardozo da Silva, “Quasi-Distributed Optical Fiber Transducer for Simultaneous Temperature and Vibration Sensing in High-Power Generators,” IEEE Sens. J. 18(4), 1547–1554 (2018).
[Crossref]

Dutra, G.

U. J. Dreyer, F. Mezzadri, G. Dutra, T. da Silva, C. A. Bavastri, E. V. da Silva, C. Martelli, and J. C. Cardozo da Silva, “Quasi-Distributed Optical Fiber Transducer for Simultaneous Temperature and Vibration Sensing in High-Power Generators,” IEEE Sens. J. 18(4), 1547–1554 (2018).
[Crossref]

Faustov, A.

D. Kinet, K. Chah, A. Gusarov, A. Faustov, L. Areias, I. Troullinos, P. Van Marcke, B. Craeye, E. Coppens, D. Raymaekers, and P. Megret, “Proof of Concept for Temperature and Strain Measurements With Fiber Bragg Gratings Embedded in Supercontainers Designed for Nuclear Waste Storage,” IEEE Trans. Nucl. Sci. 63(3), 1955–1962 (2016).
[Crossref]

Flammang, R.

M. A. S. Zaghloul, A. Yan, R. Chen, M. J. Li, R. Flammang, M. Heibel, and K. P. Chen, “High Spatial Resolution Radiation Detection Using Distributed Fiber Sensing Technique,” IEEE Trans. Nucl. Sci. 64(9), 2569–2577 (2017).
[Crossref]

Geernaert, T.

B. Pauw, G. Kennedy, K. Tichelen, T. Geernaert, H. Thienpont, and F. Berghmans, “Characterizing Flow-Induced Vibrations of Fuel Assemblies for Future Liquid Metal Cooled Nuclear Reactors Using Quasi-Distributed Fibre-Optic Sensors,” Appl. Sci. (Basel) 7(8), 864 (2017).
[Crossref]

Genot, J.

J. Kuhnhenn, U. Weinand, A. Morana, S. Girard, E. Marin, J. Perisse, J. Genot, J. Grelin, G. Melin, B. Cadier, T. Robin, J.-R. Mace, A. Boukenter, and Y. Ouerdane, “Gamma Radiation Tests of Radiation-Hardened Fiber Bragg Grating Based Sensors for Radiation Environments,” IEEE Trans. Nucl. Sci. 64, 2307–2311 (2017).
[Crossref]

Genot, J. S.

A. Morana, S. Girard, E. Marin, J. Perisse, J. S. Genot, J. Kuhnhenn, J. Grelin, L. Hutter, G. Melin, L. Lablonde, T. Robin, B. Cadier, J. R. Mace, A. Boukenter, and Y. Ouerdane, “Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments,” IEEE Trans. Nucl. Sci. 64(1), 68–73 (2017).
[Crossref]

Girard, S.

A. Morana, S. Girard, E. Marin, J. Perisse, J. S. Genot, J. Kuhnhenn, J. Grelin, L. Hutter, G. Melin, L. Lablonde, T. Robin, B. Cadier, J. R. Mace, A. Boukenter, and Y. Ouerdane, “Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments,” IEEE Trans. Nucl. Sci. 64(1), 68–73 (2017).
[Crossref]

J. Kuhnhenn, U. Weinand, A. Morana, S. Girard, E. Marin, J. Perisse, J. Genot, J. Grelin, G. Melin, B. Cadier, T. Robin, J.-R. Mace, A. Boukenter, and Y. Ouerdane, “Gamma Radiation Tests of Radiation-Hardened Fiber Bragg Grating Based Sensors for Radiation Environments,” IEEE Trans. Nucl. Sci. 64, 2307–2311 (2017).
[Crossref]

S. Rizzolo, J. Périsse, A. Boukenter, Y. Ouerdane, E. Marin, J. R. Macé, M. Cannas, and S. Girard, “Real time monitoring of water level and temperature in storage fuel pools through optical fibre sensors,” Sci. Rep. 7(1), 8766 (2017).
[Crossref] [PubMed]

A. Morana, S. Girard, E. Marin, C. Marcandella, P. Paillet, J. Périsse, J.-R. Macé, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels,” Opt. Lett. 39(18), 5313–5316 (2014).
[Crossref] [PubMed]

X. Phéron, S. Girard, A. Boukenter, B. Brichard, S. Delepine-Lesoille, J. Bertrand, and Y. Ouerdane, “High γ-ray dose radiation effects on the performances of Brillouin scattering based optical fiber sensors,” Opt. Express 20(24), 26978–26985 (2012).
[Crossref] [PubMed]

Grelin, J.

A. Morana, S. Girard, E. Marin, J. Perisse, J. S. Genot, J. Kuhnhenn, J. Grelin, L. Hutter, G. Melin, L. Lablonde, T. Robin, B. Cadier, J. R. Mace, A. Boukenter, and Y. Ouerdane, “Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments,” IEEE Trans. Nucl. Sci. 64(1), 68–73 (2017).
[Crossref]

J. Kuhnhenn, U. Weinand, A. Morana, S. Girard, E. Marin, J. Perisse, J. Genot, J. Grelin, G. Melin, B. Cadier, T. Robin, J.-R. Mace, A. Boukenter, and Y. Ouerdane, “Gamma Radiation Tests of Radiation-Hardened Fiber Bragg Grating Based Sensors for Radiation Environments,” IEEE Trans. Nucl. Sci. 64, 2307–2311 (2017).
[Crossref]

Grobnic, D.

Gusarov, A.

D. Kinet, K. Chah, A. Gusarov, A. Faustov, L. Areias, I. Troullinos, P. Van Marcke, B. Craeye, E. Coppens, D. Raymaekers, and P. Megret, “Proof of Concept for Temperature and Strain Measurements With Fiber Bragg Gratings Embedded in Supercontainers Designed for Nuclear Waste Storage,” IEEE Trans. Nucl. Sci. 63(3), 1955–1962 (2016).
[Crossref]

A. Gusarov and S. K. Hoeffgen, “Radiation Effects on Fiber Gratings,” IEEE Trans. Nucl. Sci. 60(3), 2037–2053 (2013).
[Crossref]

Han, M.

A. Singh, S. N. Berggren, Y. Zhu, M. Han, and H. Huang, “Simultaneous strain and temperature measurement using a single fiber Bragg grating embedded in a composite laminate,” Smart Mater. Struct. 26(11), 115025 (2017).
[Crossref]

Heibel, M.

M. A. S. Zaghloul, A. Yan, R. Chen, M. J. Li, R. Flammang, M. Heibel, and K. P. Chen, “High Spatial Resolution Radiation Detection Using Distributed Fiber Sensing Technique,” IEEE Trans. Nucl. Sci. 64(9), 2569–2577 (2017).
[Crossref]

Henschel, H.

H. Henschel, S. K. Hoeffgen, J. Kuhnhenn, and U. Weinand, “Influence of manufacturing parameters and temperature on the radiation sensitivity of fiber Bragg gratings,” IEEE Trans. Nucl. Sci. 57(4), 2029–2034 (2010).
[Crossref]

H. Henschel, S. K. Hoeffgen, J. Kuhnhenn, and S. J. Mihailov, “Radiation sensitivity of Bragg gratings written with femtosecond IR lasers,” Proc. SPIE 7316, 433–443 (2009).

Hill, K. O.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

Hnatovsky, C.

Hoeffgen, S. K.

A. Gusarov and S. K. Hoeffgen, “Radiation Effects on Fiber Gratings,” IEEE Trans. Nucl. Sci. 60(3), 2037–2053 (2013).
[Crossref]

H. Henschel, S. K. Hoeffgen, J. Kuhnhenn, and U. Weinand, “Influence of manufacturing parameters and temperature on the radiation sensitivity of fiber Bragg gratings,” IEEE Trans. Nucl. Sci. 57(4), 2029–2034 (2010).
[Crossref]

H. Henschel, S. K. Hoeffgen, J. Kuhnhenn, and S. J. Mihailov, “Radiation sensitivity of Bragg gratings written with femtosecond IR lasers,” Proc. SPIE 7316, 433–443 (2009).

Hu, L. W.

Huang, H.

A. Singh, S. N. Berggren, Y. Zhu, M. Han, and H. Huang, “Simultaneous strain and temperature measurement using a single fiber Bragg grating embedded in a composite laminate,” Smart Mater. Struct. 26(11), 115025 (2017).
[Crossref]

Huang, S.

Huang, X.

Y. Wang and X. Huang, “Diametric load sensor using a fiber Bragg grating and its differential group delay analysis,” Opt. Quantum Electron. 44(10-11), 483–491 (2012).
[Crossref]

Huang, Y. K.

M. A. S. Zaghloul, M. Wang, G. Milione, M. J. Li, S. Li, Y. K. Huang, T. Wang, and K. P. Chen, “Discrimination of Temperature and Strain in Brillouin Optical Time Domain Analysis Using a Multicore Optical Fiber,” Sensors (Basel) 18(4), 1176 (2018).
[Crossref] [PubMed]

Hutter, L.

A. Morana, S. Girard, E. Marin, J. Perisse, J. S. Genot, J. Kuhnhenn, J. Grelin, L. Hutter, G. Melin, L. Lablonde, T. Robin, B. Cadier, J. R. Mace, A. Boukenter, and Y. Ouerdane, “Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments,” IEEE Trans. Nucl. Sci. 64(1), 68–73 (2017).
[Crossref]

Hwa-Yaw, T.

G. Bai-Ou, T. Hwa-Yaw, T. Xiao-Ming, and D. Xiao-Yi, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
[Crossref]

Kennedy, G.

B. Pauw, G. Kennedy, K. Tichelen, T. Geernaert, H. Thienpont, and F. Berghmans, “Characterizing Flow-Induced Vibrations of Fuel Assemblies for Future Liquid Metal Cooled Nuclear Reactors Using Quasi-Distributed Fibre-Optic Sensors,” Appl. Sci. (Basel) 7(8), 864 (2017).
[Crossref]

Khrushchev, I. Y.

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41(4), 176–178 (2005).
[Crossref]

Kim, H. S.

H. S. Kim, S. H. Yoo, and S. H. Chang, “In situ monitoring of the strain evolution and curing reaction of composite laminates to reduce the thermal residual stress using FBG sensor and dielectrometry,” Compos., Part B Eng. 44(1), 446–452 (2013).
[Crossref]

Kinet, D.

D. Kinet, K. Chah, A. Gusarov, A. Faustov, L. Areias, I. Troullinos, P. Van Marcke, B. Craeye, E. Coppens, D. Raymaekers, and P. Megret, “Proof of Concept for Temperature and Strain Measurements With Fiber Bragg Gratings Embedded in Supercontainers Designed for Nuclear Waste Storage,” IEEE Trans. Nucl. Sci. 63(3), 1955–1962 (2016).
[Crossref]

Koley, C.

B. Sarkar, C. Koley, N. K. Roy, and P. Kumbhakar, “Condition monitoring of high voltage transformers using Fiber Bragg Grating Sensor,” Measurement 74, 255–267 (2015).
[Crossref]

Kuhnhenn, J.

J. Kuhnhenn, U. Weinand, A. Morana, S. Girard, E. Marin, J. Perisse, J. Genot, J. Grelin, G. Melin, B. Cadier, T. Robin, J.-R. Mace, A. Boukenter, and Y. Ouerdane, “Gamma Radiation Tests of Radiation-Hardened Fiber Bragg Grating Based Sensors for Radiation Environments,” IEEE Trans. Nucl. Sci. 64, 2307–2311 (2017).
[Crossref]

A. Morana, S. Girard, E. Marin, J. Perisse, J. S. Genot, J. Kuhnhenn, J. Grelin, L. Hutter, G. Melin, L. Lablonde, T. Robin, B. Cadier, J. R. Mace, A. Boukenter, and Y. Ouerdane, “Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments,” IEEE Trans. Nucl. Sci. 64(1), 68–73 (2017).
[Crossref]

H. Henschel, S. K. Hoeffgen, J. Kuhnhenn, and U. Weinand, “Influence of manufacturing parameters and temperature on the radiation sensitivity of fiber Bragg gratings,” IEEE Trans. Nucl. Sci. 57(4), 2029–2034 (2010).
[Crossref]

H. Henschel, S. K. Hoeffgen, J. Kuhnhenn, and S. J. Mihailov, “Radiation sensitivity of Bragg gratings written with femtosecond IR lasers,” Proc. SPIE 7316, 433–443 (2009).

Kumbhakar, P.

B. Sarkar, C. Koley, N. K. Roy, and P. Kumbhakar, “Condition monitoring of high voltage transformers using Fiber Bragg Grating Sensor,” Measurement 74, 255–267 (2015).
[Crossref]

Lablonde, L.

A. Morana, S. Girard, E. Marin, J. Perisse, J. S. Genot, J. Kuhnhenn, J. Grelin, L. Hutter, G. Melin, L. Lablonde, T. Robin, B. Cadier, J. R. Mace, A. Boukenter, and Y. Ouerdane, “Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments,” IEEE Trans. Nucl. Sci. 64(1), 68–73 (2017).
[Crossref]

Laffont, G.

M. A. S. Zaghloul, M. Wang, S. Huang, C. Hnatovsky, D. Grobnic, S. Mihailov, M. J. Li, D. Carpenter, L. W. Hu, J. Daw, G. Laffont, S. Nehr, and K. P. Chen, “Radiation resistant fiber Bragg grating in random air-line fibers for sensing applications in nuclear reactor cores,” Opt. Express 26(9), 11775–11786 (2018).
[Crossref] [PubMed]

G. Laffont, R. Cotillard, N. Roussel, R. Desmarchelier, and S. Rougeault, “Temperature Resistant Fiber Bragg Gratings for On-Line and Structural Health Monitoring of the Next-Generation of Nuclear Reactors,” Sensors (Basel) 18(6), 1791 (2018).
[Crossref] [PubMed]

Lee, H. W.

Lee, J. H.

Lei, M.

X. Yu, W. Xi, W. Xu, M. Lei, Z. Liu, L. Cui, Y. Song, and S. Wu, “Multi-parameters measurement of EAST PFCs prototype with FBG sensors,” Fusion Eng. Des. 122, 1–7 (2017).
[Crossref]

Li, M.

M. Li, H. Yan, X. Diao, and Y. Zhang, “Prestress measurement during glass-metal sealing based on a fiber sensor,” Qinghua Daxue Xuebao. Ziran Kexue Ban 58, 664–670 (2018).

Li, M. J.

M. A. S. Zaghloul, M. Wang, S. Huang, C. Hnatovsky, D. Grobnic, S. Mihailov, M. J. Li, D. Carpenter, L. W. Hu, J. Daw, G. Laffont, S. Nehr, and K. P. Chen, “Radiation resistant fiber Bragg grating in random air-line fibers for sensing applications in nuclear reactor cores,” Opt. Express 26(9), 11775–11786 (2018).
[Crossref] [PubMed]

M. A. S. Zaghloul, M. Wang, G. Milione, M. J. Li, S. Li, Y. K. Huang, T. Wang, and K. P. Chen, “Discrimination of Temperature and Strain in Brillouin Optical Time Domain Analysis Using a Multicore Optical Fiber,” Sensors (Basel) 18(4), 1176 (2018).
[Crossref] [PubMed]

M. A. S. Zaghloul, A. Yan, R. Chen, M. J. Li, R. Flammang, M. Heibel, and K. P. Chen, “High Spatial Resolution Radiation Detection Using Distributed Fiber Sensing Technique,” IEEE Trans. Nucl. Sci. 64(9), 2569–2577 (2017).
[Crossref]

Li, S.

M. A. S. Zaghloul, M. Wang, G. Milione, M. J. Li, S. Li, Y. K. Huang, T. Wang, and K. P. Chen, “Discrimination of Temperature and Strain in Brillouin Optical Time Domain Analysis Using a Multicore Optical Fiber,” Sensors (Basel) 18(4), 1176 (2018).
[Crossref] [PubMed]

Liao, Y. B.

Y. Zhao and Y. B. Liao, “Discrimination methods and demodulation techniques for fiber Bragg grating sensors,” Opt. Lasers Eng. 41(1), 1–18 (2004).
[Crossref]

Liu, Z.

X. Yu, W. Xi, W. Xu, M. Lei, Z. Liu, L. Cui, Y. Song, and S. Wu, “Multi-parameters measurement of EAST PFCs prototype with FBG sensors,” Fusion Eng. Des. 122, 1–7 (2017).
[Crossref]

Mace, J. R.

A. Morana, S. Girard, E. Marin, J. Perisse, J. S. Genot, J. Kuhnhenn, J. Grelin, L. Hutter, G. Melin, L. Lablonde, T. Robin, B. Cadier, J. R. Mace, A. Boukenter, and Y. Ouerdane, “Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments,” IEEE Trans. Nucl. Sci. 64(1), 68–73 (2017).
[Crossref]

Mace, J.-R.

J. Kuhnhenn, U. Weinand, A. Morana, S. Girard, E. Marin, J. Perisse, J. Genot, J. Grelin, G. Melin, B. Cadier, T. Robin, J.-R. Mace, A. Boukenter, and Y. Ouerdane, “Gamma Radiation Tests of Radiation-Hardened Fiber Bragg Grating Based Sensors for Radiation Environments,” IEEE Trans. Nucl. Sci. 64, 2307–2311 (2017).
[Crossref]

Macé, J. R.

S. Rizzolo, J. Périsse, A. Boukenter, Y. Ouerdane, E. Marin, J. R. Macé, M. Cannas, and S. Girard, “Real time monitoring of water level and temperature in storage fuel pools through optical fibre sensors,” Sci. Rep. 7(1), 8766 (2017).
[Crossref] [PubMed]

Macé, J.-R.

Marcandella, C.

Marin, E.

A. Morana, S. Girard, E. Marin, J. Perisse, J. S. Genot, J. Kuhnhenn, J. Grelin, L. Hutter, G. Melin, L. Lablonde, T. Robin, B. Cadier, J. R. Mace, A. Boukenter, and Y. Ouerdane, “Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments,” IEEE Trans. Nucl. Sci. 64(1), 68–73 (2017).
[Crossref]

J. Kuhnhenn, U. Weinand, A. Morana, S. Girard, E. Marin, J. Perisse, J. Genot, J. Grelin, G. Melin, B. Cadier, T. Robin, J.-R. Mace, A. Boukenter, and Y. Ouerdane, “Gamma Radiation Tests of Radiation-Hardened Fiber Bragg Grating Based Sensors for Radiation Environments,” IEEE Trans. Nucl. Sci. 64, 2307–2311 (2017).
[Crossref]

S. Rizzolo, J. Périsse, A. Boukenter, Y. Ouerdane, E. Marin, J. R. Macé, M. Cannas, and S. Girard, “Real time monitoring of water level and temperature in storage fuel pools through optical fibre sensors,” Sci. Rep. 7(1), 8766 (2017).
[Crossref] [PubMed]

A. Morana, S. Girard, E. Marin, C. Marcandella, P. Paillet, J. Périsse, J.-R. Macé, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels,” Opt. Lett. 39(18), 5313–5316 (2014).
[Crossref] [PubMed]

Martelli, C.

U. J. Dreyer, F. Mezzadri, G. Dutra, T. da Silva, C. A. Bavastri, E. V. da Silva, C. Martelli, and J. C. Cardozo da Silva, “Quasi-Distributed Optical Fiber Transducer for Simultaneous Temperature and Vibration Sensing in High-Power Generators,” IEEE Sens. J. 18(4), 1547–1554 (2018).
[Crossref]

Martinez, A.

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41(4), 176–178 (2005).
[Crossref]

Megret, P.

D. Kinet, K. Chah, A. Gusarov, A. Faustov, L. Areias, I. Troullinos, P. Van Marcke, B. Craeye, E. Coppens, D. Raymaekers, and P. Megret, “Proof of Concept for Temperature and Strain Measurements With Fiber Bragg Gratings Embedded in Supercontainers Designed for Nuclear Waste Storage,” IEEE Trans. Nucl. Sci. 63(3), 1955–1962 (2016).
[Crossref]

Melin, G.

J. Kuhnhenn, U. Weinand, A. Morana, S. Girard, E. Marin, J. Perisse, J. Genot, J. Grelin, G. Melin, B. Cadier, T. Robin, J.-R. Mace, A. Boukenter, and Y. Ouerdane, “Gamma Radiation Tests of Radiation-Hardened Fiber Bragg Grating Based Sensors for Radiation Environments,” IEEE Trans. Nucl. Sci. 64, 2307–2311 (2017).
[Crossref]

A. Morana, S. Girard, E. Marin, J. Perisse, J. S. Genot, J. Kuhnhenn, J. Grelin, L. Hutter, G. Melin, L. Lablonde, T. Robin, B. Cadier, J. R. Mace, A. Boukenter, and Y. Ouerdane, “Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments,” IEEE Trans. Nucl. Sci. 64(1), 68–73 (2017).
[Crossref]

Meltz, G.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

Mezzadri, F.

U. J. Dreyer, F. Mezzadri, G. Dutra, T. da Silva, C. A. Bavastri, E. V. da Silva, C. Martelli, and J. C. Cardozo da Silva, “Quasi-Distributed Optical Fiber Transducer for Simultaneous Temperature and Vibration Sensing in High-Power Generators,” IEEE Sens. J. 18(4), 1547–1554 (2018).
[Crossref]

Mihailov, S.

Mihailov, S. J.

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
[Crossref] [PubMed]

H. Henschel, S. K. Hoeffgen, J. Kuhnhenn, and S. J. Mihailov, “Radiation sensitivity of Bragg gratings written with femtosecond IR lasers,” Proc. SPIE 7316, 433–443 (2009).

Milione, G.

M. A. S. Zaghloul, M. Wang, G. Milione, M. J. Li, S. Li, Y. K. Huang, T. Wang, and K. P. Chen, “Discrimination of Temperature and Strain in Brillouin Optical Time Domain Analysis Using a Multicore Optical Fiber,” Sensors (Basel) 18(4), 1176 (2018).
[Crossref] [PubMed]

Morana, A.

A. Morana, S. Girard, E. Marin, J. Perisse, J. S. Genot, J. Kuhnhenn, J. Grelin, L. Hutter, G. Melin, L. Lablonde, T. Robin, B. Cadier, J. R. Mace, A. Boukenter, and Y. Ouerdane, “Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments,” IEEE Trans. Nucl. Sci. 64(1), 68–73 (2017).
[Crossref]

J. Kuhnhenn, U. Weinand, A. Morana, S. Girard, E. Marin, J. Perisse, J. Genot, J. Grelin, G. Melin, B. Cadier, T. Robin, J.-R. Mace, A. Boukenter, and Y. Ouerdane, “Gamma Radiation Tests of Radiation-Hardened Fiber Bragg Grating Based Sensors for Radiation Environments,” IEEE Trans. Nucl. Sci. 64, 2307–2311 (2017).
[Crossref]

A. Morana, S. Girard, E. Marin, C. Marcandella, P. Paillet, J. Périsse, J.-R. Macé, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels,” Opt. Lett. 39(18), 5313–5316 (2014).
[Crossref] [PubMed]

Nehr, S.

Ouerdane, Y.

J. Kuhnhenn, U. Weinand, A. Morana, S. Girard, E. Marin, J. Perisse, J. Genot, J. Grelin, G. Melin, B. Cadier, T. Robin, J.-R. Mace, A. Boukenter, and Y. Ouerdane, “Gamma Radiation Tests of Radiation-Hardened Fiber Bragg Grating Based Sensors for Radiation Environments,” IEEE Trans. Nucl. Sci. 64, 2307–2311 (2017).
[Crossref]

A. Morana, S. Girard, E. Marin, J. Perisse, J. S. Genot, J. Kuhnhenn, J. Grelin, L. Hutter, G. Melin, L. Lablonde, T. Robin, B. Cadier, J. R. Mace, A. Boukenter, and Y. Ouerdane, “Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments,” IEEE Trans. Nucl. Sci. 64(1), 68–73 (2017).
[Crossref]

S. Rizzolo, J. Périsse, A. Boukenter, Y. Ouerdane, E. Marin, J. R. Macé, M. Cannas, and S. Girard, “Real time monitoring of water level and temperature in storage fuel pools through optical fibre sensors,” Sci. Rep. 7(1), 8766 (2017).
[Crossref] [PubMed]

A. Morana, S. Girard, E. Marin, C. Marcandella, P. Paillet, J. Périsse, J.-R. Macé, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels,” Opt. Lett. 39(18), 5313–5316 (2014).
[Crossref] [PubMed]

X. Phéron, S. Girard, A. Boukenter, B. Brichard, S. Delepine-Lesoille, J. Bertrand, and Y. Ouerdane, “High γ-ray dose radiation effects on the performances of Brillouin scattering based optical fiber sensors,” Opt. Express 20(24), 26978–26985 (2012).
[Crossref] [PubMed]

Paillet, P.

Park, H. J.

Pauw, B.

B. Pauw, G. Kennedy, K. Tichelen, T. Geernaert, H. Thienpont, and F. Berghmans, “Characterizing Flow-Induced Vibrations of Fuel Assemblies for Future Liquid Metal Cooled Nuclear Reactors Using Quasi-Distributed Fibre-Optic Sensors,” Appl. Sci. (Basel) 7(8), 864 (2017).
[Crossref]

Perisse, J.

A. Morana, S. Girard, E. Marin, J. Perisse, J. S. Genot, J. Kuhnhenn, J. Grelin, L. Hutter, G. Melin, L. Lablonde, T. Robin, B. Cadier, J. R. Mace, A. Boukenter, and Y. Ouerdane, “Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments,” IEEE Trans. Nucl. Sci. 64(1), 68–73 (2017).
[Crossref]

J. Kuhnhenn, U. Weinand, A. Morana, S. Girard, E. Marin, J. Perisse, J. Genot, J. Grelin, G. Melin, B. Cadier, T. Robin, J.-R. Mace, A. Boukenter, and Y. Ouerdane, “Gamma Radiation Tests of Radiation-Hardened Fiber Bragg Grating Based Sensors for Radiation Environments,” IEEE Trans. Nucl. Sci. 64, 2307–2311 (2017).
[Crossref]

Périsse, J.

S. Rizzolo, J. Périsse, A. Boukenter, Y. Ouerdane, E. Marin, J. R. Macé, M. Cannas, and S. Girard, “Real time monitoring of water level and temperature in storage fuel pools through optical fibre sensors,” Sci. Rep. 7(1), 8766 (2017).
[Crossref] [PubMed]

A. Morana, S. Girard, E. Marin, C. Marcandella, P. Paillet, J. Périsse, J.-R. Macé, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels,” Opt. Lett. 39(18), 5313–5316 (2014).
[Crossref] [PubMed]

Phéron, X.

Raymaekers, D.

D. Kinet, K. Chah, A. Gusarov, A. Faustov, L. Areias, I. Troullinos, P. Van Marcke, B. Craeye, E. Coppens, D. Raymaekers, and P. Megret, “Proof of Concept for Temperature and Strain Measurements With Fiber Bragg Gratings Embedded in Supercontainers Designed for Nuclear Waste Storage,” IEEE Trans. Nucl. Sci. 63(3), 1955–1962 (2016).
[Crossref]

Rizzolo, S.

S. Rizzolo, J. Périsse, A. Boukenter, Y. Ouerdane, E. Marin, J. R. Macé, M. Cannas, and S. Girard, “Real time monitoring of water level and temperature in storage fuel pools through optical fibre sensors,” Sci. Rep. 7(1), 8766 (2017).
[Crossref] [PubMed]

Robin, T.

A. Morana, S. Girard, E. Marin, J. Perisse, J. S. Genot, J. Kuhnhenn, J. Grelin, L. Hutter, G. Melin, L. Lablonde, T. Robin, B. Cadier, J. R. Mace, A. Boukenter, and Y. Ouerdane, “Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments,” IEEE Trans. Nucl. Sci. 64(1), 68–73 (2017).
[Crossref]

J. Kuhnhenn, U. Weinand, A. Morana, S. Girard, E. Marin, J. Perisse, J. Genot, J. Grelin, G. Melin, B. Cadier, T. Robin, J.-R. Mace, A. Boukenter, and Y. Ouerdane, “Gamma Radiation Tests of Radiation-Hardened Fiber Bragg Grating Based Sensors for Radiation Environments,” IEEE Trans. Nucl. Sci. 64, 2307–2311 (2017).
[Crossref]

Rougeault, S.

G. Laffont, R. Cotillard, N. Roussel, R. Desmarchelier, and S. Rougeault, “Temperature Resistant Fiber Bragg Gratings for On-Line and Structural Health Monitoring of the Next-Generation of Nuclear Reactors,” Sensors (Basel) 18(6), 1791 (2018).
[Crossref] [PubMed]

Roussel, N.

G. Laffont, R. Cotillard, N. Roussel, R. Desmarchelier, and S. Rougeault, “Temperature Resistant Fiber Bragg Gratings for On-Line and Structural Health Monitoring of the Next-Generation of Nuclear Reactors,” Sensors (Basel) 18(6), 1791 (2018).
[Crossref] [PubMed]

Roy, N. K.

B. Sarkar, C. Koley, N. K. Roy, and P. Kumbhakar, “Condition monitoring of high voltage transformers using Fiber Bragg Grating Sensor,” Measurement 74, 255–267 (2015).
[Crossref]

Sarkar, B.

B. Sarkar, C. Koley, N. K. Roy, and P. Kumbhakar, “Condition monitoring of high voltage transformers using Fiber Bragg Grating Sensor,” Measurement 74, 255–267 (2015).
[Crossref]

Singh, A.

A. Singh, S. N. Berggren, Y. Zhu, M. Han, and H. Huang, “Simultaneous strain and temperature measurement using a single fiber Bragg grating embedded in a composite laminate,” Smart Mater. Struct. 26(11), 115025 (2017).
[Crossref]

Song, M.

Song, Y.

X. Yu, W. Xi, W. Xu, M. Lei, Z. Liu, L. Cui, Y. Song, and S. Wu, “Multi-parameters measurement of EAST PFCs prototype with FBG sensors,” Fusion Eng. Des. 122, 1–7 (2017).
[Crossref]

Thienpont, H.

B. Pauw, G. Kennedy, K. Tichelen, T. Geernaert, H. Thienpont, and F. Berghmans, “Characterizing Flow-Induced Vibrations of Fuel Assemblies for Future Liquid Metal Cooled Nuclear Reactors Using Quasi-Distributed Fibre-Optic Sensors,” Appl. Sci. (Basel) 7(8), 864 (2017).
[Crossref]

Tichelen, K.

B. Pauw, G. Kennedy, K. Tichelen, T. Geernaert, H. Thienpont, and F. Berghmans, “Characterizing Flow-Induced Vibrations of Fuel Assemblies for Future Liquid Metal Cooled Nuclear Reactors Using Quasi-Distributed Fibre-Optic Sensors,” Appl. Sci. (Basel) 7(8), 864 (2017).
[Crossref]

Troullinos, I.

D. Kinet, K. Chah, A. Gusarov, A. Faustov, L. Areias, I. Troullinos, P. Van Marcke, B. Craeye, E. Coppens, D. Raymaekers, and P. Megret, “Proof of Concept for Temperature and Strain Measurements With Fiber Bragg Gratings Embedded in Supercontainers Designed for Nuclear Waste Storage,” IEEE Trans. Nucl. Sci. 63(3), 1955–1962 (2016).
[Crossref]

Van Marcke, P.

D. Kinet, K. Chah, A. Gusarov, A. Faustov, L. Areias, I. Troullinos, P. Van Marcke, B. Craeye, E. Coppens, D. Raymaekers, and P. Megret, “Proof of Concept for Temperature and Strain Measurements With Fiber Bragg Gratings Embedded in Supercontainers Designed for Nuclear Waste Storage,” IEEE Trans. Nucl. Sci. 63(3), 1955–1962 (2016).
[Crossref]

Vohra, S. T.

C. C. Chang and S. T. Vohra, “Spectral broadening due to non-uniform strain fields in fibre Bragg grating based transducers,” Electron. Lett. 34(18), 1778–1779 (2002).
[Crossref]

Wang, M.

M. A. S. Zaghloul, M. Wang, G. Milione, M. J. Li, S. Li, Y. K. Huang, T. Wang, and K. P. Chen, “Discrimination of Temperature and Strain in Brillouin Optical Time Domain Analysis Using a Multicore Optical Fiber,” Sensors (Basel) 18(4), 1176 (2018).
[Crossref] [PubMed]

M. A. S. Zaghloul, M. Wang, S. Huang, C. Hnatovsky, D. Grobnic, S. Mihailov, M. J. Li, D. Carpenter, L. W. Hu, J. Daw, G. Laffont, S. Nehr, and K. P. Chen, “Radiation resistant fiber Bragg grating in random air-line fibers for sensing applications in nuclear reactor cores,” Opt. Express 26(9), 11775–11786 (2018).
[Crossref] [PubMed]

Wang, T.

M. A. S. Zaghloul, M. Wang, G. Milione, M. J. Li, S. Li, Y. K. Huang, T. Wang, and K. P. Chen, “Discrimination of Temperature and Strain in Brillouin Optical Time Domain Analysis Using a Multicore Optical Fiber,” Sensors (Basel) 18(4), 1176 (2018).
[Crossref] [PubMed]

Wang, Y.

Y. Wang and X. Huang, “Diametric load sensor using a fiber Bragg grating and its differential group delay analysis,” Opt. Quantum Electron. 44(10-11), 483–491 (2012).
[Crossref]

Weinand, U.

J. Kuhnhenn, U. Weinand, A. Morana, S. Girard, E. Marin, J. Perisse, J. Genot, J. Grelin, G. Melin, B. Cadier, T. Robin, J.-R. Mace, A. Boukenter, and Y. Ouerdane, “Gamma Radiation Tests of Radiation-Hardened Fiber Bragg Grating Based Sensors for Radiation Environments,” IEEE Trans. Nucl. Sci. 64, 2307–2311 (2017).
[Crossref]

H. Henschel, S. K. Hoeffgen, J. Kuhnhenn, and U. Weinand, “Influence of manufacturing parameters and temperature on the radiation sensitivity of fiber Bragg gratings,” IEEE Trans. Nucl. Sci. 57(4), 2029–2034 (2010).
[Crossref]

Wu, S.

X. Yu, W. Xi, W. Xu, M. Lei, Z. Liu, L. Cui, Y. Song, and S. Wu, “Multi-parameters measurement of EAST PFCs prototype with FBG sensors,” Fusion Eng. Des. 122, 1–7 (2017).
[Crossref]

Xi, W.

X. Yu, W. Xi, W. Xu, M. Lei, Z. Liu, L. Cui, Y. Song, and S. Wu, “Multi-parameters measurement of EAST PFCs prototype with FBG sensors,” Fusion Eng. Des. 122, 1–7 (2017).
[Crossref]

Xiao-Ming, T.

G. Bai-Ou, T. Hwa-Yaw, T. Xiao-Ming, and D. Xiao-Yi, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
[Crossref]

Xiao-Yi, D.

G. Bai-Ou, T. Hwa-Yaw, T. Xiao-Ming, and D. Xiao-Yi, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
[Crossref]

Xu, W.

X. Yu, W. Xi, W. Xu, M. Lei, Z. Liu, L. Cui, Y. Song, and S. Wu, “Multi-parameters measurement of EAST PFCs prototype with FBG sensors,” Fusion Eng. Des. 122, 1–7 (2017).
[Crossref]

Yan, A.

M. A. S. Zaghloul, A. Yan, R. Chen, M. J. Li, R. Flammang, M. Heibel, and K. P. Chen, “High Spatial Resolution Radiation Detection Using Distributed Fiber Sensing Technique,” IEEE Trans. Nucl. Sci. 64(9), 2569–2577 (2017).
[Crossref]

Yan, H.

M. Li, H. Yan, X. Diao, and Y. Zhang, “Prestress measurement during glass-metal sealing based on a fiber sensor,” Qinghua Daxue Xuebao. Ziran Kexue Ban 58, 664–670 (2018).

Yoo, S. H.

H. S. Kim, S. H. Yoo, and S. H. Chang, “In situ monitoring of the strain evolution and curing reaction of composite laminates to reduce the thermal residual stress using FBG sensor and dielectrometry,” Compos., Part B Eng. 44(1), 446–452 (2013).
[Crossref]

Yu, X.

X. Yu, W. Xi, W. Xu, M. Lei, Z. Liu, L. Cui, Y. Song, and S. Wu, “Multi-parameters measurement of EAST PFCs prototype with FBG sensors,” Fusion Eng. Des. 122, 1–7 (2017).
[Crossref]

Zaghloul, M. A. S.

M. A. S. Zaghloul, M. Wang, S. Huang, C. Hnatovsky, D. Grobnic, S. Mihailov, M. J. Li, D. Carpenter, L. W. Hu, J. Daw, G. Laffont, S. Nehr, and K. P. Chen, “Radiation resistant fiber Bragg grating in random air-line fibers for sensing applications in nuclear reactor cores,” Opt. Express 26(9), 11775–11786 (2018).
[Crossref] [PubMed]

M. A. S. Zaghloul, M. Wang, G. Milione, M. J. Li, S. Li, Y. K. Huang, T. Wang, and K. P. Chen, “Discrimination of Temperature and Strain in Brillouin Optical Time Domain Analysis Using a Multicore Optical Fiber,” Sensors (Basel) 18(4), 1176 (2018).
[Crossref] [PubMed]

M. A. S. Zaghloul, A. Yan, R. Chen, M. J. Li, R. Flammang, M. Heibel, and K. P. Chen, “High Spatial Resolution Radiation Detection Using Distributed Fiber Sensing Technique,” IEEE Trans. Nucl. Sci. 64(9), 2569–2577 (2017).
[Crossref]

Zhang, Y.

M. Li, H. Yan, X. Diao, and Y. Zhang, “Prestress measurement during glass-metal sealing based on a fiber sensor,” Qinghua Daxue Xuebao. Ziran Kexue Ban 58, 664–670 (2018).

Zhao, Y.

Y. Zhao and Y. B. Liao, “Discrimination methods and demodulation techniques for fiber Bragg grating sensors,” Opt. Lasers Eng. 41(1), 1–18 (2004).
[Crossref]

Zhu, Y.

A. Singh, S. N. Berggren, Y. Zhu, M. Han, and H. Huang, “Simultaneous strain and temperature measurement using a single fiber Bragg grating embedded in a composite laminate,” Smart Mater. Struct. 26(11), 115025 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Sci. (Basel) (1)

B. Pauw, G. Kennedy, K. Tichelen, T. Geernaert, H. Thienpont, and F. Berghmans, “Characterizing Flow-Induced Vibrations of Fuel Assemblies for Future Liquid Metal Cooled Nuclear Reactors Using Quasi-Distributed Fibre-Optic Sensors,” Appl. Sci. (Basel) 7(8), 864 (2017).
[Crossref]

Compos., Part B Eng. (1)

H. S. Kim, S. H. Yoo, and S. H. Chang, “In situ monitoring of the strain evolution and curing reaction of composite laminates to reduce the thermal residual stress using FBG sensor and dielectrometry,” Compos., Part B Eng. 44(1), 446–452 (2013).
[Crossref]

Electron. Lett. (2)

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41(4), 176–178 (2005).
[Crossref]

C. C. Chang and S. T. Vohra, “Spectral broadening due to non-uniform strain fields in fibre Bragg grating based transducers,” Electron. Lett. 34(18), 1778–1779 (2002).
[Crossref]

Fusion Eng. Des. (1)

X. Yu, W. Xi, W. Xu, M. Lei, Z. Liu, L. Cui, Y. Song, and S. Wu, “Multi-parameters measurement of EAST PFCs prototype with FBG sensors,” Fusion Eng. Des. 122, 1–7 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

G. Bai-Ou, T. Hwa-Yaw, T. Xiao-Ming, and D. Xiao-Yi, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
[Crossref]

IEEE Sens. J. (1)

U. J. Dreyer, F. Mezzadri, G. Dutra, T. da Silva, C. A. Bavastri, E. V. da Silva, C. Martelli, and J. C. Cardozo da Silva, “Quasi-Distributed Optical Fiber Transducer for Simultaneous Temperature and Vibration Sensing in High-Power Generators,” IEEE Sens. J. 18(4), 1547–1554 (2018).
[Crossref]

IEEE Trans. Nucl. Sci. (6)

D. Kinet, K. Chah, A. Gusarov, A. Faustov, L. Areias, I. Troullinos, P. Van Marcke, B. Craeye, E. Coppens, D. Raymaekers, and P. Megret, “Proof of Concept for Temperature and Strain Measurements With Fiber Bragg Gratings Embedded in Supercontainers Designed for Nuclear Waste Storage,” IEEE Trans. Nucl. Sci. 63(3), 1955–1962 (2016).
[Crossref]

M. A. S. Zaghloul, A. Yan, R. Chen, M. J. Li, R. Flammang, M. Heibel, and K. P. Chen, “High Spatial Resolution Radiation Detection Using Distributed Fiber Sensing Technique,” IEEE Trans. Nucl. Sci. 64(9), 2569–2577 (2017).
[Crossref]

A. Morana, S. Girard, E. Marin, J. Perisse, J. S. Genot, J. Kuhnhenn, J. Grelin, L. Hutter, G. Melin, L. Lablonde, T. Robin, B. Cadier, J. R. Mace, A. Boukenter, and Y. Ouerdane, “Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments,” IEEE Trans. Nucl. Sci. 64(1), 68–73 (2017).
[Crossref]

H. Henschel, S. K. Hoeffgen, J. Kuhnhenn, and U. Weinand, “Influence of manufacturing parameters and temperature on the radiation sensitivity of fiber Bragg gratings,” IEEE Trans. Nucl. Sci. 57(4), 2029–2034 (2010).
[Crossref]

J. Kuhnhenn, U. Weinand, A. Morana, S. Girard, E. Marin, J. Perisse, J. Genot, J. Grelin, G. Melin, B. Cadier, T. Robin, J.-R. Mace, A. Boukenter, and Y. Ouerdane, “Gamma Radiation Tests of Radiation-Hardened Fiber Bragg Grating Based Sensors for Radiation Environments,” IEEE Trans. Nucl. Sci. 64, 2307–2311 (2017).
[Crossref]

A. Gusarov and S. K. Hoeffgen, “Radiation Effects on Fiber Gratings,” IEEE Trans. Nucl. Sci. 60(3), 2037–2053 (2013).
[Crossref]

J. Lightwave Technol. (1)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

Measurement (1)

B. Sarkar, C. Koley, N. K. Roy, and P. Kumbhakar, “Condition monitoring of high voltage transformers using Fiber Bragg Grating Sensor,” Measurement 74, 255–267 (2015).
[Crossref]

Opt. Express (2)

Opt. Lasers Eng. (1)

Y. Zhao and Y. B. Liao, “Discrimination methods and demodulation techniques for fiber Bragg grating sensors,” Opt. Lasers Eng. 41(1), 1–18 (2004).
[Crossref]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

Y. Wang and X. Huang, “Diametric load sensor using a fiber Bragg grating and its differential group delay analysis,” Opt. Quantum Electron. 44(10-11), 483–491 (2012).
[Crossref]

Proc. SPIE (1)

H. Henschel, S. K. Hoeffgen, J. Kuhnhenn, and S. J. Mihailov, “Radiation sensitivity of Bragg gratings written with femtosecond IR lasers,” Proc. SPIE 7316, 433–443 (2009).

Qinghua Daxue Xuebao. Ziran Kexue Ban (1)

M. Li, H. Yan, X. Diao, and Y. Zhang, “Prestress measurement during glass-metal sealing based on a fiber sensor,” Qinghua Daxue Xuebao. Ziran Kexue Ban 58, 664–670 (2018).

Sci. Rep. (1)

S. Rizzolo, J. Périsse, A. Boukenter, Y. Ouerdane, E. Marin, J. R. Macé, M. Cannas, and S. Girard, “Real time monitoring of water level and temperature in storage fuel pools through optical fibre sensors,” Sci. Rep. 7(1), 8766 (2017).
[Crossref] [PubMed]

Sensors (Basel) (3)

G. Laffont, R. Cotillard, N. Roussel, R. Desmarchelier, and S. Rougeault, “Temperature Resistant Fiber Bragg Gratings for On-Line and Structural Health Monitoring of the Next-Generation of Nuclear Reactors,” Sensors (Basel) 18(6), 1791 (2018).
[Crossref] [PubMed]

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
[Crossref] [PubMed]

M. A. S. Zaghloul, M. Wang, G. Milione, M. J. Li, S. Li, Y. K. Huang, T. Wang, and K. P. Chen, “Discrimination of Temperature and Strain in Brillouin Optical Time Domain Analysis Using a Multicore Optical Fiber,” Sensors (Basel) 18(4), 1176 (2018).
[Crossref] [PubMed]

Smart Mater. Struct. (1)

A. Singh, S. N. Berggren, Y. Zhu, M. Han, and H. Huang, “Simultaneous strain and temperature measurement using a single fiber Bragg grating embedded in a composite laminate,” Smart Mater. Struct. 26(11), 115025 (2017).
[Crossref]

Other (4)

W. W. Morey, G. Meltz, and J. M. Weiss, “Recent advances in fiber-grating sensors for utility industry applications,” Proceedings of SPIE - The International Society for Optical Engineering, 90–98 (1996).
[Crossref]

C. Cangialosi, Y. Ouerdane, S. Girard, A. Boukenter, M. Cannas, S. Delepinelesoille, J. Bertrand, and P. Paillet, “Hydrogen and radiation induced effects on performances of Raman fiber-based temperature sensors,” in Ofs, (2014), 91576U–91576U–91574.

IEEE Std 317-2013, "IEEE Standard for Electric Penetration Assemblies in Containment Structures for Nuclear Power Generating Stations,”.

A. Mohammed and S. Djurovic, “Stator Winding Internal Thermal Stress Monitoring and Analysis Using in-situ FBG Sensing Technology,” IEEE Transactions on Energy Conversion PP, 1–1 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Simplified diagram of EPA in nuclear power plant; (b) Schematic of a EPA module with femto-laser inscribed FBG sensor.
Fig. 2
Fig. 2 (a) Set up of the on-line state monitoring experiment under thermal load; (b) Schematic of simultaneous temperature and stress monitoring method by femto-laser inscribed FBG sensors;(c) Set up of the on-line state monitoring experiment under pressure load; (d) Schematic of stress monitoring method by femto-laser inscribed FBG sensor; (e) Position of the embedded FBG in sealing glass.
Fig. 3
Fig. 3 Boundary conditions for finite element analysis and calculating paths.
Fig. 4
Fig. 4 (a) Spectra of femto-laser inscribed FBG before and after radiation; (b) Spectra of UV laser inscribe FBG before and after radiation.
Fig. 5
Fig. 5 (a) Thermal sensitivity change and wavelength drift of femto-laser inscribed FBG suffering long-term thermal aging test; (b) Thermal sensitivity change and wavelength drift of UV laser inscribed FBG suffering long-term thermal aging test.
Fig. 6
Fig. 6 (a) On-line monitoring results of femto-laser inscribed FBGs under thermal load; (b) On-line monitoring results of UV laser inscribed FBGs under thermal load; (c) Relationship of stress-wavelength monitored by femto-laser inscribed FBGs; Relationship of temperature-wavelength monitored by femto-laser inscribed FBGs .
Fig. 7
Fig. 7 (a) Spectra of femto-laser inscribed FBG sensors in EPA at different temperatures; (b) Spectra of UV laser inscribed FBG in sealing glass at different temperatures; (c) FWHMμ + T of femto-laser inscribed FBG sensors at different temperatures.
Fig. 8
Fig. 8 (a) Relationship between stress σ and FWHMμ + T; (b) Relationship between temperature and FWHMT; (c) Comparison of demodulation results by Δλμ + TΔλT and FWHM methods.
Fig. 9
Fig. 9 On-line state monitoring result of femto-laser inscribed FBG under pressure load.
Fig. 10
Fig. 10 (a) Axial stress distribution at different working temperatures; (b) Comparison of numerical result and experimental result by femto-laser inscribed FBG under thermal load.
Fig. 11
Fig. 11 (a) Axial stress distribution under different working pressure; (b) Comparison of numerical result and experimental result under pressure load.

Tables (2)

Tables Icon

Table 1 Material parameters of different parts in EPA

Tables Icon

Table 2 Results of the thermal and radiation aging tests

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ λ BT λ B = (ζ+α)×ΔT
Δ λ B-ε λ B = ε 1 ( n 2 2 )[ p 11 ε t + p 12 ( ε 1 + ε t )]
Δ λ B λ B =0.78 ε 1
f i = a i exp[ b i ( λ i λ B ) 2 ]
Min= 1 n i=1 n ( f i λ i ) 2

Metrics