Abstract

Optically pumped atomic magnetometers based on spin exchange relaxation free regime have recently become a powerful tool in the field of magnetoencephalography measurements. For this application of magnetometers, simultaneous multilocation magnetic field measurements are desired. To fulfill the requirement, we develop a multi-channel sensor module based on a single large vapor cell. The probe beam passes through the vapor cell twice by reflection and then records the two-dimensional spatial magnetic field distribution with two 2 × 2 photodiode matrixes. Comparing with the previous multi-channel tangential magnetic field measuring sensors, our magnetometer is sensitive to the normal magnetic field by operating in the longitudinal parametric modulation mode. Measuring the normal component is considered more suitable for magnetoencephalography, because the normal component provides more information. The sensitivities of the channels are approximately 10 fT/Hz1/2 in the normal direction. The auditory evoked magnetic fields of the four adjacent locations perpendicular to the scalp are detected simultaneously. Our magnetometer can measure the normal and tangential magnetic fields simultaneously. The dual-axis vector measurement of magnetic field is very important for magnetoencephalography.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Magnetoencephalography with a chip-scale atomic magnetometer

T. H. Sander, J. Preusser, R. Mhaskar, J. Kitching, L. Trahms, and S. Knappe
Biomed. Opt. Express 3(5) 981-990 (2012)

Four-channel optically pumped atomic magnetometer for magnetoencephalography

Anthony P. Colombo, Tony R. Carter, Amir Borna, Yuan-Yu Jau, Cort N. Johnson, Amber L. Dagel, and Peter D. D. Schwindt
Opt. Express 24(14) 15403-15416 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. Cheyne, A. C. Bostan, W. Gaetz, and E. W. Pang, “Event-related beamforming: a robust method for presurgical functional mapping using MEG,” Clin. Neurophysiol. 118(8), 1691–1704 (2007).
    [Crossref] [PubMed]
  2. A. J. Colon, P. Ossenblok, L. Nieuwenhuis, K. J. Stam, and P. Boon, “Use of routine MEG in the primary diagnostic process of epilepsy,” J. Clin. Neurophysiol. 26(5), 326–332 (2009).
    [Crossref] [PubMed]
  3. D. Cohen and B. N. Cuffin, “Demonstration of useful differences between magnetoencephalogram and electroencephalogram,” Electroencephalogr. Clin. Neurophysiol. 56(1), 38–51 (1983).
    [Crossref] [PubMed]
  4. E. Boto, S. S. Meyer, V. Shah, O. Alem, S. Knappe, P. Kruger, T. M. Fromhold, M. Lim, P. M. Glover, P. G. Morris, R. Bowtell, G. R. Barnes, and M. J. Brookes, “A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers,” Neuroimage 149, 404–414 (2017).
    [Crossref] [PubMed]
  5. E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
    [Crossref] [PubMed]
  6. J. Iivanainen, M. Stenroos, and L. Parkkonen, “Measuring MEG closer to the brain: Performance of on-scalp sensor arrays,” Neuroimage 147, 542–553 (2017).
    [Crossref] [PubMed]
  7. W. Happer and A. C. Tam, “Effect of rapid spin exchange on the magnetic-resonance spectrum of alkali vapors,” Phys. Rev. A 16(5), 1877–1891 (1977).
    [Crossref]
  8. W. Happer and H. Tang, “Spin-exchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors,” Phys. Rev. Lett. 31(5), 273–276 (1973).
    [Crossref]
  9. J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89(13), 130801 (2002).
    [Crossref] [PubMed]
  10. H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97(15), 151110 (2010).
    [Crossref]
  11. H. Xia, A. B. A. Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Appl. Phys. Lett. 89(21), 211104 (2006).
    [Crossref]
  12. K. Nishi, Y. Ito, and T. Kobayashi, “High-sensitivity multi-channel probe beam detector towards MEG measurements of small animals with an optically pumped K-Rb hybrid magnetometer,” Opt. Express 26(2), 1988–1996 (2018).
    [Crossref] [PubMed]
  13. Y. J. Kim and I. Savukov, “Highly sensitive multi-channel atomic magnetometer,” in 2018 IEEE Sensors Applications Symposium (SAS) (2018), pp. 1–4.
  14. Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Measurements of magnetic field distributions with an optically pumped K-Rb hybrid atomic magnetometer,” IEEE Trans. Magn. 50(11), 1–3 (2014).
    [Crossref]
  15. Y. Mamishin, Y. Ito, and T. Kobayashi, “A novel method to accomplish simultaneous multilocation magnetic field measurements based on pump-beam modulation of an atomic magnetometer,” IEEE Trans. Magn. 53(5), 1–6 (2017).
    [Crossref]
  16. A. Gusarov, A. B. A. Baranga, D. Levron, and R. Shuker, “Accuracy enhancement of magnetic field distribution measurements with a large cell Spin-Exchange Relaxation Free magnetometer,” Meas. Sci. Technol. 29(4), 045209 (2018).
    [Crossref]
  17. K. Kim, S. Begus, H. Xia, S. K. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: a configuration study,” Neuroimage 89, 143–151 (2014).
    [Crossref] [PubMed]
  18. C. Johnson, P. D. D. Schwindt, and M. Weisend, “Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer,” Appl. Phys. Lett. 97(24), 243703 (2010).
    [Crossref]
  19. C. N. Johnson, P. D. D. Schwindt, and M. Weisend, “Multi-sensor magnetoencephalography with atomic magnetometers,” Phys. Med. Biol. 58(17), 6065–6077 (2013).
    [Crossref] [PubMed]
  20. Z. Li, R. T. Wakai, and T. G. Walker, “Parametric modulation of an atomic magnetometer,” Appl. Phys. Lett. 89(13), 235755 (2006).
    [Crossref] [PubMed]
  21. V. Diekmann, W. Becker, B. Grözinger, R. Jürgens, and C. Kornhuber, “A comparison of normal and tangential magnetic field component measurements in biomagnetic investigations,” Clin. Phys. Physiol. Meas. 12(Suppl A), 55–59 (1991).
    [PubMed]
  22. J. Nurminen, S. Taulu, J. Nenonen, L. Helle, J. Simola, and A. Ahonen, “Improving MEG performance with additional tangential sensors,” IEEE Trans. Biomed. Eng. 60(9), 2559–2566 (2013).
    [Crossref] [PubMed]
  23. M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77(3), 033408 (2008).
    [Crossref]
  24. A. P. Colombo, T. R. Carter, A. Borna, Y. Y. Jau, C. N. Johnson, A. L. Dagel, and P. D. D. Schwindt, “Four-channel optically pumped atomic magnetometer for magnetoencephalography,” Opt. Express 24(14), 15403–15416 (2016).
    [Crossref] [PubMed]
  25. M. V. Romalis, “Hybrid optical pumping of optically dense alkali-metal vapor without quenching gas,” Phys. Rev. Lett. 105(24), 243001 (2010).
    [Crossref] [PubMed]
  26. Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Sensitivity Improvement of spin-exchange relaxation free atomic magnetometers by hybrid optical pumping of potassium and rubidium,” IEEE Trans. Magn. 47(10), 3550–3553 (2011).
    [Crossref]

2018 (3)

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref] [PubMed]

K. Nishi, Y. Ito, and T. Kobayashi, “High-sensitivity multi-channel probe beam detector towards MEG measurements of small animals with an optically pumped K-Rb hybrid magnetometer,” Opt. Express 26(2), 1988–1996 (2018).
[Crossref] [PubMed]

A. Gusarov, A. B. A. Baranga, D. Levron, and R. Shuker, “Accuracy enhancement of magnetic field distribution measurements with a large cell Spin-Exchange Relaxation Free magnetometer,” Meas. Sci. Technol. 29(4), 045209 (2018).
[Crossref]

2017 (3)

Y. Mamishin, Y. Ito, and T. Kobayashi, “A novel method to accomplish simultaneous multilocation magnetic field measurements based on pump-beam modulation of an atomic magnetometer,” IEEE Trans. Magn. 53(5), 1–6 (2017).
[Crossref]

J. Iivanainen, M. Stenroos, and L. Parkkonen, “Measuring MEG closer to the brain: Performance of on-scalp sensor arrays,” Neuroimage 147, 542–553 (2017).
[Crossref] [PubMed]

E. Boto, S. S. Meyer, V. Shah, O. Alem, S. Knappe, P. Kruger, T. M. Fromhold, M. Lim, P. M. Glover, P. G. Morris, R. Bowtell, G. R. Barnes, and M. J. Brookes, “A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers,” Neuroimage 149, 404–414 (2017).
[Crossref] [PubMed]

2016 (1)

2014 (2)

K. Kim, S. Begus, H. Xia, S. K. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: a configuration study,” Neuroimage 89, 143–151 (2014).
[Crossref] [PubMed]

Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Measurements of magnetic field distributions with an optically pumped K-Rb hybrid atomic magnetometer,” IEEE Trans. Magn. 50(11), 1–3 (2014).
[Crossref]

2013 (2)

C. N. Johnson, P. D. D. Schwindt, and M. Weisend, “Multi-sensor magnetoencephalography with atomic magnetometers,” Phys. Med. Biol. 58(17), 6065–6077 (2013).
[Crossref] [PubMed]

J. Nurminen, S. Taulu, J. Nenonen, L. Helle, J. Simola, and A. Ahonen, “Improving MEG performance with additional tangential sensors,” IEEE Trans. Biomed. Eng. 60(9), 2559–2566 (2013).
[Crossref] [PubMed]

2011 (1)

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Sensitivity Improvement of spin-exchange relaxation free atomic magnetometers by hybrid optical pumping of potassium and rubidium,” IEEE Trans. Magn. 47(10), 3550–3553 (2011).
[Crossref]

2010 (3)

M. V. Romalis, “Hybrid optical pumping of optically dense alkali-metal vapor without quenching gas,” Phys. Rev. Lett. 105(24), 243001 (2010).
[Crossref] [PubMed]

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97(15), 151110 (2010).
[Crossref]

C. Johnson, P. D. D. Schwindt, and M. Weisend, “Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer,” Appl. Phys. Lett. 97(24), 243703 (2010).
[Crossref]

2009 (1)

A. J. Colon, P. Ossenblok, L. Nieuwenhuis, K. J. Stam, and P. Boon, “Use of routine MEG in the primary diagnostic process of epilepsy,” J. Clin. Neurophysiol. 26(5), 326–332 (2009).
[Crossref] [PubMed]

2008 (1)

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77(3), 033408 (2008).
[Crossref]

2007 (1)

D. Cheyne, A. C. Bostan, W. Gaetz, and E. W. Pang, “Event-related beamforming: a robust method for presurgical functional mapping using MEG,” Clin. Neurophysiol. 118(8), 1691–1704 (2007).
[Crossref] [PubMed]

2006 (2)

H. Xia, A. B. A. Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Appl. Phys. Lett. 89(21), 211104 (2006).
[Crossref]

Z. Li, R. T. Wakai, and T. G. Walker, “Parametric modulation of an atomic magnetometer,” Appl. Phys. Lett. 89(13), 235755 (2006).
[Crossref] [PubMed]

2002 (1)

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89(13), 130801 (2002).
[Crossref] [PubMed]

1991 (1)

V. Diekmann, W. Becker, B. Grözinger, R. Jürgens, and C. Kornhuber, “A comparison of normal and tangential magnetic field component measurements in biomagnetic investigations,” Clin. Phys. Physiol. Meas. 12(Suppl A), 55–59 (1991).
[PubMed]

1983 (1)

D. Cohen and B. N. Cuffin, “Demonstration of useful differences between magnetoencephalogram and electroencephalogram,” Electroencephalogr. Clin. Neurophysiol. 56(1), 38–51 (1983).
[Crossref] [PubMed]

1977 (1)

W. Happer and A. C. Tam, “Effect of rapid spin exchange on the magnetic-resonance spectrum of alkali vapors,” Phys. Rev. A 16(5), 1877–1891 (1977).
[Crossref]

1973 (1)

W. Happer and H. Tang, “Spin-exchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors,” Phys. Rev. Lett. 31(5), 273–276 (1973).
[Crossref]

Acosta, V. M.

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77(3), 033408 (2008).
[Crossref]

Ahonen, A.

J. Nurminen, S. Taulu, J. Nenonen, L. Helle, J. Simola, and A. Ahonen, “Improving MEG performance with additional tangential sensors,” IEEE Trans. Biomed. Eng. 60(9), 2559–2566 (2013).
[Crossref] [PubMed]

Alem, O.

E. Boto, S. S. Meyer, V. Shah, O. Alem, S. Knappe, P. Kruger, T. M. Fromhold, M. Lim, P. M. Glover, P. G. Morris, R. Bowtell, G. R. Barnes, and M. J. Brookes, “A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers,” Neuroimage 149, 404–414 (2017).
[Crossref] [PubMed]

Allred, J. C.

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89(13), 130801 (2002).
[Crossref] [PubMed]

Baranga, A. B. A.

A. Gusarov, A. B. A. Baranga, D. Levron, and R. Shuker, “Accuracy enhancement of magnetic field distribution measurements with a large cell Spin-Exchange Relaxation Free magnetometer,” Meas. Sci. Technol. 29(4), 045209 (2018).
[Crossref]

H. Xia, A. B. A. Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Appl. Phys. Lett. 89(21), 211104 (2006).
[Crossref]

Barnes, G. R.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref] [PubMed]

E. Boto, S. S. Meyer, V. Shah, O. Alem, S. Knappe, P. Kruger, T. M. Fromhold, M. Lim, P. M. Glover, P. G. Morris, R. Bowtell, G. R. Barnes, and M. J. Brookes, “A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers,” Neuroimage 149, 404–414 (2017).
[Crossref] [PubMed]

Becker, W.

V. Diekmann, W. Becker, B. Grözinger, R. Jürgens, and C. Kornhuber, “A comparison of normal and tangential magnetic field component measurements in biomagnetic investigations,” Clin. Phys. Physiol. Meas. 12(Suppl A), 55–59 (1991).
[PubMed]

Begus, S.

K. Kim, S. Begus, H. Xia, S. K. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: a configuration study,” Neuroimage 89, 143–151 (2014).
[Crossref] [PubMed]

Bestmann, S.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref] [PubMed]

Boon, P.

A. J. Colon, P. Ossenblok, L. Nieuwenhuis, K. J. Stam, and P. Boon, “Use of routine MEG in the primary diagnostic process of epilepsy,” J. Clin. Neurophysiol. 26(5), 326–332 (2009).
[Crossref] [PubMed]

Borna, A.

Bostan, A. C.

D. Cheyne, A. C. Bostan, W. Gaetz, and E. W. Pang, “Event-related beamforming: a robust method for presurgical functional mapping using MEG,” Clin. Neurophysiol. 118(8), 1691–1704 (2007).
[Crossref] [PubMed]

Boto, E.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref] [PubMed]

E. Boto, S. S. Meyer, V. Shah, O. Alem, S. Knappe, P. Kruger, T. M. Fromhold, M. Lim, P. M. Glover, P. G. Morris, R. Bowtell, G. R. Barnes, and M. J. Brookes, “A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers,” Neuroimage 149, 404–414 (2017).
[Crossref] [PubMed]

Bowtell, R.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref] [PubMed]

E. Boto, S. S. Meyer, V. Shah, O. Alem, S. Knappe, P. Kruger, T. M. Fromhold, M. Lim, P. M. Glover, P. G. Morris, R. Bowtell, G. R. Barnes, and M. J. Brookes, “A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers,” Neuroimage 149, 404–414 (2017).
[Crossref] [PubMed]

Brookes, M. J.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref] [PubMed]

E. Boto, S. S. Meyer, V. Shah, O. Alem, S. Knappe, P. Kruger, T. M. Fromhold, M. Lim, P. M. Glover, P. G. Morris, R. Bowtell, G. R. Barnes, and M. J. Brookes, “A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers,” Neuroimage 149, 404–414 (2017).
[Crossref] [PubMed]

Budker, D.

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77(3), 033408 (2008).
[Crossref]

Carter, T. R.

Cheyne, D.

D. Cheyne, A. C. Bostan, W. Gaetz, and E. W. Pang, “Event-related beamforming: a robust method for presurgical functional mapping using MEG,” Clin. Neurophysiol. 118(8), 1691–1704 (2007).
[Crossref] [PubMed]

Cohen, D.

D. Cohen and B. N. Cuffin, “Demonstration of useful differences between magnetoencephalogram and electroencephalogram,” Electroencephalogr. Clin. Neurophysiol. 56(1), 38–51 (1983).
[Crossref] [PubMed]

Colombo, A. P.

Colon, A. J.

A. J. Colon, P. Ossenblok, L. Nieuwenhuis, K. J. Stam, and P. Boon, “Use of routine MEG in the primary diagnostic process of epilepsy,” J. Clin. Neurophysiol. 26(5), 326–332 (2009).
[Crossref] [PubMed]

Cuffin, B. N.

D. Cohen and B. N. Cuffin, “Demonstration of useful differences between magnetoencephalogram and electroencephalogram,” Electroencephalogr. Clin. Neurophysiol. 56(1), 38–51 (1983).
[Crossref] [PubMed]

Dagel, A. L.

Dang, H. B.

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97(15), 151110 (2010).
[Crossref]

Diekmann, V.

V. Diekmann, W. Becker, B. Grözinger, R. Jürgens, and C. Kornhuber, “A comparison of normal and tangential magnetic field component measurements in biomagnetic investigations,” Clin. Phys. Physiol. Meas. 12(Suppl A), 55–59 (1991).
[PubMed]

Fromhold, T. M.

E. Boto, S. S. Meyer, V. Shah, O. Alem, S. Knappe, P. Kruger, T. M. Fromhold, M. Lim, P. M. Glover, P. G. Morris, R. Bowtell, G. R. Barnes, and M. J. Brookes, “A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers,” Neuroimage 149, 404–414 (2017).
[Crossref] [PubMed]

Gaetz, W.

D. Cheyne, A. C. Bostan, W. Gaetz, and E. W. Pang, “Event-related beamforming: a robust method for presurgical functional mapping using MEG,” Clin. Neurophysiol. 118(8), 1691–1704 (2007).
[Crossref] [PubMed]

Glover, P. M.

E. Boto, S. S. Meyer, V. Shah, O. Alem, S. Knappe, P. Kruger, T. M. Fromhold, M. Lim, P. M. Glover, P. G. Morris, R. Bowtell, G. R. Barnes, and M. J. Brookes, “A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers,” Neuroimage 149, 404–414 (2017).
[Crossref] [PubMed]

Grözinger, B.

V. Diekmann, W. Becker, B. Grözinger, R. Jürgens, and C. Kornhuber, “A comparison of normal and tangential magnetic field component measurements in biomagnetic investigations,” Clin. Phys. Physiol. Meas. 12(Suppl A), 55–59 (1991).
[PubMed]

Gusarov, A.

A. Gusarov, A. B. A. Baranga, D. Levron, and R. Shuker, “Accuracy enhancement of magnetic field distribution measurements with a large cell Spin-Exchange Relaxation Free magnetometer,” Meas. Sci. Technol. 29(4), 045209 (2018).
[Crossref]

Happer, W.

W. Happer and A. C. Tam, “Effect of rapid spin exchange on the magnetic-resonance spectrum of alkali vapors,” Phys. Rev. A 16(5), 1877–1891 (1977).
[Crossref]

W. Happer and H. Tang, “Spin-exchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors,” Phys. Rev. Lett. 31(5), 273–276 (1973).
[Crossref]

Helle, L.

J. Nurminen, S. Taulu, J. Nenonen, L. Helle, J. Simola, and A. Ahonen, “Improving MEG performance with additional tangential sensors,” IEEE Trans. Biomed. Eng. 60(9), 2559–2566 (2013).
[Crossref] [PubMed]

Hoffman, D.

H. Xia, A. B. A. Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Appl. Phys. Lett. 89(21), 211104 (2006).
[Crossref]

Holmes, N.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref] [PubMed]

Iivanainen, J.

J. Iivanainen, M. Stenroos, and L. Parkkonen, “Measuring MEG closer to the brain: Performance of on-scalp sensor arrays,” Neuroimage 147, 542–553 (2017).
[Crossref] [PubMed]

Ito, Y.

K. Nishi, Y. Ito, and T. Kobayashi, “High-sensitivity multi-channel probe beam detector towards MEG measurements of small animals with an optically pumped K-Rb hybrid magnetometer,” Opt. Express 26(2), 1988–1996 (2018).
[Crossref] [PubMed]

Y. Mamishin, Y. Ito, and T. Kobayashi, “A novel method to accomplish simultaneous multilocation magnetic field measurements based on pump-beam modulation of an atomic magnetometer,” IEEE Trans. Magn. 53(5), 1–6 (2017).
[Crossref]

Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Measurements of magnetic field distributions with an optically pumped K-Rb hybrid atomic magnetometer,” IEEE Trans. Magn. 50(11), 1–3 (2014).
[Crossref]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Sensitivity Improvement of spin-exchange relaxation free atomic magnetometers by hybrid optical pumping of potassium and rubidium,” IEEE Trans. Magn. 47(10), 3550–3553 (2011).
[Crossref]

Jau, Y. Y.

Jazbinsek, V.

K. Kim, S. Begus, H. Xia, S. K. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: a configuration study,” Neuroimage 89, 143–151 (2014).
[Crossref] [PubMed]

Johnson, C.

C. Johnson, P. D. D. Schwindt, and M. Weisend, “Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer,” Appl. Phys. Lett. 97(24), 243703 (2010).
[Crossref]

Johnson, C. N.

Jürgens, R.

V. Diekmann, W. Becker, B. Grözinger, R. Jürgens, and C. Kornhuber, “A comparison of normal and tangential magnetic field component measurements in biomagnetic investigations,” Clin. Phys. Physiol. Meas. 12(Suppl A), 55–59 (1991).
[PubMed]

Kamada, K.

Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Measurements of magnetic field distributions with an optically pumped K-Rb hybrid atomic magnetometer,” IEEE Trans. Magn. 50(11), 1–3 (2014).
[Crossref]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Sensitivity Improvement of spin-exchange relaxation free atomic magnetometers by hybrid optical pumping of potassium and rubidium,” IEEE Trans. Magn. 47(10), 3550–3553 (2011).
[Crossref]

Kim, K.

K. Kim, S. Begus, H. Xia, S. K. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: a configuration study,” Neuroimage 89, 143–151 (2014).
[Crossref] [PubMed]

Kim, Y. J.

Y. J. Kim and I. Savukov, “Highly sensitive multi-channel atomic magnetometer,” in 2018 IEEE Sensors Applications Symposium (SAS) (2018), pp. 1–4.

Knappe, S.

E. Boto, S. S. Meyer, V. Shah, O. Alem, S. Knappe, P. Kruger, T. M. Fromhold, M. Lim, P. M. Glover, P. G. Morris, R. Bowtell, G. R. Barnes, and M. J. Brookes, “A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers,” Neuroimage 149, 404–414 (2017).
[Crossref] [PubMed]

Kobayashi, T.

K. Nishi, Y. Ito, and T. Kobayashi, “High-sensitivity multi-channel probe beam detector towards MEG measurements of small animals with an optically pumped K-Rb hybrid magnetometer,” Opt. Express 26(2), 1988–1996 (2018).
[Crossref] [PubMed]

Y. Mamishin, Y. Ito, and T. Kobayashi, “A novel method to accomplish simultaneous multilocation magnetic field measurements based on pump-beam modulation of an atomic magnetometer,” IEEE Trans. Magn. 53(5), 1–6 (2017).
[Crossref]

Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Measurements of magnetic field distributions with an optically pumped K-Rb hybrid atomic magnetometer,” IEEE Trans. Magn. 50(11), 1–3 (2014).
[Crossref]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Sensitivity Improvement of spin-exchange relaxation free atomic magnetometers by hybrid optical pumping of potassium and rubidium,” IEEE Trans. Magn. 47(10), 3550–3553 (2011).
[Crossref]

Kornack, T. W.

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89(13), 130801 (2002).
[Crossref] [PubMed]

Kornhuber, C.

V. Diekmann, W. Becker, B. Grözinger, R. Jürgens, and C. Kornhuber, “A comparison of normal and tangential magnetic field component measurements in biomagnetic investigations,” Clin. Phys. Physiol. Meas. 12(Suppl A), 55–59 (1991).
[PubMed]

Kruger, P.

E. Boto, S. S. Meyer, V. Shah, O. Alem, S. Knappe, P. Kruger, T. M. Fromhold, M. Lim, P. M. Glover, P. G. Morris, R. Bowtell, G. R. Barnes, and M. J. Brookes, “A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers,” Neuroimage 149, 404–414 (2017).
[Crossref] [PubMed]

Ledbetter, M. P.

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77(3), 033408 (2008).
[Crossref]

Lee, S. K.

K. Kim, S. Begus, H. Xia, S. K. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: a configuration study,” Neuroimage 89, 143–151 (2014).
[Crossref] [PubMed]

Leggett, J.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref] [PubMed]

Levron, D.

A. Gusarov, A. B. A. Baranga, D. Levron, and R. Shuker, “Accuracy enhancement of magnetic field distribution measurements with a large cell Spin-Exchange Relaxation Free magnetometer,” Meas. Sci. Technol. 29(4), 045209 (2018).
[Crossref]

Li, Z.

Z. Li, R. T. Wakai, and T. G. Walker, “Parametric modulation of an atomic magnetometer,” Appl. Phys. Lett. 89(13), 235755 (2006).
[Crossref] [PubMed]

Lim, M.

E. Boto, S. S. Meyer, V. Shah, O. Alem, S. Knappe, P. Kruger, T. M. Fromhold, M. Lim, P. M. Glover, P. G. Morris, R. Bowtell, G. R. Barnes, and M. J. Brookes, “A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers,” Neuroimage 149, 404–414 (2017).
[Crossref] [PubMed]

Lyman, R. N.

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89(13), 130801 (2002).
[Crossref] [PubMed]

Maloof, A. C.

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97(15), 151110 (2010).
[Crossref]

Mamishin, Y.

Y. Mamishin, Y. Ito, and T. Kobayashi, “A novel method to accomplish simultaneous multilocation magnetic field measurements based on pump-beam modulation of an atomic magnetometer,” IEEE Trans. Magn. 53(5), 1–6 (2017).
[Crossref]

Meyer, S. S.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref] [PubMed]

E. Boto, S. S. Meyer, V. Shah, O. Alem, S. Knappe, P. Kruger, T. M. Fromhold, M. Lim, P. M. Glover, P. G. Morris, R. Bowtell, G. R. Barnes, and M. J. Brookes, “A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers,” Neuroimage 149, 404–414 (2017).
[Crossref] [PubMed]

Morris, P. G.

E. Boto, S. S. Meyer, V. Shah, O. Alem, S. Knappe, P. Kruger, T. M. Fromhold, M. Lim, P. M. Glover, P. G. Morris, R. Bowtell, G. R. Barnes, and M. J. Brookes, “A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers,” Neuroimage 149, 404–414 (2017).
[Crossref] [PubMed]

Mullinger, K. J.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref] [PubMed]

Muñoz, L. D.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref] [PubMed]

Nenonen, J.

J. Nurminen, S. Taulu, J. Nenonen, L. Helle, J. Simola, and A. Ahonen, “Improving MEG performance with additional tangential sensors,” IEEE Trans. Biomed. Eng. 60(9), 2559–2566 (2013).
[Crossref] [PubMed]

Nieuwenhuis, L.

A. J. Colon, P. Ossenblok, L. Nieuwenhuis, K. J. Stam, and P. Boon, “Use of routine MEG in the primary diagnostic process of epilepsy,” J. Clin. Neurophysiol. 26(5), 326–332 (2009).
[Crossref] [PubMed]

Nishi, K.

Nurminen, J.

J. Nurminen, S. Taulu, J. Nenonen, L. Helle, J. Simola, and A. Ahonen, “Improving MEG performance with additional tangential sensors,” IEEE Trans. Biomed. Eng. 60(9), 2559–2566 (2013).
[Crossref] [PubMed]

Ohnishi, H.

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Sensitivity Improvement of spin-exchange relaxation free atomic magnetometers by hybrid optical pumping of potassium and rubidium,” IEEE Trans. Magn. 47(10), 3550–3553 (2011).
[Crossref]

Ossenblok, P.

A. J. Colon, P. Ossenblok, L. Nieuwenhuis, K. J. Stam, and P. Boon, “Use of routine MEG in the primary diagnostic process of epilepsy,” J. Clin. Neurophysiol. 26(5), 326–332 (2009).
[Crossref] [PubMed]

Pang, E. W.

D. Cheyne, A. C. Bostan, W. Gaetz, and E. W. Pang, “Event-related beamforming: a robust method for presurgical functional mapping using MEG,” Clin. Neurophysiol. 118(8), 1691–1704 (2007).
[Crossref] [PubMed]

Parkkonen, L.

J. Iivanainen, M. Stenroos, and L. Parkkonen, “Measuring MEG closer to the brain: Performance of on-scalp sensor arrays,” Neuroimage 147, 542–553 (2017).
[Crossref] [PubMed]

Roberts, G.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref] [PubMed]

Romalis, M. V.

K. Kim, S. Begus, H. Xia, S. K. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: a configuration study,” Neuroimage 89, 143–151 (2014).
[Crossref] [PubMed]

M. V. Romalis, “Hybrid optical pumping of optically dense alkali-metal vapor without quenching gas,” Phys. Rev. Lett. 105(24), 243001 (2010).
[Crossref] [PubMed]

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97(15), 151110 (2010).
[Crossref]

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77(3), 033408 (2008).
[Crossref]

H. Xia, A. B. A. Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Appl. Phys. Lett. 89(21), 211104 (2006).
[Crossref]

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89(13), 130801 (2002).
[Crossref] [PubMed]

Sato, D.

Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Measurements of magnetic field distributions with an optically pumped K-Rb hybrid atomic magnetometer,” IEEE Trans. Magn. 50(11), 1–3 (2014).
[Crossref]

Savukov, I.

Y. J. Kim and I. Savukov, “Highly sensitive multi-channel atomic magnetometer,” in 2018 IEEE Sensors Applications Symposium (SAS) (2018), pp. 1–4.

Savukov, I. M.

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77(3), 033408 (2008).
[Crossref]

Schwindt, P. D. D.

A. P. Colombo, T. R. Carter, A. Borna, Y. Y. Jau, C. N. Johnson, A. L. Dagel, and P. D. D. Schwindt, “Four-channel optically pumped atomic magnetometer for magnetoencephalography,” Opt. Express 24(14), 15403–15416 (2016).
[Crossref] [PubMed]

C. N. Johnson, P. D. D. Schwindt, and M. Weisend, “Multi-sensor magnetoencephalography with atomic magnetometers,” Phys. Med. Biol. 58(17), 6065–6077 (2013).
[Crossref] [PubMed]

C. Johnson, P. D. D. Schwindt, and M. Weisend, “Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer,” Appl. Phys. Lett. 97(24), 243703 (2010).
[Crossref]

Shah, V.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref] [PubMed]

E. Boto, S. S. Meyer, V. Shah, O. Alem, S. Knappe, P. Kruger, T. M. Fromhold, M. Lim, P. M. Glover, P. G. Morris, R. Bowtell, G. R. Barnes, and M. J. Brookes, “A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers,” Neuroimage 149, 404–414 (2017).
[Crossref] [PubMed]

Shuker, R.

A. Gusarov, A. B. A. Baranga, D. Levron, and R. Shuker, “Accuracy enhancement of magnetic field distribution measurements with a large cell Spin-Exchange Relaxation Free magnetometer,” Meas. Sci. Technol. 29(4), 045209 (2018).
[Crossref]

Simola, J.

J. Nurminen, S. Taulu, J. Nenonen, L. Helle, J. Simola, and A. Ahonen, “Improving MEG performance with additional tangential sensors,” IEEE Trans. Biomed. Eng. 60(9), 2559–2566 (2013).
[Crossref] [PubMed]

Stam, K. J.

A. J. Colon, P. Ossenblok, L. Nieuwenhuis, K. J. Stam, and P. Boon, “Use of routine MEG in the primary diagnostic process of epilepsy,” J. Clin. Neurophysiol. 26(5), 326–332 (2009).
[Crossref] [PubMed]

Stenroos, M.

J. Iivanainen, M. Stenroos, and L. Parkkonen, “Measuring MEG closer to the brain: Performance of on-scalp sensor arrays,” Neuroimage 147, 542–553 (2017).
[Crossref] [PubMed]

Tam, A. C.

W. Happer and A. C. Tam, “Effect of rapid spin exchange on the magnetic-resonance spectrum of alkali vapors,” Phys. Rev. A 16(5), 1877–1891 (1977).
[Crossref]

Tang, H.

W. Happer and H. Tang, “Spin-exchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors,” Phys. Rev. Lett. 31(5), 273–276 (1973).
[Crossref]

Taulu, S.

J. Nurminen, S. Taulu, J. Nenonen, L. Helle, J. Simola, and A. Ahonen, “Improving MEG performance with additional tangential sensors,” IEEE Trans. Biomed. Eng. 60(9), 2559–2566 (2013).
[Crossref] [PubMed]

Tierney, T. M.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref] [PubMed]

Trontelj, Z.

K. Kim, S. Begus, H. Xia, S. K. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: a configuration study,” Neuroimage 89, 143–151 (2014).
[Crossref] [PubMed]

Wakai, R. T.

Z. Li, R. T. Wakai, and T. G. Walker, “Parametric modulation of an atomic magnetometer,” Appl. Phys. Lett. 89(13), 235755 (2006).
[Crossref] [PubMed]

Walker, T. G.

Z. Li, R. T. Wakai, and T. G. Walker, “Parametric modulation of an atomic magnetometer,” Appl. Phys. Lett. 89(13), 235755 (2006).
[Crossref] [PubMed]

Weisend, M.

C. N. Johnson, P. D. D. Schwindt, and M. Weisend, “Multi-sensor magnetoencephalography with atomic magnetometers,” Phys. Med. Biol. 58(17), 6065–6077 (2013).
[Crossref] [PubMed]

C. Johnson, P. D. D. Schwindt, and M. Weisend, “Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer,” Appl. Phys. Lett. 97(24), 243703 (2010).
[Crossref]

Xia, H.

K. Kim, S. Begus, H. Xia, S. K. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: a configuration study,” Neuroimage 89, 143–151 (2014).
[Crossref] [PubMed]

H. Xia, A. B. A. Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Appl. Phys. Lett. 89(21), 211104 (2006).
[Crossref]

Appl. Phys. Lett. (4)

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97(15), 151110 (2010).
[Crossref]

H. Xia, A. B. A. Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Appl. Phys. Lett. 89(21), 211104 (2006).
[Crossref]

Z. Li, R. T. Wakai, and T. G. Walker, “Parametric modulation of an atomic magnetometer,” Appl. Phys. Lett. 89(13), 235755 (2006).
[Crossref] [PubMed]

C. Johnson, P. D. D. Schwindt, and M. Weisend, “Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer,” Appl. Phys. Lett. 97(24), 243703 (2010).
[Crossref]

Clin. Neurophysiol. (1)

D. Cheyne, A. C. Bostan, W. Gaetz, and E. W. Pang, “Event-related beamforming: a robust method for presurgical functional mapping using MEG,” Clin. Neurophysiol. 118(8), 1691–1704 (2007).
[Crossref] [PubMed]

Clin. Phys. Physiol. Meas. (1)

V. Diekmann, W. Becker, B. Grözinger, R. Jürgens, and C. Kornhuber, “A comparison of normal and tangential magnetic field component measurements in biomagnetic investigations,” Clin. Phys. Physiol. Meas. 12(Suppl A), 55–59 (1991).
[PubMed]

Electroencephalogr. Clin. Neurophysiol. (1)

D. Cohen and B. N. Cuffin, “Demonstration of useful differences between magnetoencephalogram and electroencephalogram,” Electroencephalogr. Clin. Neurophysiol. 56(1), 38–51 (1983).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

J. Nurminen, S. Taulu, J. Nenonen, L. Helle, J. Simola, and A. Ahonen, “Improving MEG performance with additional tangential sensors,” IEEE Trans. Biomed. Eng. 60(9), 2559–2566 (2013).
[Crossref] [PubMed]

IEEE Trans. Magn. (3)

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Sensitivity Improvement of spin-exchange relaxation free atomic magnetometers by hybrid optical pumping of potassium and rubidium,” IEEE Trans. Magn. 47(10), 3550–3553 (2011).
[Crossref]

Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Measurements of magnetic field distributions with an optically pumped K-Rb hybrid atomic magnetometer,” IEEE Trans. Magn. 50(11), 1–3 (2014).
[Crossref]

Y. Mamishin, Y. Ito, and T. Kobayashi, “A novel method to accomplish simultaneous multilocation magnetic field measurements based on pump-beam modulation of an atomic magnetometer,” IEEE Trans. Magn. 53(5), 1–6 (2017).
[Crossref]

J. Clin. Neurophysiol. (1)

A. J. Colon, P. Ossenblok, L. Nieuwenhuis, K. J. Stam, and P. Boon, “Use of routine MEG in the primary diagnostic process of epilepsy,” J. Clin. Neurophysiol. 26(5), 326–332 (2009).
[Crossref] [PubMed]

Meas. Sci. Technol. (1)

A. Gusarov, A. B. A. Baranga, D. Levron, and R. Shuker, “Accuracy enhancement of magnetic field distribution measurements with a large cell Spin-Exchange Relaxation Free magnetometer,” Meas. Sci. Technol. 29(4), 045209 (2018).
[Crossref]

Nature (1)

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref] [PubMed]

Neuroimage (3)

J. Iivanainen, M. Stenroos, and L. Parkkonen, “Measuring MEG closer to the brain: Performance of on-scalp sensor arrays,” Neuroimage 147, 542–553 (2017).
[Crossref] [PubMed]

E. Boto, S. S. Meyer, V. Shah, O. Alem, S. Knappe, P. Kruger, T. M. Fromhold, M. Lim, P. M. Glover, P. G. Morris, R. Bowtell, G. R. Barnes, and M. J. Brookes, “A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers,” Neuroimage 149, 404–414 (2017).
[Crossref] [PubMed]

K. Kim, S. Begus, H. Xia, S. K. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: a configuration study,” Neuroimage 89, 143–151 (2014).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Med. Biol. (1)

C. N. Johnson, P. D. D. Schwindt, and M. Weisend, “Multi-sensor magnetoencephalography with atomic magnetometers,” Phys. Med. Biol. 58(17), 6065–6077 (2013).
[Crossref] [PubMed]

Phys. Rev. A (2)

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77(3), 033408 (2008).
[Crossref]

W. Happer and A. C. Tam, “Effect of rapid spin exchange on the magnetic-resonance spectrum of alkali vapors,” Phys. Rev. A 16(5), 1877–1891 (1977).
[Crossref]

Phys. Rev. Lett. (3)

W. Happer and H. Tang, “Spin-exchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors,” Phys. Rev. Lett. 31(5), 273–276 (1973).
[Crossref]

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89(13), 130801 (2002).
[Crossref] [PubMed]

M. V. Romalis, “Hybrid optical pumping of optically dense alkali-metal vapor without quenching gas,” Phys. Rev. Lett. 105(24), 243001 (2010).
[Crossref] [PubMed]

Other (1)

Y. J. Kim and I. Savukov, “Highly sensitive multi-channel atomic magnetometer,” in 2018 IEEE Sensors Applications Symposium (SAS) (2018), pp. 1–4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Four-channel operation of a single large vapor cell. (a) The traditional operation mode. It is difficult to distinguish the y-direction magnetic field along the probe beam. (b) The longitudinal parametric modulation mode. The normal magnetic fields of four locations can be measured simultaneously.
Fig. 2
Fig. 2 Sensor schematic (a) and photograph (b). The optics for the pump beam (top) and the optics for the probe beam (bottom) in (a). A longitudinal oscillating magnetic field is applied along the pump beam. The circularly polarized pump beam optically pumps the atoms along the z direction. The linearly polarized probe beam passes through the vapor cell twice by reflection, and then is focused onto the polarization analyzer to extract the normal magnetic field. With the high temperature resistant polyformaldehyde plastic housing, the dimension of the sensor module head is 40 × 50 × 200 mm3.
Fig. 3
Fig. 3 Schematic of the sensing volume. The pink cylinder is the whole sensing volume and each sensing volume is one quadrant of the cylinder. The cyan area is the diffusion volume. The gray cube represents the vapor cell.
Fig. 4
Fig. 4 Magnetic noise spectrum of the magnetometer. (a) The sensitivities of the four channels in the x direction are nearly identical and approximately 10 fT/Hz1/2. For the horizontal gradiometer (Ch1 - Ch4) and the vertical gradiometer (Ch3 - Ch4), the intrinsic sensitivities of 5 fT/Hz1/2 are achieved. (b) The average sensitivities of the four channels in the y direction are approximately 25 fT/Hz1/2.
Fig. 5
Fig. 5 The normalized frequency responses of the four channels. The measured response amplitudes are obtained by changing the frequency of the calibration field while maintaining the amplitude of the calibration field constant.
Fig. 6
Fig. 6 The measured frequency response waveform at 10 Hz. (a) The measured amplitudes of the four channels are nearly identical, when a homogeneous calibration magnetic field is applied. (b) The inhomogeneous magnetic field generated by the loop coil is measured. The four different readings are obtained clearly.
Fig. 7
Fig. 7 Auditory evoked response recorded by the four-channel SERF magnetometer. Each curve is an average of 250 auditory stimuli. Bandpass filtering from 2 to 40 Hz is performed. A M100 peak is observed clearly.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P x = P 0 γ B y Γ (γ B y ) 2 + Γ 2 ,
P x ( ω z ) γ B x P 0 Γ 2 J 0 (u) J 1 (u)sin( ω z t) P x (2 ω z ) γ B y P 0 Γ 2 J 0 (u) J 2 (u)cos(2 ω z t),
l D = D Γ ,
ΔB ¯ = B 1 ¯ B 2 ¯ =ΔB(10.5 V ratio ),
1 (1+ (2π τ c f) 2 ) 2 1+ (f/ f 3dB ) 2 ,

Metrics