Abstract

We report on mode-locking of an Yb:Ca3NbGa3Si2O14 laser, which is pumped by a fiber-coupled single-mode laser diode. The shortest pulse duration obtained with a semiconductor saturable absorber mirror is 52 fs, with 75 mW of average output power. Sub-60 fs operation tunable between 1055 and 1074 nm is achieved by employing semiconductor absorbers with different characteristics. We also demonstrate passive mode-locking results with transmissive graphene saturable absorber, reaching an 85 fs pulse duration with 23 mW output power. Moreover, we present the non-phase-matched self-frequency doubling properties of this non-centrosymmetric crystal in the femtosecond regime.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Graphene mode-locked multipass-cavity femtosecond Cr4+: forsterite laser

Sarper Ozharar, Isinsu Baylam, M. Natali Cizmeciyan, Osman Balci, Ercag Pince, Coskun Kocabas, and Alphan Sennaroglu
J. Opt. Soc. Am. B 30(5) 1270-1275 (2013)

All-fiber Ho-doped mode-locked oscillator based on a graphene saturable absorber

Jaroslaw Sotor, Maria Pawliszewska, Grzegorz Sobon, Pawel Kaczmarek, Aleksandra Przewolka, Iwona Pasternak, Jakub Cajzl, Pavel Peterka, Pavel Honzátko, Ivan Kašík, Wlodek Strupinski, and Krzysztof Abramski
Opt. Lett. 41(11) 2592-2595 (2016)

Generation of sub-20-fs pulses from a graphene mode-locked laser

Ferda Canbaz, Nurbek Kakenov, Coskun Kocabas, Umıt Demırbas, and Alphan Sennaroglu
Opt. Express 25(3) 2834-2839 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Adachi, T. Funakawa, and T. Karaki, “Growth of substituted langasite-type Ca3NbGa3Si2O14 single crystals, and their dielectric, elastic and piezoelectric properties,” Ferroelectrics 286(1), 43–48 (2003).
    [Crossref]
  2. I. H. Jung, A. Yoshikawa, T. Fukuda, and K. H. Auh, “Growth and structure of A3NbGa3Si2O14 (A=Sr, Ca) compounds,” J. Alloys Compd. 339(1-2), 149–155 (2002).
    [Crossref]
  3. X. Zhang, X. Zhang, S. Guo, J. He, K. Han, F. Lou, B. Zhang, R. Wang, and X. Liu, “Growth and optical properties of a new CGG-type laser crystal Nd3+:CNGS,” Opt. Mater. Express 5(5), 977–985 (2015).
    [Crossref]
  4. J. Ren, X. Zhang, X. Zhang, J. Guo, R. Cheng, and S. Guo, “Growth and enhanced electro-elastic properties of Nd3+:CNGS crystals with ordered langasite structure,” Mater. Lett. 167, 122–124 (2016).
    [Crossref]
  5. J. Ren, X. Zhang, X. Zhang, R. Cheng, J. Guo, X. Zhang, F. Yu, B. Huang, and S. Guo, “Crystal growth, experimental and theoretical studies on the electronic structure of CNGS and Nd:CNGS,” CrystEngComm 18(19), 3481–3487 (2016).
    [Crossref]
  6. X. Zhang, Y. Zhou, A. Yasukevich, P. Loiko, X. Mateos, X. Xu, S. Guo, and Z. Wang, “Diode-pumped passively Q-switched self-frequency-doubled Nd:CNGS laser,” Opt. Express 25(17), 19760–19766 (2017).
    [Crossref] [PubMed]
  7. J. Li, X.-T. Zhang, J.-L. He, S. Guo, J. Ning, F. Lou, R. Zhao, X.-C. Su, J. Hou, and B.-T. Zhang, “759 fs pulse generation with Nd3+-doped CNGS ordered crystal based on a semiconductor saturable absorber mirror,” Appl. Opt. 55(20), 5444–5448 (2016).
    [Crossref] [PubMed]
  8. X. Zhang, Y. Zhou, J. Ren, D. Lu, H. Yu, Z. Wang, S. Guo, and X. Xu, “Growth, thermal and laser properties of a new self-frequency-doubling Yb:CNGS crystal,” CrystEngComm 18(28), 5338–5343 (2016).
    [Crossref]
  9. X. Zhang, P. Loiko, J. M. Serres, X. Mateos, J. Ren, Z. Wang, S. Guo, X. Xu, E. Vilejshikova, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Highly-efficient laser operation of a novel trigonal silicate crystal Yb3+:Ca3NbGa3Si2O14,” Opt. Mater. Express 7(10), 3626–3633 (2017).
    [Crossref]
  10. X. Zhang, P. Loiko, X. Mateos, J. M. Serres, J. Ren, J. Guo, R. Cheng, C. Gao, Q. Dong, V. Jambunathan, A. Lucianetti, T. Mocek, E. Vilejshikova, U. Griebner, V. Petrov, Z. Wang, S. Guo, X. Xu, M. Aguilo, and F. Diaz, “Crystal growth, low-temperature spectroscopy and multi-watt laser operation of Yb:Ca3NbGa3Si2O14,” J. Lumin. 197, 90–97 (2018).
    [Crossref]
  11. M. J. Lederer, M. Hildebrandt, V. Z. Kolev, B. Luther-Davies, B. Taylor, J. Dawes, P. Dekker, J. Piper, H. H. Tan, and C. Jagadish, “Passive mode locking of a self-frequency-doubling Yb:YAl3 (BO3)4 laser,” Opt. Lett. 27(6), 436–438 (2002).
    [Crossref] [PubMed]
  12. G. I. Stegeman, D. J. Hagan, and L. Torner, “χ (2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28(12), 1691–1740 (1996).
    [Crossref]
  13. M. Zavelani-Rossi, G. Cerullo, and V. Magni, “Mode locking by cascading of second-order nonlinearities,” IEEE J. Quantum Electron. 34(1), 61–70 (1998).
    [Crossref]
  14. A. S. Mayer, C. R. Phillips, and U. Keller, “Watt-level 10-gigahertz solid-state laser enabled by self-defocusing nonlinearities in an aperiodically poled crystal,” Nat. Commun. 8(1), 1673 (2017).
    [Crossref] [PubMed]
  15. P. Wang, J. M. Dawes, P. Dekker, D. S. Knowles, J. A. Piper, and B. Lu, “Growth and evaluation of ytterbium-doped yttrium aluminum borate as a potential self-doubling laser crystal,” J. Opt. Soc. Am. B 16(1), 63–69 (1999).
    [Crossref]
  16. P. Dekker, J. M. Dawes, J. A. Piper, Y. Liu, and J. Wang, “1.1 W CW self-frequency-doubled diode-pumped Yb:YAl3(BO3)4 laser,” Opt. Commun. 195(5-6), 431–436 (2001).
    [Crossref]
  17. H. Yu, Z. Pan, H. Zhang, and J. Wang, “Recent advances in self-frequency-doubling crystals,” J. Materiomics 2(1), 55–65 (2016).
    [Crossref]
  18. Q. Fang, D. Lu, H. Yu, H. Zhang, and J. Wang, “Self-frequency-doubled vibronic yellow Yb:YCOB laser at the wavelength of 570 nm,” Opt. Lett. 41(5), 1002–1005 (2016).
    [Crossref] [PubMed]
  19. F. Druon, F. Balembois, P. Georges, A. Brun, A. Courjaud, C. Hönninger, F. Salin, A. Aron, F. Mougel, G. Aka, and D. Vivien, “Generation of 90-fs pulses from a mode-locked diode-pumped Yb3+:Ca4GdO(BO3)3 laser,” Opt. Lett. 25(6), 423–425 (2000).
    [Crossref] [PubMed]
  20. W. B. Cho, J. W. Kim, H. W. Lee, S. Bae, B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D.-I. Yeom, and F. Rotermund, “High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25 μm,” Opt. Lett. 36(20), 4089–4091 (2011).
    [Crossref] [PubMed]
  21. C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE J. Quantum Electron. 30(4), 1100–1114 (1994).
    [Crossref]
  22. F. Chen, F. Yu, S. Hou, Y. Liu, Y. Zhou, X. Shi, H. Wang, Z. Wang, and X. Zhao, “Crystal growth and characterization of CTGS and Nd:CTGS for self-frequency-doubling applications,” CrystEngComm 16(44), 10286–10291 (2014).
    [Crossref]
  23. P. Trabs, F. Noack, A. S. Aleksandrovsky, A. I. Zaitsev, N. V. Radionov, and V. Petrov, “Spectral fringes in non-phase-matched SHG and refinement of dispersion relations in the VUV,” Opt. Express 23(8), 10091–10096 (2015).
    [Crossref] [PubMed]

2018 (1)

X. Zhang, P. Loiko, X. Mateos, J. M. Serres, J. Ren, J. Guo, R. Cheng, C. Gao, Q. Dong, V. Jambunathan, A. Lucianetti, T. Mocek, E. Vilejshikova, U. Griebner, V. Petrov, Z. Wang, S. Guo, X. Xu, M. Aguilo, and F. Diaz, “Crystal growth, low-temperature spectroscopy and multi-watt laser operation of Yb:Ca3NbGa3Si2O14,” J. Lumin. 197, 90–97 (2018).
[Crossref]

2017 (3)

2016 (6)

J. Li, X.-T. Zhang, J.-L. He, S. Guo, J. Ning, F. Lou, R. Zhao, X.-C. Su, J. Hou, and B.-T. Zhang, “759 fs pulse generation with Nd3+-doped CNGS ordered crystal based on a semiconductor saturable absorber mirror,” Appl. Opt. 55(20), 5444–5448 (2016).
[Crossref] [PubMed]

X. Zhang, Y. Zhou, J. Ren, D. Lu, H. Yu, Z. Wang, S. Guo, and X. Xu, “Growth, thermal and laser properties of a new self-frequency-doubling Yb:CNGS crystal,” CrystEngComm 18(28), 5338–5343 (2016).
[Crossref]

J. Ren, X. Zhang, X. Zhang, J. Guo, R. Cheng, and S. Guo, “Growth and enhanced electro-elastic properties of Nd3+:CNGS crystals with ordered langasite structure,” Mater. Lett. 167, 122–124 (2016).
[Crossref]

J. Ren, X. Zhang, X. Zhang, R. Cheng, J. Guo, X. Zhang, F. Yu, B. Huang, and S. Guo, “Crystal growth, experimental and theoretical studies on the electronic structure of CNGS and Nd:CNGS,” CrystEngComm 18(19), 3481–3487 (2016).
[Crossref]

H. Yu, Z. Pan, H. Zhang, and J. Wang, “Recent advances in self-frequency-doubling crystals,” J. Materiomics 2(1), 55–65 (2016).
[Crossref]

Q. Fang, D. Lu, H. Yu, H. Zhang, and J. Wang, “Self-frequency-doubled vibronic yellow Yb:YCOB laser at the wavelength of 570 nm,” Opt. Lett. 41(5), 1002–1005 (2016).
[Crossref] [PubMed]

2015 (2)

2014 (1)

F. Chen, F. Yu, S. Hou, Y. Liu, Y. Zhou, X. Shi, H. Wang, Z. Wang, and X. Zhao, “Crystal growth and characterization of CTGS and Nd:CTGS for self-frequency-doubling applications,” CrystEngComm 16(44), 10286–10291 (2014).
[Crossref]

2011 (1)

2003 (1)

M. Adachi, T. Funakawa, and T. Karaki, “Growth of substituted langasite-type Ca3NbGa3Si2O14 single crystals, and their dielectric, elastic and piezoelectric properties,” Ferroelectrics 286(1), 43–48 (2003).
[Crossref]

2002 (2)

2001 (1)

P. Dekker, J. M. Dawes, J. A. Piper, Y. Liu, and J. Wang, “1.1 W CW self-frequency-doubled diode-pumped Yb:YAl3(BO3)4 laser,” Opt. Commun. 195(5-6), 431–436 (2001).
[Crossref]

2000 (1)

1999 (1)

1998 (1)

M. Zavelani-Rossi, G. Cerullo, and V. Magni, “Mode locking by cascading of second-order nonlinearities,” IEEE J. Quantum Electron. 34(1), 61–70 (1998).
[Crossref]

1996 (1)

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ (2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28(12), 1691–1740 (1996).
[Crossref]

1994 (1)

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE J. Quantum Electron. 30(4), 1100–1114 (1994).
[Crossref]

Adachi, M.

M. Adachi, T. Funakawa, and T. Karaki, “Growth of substituted langasite-type Ca3NbGa3Si2O14 single crystals, and their dielectric, elastic and piezoelectric properties,” Ferroelectrics 286(1), 43–48 (2003).
[Crossref]

Aguilo, M.

X. Zhang, P. Loiko, X. Mateos, J. M. Serres, J. Ren, J. Guo, R. Cheng, C. Gao, Q. Dong, V. Jambunathan, A. Lucianetti, T. Mocek, E. Vilejshikova, U. Griebner, V. Petrov, Z. Wang, S. Guo, X. Xu, M. Aguilo, and F. Diaz, “Crystal growth, low-temperature spectroscopy and multi-watt laser operation of Yb:Ca3NbGa3Si2O14,” J. Lumin. 197, 90–97 (2018).
[Crossref]

Aguiló, M.

Aka, G.

Aleksandrovsky, A. S.

Aron, A.

Auh, K. H.

I. H. Jung, A. Yoshikawa, T. Fukuda, and K. H. Auh, “Growth and structure of A3NbGa3Si2O14 (A=Sr, Ca) compounds,” J. Alloys Compd. 339(1-2), 149–155 (2002).
[Crossref]

Bae, S.

Baek, I. H.

Balembois, F.

Brabec, T.

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE J. Quantum Electron. 30(4), 1100–1114 (1994).
[Crossref]

Brun, A.

Cerullo, G.

M. Zavelani-Rossi, G. Cerullo, and V. Magni, “Mode locking by cascading of second-order nonlinearities,” IEEE J. Quantum Electron. 34(1), 61–70 (1998).
[Crossref]

Chen, F.

F. Chen, F. Yu, S. Hou, Y. Liu, Y. Zhou, X. Shi, H. Wang, Z. Wang, and X. Zhao, “Crystal growth and characterization of CTGS and Nd:CTGS for self-frequency-doubling applications,” CrystEngComm 16(44), 10286–10291 (2014).
[Crossref]

Cheng, R.

X. Zhang, P. Loiko, X. Mateos, J. M. Serres, J. Ren, J. Guo, R. Cheng, C. Gao, Q. Dong, V. Jambunathan, A. Lucianetti, T. Mocek, E. Vilejshikova, U. Griebner, V. Petrov, Z. Wang, S. Guo, X. Xu, M. Aguilo, and F. Diaz, “Crystal growth, low-temperature spectroscopy and multi-watt laser operation of Yb:Ca3NbGa3Si2O14,” J. Lumin. 197, 90–97 (2018).
[Crossref]

J. Ren, X. Zhang, X. Zhang, J. Guo, R. Cheng, and S. Guo, “Growth and enhanced electro-elastic properties of Nd3+:CNGS crystals with ordered langasite structure,” Mater. Lett. 167, 122–124 (2016).
[Crossref]

J. Ren, X. Zhang, X. Zhang, R. Cheng, J. Guo, X. Zhang, F. Yu, B. Huang, and S. Guo, “Crystal growth, experimental and theoretical studies on the electronic structure of CNGS and Nd:CNGS,” CrystEngComm 18(19), 3481–3487 (2016).
[Crossref]

Cho, W. B.

Choi, S. Y.

Courjaud, A.

Curley, P. F.

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE J. Quantum Electron. 30(4), 1100–1114 (1994).
[Crossref]

Dawes, J.

Dawes, J. M.

P. Dekker, J. M. Dawes, J. A. Piper, Y. Liu, and J. Wang, “1.1 W CW self-frequency-doubled diode-pumped Yb:YAl3(BO3)4 laser,” Opt. Commun. 195(5-6), 431–436 (2001).
[Crossref]

P. Wang, J. M. Dawes, P. Dekker, D. S. Knowles, J. A. Piper, and B. Lu, “Growth and evaluation of ytterbium-doped yttrium aluminum borate as a potential self-doubling laser crystal,” J. Opt. Soc. Am. B 16(1), 63–69 (1999).
[Crossref]

Dekker, P.

Diaz, F.

X. Zhang, P. Loiko, X. Mateos, J. M. Serres, J. Ren, J. Guo, R. Cheng, C. Gao, Q. Dong, V. Jambunathan, A. Lucianetti, T. Mocek, E. Vilejshikova, U. Griebner, V. Petrov, Z. Wang, S. Guo, X. Xu, M. Aguilo, and F. Diaz, “Crystal growth, low-temperature spectroscopy and multi-watt laser operation of Yb:Ca3NbGa3Si2O14,” J. Lumin. 197, 90–97 (2018).
[Crossref]

Díaz, F.

Dong, Q.

X. Zhang, P. Loiko, X. Mateos, J. M. Serres, J. Ren, J. Guo, R. Cheng, C. Gao, Q. Dong, V. Jambunathan, A. Lucianetti, T. Mocek, E. Vilejshikova, U. Griebner, V. Petrov, Z. Wang, S. Guo, X. Xu, M. Aguilo, and F. Diaz, “Crystal growth, low-temperature spectroscopy and multi-watt laser operation of Yb:Ca3NbGa3Si2O14,” J. Lumin. 197, 90–97 (2018).
[Crossref]

Druon, F.

Fang, Q.

Fukuda, T.

I. H. Jung, A. Yoshikawa, T. Fukuda, and K. H. Auh, “Growth and structure of A3NbGa3Si2O14 (A=Sr, Ca) compounds,” J. Alloys Compd. 339(1-2), 149–155 (2002).
[Crossref]

Funakawa, T.

M. Adachi, T. Funakawa, and T. Karaki, “Growth of substituted langasite-type Ca3NbGa3Si2O14 single crystals, and their dielectric, elastic and piezoelectric properties,” Ferroelectrics 286(1), 43–48 (2003).
[Crossref]

Gao, C.

X. Zhang, P. Loiko, X. Mateos, J. M. Serres, J. Ren, J. Guo, R. Cheng, C. Gao, Q. Dong, V. Jambunathan, A. Lucianetti, T. Mocek, E. Vilejshikova, U. Griebner, V. Petrov, Z. Wang, S. Guo, X. Xu, M. Aguilo, and F. Diaz, “Crystal growth, low-temperature spectroscopy and multi-watt laser operation of Yb:Ca3NbGa3Si2O14,” J. Lumin. 197, 90–97 (2018).
[Crossref]

Georges, P.

Griebner, U.

X. Zhang, P. Loiko, X. Mateos, J. M. Serres, J. Ren, J. Guo, R. Cheng, C. Gao, Q. Dong, V. Jambunathan, A. Lucianetti, T. Mocek, E. Vilejshikova, U. Griebner, V. Petrov, Z. Wang, S. Guo, X. Xu, M. Aguilo, and F. Diaz, “Crystal growth, low-temperature spectroscopy and multi-watt laser operation of Yb:Ca3NbGa3Si2O14,” J. Lumin. 197, 90–97 (2018).
[Crossref]

X. Zhang, P. Loiko, J. M. Serres, X. Mateos, J. Ren, Z. Wang, S. Guo, X. Xu, E. Vilejshikova, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Highly-efficient laser operation of a novel trigonal silicate crystal Yb3+:Ca3NbGa3Si2O14,” Opt. Mater. Express 7(10), 3626–3633 (2017).
[Crossref]

Guo, J.

X. Zhang, P. Loiko, X. Mateos, J. M. Serres, J. Ren, J. Guo, R. Cheng, C. Gao, Q. Dong, V. Jambunathan, A. Lucianetti, T. Mocek, E. Vilejshikova, U. Griebner, V. Petrov, Z. Wang, S. Guo, X. Xu, M. Aguilo, and F. Diaz, “Crystal growth, low-temperature spectroscopy and multi-watt laser operation of Yb:Ca3NbGa3Si2O14,” J. Lumin. 197, 90–97 (2018).
[Crossref]

J. Ren, X. Zhang, X. Zhang, R. Cheng, J. Guo, X. Zhang, F. Yu, B. Huang, and S. Guo, “Crystal growth, experimental and theoretical studies on the electronic structure of CNGS and Nd:CNGS,” CrystEngComm 18(19), 3481–3487 (2016).
[Crossref]

J. Ren, X. Zhang, X. Zhang, J. Guo, R. Cheng, and S. Guo, “Growth and enhanced electro-elastic properties of Nd3+:CNGS crystals with ordered langasite structure,” Mater. Lett. 167, 122–124 (2016).
[Crossref]

Guo, S.

X. Zhang, P. Loiko, X. Mateos, J. M. Serres, J. Ren, J. Guo, R. Cheng, C. Gao, Q. Dong, V. Jambunathan, A. Lucianetti, T. Mocek, E. Vilejshikova, U. Griebner, V. Petrov, Z. Wang, S. Guo, X. Xu, M. Aguilo, and F. Diaz, “Crystal growth, low-temperature spectroscopy and multi-watt laser operation of Yb:Ca3NbGa3Si2O14,” J. Lumin. 197, 90–97 (2018).
[Crossref]

X. Zhang, Y. Zhou, A. Yasukevich, P. Loiko, X. Mateos, X. Xu, S. Guo, and Z. Wang, “Diode-pumped passively Q-switched self-frequency-doubled Nd:CNGS laser,” Opt. Express 25(17), 19760–19766 (2017).
[Crossref] [PubMed]

X. Zhang, P. Loiko, J. M. Serres, X. Mateos, J. Ren, Z. Wang, S. Guo, X. Xu, E. Vilejshikova, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Highly-efficient laser operation of a novel trigonal silicate crystal Yb3+:Ca3NbGa3Si2O14,” Opt. Mater. Express 7(10), 3626–3633 (2017).
[Crossref]

X. Zhang, Y. Zhou, J. Ren, D. Lu, H. Yu, Z. Wang, S. Guo, and X. Xu, “Growth, thermal and laser properties of a new self-frequency-doubling Yb:CNGS crystal,” CrystEngComm 18(28), 5338–5343 (2016).
[Crossref]

J. Li, X.-T. Zhang, J.-L. He, S. Guo, J. Ning, F. Lou, R. Zhao, X.-C. Su, J. Hou, and B.-T. Zhang, “759 fs pulse generation with Nd3+-doped CNGS ordered crystal based on a semiconductor saturable absorber mirror,” Appl. Opt. 55(20), 5444–5448 (2016).
[Crossref] [PubMed]

J. Ren, X. Zhang, X. Zhang, R. Cheng, J. Guo, X. Zhang, F. Yu, B. Huang, and S. Guo, “Crystal growth, experimental and theoretical studies on the electronic structure of CNGS and Nd:CNGS,” CrystEngComm 18(19), 3481–3487 (2016).
[Crossref]

J. Ren, X. Zhang, X. Zhang, J. Guo, R. Cheng, and S. Guo, “Growth and enhanced electro-elastic properties of Nd3+:CNGS crystals with ordered langasite structure,” Mater. Lett. 167, 122–124 (2016).
[Crossref]

X. Zhang, X. Zhang, S. Guo, J. He, K. Han, F. Lou, B. Zhang, R. Wang, and X. Liu, “Growth and optical properties of a new CGG-type laser crystal Nd3+:CNGS,” Opt. Mater. Express 5(5), 977–985 (2015).
[Crossref]

Hagan, D. J.

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ (2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28(12), 1691–1740 (1996).
[Crossref]

Han, K.

He, J.

He, J.-L.

Hildebrandt, M.

Hong, B. H.

Hönninger, C.

Hou, J.

Hou, S.

F. Chen, F. Yu, S. Hou, Y. Liu, Y. Zhou, X. Shi, H. Wang, Z. Wang, and X. Zhao, “Crystal growth and characterization of CTGS and Nd:CTGS for self-frequency-doubling applications,” CrystEngComm 16(44), 10286–10291 (2014).
[Crossref]

Huang, B.

J. Ren, X. Zhang, X. Zhang, R. Cheng, J. Guo, X. Zhang, F. Yu, B. Huang, and S. Guo, “Crystal growth, experimental and theoretical studies on the electronic structure of CNGS and Nd:CNGS,” CrystEngComm 18(19), 3481–3487 (2016).
[Crossref]

Jagadish, C.

Jambunathan, V.

X. Zhang, P. Loiko, X. Mateos, J. M. Serres, J. Ren, J. Guo, R. Cheng, C. Gao, Q. Dong, V. Jambunathan, A. Lucianetti, T. Mocek, E. Vilejshikova, U. Griebner, V. Petrov, Z. Wang, S. Guo, X. Xu, M. Aguilo, and F. Diaz, “Crystal growth, low-temperature spectroscopy and multi-watt laser operation of Yb:Ca3NbGa3Si2O14,” J. Lumin. 197, 90–97 (2018).
[Crossref]

Jung, I. H.

I. H. Jung, A. Yoshikawa, T. Fukuda, and K. H. Auh, “Growth and structure of A3NbGa3Si2O14 (A=Sr, Ca) compounds,” J. Alloys Compd. 339(1-2), 149–155 (2002).
[Crossref]

Karaki, T.

M. Adachi, T. Funakawa, and T. Karaki, “Growth of substituted langasite-type Ca3NbGa3Si2O14 single crystals, and their dielectric, elastic and piezoelectric properties,” Ferroelectrics 286(1), 43–48 (2003).
[Crossref]

Keller, U.

A. S. Mayer, C. R. Phillips, and U. Keller, “Watt-level 10-gigahertz solid-state laser enabled by self-defocusing nonlinearities in an aperiodically poled crystal,” Nat. Commun. 8(1), 1673 (2017).
[Crossref] [PubMed]

Kim, J. W.

Kim, K.

Knowles, D. S.

Kolev, V. Z.

Krausz, F.

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE J. Quantum Electron. 30(4), 1100–1114 (1994).
[Crossref]

Lederer, M. J.

Lee, H. W.

Li, J.

Liu, X.

Liu, Y.

F. Chen, F. Yu, S. Hou, Y. Liu, Y. Zhou, X. Shi, H. Wang, Z. Wang, and X. Zhao, “Crystal growth and characterization of CTGS and Nd:CTGS for self-frequency-doubling applications,” CrystEngComm 16(44), 10286–10291 (2014).
[Crossref]

P. Dekker, J. M. Dawes, J. A. Piper, Y. Liu, and J. Wang, “1.1 W CW self-frequency-doubled diode-pumped Yb:YAl3(BO3)4 laser,” Opt. Commun. 195(5-6), 431–436 (2001).
[Crossref]

Loiko, P.

X. Zhang, P. Loiko, X. Mateos, J. M. Serres, J. Ren, J. Guo, R. Cheng, C. Gao, Q. Dong, V. Jambunathan, A. Lucianetti, T. Mocek, E. Vilejshikova, U. Griebner, V. Petrov, Z. Wang, S. Guo, X. Xu, M. Aguilo, and F. Diaz, “Crystal growth, low-temperature spectroscopy and multi-watt laser operation of Yb:Ca3NbGa3Si2O14,” J. Lumin. 197, 90–97 (2018).
[Crossref]

X. Zhang, P. Loiko, J. M. Serres, X. Mateos, J. Ren, Z. Wang, S. Guo, X. Xu, E. Vilejshikova, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Highly-efficient laser operation of a novel trigonal silicate crystal Yb3+:Ca3NbGa3Si2O14,” Opt. Mater. Express 7(10), 3626–3633 (2017).
[Crossref]

X. Zhang, Y. Zhou, A. Yasukevich, P. Loiko, X. Mateos, X. Xu, S. Guo, and Z. Wang, “Diode-pumped passively Q-switched self-frequency-doubled Nd:CNGS laser,” Opt. Express 25(17), 19760–19766 (2017).
[Crossref] [PubMed]

Lou, F.

Lu, B.

Lu, D.

Q. Fang, D. Lu, H. Yu, H. Zhang, and J. Wang, “Self-frequency-doubled vibronic yellow Yb:YCOB laser at the wavelength of 570 nm,” Opt. Lett. 41(5), 1002–1005 (2016).
[Crossref] [PubMed]

X. Zhang, Y. Zhou, J. Ren, D. Lu, H. Yu, Z. Wang, S. Guo, and X. Xu, “Growth, thermal and laser properties of a new self-frequency-doubling Yb:CNGS crystal,” CrystEngComm 18(28), 5338–5343 (2016).
[Crossref]

Lucianetti, A.

X. Zhang, P. Loiko, X. Mateos, J. M. Serres, J. Ren, J. Guo, R. Cheng, C. Gao, Q. Dong, V. Jambunathan, A. Lucianetti, T. Mocek, E. Vilejshikova, U. Griebner, V. Petrov, Z. Wang, S. Guo, X. Xu, M. Aguilo, and F. Diaz, “Crystal growth, low-temperature spectroscopy and multi-watt laser operation of Yb:Ca3NbGa3Si2O14,” J. Lumin. 197, 90–97 (2018).
[Crossref]

Luther-Davies, B.

Magni, V.

M. Zavelani-Rossi, G. Cerullo, and V. Magni, “Mode locking by cascading of second-order nonlinearities,” IEEE J. Quantum Electron. 34(1), 61–70 (1998).
[Crossref]

Mateos, X.

X. Zhang, P. Loiko, X. Mateos, J. M. Serres, J. Ren, J. Guo, R. Cheng, C. Gao, Q. Dong, V. Jambunathan, A. Lucianetti, T. Mocek, E. Vilejshikova, U. Griebner, V. Petrov, Z. Wang, S. Guo, X. Xu, M. Aguilo, and F. Diaz, “Crystal growth, low-temperature spectroscopy and multi-watt laser operation of Yb:Ca3NbGa3Si2O14,” J. Lumin. 197, 90–97 (2018).
[Crossref]

X. Zhang, P. Loiko, J. M. Serres, X. Mateos, J. Ren, Z. Wang, S. Guo, X. Xu, E. Vilejshikova, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Highly-efficient laser operation of a novel trigonal silicate crystal Yb3+:Ca3NbGa3Si2O14,” Opt. Mater. Express 7(10), 3626–3633 (2017).
[Crossref]

X. Zhang, Y. Zhou, A. Yasukevich, P. Loiko, X. Mateos, X. Xu, S. Guo, and Z. Wang, “Diode-pumped passively Q-switched self-frequency-doubled Nd:CNGS laser,” Opt. Express 25(17), 19760–19766 (2017).
[Crossref] [PubMed]

Mayer, A. S.

A. S. Mayer, C. R. Phillips, and U. Keller, “Watt-level 10-gigahertz solid-state laser enabled by self-defocusing nonlinearities in an aperiodically poled crystal,” Nat. Commun. 8(1), 1673 (2017).
[Crossref] [PubMed]

Mocek, T.

X. Zhang, P. Loiko, X. Mateos, J. M. Serres, J. Ren, J. Guo, R. Cheng, C. Gao, Q. Dong, V. Jambunathan, A. Lucianetti, T. Mocek, E. Vilejshikova, U. Griebner, V. Petrov, Z. Wang, S. Guo, X. Xu, M. Aguilo, and F. Diaz, “Crystal growth, low-temperature spectroscopy and multi-watt laser operation of Yb:Ca3NbGa3Si2O14,” J. Lumin. 197, 90–97 (2018).
[Crossref]

Mougel, F.

Ning, J.

Noack, F.

Pan, Z.

H. Yu, Z. Pan, H. Zhang, and J. Wang, “Recent advances in self-frequency-doubling crystals,” J. Materiomics 2(1), 55–65 (2016).
[Crossref]

Petrov, V.

Phillips, C. R.

A. S. Mayer, C. R. Phillips, and U. Keller, “Watt-level 10-gigahertz solid-state laser enabled by self-defocusing nonlinearities in an aperiodically poled crystal,” Nat. Commun. 8(1), 1673 (2017).
[Crossref] [PubMed]

Piper, J.

Piper, J. A.

P. Dekker, J. M. Dawes, J. A. Piper, Y. Liu, and J. Wang, “1.1 W CW self-frequency-doubled diode-pumped Yb:YAl3(BO3)4 laser,” Opt. Commun. 195(5-6), 431–436 (2001).
[Crossref]

P. Wang, J. M. Dawes, P. Dekker, D. S. Knowles, J. A. Piper, and B. Lu, “Growth and evaluation of ytterbium-doped yttrium aluminum borate as a potential self-doubling laser crystal,” J. Opt. Soc. Am. B 16(1), 63–69 (1999).
[Crossref]

Radionov, N. V.

Ren, J.

X. Zhang, P. Loiko, X. Mateos, J. M. Serres, J. Ren, J. Guo, R. Cheng, C. Gao, Q. Dong, V. Jambunathan, A. Lucianetti, T. Mocek, E. Vilejshikova, U. Griebner, V. Petrov, Z. Wang, S. Guo, X. Xu, M. Aguilo, and F. Diaz, “Crystal growth, low-temperature spectroscopy and multi-watt laser operation of Yb:Ca3NbGa3Si2O14,” J. Lumin. 197, 90–97 (2018).
[Crossref]

X. Zhang, P. Loiko, J. M. Serres, X. Mateos, J. Ren, Z. Wang, S. Guo, X. Xu, E. Vilejshikova, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Highly-efficient laser operation of a novel trigonal silicate crystal Yb3+:Ca3NbGa3Si2O14,” Opt. Mater. Express 7(10), 3626–3633 (2017).
[Crossref]

X. Zhang, Y. Zhou, J. Ren, D. Lu, H. Yu, Z. Wang, S. Guo, and X. Xu, “Growth, thermal and laser properties of a new self-frequency-doubling Yb:CNGS crystal,” CrystEngComm 18(28), 5338–5343 (2016).
[Crossref]

J. Ren, X. Zhang, X. Zhang, R. Cheng, J. Guo, X. Zhang, F. Yu, B. Huang, and S. Guo, “Crystal growth, experimental and theoretical studies on the electronic structure of CNGS and Nd:CNGS,” CrystEngComm 18(19), 3481–3487 (2016).
[Crossref]

J. Ren, X. Zhang, X. Zhang, J. Guo, R. Cheng, and S. Guo, “Growth and enhanced electro-elastic properties of Nd3+:CNGS crystals with ordered langasite structure,” Mater. Lett. 167, 122–124 (2016).
[Crossref]

Rotermund, F.

Salin, F.

Serres, J. M.

X. Zhang, P. Loiko, X. Mateos, J. M. Serres, J. Ren, J. Guo, R. Cheng, C. Gao, Q. Dong, V. Jambunathan, A. Lucianetti, T. Mocek, E. Vilejshikova, U. Griebner, V. Petrov, Z. Wang, S. Guo, X. Xu, M. Aguilo, and F. Diaz, “Crystal growth, low-temperature spectroscopy and multi-watt laser operation of Yb:Ca3NbGa3Si2O14,” J. Lumin. 197, 90–97 (2018).
[Crossref]

X. Zhang, P. Loiko, J. M. Serres, X. Mateos, J. Ren, Z. Wang, S. Guo, X. Xu, E. Vilejshikova, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Highly-efficient laser operation of a novel trigonal silicate crystal Yb3+:Ca3NbGa3Si2O14,” Opt. Mater. Express 7(10), 3626–3633 (2017).
[Crossref]

Shi, X.

F. Chen, F. Yu, S. Hou, Y. Liu, Y. Zhou, X. Shi, H. Wang, Z. Wang, and X. Zhao, “Crystal growth and characterization of CTGS and Nd:CTGS for self-frequency-doubling applications,” CrystEngComm 16(44), 10286–10291 (2014).
[Crossref]

Spielmann, C.

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE J. Quantum Electron. 30(4), 1100–1114 (1994).
[Crossref]

Stegeman, G. I.

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ (2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28(12), 1691–1740 (1996).
[Crossref]

Su, X.-C.

Tan, H. H.

Taylor, B.

Torner, L.

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ (2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28(12), 1691–1740 (1996).
[Crossref]

Trabs, P.

Vilejshikova, E.

X. Zhang, P. Loiko, X. Mateos, J. M. Serres, J. Ren, J. Guo, R. Cheng, C. Gao, Q. Dong, V. Jambunathan, A. Lucianetti, T. Mocek, E. Vilejshikova, U. Griebner, V. Petrov, Z. Wang, S. Guo, X. Xu, M. Aguilo, and F. Diaz, “Crystal growth, low-temperature spectroscopy and multi-watt laser operation of Yb:Ca3NbGa3Si2O14,” J. Lumin. 197, 90–97 (2018).
[Crossref]

X. Zhang, P. Loiko, J. M. Serres, X. Mateos, J. Ren, Z. Wang, S. Guo, X. Xu, E. Vilejshikova, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Highly-efficient laser operation of a novel trigonal silicate crystal Yb3+:Ca3NbGa3Si2O14,” Opt. Mater. Express 7(10), 3626–3633 (2017).
[Crossref]

Vivien, D.

Wang, H.

F. Chen, F. Yu, S. Hou, Y. Liu, Y. Zhou, X. Shi, H. Wang, Z. Wang, and X. Zhao, “Crystal growth and characterization of CTGS and Nd:CTGS for self-frequency-doubling applications,” CrystEngComm 16(44), 10286–10291 (2014).
[Crossref]

Wang, J.

Q. Fang, D. Lu, H. Yu, H. Zhang, and J. Wang, “Self-frequency-doubled vibronic yellow Yb:YCOB laser at the wavelength of 570 nm,” Opt. Lett. 41(5), 1002–1005 (2016).
[Crossref] [PubMed]

H. Yu, Z. Pan, H. Zhang, and J. Wang, “Recent advances in self-frequency-doubling crystals,” J. Materiomics 2(1), 55–65 (2016).
[Crossref]

P. Dekker, J. M. Dawes, J. A. Piper, Y. Liu, and J. Wang, “1.1 W CW self-frequency-doubled diode-pumped Yb:YAl3(BO3)4 laser,” Opt. Commun. 195(5-6), 431–436 (2001).
[Crossref]

Wang, P.

Wang, R.

Wang, Z.

X. Zhang, P. Loiko, X. Mateos, J. M. Serres, J. Ren, J. Guo, R. Cheng, C. Gao, Q. Dong, V. Jambunathan, A. Lucianetti, T. Mocek, E. Vilejshikova, U. Griebner, V. Petrov, Z. Wang, S. Guo, X. Xu, M. Aguilo, and F. Diaz, “Crystal growth, low-temperature spectroscopy and multi-watt laser operation of Yb:Ca3NbGa3Si2O14,” J. Lumin. 197, 90–97 (2018).
[Crossref]

X. Zhang, Y. Zhou, A. Yasukevich, P. Loiko, X. Mateos, X. Xu, S. Guo, and Z. Wang, “Diode-pumped passively Q-switched self-frequency-doubled Nd:CNGS laser,” Opt. Express 25(17), 19760–19766 (2017).
[Crossref] [PubMed]

X. Zhang, P. Loiko, J. M. Serres, X. Mateos, J. Ren, Z. Wang, S. Guo, X. Xu, E. Vilejshikova, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Highly-efficient laser operation of a novel trigonal silicate crystal Yb3+:Ca3NbGa3Si2O14,” Opt. Mater. Express 7(10), 3626–3633 (2017).
[Crossref]

X. Zhang, Y. Zhou, J. Ren, D. Lu, H. Yu, Z. Wang, S. Guo, and X. Xu, “Growth, thermal and laser properties of a new self-frequency-doubling Yb:CNGS crystal,” CrystEngComm 18(28), 5338–5343 (2016).
[Crossref]

F. Chen, F. Yu, S. Hou, Y. Liu, Y. Zhou, X. Shi, H. Wang, Z. Wang, and X. Zhao, “Crystal growth and characterization of CTGS and Nd:CTGS for self-frequency-doubling applications,” CrystEngComm 16(44), 10286–10291 (2014).
[Crossref]

Xu, X.

X. Zhang, P. Loiko, X. Mateos, J. M. Serres, J. Ren, J. Guo, R. Cheng, C. Gao, Q. Dong, V. Jambunathan, A. Lucianetti, T. Mocek, E. Vilejshikova, U. Griebner, V. Petrov, Z. Wang, S. Guo, X. Xu, M. Aguilo, and F. Diaz, “Crystal growth, low-temperature spectroscopy and multi-watt laser operation of Yb:Ca3NbGa3Si2O14,” J. Lumin. 197, 90–97 (2018).
[Crossref]

X. Zhang, P. Loiko, J. M. Serres, X. Mateos, J. Ren, Z. Wang, S. Guo, X. Xu, E. Vilejshikova, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Highly-efficient laser operation of a novel trigonal silicate crystal Yb3+:Ca3NbGa3Si2O14,” Opt. Mater. Express 7(10), 3626–3633 (2017).
[Crossref]

X. Zhang, Y. Zhou, A. Yasukevich, P. Loiko, X. Mateos, X. Xu, S. Guo, and Z. Wang, “Diode-pumped passively Q-switched self-frequency-doubled Nd:CNGS laser,” Opt. Express 25(17), 19760–19766 (2017).
[Crossref] [PubMed]

X. Zhang, Y. Zhou, J. Ren, D. Lu, H. Yu, Z. Wang, S. Guo, and X. Xu, “Growth, thermal and laser properties of a new self-frequency-doubling Yb:CNGS crystal,” CrystEngComm 18(28), 5338–5343 (2016).
[Crossref]

Yasukevich, A.

Yeom, D.-I.

Yoshikawa, A.

I. H. Jung, A. Yoshikawa, T. Fukuda, and K. H. Auh, “Growth and structure of A3NbGa3Si2O14 (A=Sr, Ca) compounds,” J. Alloys Compd. 339(1-2), 149–155 (2002).
[Crossref]

Yu, F.

J. Ren, X. Zhang, X. Zhang, R. Cheng, J. Guo, X. Zhang, F. Yu, B. Huang, and S. Guo, “Crystal growth, experimental and theoretical studies on the electronic structure of CNGS and Nd:CNGS,” CrystEngComm 18(19), 3481–3487 (2016).
[Crossref]

F. Chen, F. Yu, S. Hou, Y. Liu, Y. Zhou, X. Shi, H. Wang, Z. Wang, and X. Zhao, “Crystal growth and characterization of CTGS and Nd:CTGS for self-frequency-doubling applications,” CrystEngComm 16(44), 10286–10291 (2014).
[Crossref]

Yu, H.

X. Zhang, Y. Zhou, J. Ren, D. Lu, H. Yu, Z. Wang, S. Guo, and X. Xu, “Growth, thermal and laser properties of a new self-frequency-doubling Yb:CNGS crystal,” CrystEngComm 18(28), 5338–5343 (2016).
[Crossref]

H. Yu, Z. Pan, H. Zhang, and J. Wang, “Recent advances in self-frequency-doubling crystals,” J. Materiomics 2(1), 55–65 (2016).
[Crossref]

Q. Fang, D. Lu, H. Yu, H. Zhang, and J. Wang, “Self-frequency-doubled vibronic yellow Yb:YCOB laser at the wavelength of 570 nm,” Opt. Lett. 41(5), 1002–1005 (2016).
[Crossref] [PubMed]

Zaitsev, A. I.

Zavelani-Rossi, M.

M. Zavelani-Rossi, G. Cerullo, and V. Magni, “Mode locking by cascading of second-order nonlinearities,” IEEE J. Quantum Electron. 34(1), 61–70 (1998).
[Crossref]

Zhang, B.

Zhang, B.-T.

Zhang, H.

Q. Fang, D. Lu, H. Yu, H. Zhang, and J. Wang, “Self-frequency-doubled vibronic yellow Yb:YCOB laser at the wavelength of 570 nm,” Opt. Lett. 41(5), 1002–1005 (2016).
[Crossref] [PubMed]

H. Yu, Z. Pan, H. Zhang, and J. Wang, “Recent advances in self-frequency-doubling crystals,” J. Materiomics 2(1), 55–65 (2016).
[Crossref]

Zhang, X.

X. Zhang, P. Loiko, X. Mateos, J. M. Serres, J. Ren, J. Guo, R. Cheng, C. Gao, Q. Dong, V. Jambunathan, A. Lucianetti, T. Mocek, E. Vilejshikova, U. Griebner, V. Petrov, Z. Wang, S. Guo, X. Xu, M. Aguilo, and F. Diaz, “Crystal growth, low-temperature spectroscopy and multi-watt laser operation of Yb:Ca3NbGa3Si2O14,” J. Lumin. 197, 90–97 (2018).
[Crossref]

X. Zhang, P. Loiko, J. M. Serres, X. Mateos, J. Ren, Z. Wang, S. Guo, X. Xu, E. Vilejshikova, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Highly-efficient laser operation of a novel trigonal silicate crystal Yb3+:Ca3NbGa3Si2O14,” Opt. Mater. Express 7(10), 3626–3633 (2017).
[Crossref]

X. Zhang, Y. Zhou, A. Yasukevich, P. Loiko, X. Mateos, X. Xu, S. Guo, and Z. Wang, “Diode-pumped passively Q-switched self-frequency-doubled Nd:CNGS laser,” Opt. Express 25(17), 19760–19766 (2017).
[Crossref] [PubMed]

J. Ren, X. Zhang, X. Zhang, R. Cheng, J. Guo, X. Zhang, F. Yu, B. Huang, and S. Guo, “Crystal growth, experimental and theoretical studies on the electronic structure of CNGS and Nd:CNGS,” CrystEngComm 18(19), 3481–3487 (2016).
[Crossref]

J. Ren, X. Zhang, X. Zhang, R. Cheng, J. Guo, X. Zhang, F. Yu, B. Huang, and S. Guo, “Crystal growth, experimental and theoretical studies on the electronic structure of CNGS and Nd:CNGS,” CrystEngComm 18(19), 3481–3487 (2016).
[Crossref]

J. Ren, X. Zhang, X. Zhang, R. Cheng, J. Guo, X. Zhang, F. Yu, B. Huang, and S. Guo, “Crystal growth, experimental and theoretical studies on the electronic structure of CNGS and Nd:CNGS,” CrystEngComm 18(19), 3481–3487 (2016).
[Crossref]

J. Ren, X. Zhang, X. Zhang, J. Guo, R. Cheng, and S. Guo, “Growth and enhanced electro-elastic properties of Nd3+:CNGS crystals with ordered langasite structure,” Mater. Lett. 167, 122–124 (2016).
[Crossref]

J. Ren, X. Zhang, X. Zhang, J. Guo, R. Cheng, and S. Guo, “Growth and enhanced electro-elastic properties of Nd3+:CNGS crystals with ordered langasite structure,” Mater. Lett. 167, 122–124 (2016).
[Crossref]

X. Zhang, Y. Zhou, J. Ren, D. Lu, H. Yu, Z. Wang, S. Guo, and X. Xu, “Growth, thermal and laser properties of a new self-frequency-doubling Yb:CNGS crystal,” CrystEngComm 18(28), 5338–5343 (2016).
[Crossref]

X. Zhang, X. Zhang, S. Guo, J. He, K. Han, F. Lou, B. Zhang, R. Wang, and X. Liu, “Growth and optical properties of a new CGG-type laser crystal Nd3+:CNGS,” Opt. Mater. Express 5(5), 977–985 (2015).
[Crossref]

X. Zhang, X. Zhang, S. Guo, J. He, K. Han, F. Lou, B. Zhang, R. Wang, and X. Liu, “Growth and optical properties of a new CGG-type laser crystal Nd3+:CNGS,” Opt. Mater. Express 5(5), 977–985 (2015).
[Crossref]

Zhang, X.-T.

Zhao, R.

Zhao, X.

F. Chen, F. Yu, S. Hou, Y. Liu, Y. Zhou, X. Shi, H. Wang, Z. Wang, and X. Zhao, “Crystal growth and characterization of CTGS and Nd:CTGS for self-frequency-doubling applications,” CrystEngComm 16(44), 10286–10291 (2014).
[Crossref]

Zhou, Y.

X. Zhang, Y. Zhou, A. Yasukevich, P. Loiko, X. Mateos, X. Xu, S. Guo, and Z. Wang, “Diode-pumped passively Q-switched self-frequency-doubled Nd:CNGS laser,” Opt. Express 25(17), 19760–19766 (2017).
[Crossref] [PubMed]

X. Zhang, Y. Zhou, J. Ren, D. Lu, H. Yu, Z. Wang, S. Guo, and X. Xu, “Growth, thermal and laser properties of a new self-frequency-doubling Yb:CNGS crystal,” CrystEngComm 18(28), 5338–5343 (2016).
[Crossref]

F. Chen, F. Yu, S. Hou, Y. Liu, Y. Zhou, X. Shi, H. Wang, Z. Wang, and X. Zhao, “Crystal growth and characterization of CTGS and Nd:CTGS for self-frequency-doubling applications,” CrystEngComm 16(44), 10286–10291 (2014).
[Crossref]

Appl. Opt. (1)

CrystEngComm (3)

X. Zhang, Y. Zhou, J. Ren, D. Lu, H. Yu, Z. Wang, S. Guo, and X. Xu, “Growth, thermal and laser properties of a new self-frequency-doubling Yb:CNGS crystal,” CrystEngComm 18(28), 5338–5343 (2016).
[Crossref]

J. Ren, X. Zhang, X. Zhang, R. Cheng, J. Guo, X. Zhang, F. Yu, B. Huang, and S. Guo, “Crystal growth, experimental and theoretical studies on the electronic structure of CNGS and Nd:CNGS,” CrystEngComm 18(19), 3481–3487 (2016).
[Crossref]

F. Chen, F. Yu, S. Hou, Y. Liu, Y. Zhou, X. Shi, H. Wang, Z. Wang, and X. Zhao, “Crystal growth and characterization of CTGS and Nd:CTGS for self-frequency-doubling applications,” CrystEngComm 16(44), 10286–10291 (2014).
[Crossref]

Ferroelectrics (1)

M. Adachi, T. Funakawa, and T. Karaki, “Growth of substituted langasite-type Ca3NbGa3Si2O14 single crystals, and their dielectric, elastic and piezoelectric properties,” Ferroelectrics 286(1), 43–48 (2003).
[Crossref]

IEEE J. Quantum Electron. (2)

M. Zavelani-Rossi, G. Cerullo, and V. Magni, “Mode locking by cascading of second-order nonlinearities,” IEEE J. Quantum Electron. 34(1), 61–70 (1998).
[Crossref]

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE J. Quantum Electron. 30(4), 1100–1114 (1994).
[Crossref]

J. Alloys Compd. (1)

I. H. Jung, A. Yoshikawa, T. Fukuda, and K. H. Auh, “Growth and structure of A3NbGa3Si2O14 (A=Sr, Ca) compounds,” J. Alloys Compd. 339(1-2), 149–155 (2002).
[Crossref]

J. Lumin. (1)

X. Zhang, P. Loiko, X. Mateos, J. M. Serres, J. Ren, J. Guo, R. Cheng, C. Gao, Q. Dong, V. Jambunathan, A. Lucianetti, T. Mocek, E. Vilejshikova, U. Griebner, V. Petrov, Z. Wang, S. Guo, X. Xu, M. Aguilo, and F. Diaz, “Crystal growth, low-temperature spectroscopy and multi-watt laser operation of Yb:Ca3NbGa3Si2O14,” J. Lumin. 197, 90–97 (2018).
[Crossref]

J. Materiomics (1)

H. Yu, Z. Pan, H. Zhang, and J. Wang, “Recent advances in self-frequency-doubling crystals,” J. Materiomics 2(1), 55–65 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

Mater. Lett. (1)

J. Ren, X. Zhang, X. Zhang, J. Guo, R. Cheng, and S. Guo, “Growth and enhanced electro-elastic properties of Nd3+:CNGS crystals with ordered langasite structure,” Mater. Lett. 167, 122–124 (2016).
[Crossref]

Nat. Commun. (1)

A. S. Mayer, C. R. Phillips, and U. Keller, “Watt-level 10-gigahertz solid-state laser enabled by self-defocusing nonlinearities in an aperiodically poled crystal,” Nat. Commun. 8(1), 1673 (2017).
[Crossref] [PubMed]

Opt. Commun. (1)

P. Dekker, J. M. Dawes, J. A. Piper, Y. Liu, and J. Wang, “1.1 W CW self-frequency-doubled diode-pumped Yb:YAl3(BO3)4 laser,” Opt. Commun. 195(5-6), 431–436 (2001).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Opt. Mater. Express (2)

Opt. Quantum Electron. (1)

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ (2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28(12), 1691–1740 (1996).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Experimental setup of the ML Yb:CNGS laser. L1 —18.4 mm aspheric lens; L2 —100 mm spherical lens; M1,2 — dichroic concave mirrors (RoC = −100 mm); M3 — HR concave mirror (RoC = −100 mm); M4 — HR concave mirror (RoC = −50 mm); GTI — Gires–Tournois-Interferometer mirror; OC — output coupler; GSA – graphene saturable absorber; SESAM— semiconductor saturable absorber mirror, SH – second harmonic output.
Fig. 2
Fig. 2 Performance of the SESAM ML Yb:CNGS oscillator: (a) optical spectra of the pulses for SESAM 1, 2 and 3, FWHM: corresponding emission spectral bandwidths, inset: optical spectrum of the self-frequency doubled (SFD) output generated using SESAM 1; (b) autocorrelation trace (AC) with a fit assuming sech2-shaped pulses, inset: the radio frequency spectrum of the fundamental beat note (RBW = 500 Hz) using SESAM 1.
Fig. 3
Fig. 3 Performance of the GSA ML Yb:CNGS oscillator: (a) optical spectrum of the pulses; (b) autocorrelation trace with a fit assuming sech2-shaped pulses, inset: the radio frequency spectrum of the fundamental beat note (RBW = 500 Hz).

Metrics