Abstract

Giant magnetic circular dichroism (MCD) that shows a different response to incident wave with left or right-handed circular polarization under external magnetic field is promising for magneto-optical sensing, revealing symmetry and degeneracy information of electronic states. However, traditional methods and materials that are used to obtain significant MCD involve highly strong external magnetic field. Based on the excitation of subradiant plasmonic mode and Fano resonance in graphene oligomers in the mid-infrared region, we numerically demonstrate that MCD is enhanced three times larger than the previously reported method, based on the resonance of electric dipole plasmonic mode. This giant MCD is attributed to the remarkably different excitation efficiency of subdradiant plasmonic mode due to the interparticle coupling under left or right-handed circular polarization incidence and external magnetic field. Our results offer an effective mechanism to enhance MCD signal at the nanoscale, which facilitates the sensing, spintronic, nanophotonics and other such fields.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mimicking electromagnetically induced transparency in the magneto-optical activity of magnetoplasmonic nanoresonators

G. Armelles, A. Cebollada, A. García-Martín, M. U. González, F. García, D. Meneses-Rodríguez, N. de Sousa, and L. S. Froufe-Pérez
Opt. Express 21(22) 27356-27370 (2013)

Giant circular dichroism induced by tunable resonance in twisted Z-shaped nanostructure

Yu Qu, Lishun Huang, Li Wang, and Zhongyue Zhang
Opt. Express 25(5) 5480-5487 (2017)

Circular-polarization-dependent mode hybridization and slow light in vertically coupled planar chiral and achiral plasmonic nanostructures

Kun Jiang, Cheng He, Xiao-Ping Liu, Ming-Hui Lu, Bo Cui, and Yan-Feng Chen
J. Opt. Soc. Am. B 32(10) 2088-2095 (2015)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  2. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007).
    [Crossref] [PubMed]
  3. P. J. Stephens, “Magnetic circular dichroism,” Annu. Rev. Phys. Chem. 25(1), 201–232 (1974).
    [Crossref]
  4. M. A. Zaitoun, W. R. Mason, and C. T. Lin, “Magnetic circular dichroism spectra for colloidal gold nanoparticles in xerogels at 5.5 K,” J. Phys. Chem. B 105(29), 6780–6784 (2001).
    [Crossref]
  5. areF. Pineider, G. Campo, V. Bonanni, C. de Julián Fernández, G. Mattei, A. Caneschi, D. Gatteschi, and C. Sangregorio, “Circular magnetoplasmonic modes in gold nanoparticles,” Nano Lett. 13(10), 4785–4789 (2013).
    [Crossref] [PubMed]
  6. I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
    [Crossref]
  7. M. Tymchenko, A. Yu. Nikitin, and L. Martín-Moreno, “Faraday rotation due to excitation of magnetoplasmons in graphene microribbons,” ACS Nano 7(11), 9780–9787 (2013).
    [Crossref] [PubMed]
  8. J. Q. Liu, S. Wu, Y. X. Zhou, M. D. He, and A. V. Zayats, “Giant Faraday rotation in graphene metamolecules due to plasmonic coupling,” J. Lightwave Technol. 36(13), 2606–2610 (2018).
    [Crossref]
  9. M. Tamagnone, T. M. Slipchenko, C. Moldovan, P. Q. Liu, A. Centeno, H. Hasani, A. Zurutuza, A. M. Ionescu, L. M. Moreno, J. Faist, J. R. Mosig, A. B. Kuzmenko, and J. M. Poumirol, “Magnetoplasmonic enhancement of Faraday rotation in patterned graphene metasurfaces,” Phys. Rev. B 97(24), 241410 (2018).
  10. B. Sepúlveda, J. B. González-Díaz, A. García-Martín, L. M. Lechuga, and G. Armelles, “Plasmon-induced magneto-optical activity in nanosized gold disks,” Phys. Rev. Lett. 104(14), 147401 (2010).
    [Crossref] [PubMed]
  11. B. Han, X. Q. Gao, J. W. Lv, and Z. Y. Tang, “Magnetic circular dichroism in nanomaterials: new opportunity in understanding and modulation of excitonic and plasmonic pesonances,” Adv. Mater. 1, 1801491 (2018).
    [Crossref]
  12. M. Wang, Y. Q. Wang, M. B. Pu, C. G. Hu, X. Y. Wu, Z. Zhao, and X. Luo, “Circular dichroism of graphene-based absorber in static magnetic field,” J. Appl. Phys. 115(15), 154312 (2014).
    [Crossref]
  13. K. Yang, M. Wang, M. Pu, X. Wu, H. Gao, C. Hu, and X. Luo, “Circular polarization sensitive absorbers based on graphene,” Sci. Rep. 6(1), 23897 (2016).
    [Crossref] [PubMed]
  14. F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4), 262–266 (2008).
    [Crossref]
  15. D. E. Gómez, Z. Q. Teo, M. Altissimo, T. J. Davis, S. Earl, and A. Roberts, “The dark side of plasmonics,” Nano Lett. 13(8), 3722–3728 (2013).
    [Crossref] [PubMed]
  16. D. R. Chowdhury, X. Su, Y. Zeng, X. Chen, A. J. Taylor, and A. Azad, “Excitation of dark plasmonic modes in symmetry broken terahertz metamaterials,” Opt. Express 22(16), 19401–19410 (2014).
    [Crossref] [PubMed]
  17. W. Cao, R. Singh, I. A. Al-Naib, M. He, A. J. Taylor, and W. Zhang, “Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials,” Opt. Lett. 37(16), 3366–3368 (2012).
    [Crossref] [PubMed]
  18. Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pan, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4222–4226 (2015).
    [Crossref]
  19. Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators B Chem. 215(12), 480–488 (2015).
    [Crossref]
  20. J. Chen, T. Q. Zha, T. Zhang, C. J. Tang, Y. Yu, Y. J. Liu, and L. B. Zhang, “Enhanced magnetic fields at optical frequency by diffraction coupling of magnetic resonances in lifted metamaterials,” J. Lightwave Technol. 35(1), 71–74 (2017).
    [Crossref]
  21. J. Chen, C. J. Tang, P. Mao, C. Peng, D. P. Gao, Y. Yu, Q. G. Wang, and L. B. Zhang, “Surface-plasmon-polaritons-assisted enhanced magnetic response at optical frequencies in metamaterials,” IEEE Photonics J. 8(1), 1 (2016).
    [Crossref]
  22. S. Wu, J. Q. Liu, L. Zhou, Q. J. Wang, Y. Zhang, G. D. Wang, and Y. Y. Zhu, “Electric quadrupole excitation in surface plasmon resonance of metallic composite nanohole arrays,” Appl. Phys. Lett. 99(14), 141104 (2011).
    [Crossref]
  23. Z. Fang, J. Cai, Z. Yan, P. Nordlander, N. J. Halas, and X. Zhu, “Removing a wedge from a metallic nanodisk reveals a fano resonance,” Nano Lett. 11(10), 4475–4479 (2011).
    [Crossref] [PubMed]
  24. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  25. X. Zhu, H. Shi, S. Zhang, Q. Liu, and H. Duan, “Constructive-interference-enhanced Fano resonance of silver plasmonic heptamers with a substrate mirror: a numerical study,” Opt. Express 25(9), 9938–9946 (2017).
    [Crossref] [PubMed]
  26. W. H. Wang, S. P. Apell, and J. M. Kinaret, “Edge magnetoplasmons and the optical excitations in graphene disks,” Phys. Rev. B Condens. Matter Mater. Phys. 86(12), 125450 (2012).
    [Crossref]
  27. H. X. Da and C. W. Qiu, “Graphene-based photonic crystal to steer giant Faraday rotation,” Appl. Phys. Lett. 100(24), 241106 (2012).
    [Crossref]
  28. W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
    [Crossref] [PubMed]
  29. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  30. COMSOL http://www.comsol.com/
  31. J. Li, J. Tao, Z. H. Chen, and X. G. Huang, “All-optical controlling based on nonlinear graphene plasmonic waveguides,” Opt. Express 24(19), 22169–22176 (2016).
    [Crossref] [PubMed]
  32. Yu. V. Bludov, N. M. R. Peres, and M. I. Vasilevskiy, “Graphene-based polaritonic crystal,” Phys. Rev. B Condens. Matter Mater. Phys. 85(24), 245409 (2012).
    [Crossref]
  33. V. Semenenko, S. Schuler, A. Centeno, A. Zurutuza, T. Mueller, and V. Perebeinos, “Plasmon−plasmon interactions and radiative damping of graphene plasmons,” ACS Photonics 5(9), 3459–3465 (2018).
    [Crossref]
  34. S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
    [Crossref] [PubMed]
  35. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [Crossref] [PubMed]
  36. Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
    [Crossref] [PubMed]
  37. B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Revisiting the physics of Fano resonances for nanoparticle oligomers,” Phys. Rev. A 88(5), 053819 (2013).
    [Crossref]
  38. H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
    [Crossref] [PubMed]
  39. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref] [PubMed]
  40. M. Tamagnone, T. M. Slipchenko, C. Moldovan, P. Q. Liu, A. Centeno, H. Hasani, A. Zurutuza, A. M. Ionescu, L. Martin-Moreno, J. Faist, J. R. Mosig, A. B. Kuzmenko, and J. M. Poumirol, “Magnetoplasmonic enhancement of Faraday rotation in patterned graphene metasurfaces,” Phys. Rev. B 97(24), 241410 (2018).
    [Crossref]

2018 (5)

J. Q. Liu, S. Wu, Y. X. Zhou, M. D. He, and A. V. Zayats, “Giant Faraday rotation in graphene metamolecules due to plasmonic coupling,” J. Lightwave Technol. 36(13), 2606–2610 (2018).
[Crossref]

M. Tamagnone, T. M. Slipchenko, C. Moldovan, P. Q. Liu, A. Centeno, H. Hasani, A. Zurutuza, A. M. Ionescu, L. M. Moreno, J. Faist, J. R. Mosig, A. B. Kuzmenko, and J. M. Poumirol, “Magnetoplasmonic enhancement of Faraday rotation in patterned graphene metasurfaces,” Phys. Rev. B 97(24), 241410 (2018).

B. Han, X. Q. Gao, J. W. Lv, and Z. Y. Tang, “Magnetic circular dichroism in nanomaterials: new opportunity in understanding and modulation of excitonic and plasmonic pesonances,” Adv. Mater. 1, 1801491 (2018).
[Crossref]

V. Semenenko, S. Schuler, A. Centeno, A. Zurutuza, T. Mueller, and V. Perebeinos, “Plasmon−plasmon interactions and radiative damping of graphene plasmons,” ACS Photonics 5(9), 3459–3465 (2018).
[Crossref]

M. Tamagnone, T. M. Slipchenko, C. Moldovan, P. Q. Liu, A. Centeno, H. Hasani, A. Zurutuza, A. M. Ionescu, L. Martin-Moreno, J. Faist, J. R. Mosig, A. B. Kuzmenko, and J. M. Poumirol, “Magnetoplasmonic enhancement of Faraday rotation in patterned graphene metasurfaces,” Phys. Rev. B 97(24), 241410 (2018).
[Crossref]

2017 (2)

2016 (3)

J. Chen, C. J. Tang, P. Mao, C. Peng, D. P. Gao, Y. Yu, Q. G. Wang, and L. B. Zhang, “Surface-plasmon-polaritons-assisted enhanced magnetic response at optical frequencies in metamaterials,” IEEE Photonics J. 8(1), 1 (2016).
[Crossref]

J. Li, J. Tao, Z. H. Chen, and X. G. Huang, “All-optical controlling based on nonlinear graphene plasmonic waveguides,” Opt. Express 24(19), 22169–22176 (2016).
[Crossref] [PubMed]

K. Yang, M. Wang, M. Pu, X. Wu, H. Gao, C. Hu, and X. Luo, “Circular polarization sensitive absorbers based on graphene,” Sci. Rep. 6(1), 23897 (2016).
[Crossref] [PubMed]

2015 (2)

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pan, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4222–4226 (2015).
[Crossref]

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators B Chem. 215(12), 480–488 (2015).
[Crossref]

2014 (2)

M. Wang, Y. Q. Wang, M. B. Pu, C. G. Hu, X. Y. Wu, Z. Zhao, and X. Luo, “Circular dichroism of graphene-based absorber in static magnetic field,” J. Appl. Phys. 115(15), 154312 (2014).
[Crossref]

D. R. Chowdhury, X. Su, Y. Zeng, X. Chen, A. J. Taylor, and A. Azad, “Excitation of dark plasmonic modes in symmetry broken terahertz metamaterials,” Opt. Express 22(16), 19401–19410 (2014).
[Crossref] [PubMed]

2013 (5)

M. Tymchenko, A. Yu. Nikitin, and L. Martín-Moreno, “Faraday rotation due to excitation of magnetoplasmons in graphene microribbons,” ACS Nano 7(11), 9780–9787 (2013).
[Crossref] [PubMed]

D. E. Gómez, Z. Q. Teo, M. Altissimo, T. J. Davis, S. Earl, and A. Roberts, “The dark side of plasmonics,” Nano Lett. 13(8), 3722–3728 (2013).
[Crossref] [PubMed]

areF. Pineider, G. Campo, V. Bonanni, C. de Julián Fernández, G. Mattei, A. Caneschi, D. Gatteschi, and C. Sangregorio, “Circular magnetoplasmonic modes in gold nanoparticles,” Nano Lett. 13(10), 4785–4789 (2013).
[Crossref] [PubMed]

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Revisiting the physics of Fano resonances for nanoparticle oligomers,” Phys. Rev. A 88(5), 053819 (2013).
[Crossref]

2012 (6)

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Yu. V. Bludov, N. M. R. Peres, and M. I. Vasilevskiy, “Graphene-based polaritonic crystal,” Phys. Rev. B Condens. Matter Mater. Phys. 85(24), 245409 (2012).
[Crossref]

W. H. Wang, S. P. Apell, and J. M. Kinaret, “Edge magnetoplasmons and the optical excitations in graphene disks,” Phys. Rev. B Condens. Matter Mater. Phys. 86(12), 125450 (2012).
[Crossref]

H. X. Da and C. W. Qiu, “Graphene-based photonic crystal to steer giant Faraday rotation,” Appl. Phys. Lett. 100(24), 241106 (2012).
[Crossref]

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

W. Cao, R. Singh, I. A. Al-Naib, M. He, A. J. Taylor, and W. Zhang, “Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials,” Opt. Lett. 37(16), 3366–3368 (2012).
[Crossref] [PubMed]

2011 (4)

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

S. Wu, J. Q. Liu, L. Zhou, Q. J. Wang, Y. Zhang, G. D. Wang, and Y. Y. Zhu, “Electric quadrupole excitation in surface plasmon resonance of metallic composite nanohole arrays,” Appl. Phys. Lett. 99(14), 141104 (2011).
[Crossref]

Z. Fang, J. Cai, Z. Yan, P. Nordlander, N. J. Halas, and X. Zhu, “Removing a wedge from a metallic nanodisk reveals a fano resonance,” Nano Lett. 11(10), 4475–4479 (2011).
[Crossref] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

2010 (3)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

B. Sepúlveda, J. B. González-Díaz, A. García-Martín, L. M. Lechuga, and G. Armelles, “Plasmon-induced magneto-optical activity in nanosized gold disks,” Phys. Rev. Lett. 104(14), 147401 (2010).
[Crossref] [PubMed]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

2008 (1)

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4), 262–266 (2008).
[Crossref]

2007 (1)

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007).
[Crossref] [PubMed]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

2003 (2)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

2001 (1)

M. A. Zaitoun, W. R. Mason, and C. T. Lin, “Magnetic circular dichroism spectra for colloidal gold nanoparticles in xerogels at 5.5 K,” J. Phys. Chem. B 105(29), 6780–6784 (2001).
[Crossref]

1974 (1)

P. J. Stephens, “Magnetic circular dichroism,” Annu. Rev. Phys. Chem. 25(1), 201–232 (1974).
[Crossref]

Ali, T. A.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4), 262–266 (2008).
[Crossref]

Al-Naib, I. A.

Altissimo, M.

D. E. Gómez, Z. Q. Teo, M. Altissimo, T. J. Davis, S. Earl, and A. Roberts, “The dark side of plasmonics,” Nano Lett. 13(8), 3722–3728 (2013).
[Crossref] [PubMed]

Apell, S. P.

W. H. Wang, S. P. Apell, and J. M. Kinaret, “Edge magnetoplasmons and the optical excitations in graphene disks,” Phys. Rev. B Condens. Matter Mater. Phys. 86(12), 125450 (2012).
[Crossref]

Armelles, G.

B. Sepúlveda, J. B. González-Díaz, A. García-Martín, L. M. Lechuga, and G. Armelles, “Plasmon-induced magneto-optical activity in nanosized gold disks,” Phys. Rev. Lett. 104(14), 147401 (2010).
[Crossref] [PubMed]

Atwater, H. A.

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007).
[Crossref] [PubMed]

Avouris, P.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Azad, A.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Bludov, Yu. V.

Yu. V. Bludov, N. M. R. Peres, and M. I. Vasilevskiy, “Graphene-based polaritonic crystal,” Phys. Rev. B Condens. Matter Mater. Phys. 85(24), 245409 (2012).
[Crossref]

Bonanni, V.

areF. Pineider, G. Campo, V. Bonanni, C. de Julián Fernández, G. Mattei, A. Caneschi, D. Gatteschi, and C. Sangregorio, “Circular magnetoplasmonic modes in gold nanoparticles,” Nano Lett. 13(10), 4785–4789 (2013).
[Crossref] [PubMed]

Bostwick, A.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

Cai, J.

Z. Fang, J. Cai, Z. Yan, P. Nordlander, N. J. Halas, and X. Zhu, “Removing a wedge from a metallic nanodisk reveals a fano resonance,” Nano Lett. 11(10), 4475–4479 (2011).
[Crossref] [PubMed]

Campo, G.

areF. Pineider, G. Campo, V. Bonanni, C. de Julián Fernández, G. Mattei, A. Caneschi, D. Gatteschi, and C. Sangregorio, “Circular magnetoplasmonic modes in gold nanoparticles,” Nano Lett. 13(10), 4785–4789 (2013).
[Crossref] [PubMed]

Caneschi, A.

areF. Pineider, G. Campo, V. Bonanni, C. de Julián Fernández, G. Mattei, A. Caneschi, D. Gatteschi, and C. Sangregorio, “Circular magnetoplasmonic modes in gold nanoparticles,” Nano Lett. 13(10), 4785–4789 (2013).
[Crossref] [PubMed]

Cao, W.

Centeno, A.

M. Tamagnone, T. M. Slipchenko, C. Moldovan, P. Q. Liu, A. Centeno, H. Hasani, A. Zurutuza, A. M. Ionescu, L. Martin-Moreno, J. Faist, J. R. Mosig, A. B. Kuzmenko, and J. M. Poumirol, “Magnetoplasmonic enhancement of Faraday rotation in patterned graphene metasurfaces,” Phys. Rev. B 97(24), 241410 (2018).
[Crossref]

M. Tamagnone, T. M. Slipchenko, C. Moldovan, P. Q. Liu, A. Centeno, H. Hasani, A. Zurutuza, A. M. Ionescu, L. M. Moreno, J. Faist, J. R. Mosig, A. B. Kuzmenko, and J. M. Poumirol, “Magnetoplasmonic enhancement of Faraday rotation in patterned graphene metasurfaces,” Phys. Rev. B 97(24), 241410 (2018).

V. Semenenko, S. Schuler, A. Centeno, A. Zurutuza, T. Mueller, and V. Perebeinos, “Plasmon−plasmon interactions and radiative damping of graphene plasmons,” ACS Photonics 5(9), 3459–3465 (2018).
[Crossref]

Chandra, B.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Chen, J.

J. Chen, T. Q. Zha, T. Zhang, C. J. Tang, Y. Yu, Y. J. Liu, and L. B. Zhang, “Enhanced magnetic fields at optical frequency by diffraction coupling of magnetic resonances in lifted metamaterials,” J. Lightwave Technol. 35(1), 71–74 (2017).
[Crossref]

J. Chen, C. J. Tang, P. Mao, C. Peng, D. P. Gao, Y. Yu, Q. G. Wang, and L. B. Zhang, “Surface-plasmon-polaritons-assisted enhanced magnetic response at optical frequencies in metamaterials,” IEEE Photonics J. 8(1), 1 (2016).
[Crossref]

Chen, X.

Chen, Z. H.

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Chowdhury, D. R.

Crassee, I.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

Da, H. X.

H. X. Da and C. W. Qiu, “Graphene-based photonic crystal to steer giant Faraday rotation,” Appl. Phys. Lett. 100(24), 241106 (2012).
[Crossref]

Davis, T. J.

D. E. Gómez, Z. Q. Teo, M. Altissimo, T. J. Davis, S. Earl, and A. Roberts, “The dark side of plasmonics,” Nano Lett. 13(8), 3722–3728 (2013).
[Crossref] [PubMed]

de Julián Fernández, C.

areF. Pineider, G. Campo, V. Bonanni, C. de Julián Fernández, G. Mattei, A. Caneschi, D. Gatteschi, and C. Sangregorio, “Circular magnetoplasmonic modes in gold nanoparticles,” Nano Lett. 13(10), 4785–4789 (2013).
[Crossref] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Duan, H.

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Earl, S.

D. E. Gómez, Z. Q. Teo, M. Altissimo, T. J. Davis, S. Earl, and A. Roberts, “The dark side of plasmonics,” Nano Lett. 13(8), 3722–3728 (2013).
[Crossref] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Faist, J.

M. Tamagnone, T. M. Slipchenko, C. Moldovan, P. Q. Liu, A. Centeno, H. Hasani, A. Zurutuza, A. M. Ionescu, L. Martin-Moreno, J. Faist, J. R. Mosig, A. B. Kuzmenko, and J. M. Poumirol, “Magnetoplasmonic enhancement of Faraday rotation in patterned graphene metasurfaces,” Phys. Rev. B 97(24), 241410 (2018).
[Crossref]

M. Tamagnone, T. M. Slipchenko, C. Moldovan, P. Q. Liu, A. Centeno, H. Hasani, A. Zurutuza, A. M. Ionescu, L. M. Moreno, J. Faist, J. R. Mosig, A. B. Kuzmenko, and J. M. Poumirol, “Magnetoplasmonic enhancement of Faraday rotation in patterned graphene metasurfaces,” Phys. Rev. B 97(24), 241410 (2018).

Fang, Z.

Z. Fang, J. Cai, Z. Yan, P. Nordlander, N. J. Halas, and X. Zhu, “Removing a wedge from a metallic nanodisk reveals a fano resonance,” Nano Lett. 11(10), 4475–4479 (2011).
[Crossref] [PubMed]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Freitag, M.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Gao, D. P.

J. Chen, C. J. Tang, P. Mao, C. Peng, D. P. Gao, Y. Yu, Q. G. Wang, and L. B. Zhang, “Surface-plasmon-polaritons-assisted enhanced magnetic response at optical frequencies in metamaterials,” IEEE Photonics J. 8(1), 1 (2016).
[Crossref]

Gao, H.

K. Yang, M. Wang, M. Pu, X. Wu, H. Gao, C. Hu, and X. Luo, “Circular polarization sensitive absorbers based on graphene,” Sci. Rep. 6(1), 23897 (2016).
[Crossref] [PubMed]

Gao, W.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

Gao, X. Q.

B. Han, X. Q. Gao, J. W. Lv, and Z. Y. Tang, “Magnetic circular dichroism in nanomaterials: new opportunity in understanding and modulation of excitonic and plasmonic pesonances,” Adv. Mater. 1, 1801491 (2018).
[Crossref]

García-Martín, A.

B. Sepúlveda, J. B. González-Díaz, A. García-Martín, L. M. Lechuga, and G. Armelles, “Plasmon-induced magneto-optical activity in nanosized gold disks,” Phys. Rev. Lett. 104(14), 147401 (2010).
[Crossref] [PubMed]

Gatteschi, D.

areF. Pineider, G. Campo, V. Bonanni, C. de Julián Fernández, G. Mattei, A. Caneschi, D. Gatteschi, and C. Sangregorio, “Circular magnetoplasmonic modes in gold nanoparticles,” Nano Lett. 13(10), 4785–4789 (2013).
[Crossref] [PubMed]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Gómez, D. E.

D. E. Gómez, Z. Q. Teo, M. Altissimo, T. J. Davis, S. Earl, and A. Roberts, “The dark side of plasmonics,” Nano Lett. 13(8), 3722–3728 (2013).
[Crossref] [PubMed]

González-Díaz, J. B.

B. Sepúlveda, J. B. González-Díaz, A. García-Martín, L. M. Lechuga, and G. Armelles, “Plasmon-induced magneto-optical activity in nanosized gold disks,” Phys. Rev. Lett. 104(14), 147401 (2010).
[Crossref] [PubMed]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Gu, G.

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators B Chem. 215(12), 480–488 (2015).
[Crossref]

Halas, N. J.

Z. Fang, J. Cai, Z. Yan, P. Nordlander, N. J. Halas, and X. Zhu, “Removing a wedge from a metallic nanodisk reveals a fano resonance,” Nano Lett. 11(10), 4475–4479 (2011).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Han, B.

B. Han, X. Q. Gao, J. W. Lv, and Z. Y. Tang, “Magnetic circular dichroism in nanomaterials: new opportunity in understanding and modulation of excitonic and plasmonic pesonances,” Adv. Mater. 1, 1801491 (2018).
[Crossref]

Hao, F.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4), 262–266 (2008).
[Crossref]

Hasani, H.

M. Tamagnone, T. M. Slipchenko, C. Moldovan, P. Q. Liu, A. Centeno, H. Hasani, A. Zurutuza, A. M. Ionescu, L. M. Moreno, J. Faist, J. R. Mosig, A. B. Kuzmenko, and J. M. Poumirol, “Magnetoplasmonic enhancement of Faraday rotation in patterned graphene metasurfaces,” Phys. Rev. B 97(24), 241410 (2018).

M. Tamagnone, T. M. Slipchenko, C. Moldovan, P. Q. Liu, A. Centeno, H. Hasani, A. Zurutuza, A. M. Ionescu, L. Martin-Moreno, J. Faist, J. R. Mosig, A. B. Kuzmenko, and J. M. Poumirol, “Magnetoplasmonic enhancement of Faraday rotation in patterned graphene metasurfaces,” Phys. Rev. B 97(24), 241410 (2018).
[Crossref]

He, M.

He, M. D.

Hopkins, B.

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Revisiting the physics of Fano resonances for nanoparticle oligomers,” Phys. Rev. A 88(5), 053819 (2013).
[Crossref]

Hu, C.

K. Yang, M. Wang, M. Pu, X. Wu, H. Gao, C. Hu, and X. Luo, “Circular polarization sensitive absorbers based on graphene,” Sci. Rep. 6(1), 23897 (2016).
[Crossref] [PubMed]

Hu, C. G.

M. Wang, Y. Q. Wang, M. B. Pu, C. G. Hu, X. Y. Wu, Z. Zhao, and X. Luo, “Circular dichroism of graphene-based absorber in static magnetic field,” J. Appl. Phys. 115(15), 154312 (2014).
[Crossref]

Huang, S.

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pan, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4222–4226 (2015).
[Crossref]

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators B Chem. 215(12), 480–488 (2015).
[Crossref]

Huang, X. G.

Ionescu, A. M.

M. Tamagnone, T. M. Slipchenko, C. Moldovan, P. Q. Liu, A. Centeno, H. Hasani, A. Zurutuza, A. M. Ionescu, L. Martin-Moreno, J. Faist, J. R. Mosig, A. B. Kuzmenko, and J. M. Poumirol, “Magnetoplasmonic enhancement of Faraday rotation in patterned graphene metasurfaces,” Phys. Rev. B 97(24), 241410 (2018).
[Crossref]

M. Tamagnone, T. M. Slipchenko, C. Moldovan, P. Q. Liu, A. Centeno, H. Hasani, A. Zurutuza, A. M. Ionescu, L. M. Moreno, J. Faist, J. R. Mosig, A. B. Kuzmenko, and J. M. Poumirol, “Magnetoplasmonic enhancement of Faraday rotation in patterned graphene metasurfaces,” Phys. Rev. B 97(24), 241410 (2018).

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Kinaret, J. M.

W. H. Wang, S. P. Apell, and J. M. Kinaret, “Edge magnetoplasmons and the optical excitations in graphene disks,” Phys. Rev. B Condens. Matter Mater. Phys. 86(12), 125450 (2012).
[Crossref]

Kivshar, Y. S.

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Revisiting the physics of Fano resonances for nanoparticle oligomers,” Phys. Rev. A 88(5), 053819 (2013).
[Crossref]

Kuzmenko, A. B.

M. Tamagnone, T. M. Slipchenko, C. Moldovan, P. Q. Liu, A. Centeno, H. Hasani, A. Zurutuza, A. M. Ionescu, L. Martin-Moreno, J. Faist, J. R. Mosig, A. B. Kuzmenko, and J. M. Poumirol, “Magnetoplasmonic enhancement of Faraday rotation in patterned graphene metasurfaces,” Phys. Rev. B 97(24), 241410 (2018).
[Crossref]

M. Tamagnone, T. M. Slipchenko, C. Moldovan, P. Q. Liu, A. Centeno, H. Hasani, A. Zurutuza, A. M. Ionescu, L. M. Moreno, J. Faist, J. R. Mosig, A. B. Kuzmenko, and J. M. Poumirol, “Magnetoplasmonic enhancement of Faraday rotation in patterned graphene metasurfaces,” Phys. Rev. B 97(24), 241410 (2018).

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

Larsson, E. M.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4), 262–266 (2008).
[Crossref]

Lechuga, L. M.

B. Sepúlveda, J. B. González-Díaz, A. García-Martín, L. M. Lechuga, and G. Armelles, “Plasmon-induced magneto-optical activity in nanosized gold disks,” Phys. Rev. Lett. 104(14), 147401 (2010).
[Crossref] [PubMed]

Levallois, J.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

Li, J.

Li, X.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Lin, C. T.

M. A. Zaitoun, W. R. Mason, and C. T. Lin, “Magnetic circular dichroism spectra for colloidal gold nanoparticles in xerogels at 5.5 K,” J. Phys. Chem. B 105(29), 6780–6784 (2001).
[Crossref]

Liu, G.

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pan, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4222–4226 (2015).
[Crossref]

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators B Chem. 215(12), 480–488 (2015).
[Crossref]

Liu, J. Q.

J. Q. Liu, S. Wu, Y. X. Zhou, M. D. He, and A. V. Zayats, “Giant Faraday rotation in graphene metamolecules due to plasmonic coupling,” J. Lightwave Technol. 36(13), 2606–2610 (2018).
[Crossref]

S. Wu, J. Q. Liu, L. Zhou, Q. J. Wang, Y. Zhang, G. D. Wang, and Y. Y. Zhu, “Electric quadrupole excitation in surface plasmon resonance of metallic composite nanohole arrays,” Appl. Phys. Lett. 99(14), 141104 (2011).
[Crossref]

Liu, M.

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pan, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4222–4226 (2015).
[Crossref]

Liu, P. Q.

M. Tamagnone, T. M. Slipchenko, C. Moldovan, P. Q. Liu, A. Centeno, H. Hasani, A. Zurutuza, A. M. Ionescu, L. M. Moreno, J. Faist, J. R. Mosig, A. B. Kuzmenko, and J. M. Poumirol, “Magnetoplasmonic enhancement of Faraday rotation in patterned graphene metasurfaces,” Phys. Rev. B 97(24), 241410 (2018).

M. Tamagnone, T. M. Slipchenko, C. Moldovan, P. Q. Liu, A. Centeno, H. Hasani, A. Zurutuza, A. M. Ionescu, L. Martin-Moreno, J. Faist, J. R. Mosig, A. B. Kuzmenko, and J. M. Poumirol, “Magnetoplasmonic enhancement of Faraday rotation in patterned graphene metasurfaces,” Phys. Rev. B 97(24), 241410 (2018).
[Crossref]

Liu, Q.

Liu, X.

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators B Chem. 215(12), 480–488 (2015).
[Crossref]

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pan, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4222–4226 (2015).
[Crossref]

Liu, Y. J.

Liu, Z.

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pan, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4222–4226 (2015).
[Crossref]

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators B Chem. 215(12), 480–488 (2015).
[Crossref]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Luo, X.

K. Yang, M. Wang, M. Pu, X. Wu, H. Gao, C. Hu, and X. Luo, “Circular polarization sensitive absorbers based on graphene,” Sci. Rep. 6(1), 23897 (2016).
[Crossref] [PubMed]

M. Wang, Y. Q. Wang, M. B. Pu, C. G. Hu, X. Y. Wu, Z. Zhao, and X. Luo, “Circular dichroism of graphene-based absorber in static magnetic field,” J. Appl. Phys. 115(15), 154312 (2014).
[Crossref]

Lv, J. W.

B. Han, X. Q. Gao, J. W. Lv, and Z. Y. Tang, “Magnetic circular dichroism in nanomaterials: new opportunity in understanding and modulation of excitonic and plasmonic pesonances,” Adv. Mater. 1, 1801491 (2018).
[Crossref]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Mao, P.

J. Chen, C. J. Tang, P. Mao, C. Peng, D. P. Gao, Y. Yu, Q. G. Wang, and L. B. Zhang, “Surface-plasmon-polaritons-assisted enhanced magnetic response at optical frequencies in metamaterials,” IEEE Photonics J. 8(1), 1 (2016).
[Crossref]

Martin-Moreno, L.

M. Tamagnone, T. M. Slipchenko, C. Moldovan, P. Q. Liu, A. Centeno, H. Hasani, A. Zurutuza, A. M. Ionescu, L. Martin-Moreno, J. Faist, J. R. Mosig, A. B. Kuzmenko, and J. M. Poumirol, “Magnetoplasmonic enhancement of Faraday rotation in patterned graphene metasurfaces,” Phys. Rev. B 97(24), 241410 (2018).
[Crossref]

Martín-Moreno, L.

M. Tymchenko, A. Yu. Nikitin, and L. Martín-Moreno, “Faraday rotation due to excitation of magnetoplasmons in graphene microribbons,” ACS Nano 7(11), 9780–9787 (2013).
[Crossref] [PubMed]

Mason, W. R.

M. A. Zaitoun, W. R. Mason, and C. T. Lin, “Magnetic circular dichroism spectra for colloidal gold nanoparticles in xerogels at 5.5 K,” J. Phys. Chem. B 105(29), 6780–6784 (2001).
[Crossref]

Mattei, G.

areF. Pineider, G. Campo, V. Bonanni, C. de Julián Fernández, G. Mattei, A. Caneschi, D. Gatteschi, and C. Sangregorio, “Circular magnetoplasmonic modes in gold nanoparticles,” Nano Lett. 13(10), 4785–4789 (2013).
[Crossref] [PubMed]

Miroshnichenko, A. E.

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Revisiting the physics of Fano resonances for nanoparticle oligomers,” Phys. Rev. A 88(5), 053819 (2013).
[Crossref]

Moldovan, C.

M. Tamagnone, T. M. Slipchenko, C. Moldovan, P. Q. Liu, A. Centeno, H. Hasani, A. Zurutuza, A. M. Ionescu, L. Martin-Moreno, J. Faist, J. R. Mosig, A. B. Kuzmenko, and J. M. Poumirol, “Magnetoplasmonic enhancement of Faraday rotation in patterned graphene metasurfaces,” Phys. Rev. B 97(24), 241410 (2018).
[Crossref]

M. Tamagnone, T. M. Slipchenko, C. Moldovan, P. Q. Liu, A. Centeno, H. Hasani, A. Zurutuza, A. M. Ionescu, L. M. Moreno, J. Faist, J. R. Mosig, A. B. Kuzmenko, and J. M. Poumirol, “Magnetoplasmonic enhancement of Faraday rotation in patterned graphene metasurfaces,” Phys. Rev. B 97(24), 241410 (2018).

Moreno, L. M.

M. Tamagnone, T. M. Slipchenko, C. Moldovan, P. Q. Liu, A. Centeno, H. Hasani, A. Zurutuza, A. M. Ionescu, L. M. Moreno, J. Faist, J. R. Mosig, A. B. Kuzmenko, and J. M. Poumirol, “Magnetoplasmonic enhancement of Faraday rotation in patterned graphene metasurfaces,” Phys. Rev. B 97(24), 241410 (2018).

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Moshchalkov, V. V.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Mosig, J. R.

M. Tamagnone, T. M. Slipchenko, C. Moldovan, P. Q. Liu, A. Centeno, H. Hasani, A. Zurutuza, A. M. Ionescu, L. Martin-Moreno, J. Faist, J. R. Mosig, A. B. Kuzmenko, and J. M. Poumirol, “Magnetoplasmonic enhancement of Faraday rotation in patterned graphene metasurfaces,” Phys. Rev. B 97(24), 241410 (2018).
[Crossref]

M. Tamagnone, T. M. Slipchenko, C. Moldovan, P. Q. Liu, A. Centeno, H. Hasani, A. Zurutuza, A. M. Ionescu, L. M. Moreno, J. Faist, J. R. Mosig, A. B. Kuzmenko, and J. M. Poumirol, “Magnetoplasmonic enhancement of Faraday rotation in patterned graphene metasurfaces,” Phys. Rev. B 97(24), 241410 (2018).

Mueller, T.

V. Semenenko, S. Schuler, A. Centeno, A. Zurutuza, T. Mueller, and V. Perebeinos, “Plasmon−plasmon interactions and radiative damping of graphene plasmons,” ACS Photonics 5(9), 3459–3465 (2018).
[Crossref]

Nikitin, A. Yu.

M. Tymchenko, A. Yu. Nikitin, and L. Martín-Moreno, “Faraday rotation due to excitation of magnetoplasmons in graphene microribbons,” ACS Nano 7(11), 9780–9787 (2013).
[Crossref] [PubMed]

Nordlander, P.

Z. Fang, J. Cai, Z. Yan, P. Nordlander, N. J. Halas, and X. Zhu, “Removing a wedge from a metallic nanodisk reveals a fano resonance,” Nano Lett. 11(10), 4475–4479 (2011).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4), 262–266 (2008).
[Crossref]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Novoselov, K. S.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Ostler, M.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

Pan, P.

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pan, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4222–4226 (2015).
[Crossref]

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators B Chem. 215(12), 480–488 (2015).
[Crossref]

Peng, C.

J. Chen, C. J. Tang, P. Mao, C. Peng, D. P. Gao, Y. Yu, Q. G. Wang, and L. B. Zhang, “Surface-plasmon-polaritons-assisted enhanced magnetic response at optical frequencies in metamaterials,” IEEE Photonics J. 8(1), 1 (2016).
[Crossref]

Perebeinos, V.

V. Semenenko, S. Schuler, A. Centeno, A. Zurutuza, T. Mueller, and V. Perebeinos, “Plasmon−plasmon interactions and radiative damping of graphene plasmons,” ACS Photonics 5(9), 3459–3465 (2018).
[Crossref]

Peres, N. M. R.

Yu. V. Bludov, N. M. R. Peres, and M. I. Vasilevskiy, “Graphene-based polaritonic crystal,” Phys. Rev. B Condens. Matter Mater. Phys. 85(24), 245409 (2012).
[Crossref]

Pineider, F.

areF. Pineider, G. Campo, V. Bonanni, C. de Julián Fernández, G. Mattei, A. Caneschi, D. Gatteschi, and C. Sangregorio, “Circular magnetoplasmonic modes in gold nanoparticles,” Nano Lett. 13(10), 4785–4789 (2013).
[Crossref] [PubMed]

Poddubny, A. N.

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Revisiting the physics of Fano resonances for nanoparticle oligomers,” Phys. Rev. A 88(5), 053819 (2013).
[Crossref]

Poumirol, J. M.

M. Tamagnone, T. M. Slipchenko, C. Moldovan, P. Q. Liu, A. Centeno, H. Hasani, A. Zurutuza, A. M. Ionescu, L. Martin-Moreno, J. Faist, J. R. Mosig, A. B. Kuzmenko, and J. M. Poumirol, “Magnetoplasmonic enhancement of Faraday rotation in patterned graphene metasurfaces,” Phys. Rev. B 97(24), 241410 (2018).
[Crossref]

M. Tamagnone, T. M. Slipchenko, C. Moldovan, P. Q. Liu, A. Centeno, H. Hasani, A. Zurutuza, A. M. Ionescu, L. M. Moreno, J. Faist, J. R. Mosig, A. B. Kuzmenko, and J. M. Poumirol, “Magnetoplasmonic enhancement of Faraday rotation in patterned graphene metasurfaces,” Phys. Rev. B 97(24), 241410 (2018).

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Pu, M.

K. Yang, M. Wang, M. Pu, X. Wu, H. Gao, C. Hu, and X. Luo, “Circular polarization sensitive absorbers based on graphene,” Sci. Rep. 6(1), 23897 (2016).
[Crossref] [PubMed]

Pu, M. B.

M. Wang, Y. Q. Wang, M. B. Pu, C. G. Hu, X. Y. Wu, Z. Zhao, and X. Luo, “Circular dichroism of graphene-based absorber in static magnetic field,” J. Appl. Phys. 115(15), 154312 (2014).
[Crossref]

Qiu, C.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

Qiu, C. W.

H. X. Da and C. W. Qiu, “Graphene-based photonic crystal to steer giant Faraday rotation,” Appl. Phys. Lett. 100(24), 241106 (2012).
[Crossref]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Roberts, A.

D. E. Gómez, Z. Q. Teo, M. Altissimo, T. J. Davis, S. Earl, and A. Roberts, “The dark side of plasmonics,” Nano Lett. 13(8), 3722–3728 (2013).
[Crossref] [PubMed]

Rotenberg, E.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

Sangregorio, C.

areF. Pineider, G. Campo, V. Bonanni, C. de Julián Fernández, G. Mattei, A. Caneschi, D. Gatteschi, and C. Sangregorio, “Circular magnetoplasmonic modes in gold nanoparticles,” Nano Lett. 13(10), 4785–4789 (2013).
[Crossref] [PubMed]

Schuler, S.

V. Semenenko, S. Schuler, A. Centeno, A. Zurutuza, T. Mueller, and V. Perebeinos, “Plasmon−plasmon interactions and radiative damping of graphene plasmons,” ACS Photonics 5(9), 3459–3465 (2018).
[Crossref]

Semenenko, V.

V. Semenenko, S. Schuler, A. Centeno, A. Zurutuza, T. Mueller, and V. Perebeinos, “Plasmon−plasmon interactions and radiative damping of graphene plasmons,” ACS Photonics 5(9), 3459–3465 (2018).
[Crossref]

Sepúlveda, B.

B. Sepúlveda, J. B. González-Díaz, A. García-Martín, L. M. Lechuga, and G. Armelles, “Plasmon-induced magneto-optical activity in nanosized gold disks,” Phys. Rev. Lett. 104(14), 147401 (2010).
[Crossref] [PubMed]

Seyller, T.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

Shi, H.

Shu, J.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

Singh, R.

Slipchenko, T. M.

M. Tamagnone, T. M. Slipchenko, C. Moldovan, P. Q. Liu, A. Centeno, H. Hasani, A. Zurutuza, A. M. Ionescu, L. Martin-Moreno, J. Faist, J. R. Mosig, A. B. Kuzmenko, and J. M. Poumirol, “Magnetoplasmonic enhancement of Faraday rotation in patterned graphene metasurfaces,” Phys. Rev. B 97(24), 241410 (2018).
[Crossref]

M. Tamagnone, T. M. Slipchenko, C. Moldovan, P. Q. Liu, A. Centeno, H. Hasani, A. Zurutuza, A. M. Ionescu, L. M. Moreno, J. Faist, J. R. Mosig, A. B. Kuzmenko, and J. M. Poumirol, “Magnetoplasmonic enhancement of Faraday rotation in patterned graphene metasurfaces,” Phys. Rev. B 97(24), 241410 (2018).

Sobhani, H.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Sonnefraud, Y.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Stephens, P. J.

P. J. Stephens, “Magnetic circular dichroism,” Annu. Rev. Phys. Chem. 25(1), 201–232 (1974).
[Crossref]

Su, X.

Sutherland, D. S.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4), 262–266 (2008).
[Crossref]

Tamagnone, M.

M. Tamagnone, T. M. Slipchenko, C. Moldovan, P. Q. Liu, A. Centeno, H. Hasani, A. Zurutuza, A. M. Ionescu, L. M. Moreno, J. Faist, J. R. Mosig, A. B. Kuzmenko, and J. M. Poumirol, “Magnetoplasmonic enhancement of Faraday rotation in patterned graphene metasurfaces,” Phys. Rev. B 97(24), 241410 (2018).

M. Tamagnone, T. M. Slipchenko, C. Moldovan, P. Q. Liu, A. Centeno, H. Hasani, A. Zurutuza, A. M. Ionescu, L. Martin-Moreno, J. Faist, J. R. Mosig, A. B. Kuzmenko, and J. M. Poumirol, “Magnetoplasmonic enhancement of Faraday rotation in patterned graphene metasurfaces,” Phys. Rev. B 97(24), 241410 (2018).
[Crossref]

Tang, C. J.

J. Chen, T. Q. Zha, T. Zhang, C. J. Tang, Y. Yu, Y. J. Liu, and L. B. Zhang, “Enhanced magnetic fields at optical frequency by diffraction coupling of magnetic resonances in lifted metamaterials,” J. Lightwave Technol. 35(1), 71–74 (2017).
[Crossref]

J. Chen, C. J. Tang, P. Mao, C. Peng, D. P. Gao, Y. Yu, Q. G. Wang, and L. B. Zhang, “Surface-plasmon-polaritons-assisted enhanced magnetic response at optical frequencies in metamaterials,” IEEE Photonics J. 8(1), 1 (2016).
[Crossref]

Tang, Z. Y.

B. Han, X. Q. Gao, J. W. Lv, and Z. Y. Tang, “Magnetic circular dichroism in nanomaterials: new opportunity in understanding and modulation of excitonic and plasmonic pesonances,” Adv. Mater. 1, 1801491 (2018).
[Crossref]

Tao, J.

Taylor, A. J.

Teo, Z. Q.

D. E. Gómez, Z. Q. Teo, M. Altissimo, T. J. Davis, S. Earl, and A. Roberts, “The dark side of plasmonics,” Nano Lett. 13(8), 3722–3728 (2013).
[Crossref] [PubMed]

Tulevski, G.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Tymchenko, M.

M. Tymchenko, A. Yu. Nikitin, and L. Martín-Moreno, “Faraday rotation due to excitation of magnetoplasmons in graphene microribbons,” ACS Nano 7(11), 9780–9787 (2013).
[Crossref] [PubMed]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

van der Marel, D.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

Van Dorpe, P.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Vandenbosch, G. A. E.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Vasilevskiy, M. I.

Yu. V. Bludov, N. M. R. Peres, and M. I. Vasilevskiy, “Graphene-based polaritonic crystal,” Phys. Rev. B Condens. Matter Mater. Phys. 85(24), 245409 (2012).
[Crossref]

Verellen, N.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Walter, A. L.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

Wang, G. D.

S. Wu, J. Q. Liu, L. Zhou, Q. J. Wang, Y. Zhang, G. D. Wang, and Y. Y. Zhu, “Electric quadrupole excitation in surface plasmon resonance of metallic composite nanohole arrays,” Appl. Phys. Lett. 99(14), 141104 (2011).
[Crossref]

Wang, M.

K. Yang, M. Wang, M. Pu, X. Wu, H. Gao, C. Hu, and X. Luo, “Circular polarization sensitive absorbers based on graphene,” Sci. Rep. 6(1), 23897 (2016).
[Crossref] [PubMed]

M. Wang, Y. Q. Wang, M. B. Pu, C. G. Hu, X. Y. Wu, Z. Zhao, and X. Luo, “Circular dichroism of graphene-based absorber in static magnetic field,” J. Appl. Phys. 115(15), 154312 (2014).
[Crossref]

Wang, Q. G.

J. Chen, C. J. Tang, P. Mao, C. Peng, D. P. Gao, Y. Yu, Q. G. Wang, and L. B. Zhang, “Surface-plasmon-polaritons-assisted enhanced magnetic response at optical frequencies in metamaterials,” IEEE Photonics J. 8(1), 1 (2016).
[Crossref]

Wang, Q. J.

S. Wu, J. Q. Liu, L. Zhou, Q. J. Wang, Y. Zhang, G. D. Wang, and Y. Y. Zhu, “Electric quadrupole excitation in surface plasmon resonance of metallic composite nanohole arrays,” Appl. Phys. Lett. 99(14), 141104 (2011).
[Crossref]

Wang, W. H.

W. H. Wang, S. P. Apell, and J. M. Kinaret, “Edge magnetoplasmons and the optical excitations in graphene disks,” Phys. Rev. B Condens. Matter Mater. Phys. 86(12), 125450 (2012).
[Crossref]

Wang, Y.

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators B Chem. 215(12), 480–488 (2015).
[Crossref]

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pan, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4222–4226 (2015).
[Crossref]

Wang, Y. Q.

M. Wang, Y. Q. Wang, M. B. Pu, C. G. Hu, X. Y. Wu, Z. Zhao, and X. Luo, “Circular dichroism of graphene-based absorber in static magnetic field,” J. Appl. Phys. 115(15), 154312 (2014).
[Crossref]

Wu, S.

J. Q. Liu, S. Wu, Y. X. Zhou, M. D. He, and A. V. Zayats, “Giant Faraday rotation in graphene metamolecules due to plasmonic coupling,” J. Lightwave Technol. 36(13), 2606–2610 (2018).
[Crossref]

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

S. Wu, J. Q. Liu, L. Zhou, Q. J. Wang, Y. Zhang, G. D. Wang, and Y. Y. Zhu, “Electric quadrupole excitation in surface plasmon resonance of metallic composite nanohole arrays,” Appl. Phys. Lett. 99(14), 141104 (2011).
[Crossref]

Wu, X.

K. Yang, M. Wang, M. Pu, X. Wu, H. Gao, C. Hu, and X. Luo, “Circular polarization sensitive absorbers based on graphene,” Sci. Rep. 6(1), 23897 (2016).
[Crossref] [PubMed]

Wu, X. Y.

M. Wang, Y. Q. Wang, M. B. Pu, C. G. Hu, X. Y. Wu, Z. Zhao, and X. Luo, “Circular dichroism of graphene-based absorber in static magnetic field,” J. Appl. Phys. 115(15), 154312 (2014).
[Crossref]

Wu, Y.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Xia, F.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Xu, Q.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

Yan, H.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Yan, Z.

Z. Fang, J. Cai, Z. Yan, P. Nordlander, N. J. Halas, and X. Zhu, “Removing a wedge from a metallic nanodisk reveals a fano resonance,” Nano Lett. 11(10), 4475–4479 (2011).
[Crossref] [PubMed]

Yang, K.

K. Yang, M. Wang, M. Pu, X. Wu, H. Gao, C. Hu, and X. Luo, “Circular polarization sensitive absorbers based on graphene,” Sci. Rep. 6(1), 23897 (2016).
[Crossref] [PubMed]

Yu, M.

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pan, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4222–4226 (2015).
[Crossref]

Yu, Y.

J. Chen, T. Q. Zha, T. Zhang, C. J. Tang, Y. Yu, Y. J. Liu, and L. B. Zhang, “Enhanced magnetic fields at optical frequency by diffraction coupling of magnetic resonances in lifted metamaterials,” J. Lightwave Technol. 35(1), 71–74 (2017).
[Crossref]

J. Chen, C. J. Tang, P. Mao, C. Peng, D. P. Gao, Y. Yu, Q. G. Wang, and L. B. Zhang, “Surface-plasmon-polaritons-assisted enhanced magnetic response at optical frequencies in metamaterials,” IEEE Photonics J. 8(1), 1 (2016).
[Crossref]

Zaitoun, M. A.

M. A. Zaitoun, W. R. Mason, and C. T. Lin, “Magnetic circular dichroism spectra for colloidal gold nanoparticles in xerogels at 5.5 K,” J. Phys. Chem. B 105(29), 6780–6784 (2001).
[Crossref]

Zayats, A. V.

Zeng, Y.

Zha, T. Q.

Zhang, K.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhang, L. B.

J. Chen, T. Q. Zha, T. Zhang, C. J. Tang, Y. Yu, Y. J. Liu, and L. B. Zhang, “Enhanced magnetic fields at optical frequency by diffraction coupling of magnetic resonances in lifted metamaterials,” J. Lightwave Technol. 35(1), 71–74 (2017).
[Crossref]

J. Chen, C. J. Tang, P. Mao, C. Peng, D. P. Gao, Y. Yu, Q. G. Wang, and L. B. Zhang, “Surface-plasmon-polaritons-assisted enhanced magnetic response at optical frequencies in metamaterials,” IEEE Photonics J. 8(1), 1 (2016).
[Crossref]

Zhang, S.

Zhang, T.

Zhang, W.

Zhang, X.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhang, Y.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

S. Wu, J. Q. Liu, L. Zhou, Q. J. Wang, Y. Zhang, G. D. Wang, and Y. Y. Zhu, “Electric quadrupole excitation in surface plasmon resonance of metallic composite nanohole arrays,” Appl. Phys. Lett. 99(14), 141104 (2011).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Zhang, Z.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhao, Z.

M. Wang, Y. Q. Wang, M. B. Pu, C. G. Hu, X. Y. Wu, Z. Zhao, and X. Luo, “Circular dichroism of graphene-based absorber in static magnetic field,” J. Appl. Phys. 115(15), 154312 (2014).
[Crossref]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Zhou, L.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

S. Wu, J. Q. Liu, L. Zhou, Q. J. Wang, Y. Zhang, G. D. Wang, and Y. Y. Zhu, “Electric quadrupole excitation in surface plasmon resonance of metallic composite nanohole arrays,” Appl. Phys. Lett. 99(14), 141104 (2011).
[Crossref]

Zhou, Y. X.

Zhu, W.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Zhu, X.

X. Zhu, H. Shi, S. Zhang, Q. Liu, and H. Duan, “Constructive-interference-enhanced Fano resonance of silver plasmonic heptamers with a substrate mirror: a numerical study,” Opt. Express 25(9), 9938–9946 (2017).
[Crossref] [PubMed]

Z. Fang, J. Cai, Z. Yan, P. Nordlander, N. J. Halas, and X. Zhu, “Removing a wedge from a metallic nanodisk reveals a fano resonance,” Nano Lett. 11(10), 4475–4479 (2011).
[Crossref] [PubMed]

Zhu, Y.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhu, Y. Y.

S. Wu, J. Q. Liu, L. Zhou, Q. J. Wang, Y. Zhang, G. D. Wang, and Y. Y. Zhu, “Electric quadrupole excitation in surface plasmon resonance of metallic composite nanohole arrays,” Appl. Phys. Lett. 99(14), 141104 (2011).
[Crossref]

Zurutuza, A.

V. Semenenko, S. Schuler, A. Centeno, A. Zurutuza, T. Mueller, and V. Perebeinos, “Plasmon−plasmon interactions and radiative damping of graphene plasmons,” ACS Photonics 5(9), 3459–3465 (2018).
[Crossref]

M. Tamagnone, T. M. Slipchenko, C. Moldovan, P. Q. Liu, A. Centeno, H. Hasani, A. Zurutuza, A. M. Ionescu, L. M. Moreno, J. Faist, J. R. Mosig, A. B. Kuzmenko, and J. M. Poumirol, “Magnetoplasmonic enhancement of Faraday rotation in patterned graphene metasurfaces,” Phys. Rev. B 97(24), 241410 (2018).

M. Tamagnone, T. M. Slipchenko, C. Moldovan, P. Q. Liu, A. Centeno, H. Hasani, A. Zurutuza, A. M. Ionescu, L. Martin-Moreno, J. Faist, J. R. Mosig, A. B. Kuzmenko, and J. M. Poumirol, “Magnetoplasmonic enhancement of Faraday rotation in patterned graphene metasurfaces,” Phys. Rev. B 97(24), 241410 (2018).
[Crossref]

ACS Nano (3)

M. Tymchenko, A. Yu. Nikitin, and L. Martín-Moreno, “Faraday rotation due to excitation of magnetoplasmons in graphene microribbons,” ACS Nano 7(11), 9780–9787 (2013).
[Crossref] [PubMed]

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

ACS Photonics (1)

V. Semenenko, S. Schuler, A. Centeno, A. Zurutuza, T. Mueller, and V. Perebeinos, “Plasmon−plasmon interactions and radiative damping of graphene plasmons,” ACS Photonics 5(9), 3459–3465 (2018).
[Crossref]

Adv. Mater. (1)

B. Han, X. Q. Gao, J. W. Lv, and Z. Y. Tang, “Magnetic circular dichroism in nanomaterials: new opportunity in understanding and modulation of excitonic and plasmonic pesonances,” Adv. Mater. 1, 1801491 (2018).
[Crossref]

Annu. Rev. Phys. Chem. (1)

P. J. Stephens, “Magnetic circular dichroism,” Annu. Rev. Phys. Chem. 25(1), 201–232 (1974).
[Crossref]

Appl. Phys. Lett. (2)

S. Wu, J. Q. Liu, L. Zhou, Q. J. Wang, Y. Zhang, G. D. Wang, and Y. Y. Zhu, “Electric quadrupole excitation in surface plasmon resonance of metallic composite nanohole arrays,” Appl. Phys. Lett. 99(14), 141104 (2011).
[Crossref]

H. X. Da and C. W. Qiu, “Graphene-based photonic crystal to steer giant Faraday rotation,” Appl. Phys. Lett. 100(24), 241106 (2012).
[Crossref]

Chem. Phys. Lett. (1)

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4), 262–266 (2008).
[Crossref]

IEEE Photonics J. (1)

J. Chen, C. J. Tang, P. Mao, C. Peng, D. P. Gao, Y. Yu, Q. G. Wang, and L. B. Zhang, “Surface-plasmon-polaritons-assisted enhanced magnetic response at optical frequencies in metamaterials,” IEEE Photonics J. 8(1), 1 (2016).
[Crossref]

J. Appl. Phys. (1)

M. Wang, Y. Q. Wang, M. B. Pu, C. G. Hu, X. Y. Wu, Z. Zhao, and X. Luo, “Circular dichroism of graphene-based absorber in static magnetic field,” J. Appl. Phys. 115(15), 154312 (2014).
[Crossref]

J. Lightwave Technol. (2)

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pan, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4222–4226 (2015).
[Crossref]

J. Phys. Chem. B (1)

M. A. Zaitoun, W. R. Mason, and C. T. Lin, “Magnetic circular dichroism spectra for colloidal gold nanoparticles in xerogels at 5.5 K,” J. Phys. Chem. B 105(29), 6780–6784 (2001).
[Crossref]

Nano Lett. (3)

areF. Pineider, G. Campo, V. Bonanni, C. de Julián Fernández, G. Mattei, A. Caneschi, D. Gatteschi, and C. Sangregorio, “Circular magnetoplasmonic modes in gold nanoparticles,” Nano Lett. 13(10), 4785–4789 (2013).
[Crossref] [PubMed]

D. E. Gómez, Z. Q. Teo, M. Altissimo, T. J. Davis, S. Earl, and A. Roberts, “The dark side of plasmonics,” Nano Lett. 13(8), 3722–3728 (2013).
[Crossref] [PubMed]

Z. Fang, J. Cai, Z. Yan, P. Nordlander, N. J. Halas, and X. Zhu, “Removing a wedge from a metallic nanodisk reveals a fano resonance,” Nano Lett. 11(10), 4475–4479 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Nat. Phys. (1)

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. A (1)

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Revisiting the physics of Fano resonances for nanoparticle oligomers,” Phys. Rev. A 88(5), 053819 (2013).
[Crossref]

Phys. Rev. B (2)

M. Tamagnone, T. M. Slipchenko, C. Moldovan, P. Q. Liu, A. Centeno, H. Hasani, A. Zurutuza, A. M. Ionescu, L. Martin-Moreno, J. Faist, J. R. Mosig, A. B. Kuzmenko, and J. M. Poumirol, “Magnetoplasmonic enhancement of Faraday rotation in patterned graphene metasurfaces,” Phys. Rev. B 97(24), 241410 (2018).
[Crossref]

M. Tamagnone, T. M. Slipchenko, C. Moldovan, P. Q. Liu, A. Centeno, H. Hasani, A. Zurutuza, A. M. Ionescu, L. M. Moreno, J. Faist, J. R. Mosig, A. B. Kuzmenko, and J. M. Poumirol, “Magnetoplasmonic enhancement of Faraday rotation in patterned graphene metasurfaces,” Phys. Rev. B 97(24), 241410 (2018).

Phys. Rev. B Condens. Matter Mater. Phys. (2)

W. H. Wang, S. P. Apell, and J. M. Kinaret, “Edge magnetoplasmons and the optical excitations in graphene disks,” Phys. Rev. B Condens. Matter Mater. Phys. 86(12), 125450 (2012).
[Crossref]

Yu. V. Bludov, N. M. R. Peres, and M. I. Vasilevskiy, “Graphene-based polaritonic crystal,” Phys. Rev. B Condens. Matter Mater. Phys. 85(24), 245409 (2012).
[Crossref]

Phys. Rev. Lett. (2)

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

B. Sepúlveda, J. B. González-Díaz, A. García-Martín, L. M. Lechuga, and G. Armelles, “Plasmon-induced magneto-optical activity in nanosized gold disks,” Phys. Rev. Lett. 104(14), 147401 (2010).
[Crossref] [PubMed]

Sci. Am. (1)

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007).
[Crossref] [PubMed]

Sci. Rep. (1)

K. Yang, M. Wang, M. Pu, X. Wu, H. Gao, C. Hu, and X. Luo, “Circular polarization sensitive absorbers based on graphene,” Sci. Rep. 6(1), 23897 (2016).
[Crossref] [PubMed]

Science (3)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sens. Actuators B Chem. 215(12), 480–488 (2015).
[Crossref]

Other (1)

COMSOL http://www.comsol.com/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of graphene oligomers array and simulated reflection, absorption spectra. (a) Periodic array of symmetric ring of graphene oligomers consisting of 6 graphene disks with radii of 60 nm in each unit cell. (b) The simulated absorption spectra under x-polarized plane incident wave illumination with (black dashed curve with circles) and without (red dashed curve) external magnetic field. The reflection spectrum for external magnetic field B = 0 T is displayed with blue curve. The gap between graphene disk is 40 nm (R = 160 nm). The inset shows the side view of oligomers array under incident plane wave, where the orange short lines describe the graphene oligomers. The character peaks are labeled with ①,② in the absorption spectrum.
Fig. 2
Fig. 2 Distributions of electric field component Ez at wavelengths corresponding to the resonant peaks of ①,② shown in Fig. 1(c) without ((a)-(b)) and with ((c)-(d)) external magnetic field B. In panels (c) and (d), the dashed arrows denote the directions of electric dipole shown in panel (a) and (b), respectively. The red arrows denote the directions of electric dipole. Panel (e) displays the absorption spectra for different ring radii.
Fig. 3
Fig. 3 (a) The absorption (dashed and dot-dashed curves) and MCD (curve with triangular) spectra for LCP and RCP incident wave. The inset illustrates the side view of graphene oligomers array illuminated with circular polarized light under external magnetic field B. The radii of ring oligomers is 160 nm and other parameters are identical to those describe in section 2. (b) The absorption and MCD spectra for a simple periodic array with one graphene disk in each unit cell. The filling factor is identical to the case of panel (a) with oligomer composite structures. Other parameters are the same as panel (a).
Fig. 4
Fig. 4 Panels (a) and (b) show the distributions of the electric field component Ez for LCP (a) and RCP (b) at the MCD peak wavelength shown in Fig. 3(a). The dashed arrows in panels (b) and (f) illustrate the corresponding directions of oscillating electric dipoles excited by LCP in panels (a) and (e). Panels (c) and (d) represent the electric field amplitudes corresponding to panel (a) and (b). (e) and (f) describe the simulated electric field component Ez at the resonant wavelength of superadiant mode around 12.54 μm displayed in Fig. 3(a).
Fig. 5
Fig. 5 MCD spectra for different external magnetic fields. The geometry parameters are the same as Fig. 3(a).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε g =1+ i ωt ε 0 ( σ xx σ xy 0 σ yx σ yy 0 0 0 σ d )
σ xx = σ yy = e 2 | E f | π 2 i(ω+iτ) (ω+i/τ) 2 ω c 2
σ xy = σ yx = e 2 | E f | π 2 ω c (ω+i/τ) 2 ω c 2

Metrics