Abstract

In this article, Eu-activated CaF2 single crystals were synthesized by Bridgman-Stockbarge method. The dependence of photoluminescence properties of Eu: CaF2 crystals in UV-Vis regions on EuF3 doping concentrations were investigated. While the EuF3 doping concentration is increased from 0.6% to 6.0%, the CIE (Commission Internationale de L'Eclairage) color coordinates of Eu: CaF2 crystals can be tuned from (0.28, 0.12) to (0.60, 0.38), corresponding to the luminescence color from blue to orange. XPS (X-ray Photoelectron Spectroscopy) measurements indicated that Eu2+ and Eu3+ ions both existed in the crystals. With EuF3 doping concentration increasing, the proportion of Eu3+ ions increase from 16.73% to 39.00%, while that of Eu2+ ions decrease from 83.27% to 61.00%. Moreover, the integrated intensity ratio (R) of the 614 nm to 593 nm of Eu3+ ions increase from 0.38 to 0.44, indicating the local lattice environment symmetry of Eu3+ ions become lower with higher EuF3 doping concentrations. Furthermore, the CIE chromaticity coordinates of Eu: CaF2 crystals greatly depend on the excitation wavelength. The warm white-light emission has been realized in 0.6%Eu: CaF2 crystal when the excitation wavelength is around 322 nm.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced luminescence of Ba3La(PO4)3:Dy3+ by codoping Gd3+ ions and energy transfer between Gd3+ and Dy3+

Bing Han, Hongbin Liang, Huihong Lin, Wanping Chen, Qiang Su, Guangtao Yang, and Guobin Zhang
J. Opt. Soc. Am. B 25(12) 2057-2063 (2008)

Tunable photoluminescence properties of Eu(II)- and Sm(III)-coactivated Ca9Y(PO4)7 and energy transfer between Eu(II) and Sm(III)

Huaiyong Li, Hyun Kyoung Yang, Byung Kee Moon, Byung Chun Choi, Jung Hyun Jeong, Kiwan Jang, Ho Sueb Lee, and Soung Soo Yi
Opt. Mater. Express 2(4) 443-451 (2012)

Tunable white-light emission in single-phase Ca9Gd(VO4)7:Tm3+, Eu3+

Ling Li, Hyeon Mi Noh, Byung Kee Moon, Jung Hyun Jeong, Byung Chun Choi, and Xiaoguang Liu
Opt. Mater. Express 4(1) 16-28 (2014)

References

  • View by:
  • |
  • |
  • |

  1. K. Jha and M. Jayasimhadri, “Structural and emission properties of Eu3+‐doped alkaline earth zinc‐phosphate glasses for white led applications,” J. Am. Ceram. Soc. 100(4), 1402–1411 (2017).
    [Crossref]
  2. Z. Wang, J. Zou, C. Zhang, B. Yang, M. Shi, Y. Li, M. Li, and Z. Liu, “Facile fabrication and luminescence characteristics of a mixture of phosphors (LuAG: Ce and CaAlSiN3: Eu) in glass for white led,” J. Nom-cryst. Solids 489, 57–63 (2018).
    [Crossref]
  3. X. Li, H. Zhong, B. Chen, G. Sui, J. Sun, S. Xu, L. Cheng, and J. Zhang, “Highly stable and tunable white luminescence from Ag-Eu3+ co-doped fluoroborate glass phosphors combined with violet LED,” Opt. Express 26(2), 1870–1881 (2018).
    [Crossref] [PubMed]
  4. J. Kim, S. Michelin, M. Hilbers, L. Martinelli, E. Chaudan, G. Amselem, E. Fradet, J. P. Boilot, A. M. Brouwer, C. N. Baroud, J. Peretti, and T. Gacoin, “Monitoring the orientation of rare-earth-doped nanorods for flow shear tomography,” Nat. Nanotechnol. 12(9), 914–919 (2017).
    [Crossref] [PubMed]
  5. J. Wu, J. Wang, J. Lin, Y. Xiao, G. Yue, M. Huang, Z. Lan, Y. Huang, L. Fan, S. Yin, and T. Sato, “Dual functions of YF₃:Eu³⁺ for improving photovoltaic performance of dye-sensitized solar cells,” Sci. Rep. 3(1), 2058 (2013).
    [Crossref] [PubMed]
  6. S. P. Poonam, S. P. Khatkar, R. Kumar, A. Khatkar, and V. B. Taxak, “Synthesis, characterization, enhanced photoluminescence and biological activity of Eu(III) complexes with organic ligands,” J. Mater. Sci. Mater. Electron. 26(9), 7086–7095 (2015).
    [Crossref]
  7. F. Nakamura, T. Kato, G. Okada, N. Kawaguchi, K. Fukuda, and T. Yanagida, “Scintillation and dosimeter properties of CaF2 transparent ceramic doped with Eu2+,” Ceram. Int. 43(1), 604–609 (2017).
    [Crossref]
  8. V. S. Singh, C. P. Joshi, S. V. Moharil, P. L. Muthal, and S. M. Dhopte, “Modification of luminescence spectra of CaF2:Eu2+.,” Luminescence 30(7), 1101–1105 (2015).
    [Crossref] [PubMed]
  9. C. Zhao, Q. Ma, R. Liu, H. Xu, H. Ye, S. Jin, Y. Hu, and Y. Liu, “Luminescence properties of a green-emitting Eu2+ -doped Sr-containing sialon phosphors by gas pressure sintering,” J. Mater Sci-Mater. EL 26(6), 3805–3812 (2015).
    [Crossref]
  10. S. L. Dressler, R. N. Rauch, and D. I. R. Reimann, “On the inhomogeneity of refractive index of CaF2 crystals for high performance optics,” Cryst. Res. Technol. 27(3), 413–420 (1992).
    [Crossref]
  11. P. Camy, J. L. Doualan, A. Benayad, M. von Edlinger, V. Ménard, and R. Moncorgé, “Comparative spectroscopic and laser properties of Yb3+-doped CaF2, SrF2, and BaF2 single crystals,” Appl. Phys. B 89 (4), 539–542 (2007).
    [Crossref]
  12. P. A. Popov, P. P. Fedorov, V. A. Konyushkin, A. N. Nakladov, S. V. Kuznetsov, V. V. Osiko, and T. T. Basiev Dokl, “Thermal conductivity of single crystals of Sr1−xYbxF2+x, solid solution,” Physics 53(7), 413–415 (2008).
  13. M. E. Doroshenko, A. A. Demidenko, P. P. Fedorov, E. A. Garibin, P. E. Gusev, H. Jelinkova, V. A. Konyshkin, M. A. Kruov, S. V. Kuznetsov, V. V. Osiko, P. A. Popov, and J. Shulc, “Progress in fluoride laser ceramics,” Phys. Status Solidi Rapid Res. Lett. 10(6), 952–957 (2013).
  14. P. Samuel, H. Ishizawa, Y. Ezura, K. L. Ueda, and S. M. Babu, “Spectroscopic analysis of Eu doped transparent CaF2, ceramics at different concentration,” Opt. Mater. 33(5), 735–737 (2011).
    [Crossref]
  15. H. Masai, T. Yanagida, T. Mizoguchi, T. Ina, T. Miyazaki, N. Kawaguti, and K. Fukuda, “Local coordination state of rare earth in eutectic scintillators for neutron detector applications,” Sci. Rep. 5(1), 13332 (2015).
    [Crossref] [PubMed]
  16. P. Cortelletti, M. Pedroni, F. Boschi, S. Pin, P. Ghigna, P. Canton, F. Vetrone, and A. Speghini, “Luminescence of Eu3+ Activated CaF2 and SrF2 Nanoparticles: Effect of the Particle Size and Codoping with Alkaline Ions,” Cryst. Growth Des. 18(2), 686–694 (2018).
    [Crossref]
  17. M. Y. A. Yagoub, H. C. Swart, L. L. Noto, J. H. O’Connel, M. E. Lee, and E. Coetsee, “The effects of Eu-concentrations on the luminescent properties of SrF2: Eu nanophosphor,” J. Lumin. 156, 150–156 (2014).
    [Crossref]
  18. T. Chatterjee, P. J. Mccann, X. M. Fang, J. Remington, M. B. Johnson, and C. Michellon, “Visible electroluminescence from Eu: CaF2 layers grown by molecular beam epitaxy on psi (100),” Appl. Phys. Lett. 71(25), 3610–3612 (1997).
    [Crossref]
  19. P. Maślankiewicz and J. Szade, “LiYF4 and LiYF4: Eu studied by XPS,” Surf. Sci. Spectra 18(1), 9–18 (2011).
    [Crossref]
  20. S. Kurosawa, Y. Yokota, T. Yanagida, and A. Yoshikawa, “Eu-concentration dependence of optical and scintillation properties for Eu-doped SrF2 single crystals,” Phys. Status Solidi, B Basic Res. 9, 2275–2278 (2012).
  21. Y. Su, L. Li, and G. Li, “Synthesis and optimum luminescence of Ca(WO)4-based red phosphors with codoping of Eu3+ and Na+,” Chem. Mater. 40(1), 6060–6067 (2009).
  22. C. W. Rector, B. C. Pandey, and H. W. Moos, “Electron Paramagnetic Resonance and Optical Zeeman Spectra of Type II CaF2:Er3+,” J. Chem. Phys. 45(1), 171–179 (1966).
    [Crossref]
  23. Y. T. Tsai, C. Y. Chiang, W. Zhou, J. F. Lee, H. S. Sheu, and R. S. Liu, “Structural ordering and charge variation induced by cation substitution in (Sr, Ca) AlSiN3:Eu phosphor,” J. Am. Chem. Soc. 137(28), 8936–8939 (2015).
    [Crossref] [PubMed]
  24. G. K. Wertheim, E. V. Sampathkumaran, C. Laubschat, and G. Kaindl, “Final-state effects in the x-ray photoemission spectrum of EuPd2P2.,” Phys. Rev. B Condens. Matter 31(10), 6836–6839 (1985).
    [Crossref] [PubMed]
  25. C. Laubschat, B. Perscheid, and W. D. Schneider, “Final-state effects and surface valence in Eu-transition-metal compounds,” Phys. Rev. B Condens. Matter 28(8), 4342–4348 (1983).
    [Crossref]
  26. J. Osterwalder, A. Wisard, E. Jilek, and P. Wachter, “Is Eu2O3 intermediate valent,” J. Magn. Mater. 47, 586–588 (1985).
    [Crossref]
  27. K. Biswas, A. D. Sontakke, R. Sen, and K. Annapurna, “Luminescence properties of dual valence Eu doped nano-crystalline BaF2 embedded glass-ceramics and observation of Eu2+ → Eu3+ energy transfer,” J. Fluoresc. 22(2), 745–752 (2012).
    [Crossref] [PubMed]
  28. D. Serrano, A. Braud, J. Doualan, P. Camy, and R. Moncorgé, “Pr3+ cluster management in CaF2 by codoping with Lu3+ or Yb3+ for visible lasers and quantum down-converters,” J. Opt. Soc. Am. B 29(8), 1854 (2012).
    [Crossref]
  29. B. Lacroix, C. Genevois, J. L. Doualan, G. Brasse, A. Braud, P. Ruterana, P. Camy, E. Talbot, R. Moncorgé, and J. Margerie, “Direct imaging of rare-earth ion clusters in Yb: CaF2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(12), 125124 (2014).
    [Crossref]
  30. Y. Zhang, X. Li, K. Li, H. Lian, M. Shang, and J. Lin, “Crystal-Site Engineering Control for the Reduction of Eu3+ to Eu2+ in CaYAlO4: Structure Refinement and Tunable Emission Properties,” ACS Appl. Mater. Interfaces 7(4), 2715–2725 (2015).
    [Crossref] [PubMed]
  31. R. Hamers, J. Wietfeldt, and J. Wright, “Defect chemistry in CaF2:Eu3+,” J. Chem. Phys. 77(2), 683–692 (1982).
    [Crossref]

2018 (3)

P. Cortelletti, M. Pedroni, F. Boschi, S. Pin, P. Ghigna, P. Canton, F. Vetrone, and A. Speghini, “Luminescence of Eu3+ Activated CaF2 and SrF2 Nanoparticles: Effect of the Particle Size and Codoping with Alkaline Ions,” Cryst. Growth Des. 18(2), 686–694 (2018).
[Crossref]

Z. Wang, J. Zou, C. Zhang, B. Yang, M. Shi, Y. Li, M. Li, and Z. Liu, “Facile fabrication and luminescence characteristics of a mixture of phosphors (LuAG: Ce and CaAlSiN3: Eu) in glass for white led,” J. Nom-cryst. Solids 489, 57–63 (2018).
[Crossref]

X. Li, H. Zhong, B. Chen, G. Sui, J. Sun, S. Xu, L. Cheng, and J. Zhang, “Highly stable and tunable white luminescence from Ag-Eu3+ co-doped fluoroborate glass phosphors combined with violet LED,” Opt. Express 26(2), 1870–1881 (2018).
[Crossref] [PubMed]

2017 (3)

K. Jha and M. Jayasimhadri, “Structural and emission properties of Eu3+‐doped alkaline earth zinc‐phosphate glasses for white led applications,” J. Am. Ceram. Soc. 100(4), 1402–1411 (2017).
[Crossref]

F. Nakamura, T. Kato, G. Okada, N. Kawaguchi, K. Fukuda, and T. Yanagida, “Scintillation and dosimeter properties of CaF2 transparent ceramic doped with Eu2+,” Ceram. Int. 43(1), 604–609 (2017).
[Crossref]

J. Kim, S. Michelin, M. Hilbers, L. Martinelli, E. Chaudan, G. Amselem, E. Fradet, J. P. Boilot, A. M. Brouwer, C. N. Baroud, J. Peretti, and T. Gacoin, “Monitoring the orientation of rare-earth-doped nanorods for flow shear tomography,” Nat. Nanotechnol. 12(9), 914–919 (2017).
[Crossref] [PubMed]

2015 (6)

S. P. Poonam, S. P. Khatkar, R. Kumar, A. Khatkar, and V. B. Taxak, “Synthesis, characterization, enhanced photoluminescence and biological activity of Eu(III) complexes with organic ligands,” J. Mater. Sci. Mater. Electron. 26(9), 7086–7095 (2015).
[Crossref]

V. S. Singh, C. P. Joshi, S. V. Moharil, P. L. Muthal, and S. M. Dhopte, “Modification of luminescence spectra of CaF2:Eu2+.,” Luminescence 30(7), 1101–1105 (2015).
[Crossref] [PubMed]

C. Zhao, Q. Ma, R. Liu, H. Xu, H. Ye, S. Jin, Y. Hu, and Y. Liu, “Luminescence properties of a green-emitting Eu2+ -doped Sr-containing sialon phosphors by gas pressure sintering,” J. Mater Sci-Mater. EL 26(6), 3805–3812 (2015).
[Crossref]

H. Masai, T. Yanagida, T. Mizoguchi, T. Ina, T. Miyazaki, N. Kawaguti, and K. Fukuda, “Local coordination state of rare earth in eutectic scintillators for neutron detector applications,” Sci. Rep. 5(1), 13332 (2015).
[Crossref] [PubMed]

Y. T. Tsai, C. Y. Chiang, W. Zhou, J. F. Lee, H. S. Sheu, and R. S. Liu, “Structural ordering and charge variation induced by cation substitution in (Sr, Ca) AlSiN3:Eu phosphor,” J. Am. Chem. Soc. 137(28), 8936–8939 (2015).
[Crossref] [PubMed]

Y. Zhang, X. Li, K. Li, H. Lian, M. Shang, and J. Lin, “Crystal-Site Engineering Control for the Reduction of Eu3+ to Eu2+ in CaYAlO4: Structure Refinement and Tunable Emission Properties,” ACS Appl. Mater. Interfaces 7(4), 2715–2725 (2015).
[Crossref] [PubMed]

2014 (2)

B. Lacroix, C. Genevois, J. L. Doualan, G. Brasse, A. Braud, P. Ruterana, P. Camy, E. Talbot, R. Moncorgé, and J. Margerie, “Direct imaging of rare-earth ion clusters in Yb: CaF2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(12), 125124 (2014).
[Crossref]

M. Y. A. Yagoub, H. C. Swart, L. L. Noto, J. H. O’Connel, M. E. Lee, and E. Coetsee, “The effects of Eu-concentrations on the luminescent properties of SrF2: Eu nanophosphor,” J. Lumin. 156, 150–156 (2014).
[Crossref]

2013 (2)

M. E. Doroshenko, A. A. Demidenko, P. P. Fedorov, E. A. Garibin, P. E. Gusev, H. Jelinkova, V. A. Konyshkin, M. A. Kruov, S. V. Kuznetsov, V. V. Osiko, P. A. Popov, and J. Shulc, “Progress in fluoride laser ceramics,” Phys. Status Solidi Rapid Res. Lett. 10(6), 952–957 (2013).

J. Wu, J. Wang, J. Lin, Y. Xiao, G. Yue, M. Huang, Z. Lan, Y. Huang, L. Fan, S. Yin, and T. Sato, “Dual functions of YF₃:Eu³⁺ for improving photovoltaic performance of dye-sensitized solar cells,” Sci. Rep. 3(1), 2058 (2013).
[Crossref] [PubMed]

2012 (3)

S. Kurosawa, Y. Yokota, T. Yanagida, and A. Yoshikawa, “Eu-concentration dependence of optical and scintillation properties for Eu-doped SrF2 single crystals,” Phys. Status Solidi, B Basic Res. 9, 2275–2278 (2012).

K. Biswas, A. D. Sontakke, R. Sen, and K. Annapurna, “Luminescence properties of dual valence Eu doped nano-crystalline BaF2 embedded glass-ceramics and observation of Eu2+ → Eu3+ energy transfer,” J. Fluoresc. 22(2), 745–752 (2012).
[Crossref] [PubMed]

D. Serrano, A. Braud, J. Doualan, P. Camy, and R. Moncorgé, “Pr3+ cluster management in CaF2 by codoping with Lu3+ or Yb3+ for visible lasers and quantum down-converters,” J. Opt. Soc. Am. B 29(8), 1854 (2012).
[Crossref]

2011 (2)

P. Maślankiewicz and J. Szade, “LiYF4 and LiYF4: Eu studied by XPS,” Surf. Sci. Spectra 18(1), 9–18 (2011).
[Crossref]

P. Samuel, H. Ishizawa, Y. Ezura, K. L. Ueda, and S. M. Babu, “Spectroscopic analysis of Eu doped transparent CaF2, ceramics at different concentration,” Opt. Mater. 33(5), 735–737 (2011).
[Crossref]

2009 (1)

Y. Su, L. Li, and G. Li, “Synthesis and optimum luminescence of Ca(WO)4-based red phosphors with codoping of Eu3+ and Na+,” Chem. Mater. 40(1), 6060–6067 (2009).

2008 (1)

P. A. Popov, P. P. Fedorov, V. A. Konyushkin, A. N. Nakladov, S. V. Kuznetsov, V. V. Osiko, and T. T. Basiev Dokl, “Thermal conductivity of single crystals of Sr1−xYbxF2+x, solid solution,” Physics 53(7), 413–415 (2008).

2007 (1)

P. Camy, J. L. Doualan, A. Benayad, M. von Edlinger, V. Ménard, and R. Moncorgé, “Comparative spectroscopic and laser properties of Yb3+-doped CaF2, SrF2, and BaF2 single crystals,” Appl. Phys. B 89 (4), 539–542 (2007).
[Crossref]

1997 (1)

T. Chatterjee, P. J. Mccann, X. M. Fang, J. Remington, M. B. Johnson, and C. Michellon, “Visible electroluminescence from Eu: CaF2 layers grown by molecular beam epitaxy on psi (100),” Appl. Phys. Lett. 71(25), 3610–3612 (1997).
[Crossref]

1992 (1)

S. L. Dressler, R. N. Rauch, and D. I. R. Reimann, “On the inhomogeneity of refractive index of CaF2 crystals for high performance optics,” Cryst. Res. Technol. 27(3), 413–420 (1992).
[Crossref]

1985 (2)

J. Osterwalder, A. Wisard, E. Jilek, and P. Wachter, “Is Eu2O3 intermediate valent,” J. Magn. Mater. 47, 586–588 (1985).
[Crossref]

G. K. Wertheim, E. V. Sampathkumaran, C. Laubschat, and G. Kaindl, “Final-state effects in the x-ray photoemission spectrum of EuPd2P2.,” Phys. Rev. B Condens. Matter 31(10), 6836–6839 (1985).
[Crossref] [PubMed]

1983 (1)

C. Laubschat, B. Perscheid, and W. D. Schneider, “Final-state effects and surface valence in Eu-transition-metal compounds,” Phys. Rev. B Condens. Matter 28(8), 4342–4348 (1983).
[Crossref]

1982 (1)

R. Hamers, J. Wietfeldt, and J. Wright, “Defect chemistry in CaF2:Eu3+,” J. Chem. Phys. 77(2), 683–692 (1982).
[Crossref]

1966 (1)

C. W. Rector, B. C. Pandey, and H. W. Moos, “Electron Paramagnetic Resonance and Optical Zeeman Spectra of Type II CaF2:Er3+,” J. Chem. Phys. 45(1), 171–179 (1966).
[Crossref]

Amselem, G.

J. Kim, S. Michelin, M. Hilbers, L. Martinelli, E. Chaudan, G. Amselem, E. Fradet, J. P. Boilot, A. M. Brouwer, C. N. Baroud, J. Peretti, and T. Gacoin, “Monitoring the orientation of rare-earth-doped nanorods for flow shear tomography,” Nat. Nanotechnol. 12(9), 914–919 (2017).
[Crossref] [PubMed]

Annapurna, K.

K. Biswas, A. D. Sontakke, R. Sen, and K. Annapurna, “Luminescence properties of dual valence Eu doped nano-crystalline BaF2 embedded glass-ceramics and observation of Eu2+ → Eu3+ energy transfer,” J. Fluoresc. 22(2), 745–752 (2012).
[Crossref] [PubMed]

Babu, S. M.

P. Samuel, H. Ishizawa, Y. Ezura, K. L. Ueda, and S. M. Babu, “Spectroscopic analysis of Eu doped transparent CaF2, ceramics at different concentration,” Opt. Mater. 33(5), 735–737 (2011).
[Crossref]

Baroud, C. N.

J. Kim, S. Michelin, M. Hilbers, L. Martinelli, E. Chaudan, G. Amselem, E. Fradet, J. P. Boilot, A. M. Brouwer, C. N. Baroud, J. Peretti, and T. Gacoin, “Monitoring the orientation of rare-earth-doped nanorods for flow shear tomography,” Nat. Nanotechnol. 12(9), 914–919 (2017).
[Crossref] [PubMed]

Basiev Dokl, T. T.

P. A. Popov, P. P. Fedorov, V. A. Konyushkin, A. N. Nakladov, S. V. Kuznetsov, V. V. Osiko, and T. T. Basiev Dokl, “Thermal conductivity of single crystals of Sr1−xYbxF2+x, solid solution,” Physics 53(7), 413–415 (2008).

Benayad, A.

P. Camy, J. L. Doualan, A. Benayad, M. von Edlinger, V. Ménard, and R. Moncorgé, “Comparative spectroscopic and laser properties of Yb3+-doped CaF2, SrF2, and BaF2 single crystals,” Appl. Phys. B 89 (4), 539–542 (2007).
[Crossref]

Biswas, K.

K. Biswas, A. D. Sontakke, R. Sen, and K. Annapurna, “Luminescence properties of dual valence Eu doped nano-crystalline BaF2 embedded glass-ceramics and observation of Eu2+ → Eu3+ energy transfer,” J. Fluoresc. 22(2), 745–752 (2012).
[Crossref] [PubMed]

Boilot, J. P.

J. Kim, S. Michelin, M. Hilbers, L. Martinelli, E. Chaudan, G. Amselem, E. Fradet, J. P. Boilot, A. M. Brouwer, C. N. Baroud, J. Peretti, and T. Gacoin, “Monitoring the orientation of rare-earth-doped nanorods for flow shear tomography,” Nat. Nanotechnol. 12(9), 914–919 (2017).
[Crossref] [PubMed]

Boschi, F.

P. Cortelletti, M. Pedroni, F. Boschi, S. Pin, P. Ghigna, P. Canton, F. Vetrone, and A. Speghini, “Luminescence of Eu3+ Activated CaF2 and SrF2 Nanoparticles: Effect of the Particle Size and Codoping with Alkaline Ions,” Cryst. Growth Des. 18(2), 686–694 (2018).
[Crossref]

Brasse, G.

B. Lacroix, C. Genevois, J. L. Doualan, G. Brasse, A. Braud, P. Ruterana, P. Camy, E. Talbot, R. Moncorgé, and J. Margerie, “Direct imaging of rare-earth ion clusters in Yb: CaF2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(12), 125124 (2014).
[Crossref]

Braud, A.

B. Lacroix, C. Genevois, J. L. Doualan, G. Brasse, A. Braud, P. Ruterana, P. Camy, E. Talbot, R. Moncorgé, and J. Margerie, “Direct imaging of rare-earth ion clusters in Yb: CaF2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(12), 125124 (2014).
[Crossref]

D. Serrano, A. Braud, J. Doualan, P. Camy, and R. Moncorgé, “Pr3+ cluster management in CaF2 by codoping with Lu3+ or Yb3+ for visible lasers and quantum down-converters,” J. Opt. Soc. Am. B 29(8), 1854 (2012).
[Crossref]

Brouwer, A. M.

J. Kim, S. Michelin, M. Hilbers, L. Martinelli, E. Chaudan, G. Amselem, E. Fradet, J. P. Boilot, A. M. Brouwer, C. N. Baroud, J. Peretti, and T. Gacoin, “Monitoring the orientation of rare-earth-doped nanorods for flow shear tomography,” Nat. Nanotechnol. 12(9), 914–919 (2017).
[Crossref] [PubMed]

Camy, P.

B. Lacroix, C. Genevois, J. L. Doualan, G. Brasse, A. Braud, P. Ruterana, P. Camy, E. Talbot, R. Moncorgé, and J. Margerie, “Direct imaging of rare-earth ion clusters in Yb: CaF2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(12), 125124 (2014).
[Crossref]

D. Serrano, A. Braud, J. Doualan, P. Camy, and R. Moncorgé, “Pr3+ cluster management in CaF2 by codoping with Lu3+ or Yb3+ for visible lasers and quantum down-converters,” J. Opt. Soc. Am. B 29(8), 1854 (2012).
[Crossref]

P. Camy, J. L. Doualan, A. Benayad, M. von Edlinger, V. Ménard, and R. Moncorgé, “Comparative spectroscopic and laser properties of Yb3+-doped CaF2, SrF2, and BaF2 single crystals,” Appl. Phys. B 89 (4), 539–542 (2007).
[Crossref]

Canton, P.

P. Cortelletti, M. Pedroni, F. Boschi, S. Pin, P. Ghigna, P. Canton, F. Vetrone, and A. Speghini, “Luminescence of Eu3+ Activated CaF2 and SrF2 Nanoparticles: Effect of the Particle Size and Codoping with Alkaline Ions,” Cryst. Growth Des. 18(2), 686–694 (2018).
[Crossref]

Chatterjee, T.

T. Chatterjee, P. J. Mccann, X. M. Fang, J. Remington, M. B. Johnson, and C. Michellon, “Visible electroluminescence from Eu: CaF2 layers grown by molecular beam epitaxy on psi (100),” Appl. Phys. Lett. 71(25), 3610–3612 (1997).
[Crossref]

Chaudan, E.

J. Kim, S. Michelin, M. Hilbers, L. Martinelli, E. Chaudan, G. Amselem, E. Fradet, J. P. Boilot, A. M. Brouwer, C. N. Baroud, J. Peretti, and T. Gacoin, “Monitoring the orientation of rare-earth-doped nanorods for flow shear tomography,” Nat. Nanotechnol. 12(9), 914–919 (2017).
[Crossref] [PubMed]

Chen, B.

Cheng, L.

Chiang, C. Y.

Y. T. Tsai, C. Y. Chiang, W. Zhou, J. F. Lee, H. S. Sheu, and R. S. Liu, “Structural ordering and charge variation induced by cation substitution in (Sr, Ca) AlSiN3:Eu phosphor,” J. Am. Chem. Soc. 137(28), 8936–8939 (2015).
[Crossref] [PubMed]

Coetsee, E.

M. Y. A. Yagoub, H. C. Swart, L. L. Noto, J. H. O’Connel, M. E. Lee, and E. Coetsee, “The effects of Eu-concentrations on the luminescent properties of SrF2: Eu nanophosphor,” J. Lumin. 156, 150–156 (2014).
[Crossref]

Cortelletti, P.

P. Cortelletti, M. Pedroni, F. Boschi, S. Pin, P. Ghigna, P. Canton, F. Vetrone, and A. Speghini, “Luminescence of Eu3+ Activated CaF2 and SrF2 Nanoparticles: Effect of the Particle Size and Codoping with Alkaline Ions,” Cryst. Growth Des. 18(2), 686–694 (2018).
[Crossref]

Demidenko, A. A.

M. E. Doroshenko, A. A. Demidenko, P. P. Fedorov, E. A. Garibin, P. E. Gusev, H. Jelinkova, V. A. Konyshkin, M. A. Kruov, S. V. Kuznetsov, V. V. Osiko, P. A. Popov, and J. Shulc, “Progress in fluoride laser ceramics,” Phys. Status Solidi Rapid Res. Lett. 10(6), 952–957 (2013).

Dhopte, S. M.

V. S. Singh, C. P. Joshi, S. V. Moharil, P. L. Muthal, and S. M. Dhopte, “Modification of luminescence spectra of CaF2:Eu2+.,” Luminescence 30(7), 1101–1105 (2015).
[Crossref] [PubMed]

Doroshenko, M. E.

M. E. Doroshenko, A. A. Demidenko, P. P. Fedorov, E. A. Garibin, P. E. Gusev, H. Jelinkova, V. A. Konyshkin, M. A. Kruov, S. V. Kuznetsov, V. V. Osiko, P. A. Popov, and J. Shulc, “Progress in fluoride laser ceramics,” Phys. Status Solidi Rapid Res. Lett. 10(6), 952–957 (2013).

Doualan, J.

Doualan, J. L.

B. Lacroix, C. Genevois, J. L. Doualan, G. Brasse, A. Braud, P. Ruterana, P. Camy, E. Talbot, R. Moncorgé, and J. Margerie, “Direct imaging of rare-earth ion clusters in Yb: CaF2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(12), 125124 (2014).
[Crossref]

P. Camy, J. L. Doualan, A. Benayad, M. von Edlinger, V. Ménard, and R. Moncorgé, “Comparative spectroscopic and laser properties of Yb3+-doped CaF2, SrF2, and BaF2 single crystals,” Appl. Phys. B 89 (4), 539–542 (2007).
[Crossref]

Dressler, S. L.

S. L. Dressler, R. N. Rauch, and D. I. R. Reimann, “On the inhomogeneity of refractive index of CaF2 crystals for high performance optics,” Cryst. Res. Technol. 27(3), 413–420 (1992).
[Crossref]

Ezura, Y.

P. Samuel, H. Ishizawa, Y. Ezura, K. L. Ueda, and S. M. Babu, “Spectroscopic analysis of Eu doped transparent CaF2, ceramics at different concentration,” Opt. Mater. 33(5), 735–737 (2011).
[Crossref]

Fan, L.

J. Wu, J. Wang, J. Lin, Y. Xiao, G. Yue, M. Huang, Z. Lan, Y. Huang, L. Fan, S. Yin, and T. Sato, “Dual functions of YF₃:Eu³⁺ for improving photovoltaic performance of dye-sensitized solar cells,” Sci. Rep. 3(1), 2058 (2013).
[Crossref] [PubMed]

Fang, X. M.

T. Chatterjee, P. J. Mccann, X. M. Fang, J. Remington, M. B. Johnson, and C. Michellon, “Visible electroluminescence from Eu: CaF2 layers grown by molecular beam epitaxy on psi (100),” Appl. Phys. Lett. 71(25), 3610–3612 (1997).
[Crossref]

Fedorov, P. P.

M. E. Doroshenko, A. A. Demidenko, P. P. Fedorov, E. A. Garibin, P. E. Gusev, H. Jelinkova, V. A. Konyshkin, M. A. Kruov, S. V. Kuznetsov, V. V. Osiko, P. A. Popov, and J. Shulc, “Progress in fluoride laser ceramics,” Phys. Status Solidi Rapid Res. Lett. 10(6), 952–957 (2013).

P. A. Popov, P. P. Fedorov, V. A. Konyushkin, A. N. Nakladov, S. V. Kuznetsov, V. V. Osiko, and T. T. Basiev Dokl, “Thermal conductivity of single crystals of Sr1−xYbxF2+x, solid solution,” Physics 53(7), 413–415 (2008).

Fradet, E.

J. Kim, S. Michelin, M. Hilbers, L. Martinelli, E. Chaudan, G. Amselem, E. Fradet, J. P. Boilot, A. M. Brouwer, C. N. Baroud, J. Peretti, and T. Gacoin, “Monitoring the orientation of rare-earth-doped nanorods for flow shear tomography,” Nat. Nanotechnol. 12(9), 914–919 (2017).
[Crossref] [PubMed]

Fukuda, K.

F. Nakamura, T. Kato, G. Okada, N. Kawaguchi, K. Fukuda, and T. Yanagida, “Scintillation and dosimeter properties of CaF2 transparent ceramic doped with Eu2+,” Ceram. Int. 43(1), 604–609 (2017).
[Crossref]

H. Masai, T. Yanagida, T. Mizoguchi, T. Ina, T. Miyazaki, N. Kawaguti, and K. Fukuda, “Local coordination state of rare earth in eutectic scintillators for neutron detector applications,” Sci. Rep. 5(1), 13332 (2015).
[Crossref] [PubMed]

Gacoin, T.

J. Kim, S. Michelin, M. Hilbers, L. Martinelli, E. Chaudan, G. Amselem, E. Fradet, J. P. Boilot, A. M. Brouwer, C. N. Baroud, J. Peretti, and T. Gacoin, “Monitoring the orientation of rare-earth-doped nanorods for flow shear tomography,” Nat. Nanotechnol. 12(9), 914–919 (2017).
[Crossref] [PubMed]

Garibin, E. A.

M. E. Doroshenko, A. A. Demidenko, P. P. Fedorov, E. A. Garibin, P. E. Gusev, H. Jelinkova, V. A. Konyshkin, M. A. Kruov, S. V. Kuznetsov, V. V. Osiko, P. A. Popov, and J. Shulc, “Progress in fluoride laser ceramics,” Phys. Status Solidi Rapid Res. Lett. 10(6), 952–957 (2013).

Genevois, C.

B. Lacroix, C. Genevois, J. L. Doualan, G. Brasse, A. Braud, P. Ruterana, P. Camy, E. Talbot, R. Moncorgé, and J. Margerie, “Direct imaging of rare-earth ion clusters in Yb: CaF2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(12), 125124 (2014).
[Crossref]

Ghigna, P.

P. Cortelletti, M. Pedroni, F. Boschi, S. Pin, P. Ghigna, P. Canton, F. Vetrone, and A. Speghini, “Luminescence of Eu3+ Activated CaF2 and SrF2 Nanoparticles: Effect of the Particle Size and Codoping with Alkaline Ions,” Cryst. Growth Des. 18(2), 686–694 (2018).
[Crossref]

Gusev, P. E.

M. E. Doroshenko, A. A. Demidenko, P. P. Fedorov, E. A. Garibin, P. E. Gusev, H. Jelinkova, V. A. Konyshkin, M. A. Kruov, S. V. Kuznetsov, V. V. Osiko, P. A. Popov, and J. Shulc, “Progress in fluoride laser ceramics,” Phys. Status Solidi Rapid Res. Lett. 10(6), 952–957 (2013).

Hamers, R.

R. Hamers, J. Wietfeldt, and J. Wright, “Defect chemistry in CaF2:Eu3+,” J. Chem. Phys. 77(2), 683–692 (1982).
[Crossref]

Hilbers, M.

J. Kim, S. Michelin, M. Hilbers, L. Martinelli, E. Chaudan, G. Amselem, E. Fradet, J. P. Boilot, A. M. Brouwer, C. N. Baroud, J. Peretti, and T. Gacoin, “Monitoring the orientation of rare-earth-doped nanorods for flow shear tomography,” Nat. Nanotechnol. 12(9), 914–919 (2017).
[Crossref] [PubMed]

Hu, Y.

C. Zhao, Q. Ma, R. Liu, H. Xu, H. Ye, S. Jin, Y. Hu, and Y. Liu, “Luminescence properties of a green-emitting Eu2+ -doped Sr-containing sialon phosphors by gas pressure sintering,” J. Mater Sci-Mater. EL 26(6), 3805–3812 (2015).
[Crossref]

Huang, M.

J. Wu, J. Wang, J. Lin, Y. Xiao, G. Yue, M. Huang, Z. Lan, Y. Huang, L. Fan, S. Yin, and T. Sato, “Dual functions of YF₃:Eu³⁺ for improving photovoltaic performance of dye-sensitized solar cells,” Sci. Rep. 3(1), 2058 (2013).
[Crossref] [PubMed]

Huang, Y.

J. Wu, J. Wang, J. Lin, Y. Xiao, G. Yue, M. Huang, Z. Lan, Y. Huang, L. Fan, S. Yin, and T. Sato, “Dual functions of YF₃:Eu³⁺ for improving photovoltaic performance of dye-sensitized solar cells,” Sci. Rep. 3(1), 2058 (2013).
[Crossref] [PubMed]

Ina, T.

H. Masai, T. Yanagida, T. Mizoguchi, T. Ina, T. Miyazaki, N. Kawaguti, and K. Fukuda, “Local coordination state of rare earth in eutectic scintillators for neutron detector applications,” Sci. Rep. 5(1), 13332 (2015).
[Crossref] [PubMed]

Ishizawa, H.

P. Samuel, H. Ishizawa, Y. Ezura, K. L. Ueda, and S. M. Babu, “Spectroscopic analysis of Eu doped transparent CaF2, ceramics at different concentration,” Opt. Mater. 33(5), 735–737 (2011).
[Crossref]

Jayasimhadri, M.

K. Jha and M. Jayasimhadri, “Structural and emission properties of Eu3+‐doped alkaline earth zinc‐phosphate glasses for white led applications,” J. Am. Ceram. Soc. 100(4), 1402–1411 (2017).
[Crossref]

Jelinkova, H.

M. E. Doroshenko, A. A. Demidenko, P. P. Fedorov, E. A. Garibin, P. E. Gusev, H. Jelinkova, V. A. Konyshkin, M. A. Kruov, S. V. Kuznetsov, V. V. Osiko, P. A. Popov, and J. Shulc, “Progress in fluoride laser ceramics,” Phys. Status Solidi Rapid Res. Lett. 10(6), 952–957 (2013).

Jha, K.

K. Jha and M. Jayasimhadri, “Structural and emission properties of Eu3+‐doped alkaline earth zinc‐phosphate glasses for white led applications,” J. Am. Ceram. Soc. 100(4), 1402–1411 (2017).
[Crossref]

Jilek, E.

J. Osterwalder, A. Wisard, E. Jilek, and P. Wachter, “Is Eu2O3 intermediate valent,” J. Magn. Mater. 47, 586–588 (1985).
[Crossref]

Jin, S.

C. Zhao, Q. Ma, R. Liu, H. Xu, H. Ye, S. Jin, Y. Hu, and Y. Liu, “Luminescence properties of a green-emitting Eu2+ -doped Sr-containing sialon phosphors by gas pressure sintering,” J. Mater Sci-Mater. EL 26(6), 3805–3812 (2015).
[Crossref]

Johnson, M. B.

T. Chatterjee, P. J. Mccann, X. M. Fang, J. Remington, M. B. Johnson, and C. Michellon, “Visible electroluminescence from Eu: CaF2 layers grown by molecular beam epitaxy on psi (100),” Appl. Phys. Lett. 71(25), 3610–3612 (1997).
[Crossref]

Joshi, C. P.

V. S. Singh, C. P. Joshi, S. V. Moharil, P. L. Muthal, and S. M. Dhopte, “Modification of luminescence spectra of CaF2:Eu2+.,” Luminescence 30(7), 1101–1105 (2015).
[Crossref] [PubMed]

Kaindl, G.

G. K. Wertheim, E. V. Sampathkumaran, C. Laubschat, and G. Kaindl, “Final-state effects in the x-ray photoemission spectrum of EuPd2P2.,” Phys. Rev. B Condens. Matter 31(10), 6836–6839 (1985).
[Crossref] [PubMed]

Kato, T.

F. Nakamura, T. Kato, G. Okada, N. Kawaguchi, K. Fukuda, and T. Yanagida, “Scintillation and dosimeter properties of CaF2 transparent ceramic doped with Eu2+,” Ceram. Int. 43(1), 604–609 (2017).
[Crossref]

Kawaguchi, N.

F. Nakamura, T. Kato, G. Okada, N. Kawaguchi, K. Fukuda, and T. Yanagida, “Scintillation and dosimeter properties of CaF2 transparent ceramic doped with Eu2+,” Ceram. Int. 43(1), 604–609 (2017).
[Crossref]

Kawaguti, N.

H. Masai, T. Yanagida, T. Mizoguchi, T. Ina, T. Miyazaki, N. Kawaguti, and K. Fukuda, “Local coordination state of rare earth in eutectic scintillators for neutron detector applications,” Sci. Rep. 5(1), 13332 (2015).
[Crossref] [PubMed]

Khatkar, A.

S. P. Poonam, S. P. Khatkar, R. Kumar, A. Khatkar, and V. B. Taxak, “Synthesis, characterization, enhanced photoluminescence and biological activity of Eu(III) complexes with organic ligands,” J. Mater. Sci. Mater. Electron. 26(9), 7086–7095 (2015).
[Crossref]

Khatkar, S. P.

S. P. Poonam, S. P. Khatkar, R. Kumar, A. Khatkar, and V. B. Taxak, “Synthesis, characterization, enhanced photoluminescence and biological activity of Eu(III) complexes with organic ligands,” J. Mater. Sci. Mater. Electron. 26(9), 7086–7095 (2015).
[Crossref]

Kim, J.

J. Kim, S. Michelin, M. Hilbers, L. Martinelli, E. Chaudan, G. Amselem, E. Fradet, J. P. Boilot, A. M. Brouwer, C. N. Baroud, J. Peretti, and T. Gacoin, “Monitoring the orientation of rare-earth-doped nanorods for flow shear tomography,” Nat. Nanotechnol. 12(9), 914–919 (2017).
[Crossref] [PubMed]

Konyshkin, V. A.

M. E. Doroshenko, A. A. Demidenko, P. P. Fedorov, E. A. Garibin, P. E. Gusev, H. Jelinkova, V. A. Konyshkin, M. A. Kruov, S. V. Kuznetsov, V. V. Osiko, P. A. Popov, and J. Shulc, “Progress in fluoride laser ceramics,” Phys. Status Solidi Rapid Res. Lett. 10(6), 952–957 (2013).

Konyushkin, V. A.

P. A. Popov, P. P. Fedorov, V. A. Konyushkin, A. N. Nakladov, S. V. Kuznetsov, V. V. Osiko, and T. T. Basiev Dokl, “Thermal conductivity of single crystals of Sr1−xYbxF2+x, solid solution,” Physics 53(7), 413–415 (2008).

Kruov, M. A.

M. E. Doroshenko, A. A. Demidenko, P. P. Fedorov, E. A. Garibin, P. E. Gusev, H. Jelinkova, V. A. Konyshkin, M. A. Kruov, S. V. Kuznetsov, V. V. Osiko, P. A. Popov, and J. Shulc, “Progress in fluoride laser ceramics,” Phys. Status Solidi Rapid Res. Lett. 10(6), 952–957 (2013).

Kumar, R.

S. P. Poonam, S. P. Khatkar, R. Kumar, A. Khatkar, and V. B. Taxak, “Synthesis, characterization, enhanced photoluminescence and biological activity of Eu(III) complexes with organic ligands,” J. Mater. Sci. Mater. Electron. 26(9), 7086–7095 (2015).
[Crossref]

Kurosawa, S.

S. Kurosawa, Y. Yokota, T. Yanagida, and A. Yoshikawa, “Eu-concentration dependence of optical and scintillation properties for Eu-doped SrF2 single crystals,” Phys. Status Solidi, B Basic Res. 9, 2275–2278 (2012).

Kuznetsov, S. V.

M. E. Doroshenko, A. A. Demidenko, P. P. Fedorov, E. A. Garibin, P. E. Gusev, H. Jelinkova, V. A. Konyshkin, M. A. Kruov, S. V. Kuznetsov, V. V. Osiko, P. A. Popov, and J. Shulc, “Progress in fluoride laser ceramics,” Phys. Status Solidi Rapid Res. Lett. 10(6), 952–957 (2013).

P. A. Popov, P. P. Fedorov, V. A. Konyushkin, A. N. Nakladov, S. V. Kuznetsov, V. V. Osiko, and T. T. Basiev Dokl, “Thermal conductivity of single crystals of Sr1−xYbxF2+x, solid solution,” Physics 53(7), 413–415 (2008).

Lacroix, B.

B. Lacroix, C. Genevois, J. L. Doualan, G. Brasse, A. Braud, P. Ruterana, P. Camy, E. Talbot, R. Moncorgé, and J. Margerie, “Direct imaging of rare-earth ion clusters in Yb: CaF2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(12), 125124 (2014).
[Crossref]

Lan, Z.

J. Wu, J. Wang, J. Lin, Y. Xiao, G. Yue, M. Huang, Z. Lan, Y. Huang, L. Fan, S. Yin, and T. Sato, “Dual functions of YF₃:Eu³⁺ for improving photovoltaic performance of dye-sensitized solar cells,” Sci. Rep. 3(1), 2058 (2013).
[Crossref] [PubMed]

Laubschat, C.

G. K. Wertheim, E. V. Sampathkumaran, C. Laubschat, and G. Kaindl, “Final-state effects in the x-ray photoemission spectrum of EuPd2P2.,” Phys. Rev. B Condens. Matter 31(10), 6836–6839 (1985).
[Crossref] [PubMed]

C. Laubschat, B. Perscheid, and W. D. Schneider, “Final-state effects and surface valence in Eu-transition-metal compounds,” Phys. Rev. B Condens. Matter 28(8), 4342–4348 (1983).
[Crossref]

Lee, J. F.

Y. T. Tsai, C. Y. Chiang, W. Zhou, J. F. Lee, H. S. Sheu, and R. S. Liu, “Structural ordering and charge variation induced by cation substitution in (Sr, Ca) AlSiN3:Eu phosphor,” J. Am. Chem. Soc. 137(28), 8936–8939 (2015).
[Crossref] [PubMed]

Lee, M. E.

M. Y. A. Yagoub, H. C. Swart, L. L. Noto, J. H. O’Connel, M. E. Lee, and E. Coetsee, “The effects of Eu-concentrations on the luminescent properties of SrF2: Eu nanophosphor,” J. Lumin. 156, 150–156 (2014).
[Crossref]

Li, G.

Y. Su, L. Li, and G. Li, “Synthesis and optimum luminescence of Ca(WO)4-based red phosphors with codoping of Eu3+ and Na+,” Chem. Mater. 40(1), 6060–6067 (2009).

Li, K.

Y. Zhang, X. Li, K. Li, H. Lian, M. Shang, and J. Lin, “Crystal-Site Engineering Control for the Reduction of Eu3+ to Eu2+ in CaYAlO4: Structure Refinement and Tunable Emission Properties,” ACS Appl. Mater. Interfaces 7(4), 2715–2725 (2015).
[Crossref] [PubMed]

Li, L.

Y. Su, L. Li, and G. Li, “Synthesis and optimum luminescence of Ca(WO)4-based red phosphors with codoping of Eu3+ and Na+,” Chem. Mater. 40(1), 6060–6067 (2009).

Li, M.

Z. Wang, J. Zou, C. Zhang, B. Yang, M. Shi, Y. Li, M. Li, and Z. Liu, “Facile fabrication and luminescence characteristics of a mixture of phosphors (LuAG: Ce and CaAlSiN3: Eu) in glass for white led,” J. Nom-cryst. Solids 489, 57–63 (2018).
[Crossref]

Li, X.

X. Li, H. Zhong, B. Chen, G. Sui, J. Sun, S. Xu, L. Cheng, and J. Zhang, “Highly stable and tunable white luminescence from Ag-Eu3+ co-doped fluoroborate glass phosphors combined with violet LED,” Opt. Express 26(2), 1870–1881 (2018).
[Crossref] [PubMed]

Y. Zhang, X. Li, K. Li, H. Lian, M. Shang, and J. Lin, “Crystal-Site Engineering Control for the Reduction of Eu3+ to Eu2+ in CaYAlO4: Structure Refinement and Tunable Emission Properties,” ACS Appl. Mater. Interfaces 7(4), 2715–2725 (2015).
[Crossref] [PubMed]

Li, Y.

Z. Wang, J. Zou, C. Zhang, B. Yang, M. Shi, Y. Li, M. Li, and Z. Liu, “Facile fabrication and luminescence characteristics of a mixture of phosphors (LuAG: Ce and CaAlSiN3: Eu) in glass for white led,” J. Nom-cryst. Solids 489, 57–63 (2018).
[Crossref]

Lian, H.

Y. Zhang, X. Li, K. Li, H. Lian, M. Shang, and J. Lin, “Crystal-Site Engineering Control for the Reduction of Eu3+ to Eu2+ in CaYAlO4: Structure Refinement and Tunable Emission Properties,” ACS Appl. Mater. Interfaces 7(4), 2715–2725 (2015).
[Crossref] [PubMed]

Lin, J.

Y. Zhang, X. Li, K. Li, H. Lian, M. Shang, and J. Lin, “Crystal-Site Engineering Control for the Reduction of Eu3+ to Eu2+ in CaYAlO4: Structure Refinement and Tunable Emission Properties,” ACS Appl. Mater. Interfaces 7(4), 2715–2725 (2015).
[Crossref] [PubMed]

J. Wu, J. Wang, J. Lin, Y. Xiao, G. Yue, M. Huang, Z. Lan, Y. Huang, L. Fan, S. Yin, and T. Sato, “Dual functions of YF₃:Eu³⁺ for improving photovoltaic performance of dye-sensitized solar cells,” Sci. Rep. 3(1), 2058 (2013).
[Crossref] [PubMed]

Liu, R.

C. Zhao, Q. Ma, R. Liu, H. Xu, H. Ye, S. Jin, Y. Hu, and Y. Liu, “Luminescence properties of a green-emitting Eu2+ -doped Sr-containing sialon phosphors by gas pressure sintering,” J. Mater Sci-Mater. EL 26(6), 3805–3812 (2015).
[Crossref]

Liu, R. S.

Y. T. Tsai, C. Y. Chiang, W. Zhou, J. F. Lee, H. S. Sheu, and R. S. Liu, “Structural ordering and charge variation induced by cation substitution in (Sr, Ca) AlSiN3:Eu phosphor,” J. Am. Chem. Soc. 137(28), 8936–8939 (2015).
[Crossref] [PubMed]

Liu, Y.

C. Zhao, Q. Ma, R. Liu, H. Xu, H. Ye, S. Jin, Y. Hu, and Y. Liu, “Luminescence properties of a green-emitting Eu2+ -doped Sr-containing sialon phosphors by gas pressure sintering,” J. Mater Sci-Mater. EL 26(6), 3805–3812 (2015).
[Crossref]

Liu, Z.

Z. Wang, J. Zou, C. Zhang, B. Yang, M. Shi, Y. Li, M. Li, and Z. Liu, “Facile fabrication and luminescence characteristics of a mixture of phosphors (LuAG: Ce and CaAlSiN3: Eu) in glass for white led,” J. Nom-cryst. Solids 489, 57–63 (2018).
[Crossref]

Ma, Q.

C. Zhao, Q. Ma, R. Liu, H. Xu, H. Ye, S. Jin, Y. Hu, and Y. Liu, “Luminescence properties of a green-emitting Eu2+ -doped Sr-containing sialon phosphors by gas pressure sintering,” J. Mater Sci-Mater. EL 26(6), 3805–3812 (2015).
[Crossref]

Margerie, J.

B. Lacroix, C. Genevois, J. L. Doualan, G. Brasse, A. Braud, P. Ruterana, P. Camy, E. Talbot, R. Moncorgé, and J. Margerie, “Direct imaging of rare-earth ion clusters in Yb: CaF2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(12), 125124 (2014).
[Crossref]

Martinelli, L.

J. Kim, S. Michelin, M. Hilbers, L. Martinelli, E. Chaudan, G. Amselem, E. Fradet, J. P. Boilot, A. M. Brouwer, C. N. Baroud, J. Peretti, and T. Gacoin, “Monitoring the orientation of rare-earth-doped nanorods for flow shear tomography,” Nat. Nanotechnol. 12(9), 914–919 (2017).
[Crossref] [PubMed]

Masai, H.

H. Masai, T. Yanagida, T. Mizoguchi, T. Ina, T. Miyazaki, N. Kawaguti, and K. Fukuda, “Local coordination state of rare earth in eutectic scintillators for neutron detector applications,” Sci. Rep. 5(1), 13332 (2015).
[Crossref] [PubMed]

Maslankiewicz, P.

P. Maślankiewicz and J. Szade, “LiYF4 and LiYF4: Eu studied by XPS,” Surf. Sci. Spectra 18(1), 9–18 (2011).
[Crossref]

Mccann, P. J.

T. Chatterjee, P. J. Mccann, X. M. Fang, J. Remington, M. B. Johnson, and C. Michellon, “Visible electroluminescence from Eu: CaF2 layers grown by molecular beam epitaxy on psi (100),” Appl. Phys. Lett. 71(25), 3610–3612 (1997).
[Crossref]

Ménard, V.

P. Camy, J. L. Doualan, A. Benayad, M. von Edlinger, V. Ménard, and R. Moncorgé, “Comparative spectroscopic and laser properties of Yb3+-doped CaF2, SrF2, and BaF2 single crystals,” Appl. Phys. B 89 (4), 539–542 (2007).
[Crossref]

Michelin, S.

J. Kim, S. Michelin, M. Hilbers, L. Martinelli, E. Chaudan, G. Amselem, E. Fradet, J. P. Boilot, A. M. Brouwer, C. N. Baroud, J. Peretti, and T. Gacoin, “Monitoring the orientation of rare-earth-doped nanorods for flow shear tomography,” Nat. Nanotechnol. 12(9), 914–919 (2017).
[Crossref] [PubMed]

Michellon, C.

T. Chatterjee, P. J. Mccann, X. M. Fang, J. Remington, M. B. Johnson, and C. Michellon, “Visible electroluminescence from Eu: CaF2 layers grown by molecular beam epitaxy on psi (100),” Appl. Phys. Lett. 71(25), 3610–3612 (1997).
[Crossref]

Miyazaki, T.

H. Masai, T. Yanagida, T. Mizoguchi, T. Ina, T. Miyazaki, N. Kawaguti, and K. Fukuda, “Local coordination state of rare earth in eutectic scintillators for neutron detector applications,” Sci. Rep. 5(1), 13332 (2015).
[Crossref] [PubMed]

Mizoguchi, T.

H. Masai, T. Yanagida, T. Mizoguchi, T. Ina, T. Miyazaki, N. Kawaguti, and K. Fukuda, “Local coordination state of rare earth in eutectic scintillators for neutron detector applications,” Sci. Rep. 5(1), 13332 (2015).
[Crossref] [PubMed]

Moharil, S. V.

V. S. Singh, C. P. Joshi, S. V. Moharil, P. L. Muthal, and S. M. Dhopte, “Modification of luminescence spectra of CaF2:Eu2+.,” Luminescence 30(7), 1101–1105 (2015).
[Crossref] [PubMed]

Moncorgé, R.

B. Lacroix, C. Genevois, J. L. Doualan, G. Brasse, A. Braud, P. Ruterana, P. Camy, E. Talbot, R. Moncorgé, and J. Margerie, “Direct imaging of rare-earth ion clusters in Yb: CaF2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(12), 125124 (2014).
[Crossref]

D. Serrano, A. Braud, J. Doualan, P. Camy, and R. Moncorgé, “Pr3+ cluster management in CaF2 by codoping with Lu3+ or Yb3+ for visible lasers and quantum down-converters,” J. Opt. Soc. Am. B 29(8), 1854 (2012).
[Crossref]

P. Camy, J. L. Doualan, A. Benayad, M. von Edlinger, V. Ménard, and R. Moncorgé, “Comparative spectroscopic and laser properties of Yb3+-doped CaF2, SrF2, and BaF2 single crystals,” Appl. Phys. B 89 (4), 539–542 (2007).
[Crossref]

Moos, H. W.

C. W. Rector, B. C. Pandey, and H. W. Moos, “Electron Paramagnetic Resonance and Optical Zeeman Spectra of Type II CaF2:Er3+,” J. Chem. Phys. 45(1), 171–179 (1966).
[Crossref]

Muthal, P. L.

V. S. Singh, C. P. Joshi, S. V. Moharil, P. L. Muthal, and S. M. Dhopte, “Modification of luminescence spectra of CaF2:Eu2+.,” Luminescence 30(7), 1101–1105 (2015).
[Crossref] [PubMed]

Nakamura, F.

F. Nakamura, T. Kato, G. Okada, N. Kawaguchi, K. Fukuda, and T. Yanagida, “Scintillation and dosimeter properties of CaF2 transparent ceramic doped with Eu2+,” Ceram. Int. 43(1), 604–609 (2017).
[Crossref]

Nakladov, A. N.

P. A. Popov, P. P. Fedorov, V. A. Konyushkin, A. N. Nakladov, S. V. Kuznetsov, V. V. Osiko, and T. T. Basiev Dokl, “Thermal conductivity of single crystals of Sr1−xYbxF2+x, solid solution,” Physics 53(7), 413–415 (2008).

Noto, L. L.

M. Y. A. Yagoub, H. C. Swart, L. L. Noto, J. H. O’Connel, M. E. Lee, and E. Coetsee, “The effects of Eu-concentrations on the luminescent properties of SrF2: Eu nanophosphor,” J. Lumin. 156, 150–156 (2014).
[Crossref]

O’Connel, J. H.

M. Y. A. Yagoub, H. C. Swart, L. L. Noto, J. H. O’Connel, M. E. Lee, and E. Coetsee, “The effects of Eu-concentrations on the luminescent properties of SrF2: Eu nanophosphor,” J. Lumin. 156, 150–156 (2014).
[Crossref]

Okada, G.

F. Nakamura, T. Kato, G. Okada, N. Kawaguchi, K. Fukuda, and T. Yanagida, “Scintillation and dosimeter properties of CaF2 transparent ceramic doped with Eu2+,” Ceram. Int. 43(1), 604–609 (2017).
[Crossref]

Osiko, V. V.

M. E. Doroshenko, A. A. Demidenko, P. P. Fedorov, E. A. Garibin, P. E. Gusev, H. Jelinkova, V. A. Konyshkin, M. A. Kruov, S. V. Kuznetsov, V. V. Osiko, P. A. Popov, and J. Shulc, “Progress in fluoride laser ceramics,” Phys. Status Solidi Rapid Res. Lett. 10(6), 952–957 (2013).

P. A. Popov, P. P. Fedorov, V. A. Konyushkin, A. N. Nakladov, S. V. Kuznetsov, V. V. Osiko, and T. T. Basiev Dokl, “Thermal conductivity of single crystals of Sr1−xYbxF2+x, solid solution,” Physics 53(7), 413–415 (2008).

Osterwalder, J.

J. Osterwalder, A. Wisard, E. Jilek, and P. Wachter, “Is Eu2O3 intermediate valent,” J. Magn. Mater. 47, 586–588 (1985).
[Crossref]

Pandey, B. C.

C. W. Rector, B. C. Pandey, and H. W. Moos, “Electron Paramagnetic Resonance and Optical Zeeman Spectra of Type II CaF2:Er3+,” J. Chem. Phys. 45(1), 171–179 (1966).
[Crossref]

Pedroni, M.

P. Cortelletti, M. Pedroni, F. Boschi, S. Pin, P. Ghigna, P. Canton, F. Vetrone, and A. Speghini, “Luminescence of Eu3+ Activated CaF2 and SrF2 Nanoparticles: Effect of the Particle Size and Codoping with Alkaline Ions,” Cryst. Growth Des. 18(2), 686–694 (2018).
[Crossref]

Peretti, J.

J. Kim, S. Michelin, M. Hilbers, L. Martinelli, E. Chaudan, G. Amselem, E. Fradet, J. P. Boilot, A. M. Brouwer, C. N. Baroud, J. Peretti, and T. Gacoin, “Monitoring the orientation of rare-earth-doped nanorods for flow shear tomography,” Nat. Nanotechnol. 12(9), 914–919 (2017).
[Crossref] [PubMed]

Perscheid, B.

C. Laubschat, B. Perscheid, and W. D. Schneider, “Final-state effects and surface valence in Eu-transition-metal compounds,” Phys. Rev. B Condens. Matter 28(8), 4342–4348 (1983).
[Crossref]

Pin, S.

P. Cortelletti, M. Pedroni, F. Boschi, S. Pin, P. Ghigna, P. Canton, F. Vetrone, and A. Speghini, “Luminescence of Eu3+ Activated CaF2 and SrF2 Nanoparticles: Effect of the Particle Size and Codoping with Alkaline Ions,” Cryst. Growth Des. 18(2), 686–694 (2018).
[Crossref]

Poonam, S. P.

S. P. Poonam, S. P. Khatkar, R. Kumar, A. Khatkar, and V. B. Taxak, “Synthesis, characterization, enhanced photoluminescence and biological activity of Eu(III) complexes with organic ligands,” J. Mater. Sci. Mater. Electron. 26(9), 7086–7095 (2015).
[Crossref]

Popov, P. A.

M. E. Doroshenko, A. A. Demidenko, P. P. Fedorov, E. A. Garibin, P. E. Gusev, H. Jelinkova, V. A. Konyshkin, M. A. Kruov, S. V. Kuznetsov, V. V. Osiko, P. A. Popov, and J. Shulc, “Progress in fluoride laser ceramics,” Phys. Status Solidi Rapid Res. Lett. 10(6), 952–957 (2013).

P. A. Popov, P. P. Fedorov, V. A. Konyushkin, A. N. Nakladov, S. V. Kuznetsov, V. V. Osiko, and T. T. Basiev Dokl, “Thermal conductivity of single crystals of Sr1−xYbxF2+x, solid solution,” Physics 53(7), 413–415 (2008).

Rauch, R. N.

S. L. Dressler, R. N. Rauch, and D. I. R. Reimann, “On the inhomogeneity of refractive index of CaF2 crystals for high performance optics,” Cryst. Res. Technol. 27(3), 413–420 (1992).
[Crossref]

Rector, C. W.

C. W. Rector, B. C. Pandey, and H. W. Moos, “Electron Paramagnetic Resonance and Optical Zeeman Spectra of Type II CaF2:Er3+,” J. Chem. Phys. 45(1), 171–179 (1966).
[Crossref]

Reimann, D. I. R.

S. L. Dressler, R. N. Rauch, and D. I. R. Reimann, “On the inhomogeneity of refractive index of CaF2 crystals for high performance optics,” Cryst. Res. Technol. 27(3), 413–420 (1992).
[Crossref]

Remington, J.

T. Chatterjee, P. J. Mccann, X. M. Fang, J. Remington, M. B. Johnson, and C. Michellon, “Visible electroluminescence from Eu: CaF2 layers grown by molecular beam epitaxy on psi (100),” Appl. Phys. Lett. 71(25), 3610–3612 (1997).
[Crossref]

Ruterana, P.

B. Lacroix, C. Genevois, J. L. Doualan, G. Brasse, A. Braud, P. Ruterana, P. Camy, E. Talbot, R. Moncorgé, and J. Margerie, “Direct imaging of rare-earth ion clusters in Yb: CaF2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(12), 125124 (2014).
[Crossref]

Sampathkumaran, E. V.

G. K. Wertheim, E. V. Sampathkumaran, C. Laubschat, and G. Kaindl, “Final-state effects in the x-ray photoemission spectrum of EuPd2P2.,” Phys. Rev. B Condens. Matter 31(10), 6836–6839 (1985).
[Crossref] [PubMed]

Samuel, P.

P. Samuel, H. Ishizawa, Y. Ezura, K. L. Ueda, and S. M. Babu, “Spectroscopic analysis of Eu doped transparent CaF2, ceramics at different concentration,” Opt. Mater. 33(5), 735–737 (2011).
[Crossref]

Sato, T.

J. Wu, J. Wang, J. Lin, Y. Xiao, G. Yue, M. Huang, Z. Lan, Y. Huang, L. Fan, S. Yin, and T. Sato, “Dual functions of YF₃:Eu³⁺ for improving photovoltaic performance of dye-sensitized solar cells,” Sci. Rep. 3(1), 2058 (2013).
[Crossref] [PubMed]

Schneider, W. D.

C. Laubschat, B. Perscheid, and W. D. Schneider, “Final-state effects and surface valence in Eu-transition-metal compounds,” Phys. Rev. B Condens. Matter 28(8), 4342–4348 (1983).
[Crossref]

Sen, R.

K. Biswas, A. D. Sontakke, R. Sen, and K. Annapurna, “Luminescence properties of dual valence Eu doped nano-crystalline BaF2 embedded glass-ceramics and observation of Eu2+ → Eu3+ energy transfer,” J. Fluoresc. 22(2), 745–752 (2012).
[Crossref] [PubMed]

Serrano, D.

Shang, M.

Y. Zhang, X. Li, K. Li, H. Lian, M. Shang, and J. Lin, “Crystal-Site Engineering Control for the Reduction of Eu3+ to Eu2+ in CaYAlO4: Structure Refinement and Tunable Emission Properties,” ACS Appl. Mater. Interfaces 7(4), 2715–2725 (2015).
[Crossref] [PubMed]

Sheu, H. S.

Y. T. Tsai, C. Y. Chiang, W. Zhou, J. F. Lee, H. S. Sheu, and R. S. Liu, “Structural ordering and charge variation induced by cation substitution in (Sr, Ca) AlSiN3:Eu phosphor,” J. Am. Chem. Soc. 137(28), 8936–8939 (2015).
[Crossref] [PubMed]

Shi, M.

Z. Wang, J. Zou, C. Zhang, B. Yang, M. Shi, Y. Li, M. Li, and Z. Liu, “Facile fabrication and luminescence characteristics of a mixture of phosphors (LuAG: Ce and CaAlSiN3: Eu) in glass for white led,” J. Nom-cryst. Solids 489, 57–63 (2018).
[Crossref]

Shulc, J.

M. E. Doroshenko, A. A. Demidenko, P. P. Fedorov, E. A. Garibin, P. E. Gusev, H. Jelinkova, V. A. Konyshkin, M. A. Kruov, S. V. Kuznetsov, V. V. Osiko, P. A. Popov, and J. Shulc, “Progress in fluoride laser ceramics,” Phys. Status Solidi Rapid Res. Lett. 10(6), 952–957 (2013).

Singh, V. S.

V. S. Singh, C. P. Joshi, S. V. Moharil, P. L. Muthal, and S. M. Dhopte, “Modification of luminescence spectra of CaF2:Eu2+.,” Luminescence 30(7), 1101–1105 (2015).
[Crossref] [PubMed]

Sontakke, A. D.

K. Biswas, A. D. Sontakke, R. Sen, and K. Annapurna, “Luminescence properties of dual valence Eu doped nano-crystalline BaF2 embedded glass-ceramics and observation of Eu2+ → Eu3+ energy transfer,” J. Fluoresc. 22(2), 745–752 (2012).
[Crossref] [PubMed]

Speghini, A.

P. Cortelletti, M. Pedroni, F. Boschi, S. Pin, P. Ghigna, P. Canton, F. Vetrone, and A. Speghini, “Luminescence of Eu3+ Activated CaF2 and SrF2 Nanoparticles: Effect of the Particle Size and Codoping with Alkaline Ions,” Cryst. Growth Des. 18(2), 686–694 (2018).
[Crossref]

Su, Y.

Y. Su, L. Li, and G. Li, “Synthesis and optimum luminescence of Ca(WO)4-based red phosphors with codoping of Eu3+ and Na+,” Chem. Mater. 40(1), 6060–6067 (2009).

Sui, G.

Sun, J.

Swart, H. C.

M. Y. A. Yagoub, H. C. Swart, L. L. Noto, J. H. O’Connel, M. E. Lee, and E. Coetsee, “The effects of Eu-concentrations on the luminescent properties of SrF2: Eu nanophosphor,” J. Lumin. 156, 150–156 (2014).
[Crossref]

Szade, J.

P. Maślankiewicz and J. Szade, “LiYF4 and LiYF4: Eu studied by XPS,” Surf. Sci. Spectra 18(1), 9–18 (2011).
[Crossref]

Talbot, E.

B. Lacroix, C. Genevois, J. L. Doualan, G. Brasse, A. Braud, P. Ruterana, P. Camy, E. Talbot, R. Moncorgé, and J. Margerie, “Direct imaging of rare-earth ion clusters in Yb: CaF2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(12), 125124 (2014).
[Crossref]

Taxak, V. B.

S. P. Poonam, S. P. Khatkar, R. Kumar, A. Khatkar, and V. B. Taxak, “Synthesis, characterization, enhanced photoluminescence and biological activity of Eu(III) complexes with organic ligands,” J. Mater. Sci. Mater. Electron. 26(9), 7086–7095 (2015).
[Crossref]

Tsai, Y. T.

Y. T. Tsai, C. Y. Chiang, W. Zhou, J. F. Lee, H. S. Sheu, and R. S. Liu, “Structural ordering and charge variation induced by cation substitution in (Sr, Ca) AlSiN3:Eu phosphor,” J. Am. Chem. Soc. 137(28), 8936–8939 (2015).
[Crossref] [PubMed]

Ueda, K. L.

P. Samuel, H. Ishizawa, Y. Ezura, K. L. Ueda, and S. M. Babu, “Spectroscopic analysis of Eu doped transparent CaF2, ceramics at different concentration,” Opt. Mater. 33(5), 735–737 (2011).
[Crossref]

Vetrone, F.

P. Cortelletti, M. Pedroni, F. Boschi, S. Pin, P. Ghigna, P. Canton, F. Vetrone, and A. Speghini, “Luminescence of Eu3+ Activated CaF2 and SrF2 Nanoparticles: Effect of the Particle Size and Codoping with Alkaline Ions,” Cryst. Growth Des. 18(2), 686–694 (2018).
[Crossref]

von Edlinger, M.

P. Camy, J. L. Doualan, A. Benayad, M. von Edlinger, V. Ménard, and R. Moncorgé, “Comparative spectroscopic and laser properties of Yb3+-doped CaF2, SrF2, and BaF2 single crystals,” Appl. Phys. B 89 (4), 539–542 (2007).
[Crossref]

Wachter, P.

J. Osterwalder, A. Wisard, E. Jilek, and P. Wachter, “Is Eu2O3 intermediate valent,” J. Magn. Mater. 47, 586–588 (1985).
[Crossref]

Wang, J.

J. Wu, J. Wang, J. Lin, Y. Xiao, G. Yue, M. Huang, Z. Lan, Y. Huang, L. Fan, S. Yin, and T. Sato, “Dual functions of YF₃:Eu³⁺ for improving photovoltaic performance of dye-sensitized solar cells,” Sci. Rep. 3(1), 2058 (2013).
[Crossref] [PubMed]

Wang, Z.

Z. Wang, J. Zou, C. Zhang, B. Yang, M. Shi, Y. Li, M. Li, and Z. Liu, “Facile fabrication and luminescence characteristics of a mixture of phosphors (LuAG: Ce and CaAlSiN3: Eu) in glass for white led,” J. Nom-cryst. Solids 489, 57–63 (2018).
[Crossref]

Wertheim, G. K.

G. K. Wertheim, E. V. Sampathkumaran, C. Laubschat, and G. Kaindl, “Final-state effects in the x-ray photoemission spectrum of EuPd2P2.,” Phys. Rev. B Condens. Matter 31(10), 6836–6839 (1985).
[Crossref] [PubMed]

Wietfeldt, J.

R. Hamers, J. Wietfeldt, and J. Wright, “Defect chemistry in CaF2:Eu3+,” J. Chem. Phys. 77(2), 683–692 (1982).
[Crossref]

Wisard, A.

J. Osterwalder, A. Wisard, E. Jilek, and P. Wachter, “Is Eu2O3 intermediate valent,” J. Magn. Mater. 47, 586–588 (1985).
[Crossref]

Wright, J.

R. Hamers, J. Wietfeldt, and J. Wright, “Defect chemistry in CaF2:Eu3+,” J. Chem. Phys. 77(2), 683–692 (1982).
[Crossref]

Wu, J.

J. Wu, J. Wang, J. Lin, Y. Xiao, G. Yue, M. Huang, Z. Lan, Y. Huang, L. Fan, S. Yin, and T. Sato, “Dual functions of YF₃:Eu³⁺ for improving photovoltaic performance of dye-sensitized solar cells,” Sci. Rep. 3(1), 2058 (2013).
[Crossref] [PubMed]

Xiao, Y.

J. Wu, J. Wang, J. Lin, Y. Xiao, G. Yue, M. Huang, Z. Lan, Y. Huang, L. Fan, S. Yin, and T. Sato, “Dual functions of YF₃:Eu³⁺ for improving photovoltaic performance of dye-sensitized solar cells,” Sci. Rep. 3(1), 2058 (2013).
[Crossref] [PubMed]

Xu, H.

C. Zhao, Q. Ma, R. Liu, H. Xu, H. Ye, S. Jin, Y. Hu, and Y. Liu, “Luminescence properties of a green-emitting Eu2+ -doped Sr-containing sialon phosphors by gas pressure sintering,” J. Mater Sci-Mater. EL 26(6), 3805–3812 (2015).
[Crossref]

Xu, S.

Yagoub, M. Y. A.

M. Y. A. Yagoub, H. C. Swart, L. L. Noto, J. H. O’Connel, M. E. Lee, and E. Coetsee, “The effects of Eu-concentrations on the luminescent properties of SrF2: Eu nanophosphor,” J. Lumin. 156, 150–156 (2014).
[Crossref]

Yanagida, T.

F. Nakamura, T. Kato, G. Okada, N. Kawaguchi, K. Fukuda, and T. Yanagida, “Scintillation and dosimeter properties of CaF2 transparent ceramic doped with Eu2+,” Ceram. Int. 43(1), 604–609 (2017).
[Crossref]

H. Masai, T. Yanagida, T. Mizoguchi, T. Ina, T. Miyazaki, N. Kawaguti, and K. Fukuda, “Local coordination state of rare earth in eutectic scintillators for neutron detector applications,” Sci. Rep. 5(1), 13332 (2015).
[Crossref] [PubMed]

S. Kurosawa, Y. Yokota, T. Yanagida, and A. Yoshikawa, “Eu-concentration dependence of optical and scintillation properties for Eu-doped SrF2 single crystals,” Phys. Status Solidi, B Basic Res. 9, 2275–2278 (2012).

Yang, B.

Z. Wang, J. Zou, C. Zhang, B. Yang, M. Shi, Y. Li, M. Li, and Z. Liu, “Facile fabrication and luminescence characteristics of a mixture of phosphors (LuAG: Ce and CaAlSiN3: Eu) in glass for white led,” J. Nom-cryst. Solids 489, 57–63 (2018).
[Crossref]

Ye, H.

C. Zhao, Q. Ma, R. Liu, H. Xu, H. Ye, S. Jin, Y. Hu, and Y. Liu, “Luminescence properties of a green-emitting Eu2+ -doped Sr-containing sialon phosphors by gas pressure sintering,” J. Mater Sci-Mater. EL 26(6), 3805–3812 (2015).
[Crossref]

Yin, S.

J. Wu, J. Wang, J. Lin, Y. Xiao, G. Yue, M. Huang, Z. Lan, Y. Huang, L. Fan, S. Yin, and T. Sato, “Dual functions of YF₃:Eu³⁺ for improving photovoltaic performance of dye-sensitized solar cells,” Sci. Rep. 3(1), 2058 (2013).
[Crossref] [PubMed]

Yokota, Y.

S. Kurosawa, Y. Yokota, T. Yanagida, and A. Yoshikawa, “Eu-concentration dependence of optical and scintillation properties for Eu-doped SrF2 single crystals,” Phys. Status Solidi, B Basic Res. 9, 2275–2278 (2012).

Yoshikawa, A.

S. Kurosawa, Y. Yokota, T. Yanagida, and A. Yoshikawa, “Eu-concentration dependence of optical and scintillation properties for Eu-doped SrF2 single crystals,” Phys. Status Solidi, B Basic Res. 9, 2275–2278 (2012).

Yue, G.

J. Wu, J. Wang, J. Lin, Y. Xiao, G. Yue, M. Huang, Z. Lan, Y. Huang, L. Fan, S. Yin, and T. Sato, “Dual functions of YF₃:Eu³⁺ for improving photovoltaic performance of dye-sensitized solar cells,” Sci. Rep. 3(1), 2058 (2013).
[Crossref] [PubMed]

Zhang, C.

Z. Wang, J. Zou, C. Zhang, B. Yang, M. Shi, Y. Li, M. Li, and Z. Liu, “Facile fabrication and luminescence characteristics of a mixture of phosphors (LuAG: Ce and CaAlSiN3: Eu) in glass for white led,” J. Nom-cryst. Solids 489, 57–63 (2018).
[Crossref]

Zhang, J.

Zhang, Y.

Y. Zhang, X. Li, K. Li, H. Lian, M. Shang, and J. Lin, “Crystal-Site Engineering Control for the Reduction of Eu3+ to Eu2+ in CaYAlO4: Structure Refinement and Tunable Emission Properties,” ACS Appl. Mater. Interfaces 7(4), 2715–2725 (2015).
[Crossref] [PubMed]

Zhao, C.

C. Zhao, Q. Ma, R. Liu, H. Xu, H. Ye, S. Jin, Y. Hu, and Y. Liu, “Luminescence properties of a green-emitting Eu2+ -doped Sr-containing sialon phosphors by gas pressure sintering,” J. Mater Sci-Mater. EL 26(6), 3805–3812 (2015).
[Crossref]

Zhong, H.

Zhou, W.

Y. T. Tsai, C. Y. Chiang, W. Zhou, J. F. Lee, H. S. Sheu, and R. S. Liu, “Structural ordering and charge variation induced by cation substitution in (Sr, Ca) AlSiN3:Eu phosphor,” J. Am. Chem. Soc. 137(28), 8936–8939 (2015).
[Crossref] [PubMed]

Zou, J.

Z. Wang, J. Zou, C. Zhang, B. Yang, M. Shi, Y. Li, M. Li, and Z. Liu, “Facile fabrication and luminescence characteristics of a mixture of phosphors (LuAG: Ce and CaAlSiN3: Eu) in glass for white led,” J. Nom-cryst. Solids 489, 57–63 (2018).
[Crossref]

ACS Appl. Mater. Interfaces (1)

Y. Zhang, X. Li, K. Li, H. Lian, M. Shang, and J. Lin, “Crystal-Site Engineering Control for the Reduction of Eu3+ to Eu2+ in CaYAlO4: Structure Refinement and Tunable Emission Properties,” ACS Appl. Mater. Interfaces 7(4), 2715–2725 (2015).
[Crossref] [PubMed]

Appl. Phys. B (1)

P. Camy, J. L. Doualan, A. Benayad, M. von Edlinger, V. Ménard, and R. Moncorgé, “Comparative spectroscopic and laser properties of Yb3+-doped CaF2, SrF2, and BaF2 single crystals,” Appl. Phys. B 89 (4), 539–542 (2007).
[Crossref]

Appl. Phys. Lett. (1)

T. Chatterjee, P. J. Mccann, X. M. Fang, J. Remington, M. B. Johnson, and C. Michellon, “Visible electroluminescence from Eu: CaF2 layers grown by molecular beam epitaxy on psi (100),” Appl. Phys. Lett. 71(25), 3610–3612 (1997).
[Crossref]

Ceram. Int. (1)

F. Nakamura, T. Kato, G. Okada, N. Kawaguchi, K. Fukuda, and T. Yanagida, “Scintillation and dosimeter properties of CaF2 transparent ceramic doped with Eu2+,” Ceram. Int. 43(1), 604–609 (2017).
[Crossref]

Chem. Mater. (1)

Y. Su, L. Li, and G. Li, “Synthesis and optimum luminescence of Ca(WO)4-based red phosphors with codoping of Eu3+ and Na+,” Chem. Mater. 40(1), 6060–6067 (2009).

Cryst. Growth Des. (1)

P. Cortelletti, M. Pedroni, F. Boschi, S. Pin, P. Ghigna, P. Canton, F. Vetrone, and A. Speghini, “Luminescence of Eu3+ Activated CaF2 and SrF2 Nanoparticles: Effect of the Particle Size and Codoping with Alkaline Ions,” Cryst. Growth Des. 18(2), 686–694 (2018).
[Crossref]

Cryst. Res. Technol. (1)

S. L. Dressler, R. N. Rauch, and D. I. R. Reimann, “On the inhomogeneity of refractive index of CaF2 crystals for high performance optics,” Cryst. Res. Technol. 27(3), 413–420 (1992).
[Crossref]

J. Am. Ceram. Soc. (1)

K. Jha and M. Jayasimhadri, “Structural and emission properties of Eu3+‐doped alkaline earth zinc‐phosphate glasses for white led applications,” J. Am. Ceram. Soc. 100(4), 1402–1411 (2017).
[Crossref]

J. Am. Chem. Soc. (1)

Y. T. Tsai, C. Y. Chiang, W. Zhou, J. F. Lee, H. S. Sheu, and R. S. Liu, “Structural ordering and charge variation induced by cation substitution in (Sr, Ca) AlSiN3:Eu phosphor,” J. Am. Chem. Soc. 137(28), 8936–8939 (2015).
[Crossref] [PubMed]

J. Chem. Phys. (2)

C. W. Rector, B. C. Pandey, and H. W. Moos, “Electron Paramagnetic Resonance and Optical Zeeman Spectra of Type II CaF2:Er3+,” J. Chem. Phys. 45(1), 171–179 (1966).
[Crossref]

R. Hamers, J. Wietfeldt, and J. Wright, “Defect chemistry in CaF2:Eu3+,” J. Chem. Phys. 77(2), 683–692 (1982).
[Crossref]

J. Fluoresc. (1)

K. Biswas, A. D. Sontakke, R. Sen, and K. Annapurna, “Luminescence properties of dual valence Eu doped nano-crystalline BaF2 embedded glass-ceramics and observation of Eu2+ → Eu3+ energy transfer,” J. Fluoresc. 22(2), 745–752 (2012).
[Crossref] [PubMed]

J. Lumin. (1)

M. Y. A. Yagoub, H. C. Swart, L. L. Noto, J. H. O’Connel, M. E. Lee, and E. Coetsee, “The effects of Eu-concentrations on the luminescent properties of SrF2: Eu nanophosphor,” J. Lumin. 156, 150–156 (2014).
[Crossref]

J. Magn. Mater. (1)

J. Osterwalder, A. Wisard, E. Jilek, and P. Wachter, “Is Eu2O3 intermediate valent,” J. Magn. Mater. 47, 586–588 (1985).
[Crossref]

J. Mater Sci-Mater. EL (1)

C. Zhao, Q. Ma, R. Liu, H. Xu, H. Ye, S. Jin, Y. Hu, and Y. Liu, “Luminescence properties of a green-emitting Eu2+ -doped Sr-containing sialon phosphors by gas pressure sintering,” J. Mater Sci-Mater. EL 26(6), 3805–3812 (2015).
[Crossref]

J. Mater. Sci. Mater. Electron. (1)

S. P. Poonam, S. P. Khatkar, R. Kumar, A. Khatkar, and V. B. Taxak, “Synthesis, characterization, enhanced photoluminescence and biological activity of Eu(III) complexes with organic ligands,” J. Mater. Sci. Mater. Electron. 26(9), 7086–7095 (2015).
[Crossref]

J. Nom-cryst. Solids (1)

Z. Wang, J. Zou, C. Zhang, B. Yang, M. Shi, Y. Li, M. Li, and Z. Liu, “Facile fabrication and luminescence characteristics of a mixture of phosphors (LuAG: Ce and CaAlSiN3: Eu) in glass for white led,” J. Nom-cryst. Solids 489, 57–63 (2018).
[Crossref]

J. Opt. Soc. Am. B (1)

Luminescence (1)

V. S. Singh, C. P. Joshi, S. V. Moharil, P. L. Muthal, and S. M. Dhopte, “Modification of luminescence spectra of CaF2:Eu2+.,” Luminescence 30(7), 1101–1105 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

J. Kim, S. Michelin, M. Hilbers, L. Martinelli, E. Chaudan, G. Amselem, E. Fradet, J. P. Boilot, A. M. Brouwer, C. N. Baroud, J. Peretti, and T. Gacoin, “Monitoring the orientation of rare-earth-doped nanorods for flow shear tomography,” Nat. Nanotechnol. 12(9), 914–919 (2017).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. (1)

P. Samuel, H. Ishizawa, Y. Ezura, K. L. Ueda, and S. M. Babu, “Spectroscopic analysis of Eu doped transparent CaF2, ceramics at different concentration,” Opt. Mater. 33(5), 735–737 (2011).
[Crossref]

Phys. Rev. B Condens. Matter (2)

G. K. Wertheim, E. V. Sampathkumaran, C. Laubschat, and G. Kaindl, “Final-state effects in the x-ray photoemission spectrum of EuPd2P2.,” Phys. Rev. B Condens. Matter 31(10), 6836–6839 (1985).
[Crossref] [PubMed]

C. Laubschat, B. Perscheid, and W. D. Schneider, “Final-state effects and surface valence in Eu-transition-metal compounds,” Phys. Rev. B Condens. Matter 28(8), 4342–4348 (1983).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

B. Lacroix, C. Genevois, J. L. Doualan, G. Brasse, A. Braud, P. Ruterana, P. Camy, E. Talbot, R. Moncorgé, and J. Margerie, “Direct imaging of rare-earth ion clusters in Yb: CaF2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(12), 125124 (2014).
[Crossref]

Phys. Status Solidi Rapid Res. Lett. (1)

M. E. Doroshenko, A. A. Demidenko, P. P. Fedorov, E. A. Garibin, P. E. Gusev, H. Jelinkova, V. A. Konyshkin, M. A. Kruov, S. V. Kuznetsov, V. V. Osiko, P. A. Popov, and J. Shulc, “Progress in fluoride laser ceramics,” Phys. Status Solidi Rapid Res. Lett. 10(6), 952–957 (2013).

Phys. Status Solidi, B Basic Res. (1)

S. Kurosawa, Y. Yokota, T. Yanagida, and A. Yoshikawa, “Eu-concentration dependence of optical and scintillation properties for Eu-doped SrF2 single crystals,” Phys. Status Solidi, B Basic Res. 9, 2275–2278 (2012).

Physics (1)

P. A. Popov, P. P. Fedorov, V. A. Konyushkin, A. N. Nakladov, S. V. Kuznetsov, V. V. Osiko, and T. T. Basiev Dokl, “Thermal conductivity of single crystals of Sr1−xYbxF2+x, solid solution,” Physics 53(7), 413–415 (2008).

Sci. Rep. (2)

H. Masai, T. Yanagida, T. Mizoguchi, T. Ina, T. Miyazaki, N. Kawaguti, and K. Fukuda, “Local coordination state of rare earth in eutectic scintillators for neutron detector applications,” Sci. Rep. 5(1), 13332 (2015).
[Crossref] [PubMed]

J. Wu, J. Wang, J. Lin, Y. Xiao, G. Yue, M. Huang, Z. Lan, Y. Huang, L. Fan, S. Yin, and T. Sato, “Dual functions of YF₃:Eu³⁺ for improving photovoltaic performance of dye-sensitized solar cells,” Sci. Rep. 3(1), 2058 (2013).
[Crossref] [PubMed]

Surf. Sci. Spectra (1)

P. Maślankiewicz and J. Szade, “LiYF4 and LiYF4: Eu studied by XPS,” Surf. Sci. Spectra 18(1), 9–18 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The photograph of as-grown Eu: CaF2 single crystal. (b) Crystal structure of Eu:CaF2 single crystal. (c) XRD patterns of x%Eu: CaF2 (x = 0.6, 1.2, 3.0, 6.0) crystals.
Fig. 2
Fig. 2 (a)Emission spectra of x%Eu: CaF2 (x = 0.6,1.2,3.0,6.0) crystals. (b) The intensity ratio between Eu3+ (593 nm) /Eu2+ (424 nm) as a function of Eu doping concentrations. (c) CIE chromaticity diagram of x%Eu: CaF2 (x = 0.6,1.2,3.0,6.0) crystals.
Fig. 3
Fig. 3 The Eu3d XPS spectra of x%Eu: CaF2 (x = 0.6, 1.2, 3.0, 6.0) crystals.
Fig. 4
Fig. 4 The integrated intensity ratio (R) of I (5D0-7F2) to I (5D0-7F1) for x%Eu: CaF2 (x = 0.6,1.2,3.0,6.0) crystals.
Fig. 5
Fig. 5 (a) Luminescence excitation spectra of Eu2+ and Eu3+ emissions in 0.6%Eu: CaF2 together with emission spectrum excited at 398 nm; (b) Emission spectra measured of 0.6%Eu: CaF2 at different wavelengths from 320 to 330 nm; (c) Emission spectra measured of 0.6%Eu: CaF2 at different wavelengths of 300, 330 and 350 nm; (d) Decay curves of the Eu3+:5D0 (593 nm) energy level;(e) Configuration coordination diagram for Eu3+ and Eu2+ energy levels;(f) CIE chromaticity diagram of 0.6%Eu: CaF2 crystal under different excitation wavelength from 320 to 330 nm.

Tables (1)

Tables Icon

Table 1 Relative percentage for ionic concentrations of Eu3+ and Eu2+ ions of x%Eu: CaF2 (x = 0.6, 1.2, 3.0, 6.0) crystals obtained from XPS data.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

3C a Ca +2E u 3+ =3C a 2+ +2E u ca ' + V ca ''
V ca '' = V ca x +2e
2E u ca ' +2e=2E u ca x
I t = I 0 e t τ

Metrics