Abstract

InGaAs/InP multi-quantum-well nanowires were directly grown on the v-groove-patterned SOI substrate by metal organic chemical vapor deposition. The surface morphology of the nanowires, the thickness of the quantum wells, and the photoluminescence spectra were characterized by scanning electron microscope, transmission electron microscopy, and micro-photoluminescence, respectively. We found in the experiments that the work of removing part of top Si on both sides of the nanowire to further reduce the optical leakage loss could be completed perfectly without complicated processes, such as a lithography process. Numerical simulations showed that the III-V nanowire was able to support an extraordinarily stable optical guided mode with a lower optical leakage loss of 0.21 cm−1 when etching away part of top Si on both sides of the nanowire, and the optical confinement factor of the multi-quantum-well active region was about 8.8%. This approach opens up a way for monolithic photonic integration of III-V compound semiconductors on Si to occur.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nanopillar quantum well lasers directly grown on silicon and emitting at silicon-transparent wavelengths

Fanglu Lu, Indrasen Bhattacharya, Hao Sun, Thai-Truong D. Tran, Kar Wei Ng, Gilliard N. Malheiros-Silveira, and Connie Chang-Hasnain
Optica 4(7) 717-723 (2017)

Fabry-Pérot microcavity modes observed in the micro-photoluminescence spectra of the single nanowire with InGaAs/GaAs heterostructure

Lin Yang, Junichi Motohisa, Takashi Fukui, Lian Xi Jia, Lei Zhang, Ming Min Geng, Pin Chen, and Yu Liang Liu
Opt. Express 17(11) 9337-9346 (2009)

Room-temperature InP/InGaAs nano-ridge lasers grown on Si and emitting at telecom bands

Yu Han, Wai Kit Ng, Chao Ma, Qiang Li, Si Zhu, Christopher C. S. Chan, Kar Wei Ng, Stephen Lennon, Robert A. Taylor, Kam Sing Wong, and Kei May Lau
Optica 5(8) 918-923 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
    [Crossref]
  2. H. Duprez, A. Descos, C. Jany, C. Seassal, and B. Ben Bakir, “Hybrid III-V on silicon laterally coupled distributed feedback laser operating in the o–band,” IEEE Photonics Technol. Lett. 28(18), 1920–1923 (2016).
    [Crossref]
  3. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
    [Crossref]
  4. Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
    [Crossref]
  5. L. Yuan, L. Tao, H. Yu, W. Chen, D. Lu, Y. Li, G. Ran, and J. Pan, “Hybrid InGaAsP-Si evanescent laser by selective-area metal-bonding method,” IEEE Photonics Technol. Lett. 25(12), 1180–1183 (2013).
    [Crossref]
  6. Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
    [Crossref]
  7. M. Li, L. Zhang, H. Yu, L. Yuan, Q. Kan, W. Chen, Y. Ding, S. Li, J. Mi, G. Ran, and J. Pan, “A Hybrid Single-Mode Laser Based on Slotted Silicon Waveguides,” IEEE Photonics Technol. Lett. 28(9), 1 (2016).
    [Crossref]
  8. B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300 mm silicon substrate,” Appl. Phys. Lett. 109(9), 091101 (2016).
    [Crossref]
  9. Y. Bogumilowicz, J. M. Hartmann, N. Rochat, A. Salaun, M. Martin, F. Bassani, T. Baron, S. David, X. Y. Bao, and E. Sanchez, “Threading dislocations in GaAs epitaxial layers on various thickness Ge buffers on 300 mm Si substrates,” J. Cryst. Growth 453, 180–187 (2016).
    [Crossref]
  10. D. Andrijasevic, M. Austerer, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Hybrid integration of GaAs quantum cascade lasers with Si substrates by thermocompression bonding,” Appl. Phys. Lett. 92(5), 51117 (2008).
    [Crossref]
  11. C. Prohl, H. Döscher, P. Kleinschmidt, T. Hannappel, and A. Lenz, “Cross-sectional scanning tunneling microscopy of antiphase boundaries in epitaxially grown GaP layers on Si(001),” J. Vac. Sci. Technol. A 34(3), 031102 (2016).
    [Crossref]
  12. R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
    [Crossref]
  13. J. Z. Li, J. Bai, J. S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91(2), 021114 (2007).
    [Crossref]
  14. M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12(10), 4696–4702 (2012).
    [Crossref]
  15. E. A. Fitzgerald and N. Chand, “Epitaxial necking in GaAs grown on pre-patterned Si substrates,” J. Electron. Mater. 20(7), 839–853 (1991).
    [Crossref]
  16. S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108(2), 021902 (2016).
    [Crossref]
  17. L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111(3), 032105 (2017).
    [Crossref]
  18. Z. Li, M. Wang, X. Fang, Y. Li, X. Zhou, H. Yu, P. Wang, W. Wang, and J. Pan, “Monolithic integration of InGaAs/InP multiple quantum wells on SOI substrates for photonic devices,” J. Appl. Phys. 123(5), 053102 (2018).
    [Crossref]
  19. Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111(21), 212101 (2017).
    [Crossref]
  20. T. Schrimpf, P. Bönsch, D. Wüllner, H.-H. Wehmann, A. Schlachetzki, F. Bertram, T. Riemann, and J. Christen, “InGaAs quantum wires and wells on V-grooved InP substrates,” J. Appl. Phys. 86(9), 5207–5214 (1999).
    [Crossref]
  21. S. Li, X. Zhou, X. Kong, M. Li, J. Mi, J. Bian, W. Wang, and J. Pan, “Evaluation of growth mode and optimization of growth parameters for GaAs epitaxy in V-shaped trenches on Si,” J. Cryst. Growth 426, 147–152 (2015).
    [Crossref]
  22. X. Chen, B. Zhao, Z. Ren, J. Tong, X. Wang, X. Zhuo, J. Zhang, D. Li, H. Yi, and S. Li, “Advantages of InGaN/GaN multiple quantum well solar cells with stepped-thickness quantum wells,” Chin. Phys. B 22(7), 078402 (2013).
    [Crossref]
  23. Y. Han, Q. Li, K. W. Ng, S. Zhu, and K. M. Lau, “InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands,” Nanotechnology 29(22), 225601 (2018).
    [Crossref] [PubMed]
  24. S. Jiang, C. Merckling, W. Guo, N. Waldron, M. Caymax, W. Vandervorst, M. Seefeldt, and M. Heyns, “Evolution of (001) and (111) facets for selective epitaxial growth inside submicron trenches,” J. Appl. Phys. 115(2), 23517 (2014).
    [Crossref]
  25. G. Biasiol, A. Gustafsson, K. Leifer, and E. Kapon, “Mechanisms of Self-Ordering in Nonplanar Epitaxy of Semiconductor Nanostructures,” Phys. Rev. B Condens. Matter Mater. Phys. 65(20), 205306 (2002).
    [Crossref]
  26. Q. Huang, Y. Wu, K. Ma, J. Zhang, W. Xie, X. Fu, Y. Shi, K. Chen, J.-J. He, D. Van Thourhout, G. Roelkens, L. Liu, and S. He, “Low driving voltage band-filling-based III-V-on-silicon electroabsorption modulator,” Appl. Phys. Lett. 108(14), 141104 (2016).
    [Crossref]
  27. L. Wang, C. Lu, J. Lu, L. Liu, N. Liu, Y. Chen, Y. Zhang, E. Gu, and X. Hu, “Influence of carrier screening and band filling effects on efficiency droop of InGaN light emitting diodes,” Opt. Express 19(15), 14182–14187 (2011).
    [Crossref] [PubMed]
  28. E. Palik, Handbook of Optical Constants of Solids (Academic, 1997).
  29. H. Dinges, H. Burkhard, R. Lösch, H. Nickel, and W. Schlapp, “Refractive indices of InAlAs and InGaAs/InP from 250 to 1900 nm determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 54, 477–481 (1992).
    [Crossref]

2018 (2)

Z. Li, M. Wang, X. Fang, Y. Li, X. Zhou, H. Yu, P. Wang, W. Wang, and J. Pan, “Monolithic integration of InGaAs/InP multiple quantum wells on SOI substrates for photonic devices,” J. Appl. Phys. 123(5), 053102 (2018).
[Crossref]

Y. Han, Q. Li, K. W. Ng, S. Zhu, and K. M. Lau, “InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands,” Nanotechnology 29(22), 225601 (2018).
[Crossref] [PubMed]

2017 (2)

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111(3), 032105 (2017).
[Crossref]

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111(21), 212101 (2017).
[Crossref]

2016 (10)

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108(2), 021902 (2016).
[Crossref]

C. Prohl, H. Döscher, P. Kleinschmidt, T. Hannappel, and A. Lenz, “Cross-sectional scanning tunneling microscopy of antiphase boundaries in epitaxially grown GaP layers on Si(001),” J. Vac. Sci. Technol. A 34(3), 031102 (2016).
[Crossref]

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

H. Duprez, A. Descos, C. Jany, C. Seassal, and B. Ben Bakir, “Hybrid III-V on silicon laterally coupled distributed feedback laser operating in the o–band,” IEEE Photonics Technol. Lett. 28(18), 1920–1923 (2016).
[Crossref]

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

M. Li, L. Zhang, H. Yu, L. Yuan, Q. Kan, W. Chen, Y. Ding, S. Li, J. Mi, G. Ran, and J. Pan, “A Hybrid Single-Mode Laser Based on Slotted Silicon Waveguides,” IEEE Photonics Technol. Lett. 28(9), 1 (2016).
[Crossref]

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300 mm silicon substrate,” Appl. Phys. Lett. 109(9), 091101 (2016).
[Crossref]

Y. Bogumilowicz, J. M. Hartmann, N. Rochat, A. Salaun, M. Martin, F. Bassani, T. Baron, S. David, X. Y. Bao, and E. Sanchez, “Threading dislocations in GaAs epitaxial layers on various thickness Ge buffers on 300 mm Si substrates,” J. Cryst. Growth 453, 180–187 (2016).
[Crossref]

Q. Huang, Y. Wu, K. Ma, J. Zhang, W. Xie, X. Fu, Y. Shi, K. Chen, J.-J. He, D. Van Thourhout, G. Roelkens, L. Liu, and S. He, “Low driving voltage band-filling-based III-V-on-silicon electroabsorption modulator,” Appl. Phys. Lett. 108(14), 141104 (2016).
[Crossref]

2015 (2)

S. Li, X. Zhou, X. Kong, M. Li, J. Mi, J. Bian, W. Wang, and J. Pan, “Evaluation of growth mode and optimization of growth parameters for GaAs epitaxy in V-shaped trenches on Si,” J. Cryst. Growth 426, 147–152 (2015).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

2014 (1)

S. Jiang, C. Merckling, W. Guo, N. Waldron, M. Caymax, W. Vandervorst, M. Seefeldt, and M. Heyns, “Evolution of (001) and (111) facets for selective epitaxial growth inside submicron trenches,” J. Appl. Phys. 115(2), 23517 (2014).
[Crossref]

2013 (2)

X. Chen, B. Zhao, Z. Ren, J. Tong, X. Wang, X. Zhuo, J. Zhang, D. Li, H. Yi, and S. Li, “Advantages of InGaN/GaN multiple quantum well solar cells with stepped-thickness quantum wells,” Chin. Phys. B 22(7), 078402 (2013).
[Crossref]

L. Yuan, L. Tao, H. Yu, W. Chen, D. Lu, Y. Li, G. Ran, and J. Pan, “Hybrid InGaAsP-Si evanescent laser by selective-area metal-bonding method,” IEEE Photonics Technol. Lett. 25(12), 1180–1183 (2013).
[Crossref]

2012 (1)

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12(10), 4696–4702 (2012).
[Crossref]

2011 (1)

2010 (1)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

2008 (1)

D. Andrijasevic, M. Austerer, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Hybrid integration of GaAs quantum cascade lasers with Si substrates by thermocompression bonding,” Appl. Phys. Lett. 92(5), 51117 (2008).
[Crossref]

2007 (1)

J. Z. Li, J. Bai, J. S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91(2), 021114 (2007).
[Crossref]

2002 (1)

G. Biasiol, A. Gustafsson, K. Leifer, and E. Kapon, “Mechanisms of Self-Ordering in Nonplanar Epitaxy of Semiconductor Nanostructures,” Phys. Rev. B Condens. Matter Mater. Phys. 65(20), 205306 (2002).
[Crossref]

1999 (1)

T. Schrimpf, P. Bönsch, D. Wüllner, H.-H. Wehmann, A. Schlachetzki, F. Bertram, T. Riemann, and J. Christen, “InGaAs quantum wires and wells on V-grooved InP substrates,” J. Appl. Phys. 86(9), 5207–5214 (1999).
[Crossref]

1992 (1)

H. Dinges, H. Burkhard, R. Lösch, H. Nickel, and W. Schlapp, “Refractive indices of InAlAs and InGaAs/InP from 250 to 1900 nm determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 54, 477–481 (1992).
[Crossref]

1991 (1)

E. A. Fitzgerald and N. Chand, “Epitaxial necking in GaAs grown on pre-patterned Si substrates,” J. Electron. Mater. 20(7), 839–853 (1991).
[Crossref]

Absil, P.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

Adekore, B.

J. Z. Li, J. Bai, J. S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91(2), 021114 (2007).
[Crossref]

Alcotte, R.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Andrews, A. M.

D. Andrijasevic, M. Austerer, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Hybrid integration of GaAs quantum cascade lasers with Si substrates by thermocompression bonding,” Appl. Phys. Lett. 92(5), 51117 (2008).
[Crossref]

Andrijasevic, D.

D. Andrijasevic, M. Austerer, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Hybrid integration of GaAs quantum cascade lasers with Si substrates by thermocompression bonding,” Appl. Phys. Lett. 92(5), 51117 (2008).
[Crossref]

Austerer, M.

D. Andrijasevic, M. Austerer, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Hybrid integration of GaAs quantum cascade lasers with Si substrates by thermocompression bonding,” Appl. Phys. Lett. 92(5), 51117 (2008).
[Crossref]

Bai, J.

J. Z. Li, J. Bai, J. S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91(2), 021114 (2007).
[Crossref]

Bao, X. Y.

Y. Bogumilowicz, J. M. Hartmann, N. Rochat, A. Salaun, M. Martin, F. Bassani, T. Baron, S. David, X. Y. Bao, and E. Sanchez, “Threading dislocations in GaAs epitaxial layers on various thickness Ge buffers on 300 mm Si substrates,” J. Cryst. Growth 453, 180–187 (2016).
[Crossref]

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Barla, K.

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300 mm silicon substrate,” Appl. Phys. Lett. 109(9), 091101 (2016).
[Crossref]

Baron, T.

Y. Bogumilowicz, J. M. Hartmann, N. Rochat, A. Salaun, M. Martin, F. Bassani, T. Baron, S. David, X. Y. Bao, and E. Sanchez, “Threading dislocations in GaAs epitaxial layers on various thickness Ge buffers on 300 mm Si substrates,” J. Cryst. Growth 453, 180–187 (2016).
[Crossref]

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Bassani, F.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Y. Bogumilowicz, J. M. Hartmann, N. Rochat, A. Salaun, M. Martin, F. Bassani, T. Baron, S. David, X. Y. Bao, and E. Sanchez, “Threading dislocations in GaAs epitaxial layers on various thickness Ge buffers on 300 mm Si substrates,” J. Cryst. Growth 453, 180–187 (2016).
[Crossref]

Ben Bakir, B.

H. Duprez, A. Descos, C. Jany, C. Seassal, and B. Ben Bakir, “Hybrid III-V on silicon laterally coupled distributed feedback laser operating in the o–band,” IEEE Photonics Technol. Lett. 28(18), 1920–1923 (2016).
[Crossref]

Bender, H.

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12(10), 4696–4702 (2012).
[Crossref]

Bertram, F.

T. Schrimpf, P. Bönsch, D. Wüllner, H.-H. Wehmann, A. Schlachetzki, F. Bertram, T. Riemann, and J. Christen, “InGaAs quantum wires and wells on V-grooved InP substrates,” J. Appl. Phys. 86(9), 5207–5214 (1999).
[Crossref]

Bian, J.

S. Li, X. Zhou, X. Kong, M. Li, J. Mi, J. Bian, W. Wang, and J. Pan, “Evaluation of growth mode and optimization of growth parameters for GaAs epitaxy in V-shaped trenches on Si,” J. Cryst. Growth 426, 147–152 (2015).
[Crossref]

Biasiol, G.

G. Biasiol, A. Gustafsson, K. Leifer, and E. Kapon, “Mechanisms of Self-Ordering in Nonplanar Epitaxy of Semiconductor Nanostructures,” Phys. Rev. B Condens. Matter Mater. Phys. 65(20), 205306 (2002).
[Crossref]

Bogumilowicz, Y.

Y. Bogumilowicz, J. M. Hartmann, N. Rochat, A. Salaun, M. Martin, F. Bassani, T. Baron, S. David, X. Y. Bao, and E. Sanchez, “Threading dislocations in GaAs epitaxial layers on various thickness Ge buffers on 300 mm Si substrates,” J. Cryst. Growth 453, 180–187 (2016).
[Crossref]

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Bonef, B.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111(3), 032105 (2017).
[Crossref]

Bönsch, P.

T. Schrimpf, P. Bönsch, D. Wüllner, H.-H. Wehmann, A. Schlachetzki, F. Bertram, T. Riemann, and J. Christen, “InGaAs quantum wires and wells on V-grooved InP substrates,” J. Appl. Phys. 86(9), 5207–5214 (1999).
[Crossref]

Bowers, J. E.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111(3), 032105 (2017).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

Burkhard, H.

H. Dinges, H. Burkhard, R. Lösch, H. Nickel, and W. Schlapp, “Refractive indices of InAlAs and InGaAs/InP from 250 to 1900 nm determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 54, 477–481 (1992).
[Crossref]

Cabinian, B. C.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111(3), 032105 (2017).
[Crossref]

Carroll, M.

J. Z. Li, J. Bai, J. S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91(2), 021114 (2007).
[Crossref]

Caymax, M.

S. Jiang, C. Merckling, W. Guo, N. Waldron, M. Caymax, W. Vandervorst, M. Seefeldt, and M. Heyns, “Evolution of (001) and (111) facets for selective epitaxial growth inside submicron trenches,” J. Appl. Phys. 115(2), 23517 (2014).
[Crossref]

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12(10), 4696–4702 (2012).
[Crossref]

Chand, N.

E. A. Fitzgerald and N. Chand, “Epitaxial necking in GaAs grown on pre-patterned Si substrates,” J. Electron. Mater. 20(7), 839–853 (1991).
[Crossref]

Chen, K.

Q. Huang, Y. Wu, K. Ma, J. Zhang, W. Xie, X. Fu, Y. Shi, K. Chen, J.-J. He, D. Van Thourhout, G. Roelkens, L. Liu, and S. He, “Low driving voltage band-filling-based III-V-on-silicon electroabsorption modulator,” Appl. Phys. Lett. 108(14), 141104 (2016).
[Crossref]

Chen, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Chen, W.

M. Li, L. Zhang, H. Yu, L. Yuan, Q. Kan, W. Chen, Y. Ding, S. Li, J. Mi, G. Ran, and J. Pan, “A Hybrid Single-Mode Laser Based on Slotted Silicon Waveguides,” IEEE Photonics Technol. Lett. 28(9), 1 (2016).
[Crossref]

L. Yuan, L. Tao, H. Yu, W. Chen, D. Lu, Y. Li, G. Ran, and J. Pan, “Hybrid InGaAsP-Si evanescent laser by selective-area metal-bonding method,” IEEE Photonics Technol. Lett. 25(12), 1180–1183 (2013).
[Crossref]

Chen, X.

X. Chen, B. Zhao, Z. Ren, J. Tong, X. Wang, X. Zhuo, J. Zhang, D. Li, H. Yi, and S. Li, “Advantages of InGaN/GaN multiple quantum well solar cells with stepped-thickness quantum wells,” Chin. Phys. B 22(7), 078402 (2013).
[Crossref]

Chen, Y.

Christen, J.

T. Schrimpf, P. Bönsch, D. Wüllner, H.-H. Wehmann, A. Schlachetzki, F. Bertram, T. Riemann, and J. Christen, “InGaAs quantum wires and wells on V-grooved InP substrates,” J. Appl. Phys. 86(9), 5207–5214 (1999).
[Crossref]

Cipro, R.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

David, S.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Y. Bogumilowicz, J. M. Hartmann, N. Rochat, A. Salaun, M. Martin, F. Bassani, T. Baron, S. David, X. Y. Bao, and E. Sanchez, “Threading dislocations in GaAs epitaxial layers on various thickness Ge buffers on 300 mm Si substrates,” J. Cryst. Growth 453, 180–187 (2016).
[Crossref]

Dekoster, J.

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12(10), 4696–4702 (2012).
[Crossref]

Descos, A.

H. Duprez, A. Descos, C. Jany, C. Seassal, and B. Ben Bakir, “Hybrid III-V on silicon laterally coupled distributed feedback laser operating in the o–band,” IEEE Photonics Technol. Lett. 28(18), 1920–1923 (2016).
[Crossref]

Ding, Y.

M. Li, L. Zhang, H. Yu, L. Yuan, Q. Kan, W. Chen, Y. Ding, S. Li, J. Mi, G. Ran, and J. Pan, “A Hybrid Single-Mode Laser Based on Slotted Silicon Waveguides,” IEEE Photonics Technol. Lett. 28(9), 1 (2016).
[Crossref]

Dinges, H.

H. Dinges, H. Burkhard, R. Lösch, H. Nickel, and W. Schlapp, “Refractive indices of InAlAs and InGaAs/InP from 250 to 1900 nm determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 54, 477–481 (1992).
[Crossref]

Döscher, H.

C. Prohl, H. Döscher, P. Kleinschmidt, T. Hannappel, and A. Lenz, “Cross-sectional scanning tunneling microscopy of antiphase boundaries in epitaxially grown GaP layers on Si(001),” J. Vac. Sci. Technol. A 34(3), 031102 (2016).
[Crossref]

Ducroquet, F.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Duprez, H.

H. Duprez, A. Descos, C. Jany, C. Seassal, and B. Ben Bakir, “Hybrid III-V on silicon laterally coupled distributed feedback laser operating in the o–band,” IEEE Photonics Technol. Lett. 28(18), 1920–1923 (2016).
[Crossref]

Elliott, S. N.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Fang, X.

Z. Li, M. Wang, X. Fang, Y. Li, X. Zhou, H. Yu, P. Wang, W. Wang, and J. Pan, “Monolithic integration of InGaAs/InP multiple quantum wells on SOI substrates for photonic devices,” J. Appl. Phys. 123(5), 053102 (2018).
[Crossref]

Feng, M.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

Fitzgerald, E. A.

E. A. Fitzgerald and N. Chand, “Epitaxial necking in GaAs grown on pre-patterned Si substrates,” J. Electron. Mater. 20(7), 839–853 (1991).
[Crossref]

Fox, K.

J. Z. Li, J. Bai, J. S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91(2), 021114 (2007).
[Crossref]

Fu, X.

Q. Huang, Y. Wu, K. Ma, J. Zhang, W. Xie, X. Fu, Y. Shi, K. Chen, J.-J. He, D. Van Thourhout, G. Roelkens, L. Liu, and S. He, “Low driving voltage band-filling-based III-V-on-silicon electroabsorption modulator,” Appl. Phys. Lett. 108(14), 141104 (2016).
[Crossref]

Gu, E.

Guo, W.

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300 mm silicon substrate,” Appl. Phys. Lett. 109(9), 091101 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

S. Jiang, C. Merckling, W. Guo, N. Waldron, M. Caymax, W. Vandervorst, M. Seefeldt, and M. Heyns, “Evolution of (001) and (111) facets for selective epitaxial growth inside submicron trenches,” J. Appl. Phys. 115(2), 23517 (2014).
[Crossref]

Gustafsson, A.

G. Biasiol, A. Gustafsson, K. Leifer, and E. Kapon, “Mechanisms of Self-Ordering in Nonplanar Epitaxy of Semiconductor Nanostructures,” Phys. Rev. B Condens. Matter Mater. Phys. 65(20), 205306 (2002).
[Crossref]

Han, Y.

Y. Han, Q. Li, K. W. Ng, S. Zhu, and K. M. Lau, “InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands,” Nanotechnology 29(22), 225601 (2018).
[Crossref] [PubMed]

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111(21), 212101 (2017).
[Crossref]

Hannappel, T.

C. Prohl, H. Döscher, P. Kleinschmidt, T. Hannappel, and A. Lenz, “Cross-sectional scanning tunneling microscopy of antiphase boundaries in epitaxially grown GaP layers on Si(001),” J. Vac. Sci. Technol. A 34(3), 031102 (2016).
[Crossref]

Hartmann, J. M.

Y. Bogumilowicz, J. M. Hartmann, N. Rochat, A. Salaun, M. Martin, F. Bassani, T. Baron, S. David, X. Y. Bao, and E. Sanchez, “Threading dislocations in GaAs epitaxial layers on various thickness Ge buffers on 300 mm Si substrates,” J. Cryst. Growth 453, 180–187 (2016).
[Crossref]

He, J.-J.

Q. Huang, Y. Wu, K. Ma, J. Zhang, W. Xie, X. Fu, Y. Shi, K. Chen, J.-J. He, D. Van Thourhout, G. Roelkens, L. Liu, and S. He, “Low driving voltage band-filling-based III-V-on-silicon electroabsorption modulator,” Appl. Phys. Lett. 108(14), 141104 (2016).
[Crossref]

He, S.

Q. Huang, Y. Wu, K. Ma, J. Zhang, W. Xie, X. Fu, Y. Shi, K. Chen, J.-J. He, D. Van Thourhout, G. Roelkens, L. Liu, and S. He, “Low driving voltage band-filling-based III-V-on-silicon electroabsorption modulator,” Appl. Phys. Lett. 108(14), 141104 (2016).
[Crossref]

Heyns, M.

S. Jiang, C. Merckling, W. Guo, N. Waldron, M. Caymax, W. Vandervorst, M. Seefeldt, and M. Heyns, “Evolution of (001) and (111) facets for selective epitaxial growth inside submicron trenches,” J. Appl. Phys. 115(2), 23517 (2014).
[Crossref]

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12(10), 4696–4702 (2012).
[Crossref]

Hu, X.

Huang, Q.

Q. Huang, Y. Wu, K. Ma, J. Zhang, W. Xie, X. Fu, Y. Shi, K. Chen, J.-J. He, D. Van Thourhout, G. Roelkens, L. Liu, and S. He, “Low driving voltage band-filling-based III-V-on-silicon electroabsorption modulator,” Appl. Phys. Lett. 108(14), 141104 (2016).
[Crossref]

Ikeda, M.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

Jany, C.

H. Duprez, A. Descos, C. Jany, C. Seassal, and B. Ben Bakir, “Hybrid III-V on silicon laterally coupled distributed feedback laser operating in the o–band,” IEEE Photonics Technol. Lett. 28(18), 1920–1923 (2016).
[Crossref]

Jiang, Q.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Jiang, S.

S. Jiang, C. Merckling, W. Guo, N. Waldron, M. Caymax, W. Vandervorst, M. Seefeldt, and M. Heyns, “Evolution of (001) and (111) facets for selective epitaxial growth inside submicron trenches,” J. Appl. Phys. 115(2), 23517 (2014).
[Crossref]

Kan, Q.

M. Li, L. Zhang, H. Yu, L. Yuan, Q. Kan, W. Chen, Y. Ding, S. Li, J. Mi, G. Ran, and J. Pan, “A Hybrid Single-Mode Laser Based on Slotted Silicon Waveguides,” IEEE Photonics Technol. Lett. 28(9), 1 (2016).
[Crossref]

Kapon, E.

G. Biasiol, A. Gustafsson, K. Leifer, and E. Kapon, “Mechanisms of Self-Ordering in Nonplanar Epitaxy of Semiconductor Nanostructures,” Phys. Rev. B Condens. Matter Mater. Phys. 65(20), 205306 (2002).
[Crossref]

Klamkin, J.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111(3), 032105 (2017).
[Crossref]

Klang, P.

D. Andrijasevic, M. Austerer, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Hybrid integration of GaAs quantum cascade lasers with Si substrates by thermocompression bonding,” Appl. Phys. Lett. 92(5), 51117 (2008).
[Crossref]

Kleinschmidt, P.

C. Prohl, H. Döscher, P. Kleinschmidt, T. Hannappel, and A. Lenz, “Cross-sectional scanning tunneling microscopy of antiphase boundaries in epitaxially grown GaP layers on Si(001),” J. Vac. Sci. Technol. A 34(3), 031102 (2016).
[Crossref]

Kong, X.

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108(2), 021902 (2016).
[Crossref]

S. Li, X. Zhou, X. Kong, M. Li, J. Mi, J. Bian, W. Wang, and J. Pan, “Evaluation of growth mode and optimization of growth parameters for GaAs epitaxy in V-shaped trenches on Si,” J. Cryst. Growth 426, 147–152 (2015).
[Crossref]

Kunert, B.

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300 mm silicon substrate,” Appl. Phys. Lett. 109(9), 091101 (2016).
[Crossref]

Langer, R.

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300 mm silicon substrate,” Appl. Phys. Lett. 109(9), 091101 (2016).
[Crossref]

Lau, K. M.

Y. Han, Q. Li, K. W. Ng, S. Zhu, and K. M. Lau, “InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands,” Nanotechnology 29(22), 225601 (2018).
[Crossref] [PubMed]

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111(21), 212101 (2017).
[Crossref]

Leifer, K.

G. Biasiol, A. Gustafsson, K. Leifer, and E. Kapon, “Mechanisms of Self-Ordering in Nonplanar Epitaxy of Semiconductor Nanostructures,” Phys. Rev. B Condens. Matter Mater. Phys. 65(20), 205306 (2002).
[Crossref]

Lenz, A.

C. Prohl, H. Döscher, P. Kleinschmidt, T. Hannappel, and A. Lenz, “Cross-sectional scanning tunneling microscopy of antiphase boundaries in epitaxially grown GaP layers on Si(001),” J. Vac. Sci. Technol. A 34(3), 031102 (2016).
[Crossref]

Li, D.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

X. Chen, B. Zhao, Z. Ren, J. Tong, X. Wang, X. Zhuo, J. Zhang, D. Li, H. Yi, and S. Li, “Advantages of InGaN/GaN multiple quantum well solar cells with stepped-thickness quantum wells,” Chin. Phys. B 22(7), 078402 (2013).
[Crossref]

Li, J. Z.

J. Z. Li, J. Bai, J. S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91(2), 021114 (2007).
[Crossref]

Li, M.

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108(2), 021902 (2016).
[Crossref]

M. Li, L. Zhang, H. Yu, L. Yuan, Q. Kan, W. Chen, Y. Ding, S. Li, J. Mi, G. Ran, and J. Pan, “A Hybrid Single-Mode Laser Based on Slotted Silicon Waveguides,” IEEE Photonics Technol. Lett. 28(9), 1 (2016).
[Crossref]

S. Li, X. Zhou, X. Kong, M. Li, J. Mi, J. Bian, W. Wang, and J. Pan, “Evaluation of growth mode and optimization of growth parameters for GaAs epitaxy in V-shaped trenches on Si,” J. Cryst. Growth 426, 147–152 (2015).
[Crossref]

Li, Q.

Y. Han, Q. Li, K. W. Ng, S. Zhu, and K. M. Lau, “InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands,” Nanotechnology 29(22), 225601 (2018).
[Crossref] [PubMed]

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111(21), 212101 (2017).
[Crossref]

Li, S.

M. Li, L. Zhang, H. Yu, L. Yuan, Q. Kan, W. Chen, Y. Ding, S. Li, J. Mi, G. Ran, and J. Pan, “A Hybrid Single-Mode Laser Based on Slotted Silicon Waveguides,” IEEE Photonics Technol. Lett. 28(9), 1 (2016).
[Crossref]

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108(2), 021902 (2016).
[Crossref]

S. Li, X. Zhou, X. Kong, M. Li, J. Mi, J. Bian, W. Wang, and J. Pan, “Evaluation of growth mode and optimization of growth parameters for GaAs epitaxy in V-shaped trenches on Si,” J. Cryst. Growth 426, 147–152 (2015).
[Crossref]

X. Chen, B. Zhao, Z. Ren, J. Tong, X. Wang, X. Zhuo, J. Zhang, D. Li, H. Yi, and S. Li, “Advantages of InGaN/GaN multiple quantum well solar cells with stepped-thickness quantum wells,” Chin. Phys. B 22(7), 078402 (2013).
[Crossref]

Li, W.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Li, Y.

Z. Li, M. Wang, X. Fang, Y. Li, X. Zhou, H. Yu, P. Wang, W. Wang, and J. Pan, “Monolithic integration of InGaAs/InP multiple quantum wells on SOI substrates for photonic devices,” J. Appl. Phys. 123(5), 053102 (2018).
[Crossref]

L. Yuan, L. Tao, H. Yu, W. Chen, D. Lu, Y. Li, G. Ran, and J. Pan, “Hybrid InGaAsP-Si evanescent laser by selective-area metal-bonding method,” IEEE Photonics Technol. Lett. 25(12), 1180–1183 (2013).
[Crossref]

Li, Z.

Z. Li, M. Wang, X. Fang, Y. Li, X. Zhou, H. Yu, P. Wang, W. Wang, and J. Pan, “Monolithic integration of InGaAs/InP multiple quantum wells on SOI substrates for photonic devices,” J. Appl. Phys. 123(5), 053102 (2018).
[Crossref]

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

Liang, D.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

Liu, H.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Liu, J.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

Liu, L.

Q. Huang, Y. Wu, K. Ma, J. Zhang, W. Xie, X. Fu, Y. Shi, K. Chen, J.-J. He, D. Van Thourhout, G. Roelkens, L. Liu, and S. He, “Low driving voltage band-filling-based III-V-on-silicon electroabsorption modulator,” Appl. Phys. Lett. 108(14), 141104 (2016).
[Crossref]

L. Wang, C. Lu, J. Lu, L. Liu, N. Liu, Y. Chen, Y. Zhang, E. Gu, and X. Hu, “Influence of carrier screening and band filling effects on efficiency droop of InGaN light emitting diodes,” Opt. Express 19(15), 14182–14187 (2011).
[Crossref] [PubMed]

Liu, N.

Liu, S.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

Lochtefeld, A.

J. Z. Li, J. Bai, J. S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91(2), 021114 (2007).
[Crossref]

Loo, R.

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12(10), 4696–4702 (2012).
[Crossref]

Lösch, R.

H. Dinges, H. Burkhard, R. Lösch, H. Nickel, and W. Schlapp, “Refractive indices of InAlAs and InGaAs/InP from 250 to 1900 nm determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 54, 477–481 (1992).
[Crossref]

Lu, C.

Lu, D.

L. Yuan, L. Tao, H. Yu, W. Chen, D. Lu, Y. Li, G. Ran, and J. Pan, “Hybrid InGaAsP-Si evanescent laser by selective-area metal-bonding method,” IEEE Photonics Technol. Lett. 25(12), 1180–1183 (2013).
[Crossref]

Lu, J.

Ma, K.

Q. Huang, Y. Wu, K. Ma, J. Zhang, W. Xie, X. Fu, Y. Shi, K. Chen, J.-J. He, D. Van Thourhout, G. Roelkens, L. Liu, and S. He, “Low driving voltage band-filling-based III-V-on-silicon electroabsorption modulator,” Appl. Phys. Lett. 108(14), 141104 (2016).
[Crossref]

Martin, M.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Y. Bogumilowicz, J. M. Hartmann, N. Rochat, A. Salaun, M. Martin, F. Bassani, T. Baron, S. David, X. Y. Bao, and E. Sanchez, “Threading dislocations in GaAs epitaxial layers on various thickness Ge buffers on 300 mm Si substrates,” J. Cryst. Growth 453, 180–187 (2016).
[Crossref]

Megalini, L.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111(3), 032105 (2017).
[Crossref]

Merckling, C.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

S. Jiang, C. Merckling, W. Guo, N. Waldron, M. Caymax, W. Vandervorst, M. Seefeldt, and M. Heyns, “Evolution of (001) and (111) facets for selective epitaxial growth inside submicron trenches,” J. Appl. Phys. 115(2), 23517 (2014).
[Crossref]

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12(10), 4696–4702 (2012).
[Crossref]

Mi, J.

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108(2), 021902 (2016).
[Crossref]

M. Li, L. Zhang, H. Yu, L. Yuan, Q. Kan, W. Chen, Y. Ding, S. Li, J. Mi, G. Ran, and J. Pan, “A Hybrid Single-Mode Laser Based on Slotted Silicon Waveguides,” IEEE Photonics Technol. Lett. 28(9), 1 (2016).
[Crossref]

S. Li, X. Zhou, X. Kong, M. Li, J. Mi, J. Bian, W. Wang, and J. Pan, “Evaluation of growth mode and optimization of growth parameters for GaAs epitaxy in V-shaped trenches on Si,” J. Cryst. Growth 426, 147–152 (2015).
[Crossref]

Moeyaert, J.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Mols, Y.

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300 mm silicon substrate,” Appl. Phys. Lett. 109(9), 091101 (2016).
[Crossref]

Ng, K. W.

Y. Han, Q. Li, K. W. Ng, S. Zhu, and K. M. Lau, “InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands,” Nanotechnology 29(22), 225601 (2018).
[Crossref] [PubMed]

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111(21), 212101 (2017).
[Crossref]

Nickel, H.

H. Dinges, H. Burkhard, R. Lösch, H. Nickel, and W. Schlapp, “Refractive indices of InAlAs and InGaAs/InP from 250 to 1900 nm determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 54, 477–481 (1992).
[Crossref]

Paladugu, M.

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12(10), 4696–4702 (2012).
[Crossref]

Pan, J.

Z. Li, M. Wang, X. Fang, Y. Li, X. Zhou, H. Yu, P. Wang, W. Wang, and J. Pan, “Monolithic integration of InGaAs/InP multiple quantum wells on SOI substrates for photonic devices,” J. Appl. Phys. 123(5), 053102 (2018).
[Crossref]

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108(2), 021902 (2016).
[Crossref]

M. Li, L. Zhang, H. Yu, L. Yuan, Q. Kan, W. Chen, Y. Ding, S. Li, J. Mi, G. Ran, and J. Pan, “A Hybrid Single-Mode Laser Based on Slotted Silicon Waveguides,” IEEE Photonics Technol. Lett. 28(9), 1 (2016).
[Crossref]

S. Li, X. Zhou, X. Kong, M. Li, J. Mi, J. Bian, W. Wang, and J. Pan, “Evaluation of growth mode and optimization of growth parameters for GaAs epitaxy in V-shaped trenches on Si,” J. Cryst. Growth 426, 147–152 (2015).
[Crossref]

L. Yuan, L. Tao, H. Yu, W. Chen, D. Lu, Y. Li, G. Ran, and J. Pan, “Hybrid InGaAsP-Si evanescent laser by selective-area metal-bonding method,” IEEE Photonics Technol. Lett. 25(12), 1180–1183 (2013).
[Crossref]

Pantouvaki, M.

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300 mm silicon substrate,” Appl. Phys. Lett. 109(9), 091101 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

Park, J. S.

J. Z. Li, J. Bai, J. S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91(2), 021114 (2007).
[Crossref]

Pin, J. B.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Prohl, C.

C. Prohl, H. Döscher, P. Kleinschmidt, T. Hannappel, and A. Lenz, “Cross-sectional scanning tunneling microscopy of antiphase boundaries in epitaxially grown GaP layers on Si(001),” J. Vac. Sci. Technol. A 34(3), 031102 (2016).
[Crossref]

Ran, G.

M. Li, L. Zhang, H. Yu, L. Yuan, Q. Kan, W. Chen, Y. Ding, S. Li, J. Mi, G. Ran, and J. Pan, “A Hybrid Single-Mode Laser Based on Slotted Silicon Waveguides,” IEEE Photonics Technol. Lett. 28(9), 1 (2016).
[Crossref]

L. Yuan, L. Tao, H. Yu, W. Chen, D. Lu, Y. Li, G. Ran, and J. Pan, “Hybrid InGaAsP-Si evanescent laser by selective-area metal-bonding method,” IEEE Photonics Technol. Lett. 25(12), 1180–1183 (2013).
[Crossref]

Ren, Z.

X. Chen, B. Zhao, Z. Ren, J. Tong, X. Wang, X. Zhuo, J. Zhang, D. Li, H. Yi, and S. Li, “Advantages of InGaN/GaN multiple quantum well solar cells with stepped-thickness quantum wells,” Chin. Phys. B 22(7), 078402 (2013).
[Crossref]

Richard, O.

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12(10), 4696–4702 (2012).
[Crossref]

Riemann, T.

T. Schrimpf, P. Bönsch, D. Wüllner, H.-H. Wehmann, A. Schlachetzki, F. Bertram, T. Riemann, and J. Christen, “InGaAs quantum wires and wells on V-grooved InP substrates,” J. Appl. Phys. 86(9), 5207–5214 (1999).
[Crossref]

Rochat, N.

Y. Bogumilowicz, J. M. Hartmann, N. Rochat, A. Salaun, M. Martin, F. Bassani, T. Baron, S. David, X. Y. Bao, and E. Sanchez, “Threading dislocations in GaAs epitaxial layers on various thickness Ge buffers on 300 mm Si substrates,” J. Cryst. Growth 453, 180–187 (2016).
[Crossref]

Roelkens, G.

Q. Huang, Y. Wu, K. Ma, J. Zhang, W. Xie, X. Fu, Y. Shi, K. Chen, J.-J. He, D. Van Thourhout, G. Roelkens, L. Liu, and S. He, “Low driving voltage band-filling-based III-V-on-silicon electroabsorption modulator,” Appl. Phys. Lett. 108(14), 141104 (2016).
[Crossref]

Ross, I.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Salaun, A.

Y. Bogumilowicz, J. M. Hartmann, N. Rochat, A. Salaun, M. Martin, F. Bassani, T. Baron, S. David, X. Y. Bao, and E. Sanchez, “Threading dislocations in GaAs epitaxial layers on various thickness Ge buffers on 300 mm Si substrates,” J. Cryst. Growth 453, 180–187 (2016).
[Crossref]

Sanchez, E.

Y. Bogumilowicz, J. M. Hartmann, N. Rochat, A. Salaun, M. Martin, F. Bassani, T. Baron, S. David, X. Y. Bao, and E. Sanchez, “Threading dislocations in GaAs epitaxial layers on various thickness Ge buffers on 300 mm Si substrates,” J. Cryst. Growth 453, 180–187 (2016).
[Crossref]

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Schlachetzki, A.

T. Schrimpf, P. Bönsch, D. Wüllner, H.-H. Wehmann, A. Schlachetzki, F. Bertram, T. Riemann, and J. Christen, “InGaAs quantum wires and wells on V-grooved InP substrates,” J. Appl. Phys. 86(9), 5207–5214 (1999).
[Crossref]

Schlapp, W.

H. Dinges, H. Burkhard, R. Lösch, H. Nickel, and W. Schlapp, “Refractive indices of InAlAs and InGaAs/InP from 250 to 1900 nm determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 54, 477–481 (1992).
[Crossref]

Schrenk, W.

D. Andrijasevic, M. Austerer, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Hybrid integration of GaAs quantum cascade lasers with Si substrates by thermocompression bonding,” Appl. Phys. Lett. 92(5), 51117 (2008).
[Crossref]

Schrimpf, T.

T. Schrimpf, P. Bönsch, D. Wüllner, H.-H. Wehmann, A. Schlachetzki, F. Bertram, T. Riemann, and J. Christen, “InGaAs quantum wires and wells on V-grooved InP substrates,” J. Appl. Phys. 86(9), 5207–5214 (1999).
[Crossref]

Seassal, C.

H. Duprez, A. Descos, C. Jany, C. Seassal, and B. Ben Bakir, “Hybrid III-V on silicon laterally coupled distributed feedback laser operating in the o–band,” IEEE Photonics Technol. Lett. 28(18), 1920–1923 (2016).
[Crossref]

Seeds, A. J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Seefeldt, M.

S. Jiang, C. Merckling, W. Guo, N. Waldron, M. Caymax, W. Vandervorst, M. Seefeldt, and M. Heyns, “Evolution of (001) and (111) facets for selective epitaxial growth inside submicron trenches,” J. Appl. Phys. 115(2), 23517 (2014).
[Crossref]

Shellenbarger, Z.

J. Z. Li, J. Bai, J. S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91(2), 021114 (2007).
[Crossref]

Shi, Y.

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300 mm silicon substrate,” Appl. Phys. Lett. 109(9), 091101 (2016).
[Crossref]

Q. Huang, Y. Wu, K. Ma, J. Zhang, W. Xie, X. Fu, Y. Shi, K. Chen, J.-J. He, D. Van Thourhout, G. Roelkens, L. Liu, and S. He, “Low driving voltage band-filling-based III-V-on-silicon electroabsorption modulator,” Appl. Phys. Lett. 108(14), 141104 (2016).
[Crossref]

Shutts, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Smowton, P. M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Sobiesierski, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Speck, J. S.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111(3), 032105 (2017).
[Crossref]

Strasser, G.

D. Andrijasevic, M. Austerer, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Hybrid integration of GaAs quantum cascade lasers with Si substrates by thermocompression bonding,” Appl. Phys. Lett. 92(5), 51117 (2008).
[Crossref]

Sun, Q.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

Sun, Y.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

Tang, M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Tao, L.

L. Yuan, L. Tao, H. Yu, W. Chen, D. Lu, Y. Li, G. Ran, and J. Pan, “Hybrid InGaAsP-Si evanescent laser by selective-area metal-bonding method,” IEEE Photonics Technol. Lett. 25(12), 1180–1183 (2013).
[Crossref]

Taylor, A.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111(3), 032105 (2017).
[Crossref]

Tian, B.

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300 mm silicon substrate,” Appl. Phys. Lett. 109(9), 091101 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

Tong, J.

X. Chen, B. Zhao, Z. Ren, J. Tong, X. Wang, X. Zhuo, J. Zhang, D. Li, H. Yi, and S. Li, “Advantages of InGaN/GaN multiple quantum well solar cells with stepped-thickness quantum wells,” Chin. Phys. B 22(7), 078402 (2013).
[Crossref]

Van Campenhout, J.

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300 mm silicon substrate,” Appl. Phys. Lett. 109(9), 091101 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

Van Thourhout, D.

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300 mm silicon substrate,” Appl. Phys. Lett. 109(9), 091101 (2016).
[Crossref]

Q. Huang, Y. Wu, K. Ma, J. Zhang, W. Xie, X. Fu, Y. Shi, K. Chen, J.-J. He, D. Van Thourhout, G. Roelkens, L. Liu, and S. He, “Low driving voltage band-filling-based III-V-on-silicon electroabsorption modulator,” Appl. Phys. Lett. 108(14), 141104 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

Vandervorst, W.

S. Jiang, C. Merckling, W. Guo, N. Waldron, M. Caymax, W. Vandervorst, M. Seefeldt, and M. Heyns, “Evolution of (001) and (111) facets for selective epitaxial growth inside submicron trenches,” J. Appl. Phys. 115(2), 23517 (2014).
[Crossref]

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12(10), 4696–4702 (2012).
[Crossref]

Waldron, N.

S. Jiang, C. Merckling, W. Guo, N. Waldron, M. Caymax, W. Vandervorst, M. Seefeldt, and M. Heyns, “Evolution of (001) and (111) facets for selective epitaxial growth inside submicron trenches,” J. Appl. Phys. 115(2), 23517 (2014).
[Crossref]

Wang, L.

Wang, M.

Z. Li, M. Wang, X. Fang, Y. Li, X. Zhou, H. Yu, P. Wang, W. Wang, and J. Pan, “Monolithic integration of InGaAs/InP multiple quantum wells on SOI substrates for photonic devices,” J. Appl. Phys. 123(5), 053102 (2018).
[Crossref]

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108(2), 021902 (2016).
[Crossref]

Wang, P.

Z. Li, M. Wang, X. Fang, Y. Li, X. Zhou, H. Yu, P. Wang, W. Wang, and J. Pan, “Monolithic integration of InGaAs/InP multiple quantum wells on SOI substrates for photonic devices,” J. Appl. Phys. 123(5), 053102 (2018).
[Crossref]

Wang, W.

Z. Li, M. Wang, X. Fang, Y. Li, X. Zhou, H. Yu, P. Wang, W. Wang, and J. Pan, “Monolithic integration of InGaAs/InP multiple quantum wells on SOI substrates for photonic devices,” J. Appl. Phys. 123(5), 053102 (2018).
[Crossref]

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108(2), 021902 (2016).
[Crossref]

S. Li, X. Zhou, X. Kong, M. Li, J. Mi, J. Bian, W. Wang, and J. Pan, “Evaluation of growth mode and optimization of growth parameters for GaAs epitaxy in V-shaped trenches on Si,” J. Cryst. Growth 426, 147–152 (2015).
[Crossref]

Wang, X.

X. Chen, B. Zhao, Z. Ren, J. Tong, X. Wang, X. Zhuo, J. Zhang, D. Li, H. Yi, and S. Li, “Advantages of InGaN/GaN multiple quantum well solar cells with stepped-thickness quantum wells,” Chin. Phys. B 22(7), 078402 (2013).
[Crossref]

Wang, Z.

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300 mm silicon substrate,” Appl. Phys. Lett. 109(9), 091101 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

Wehmann, H.-H.

T. Schrimpf, P. Bönsch, D. Wüllner, H.-H. Wehmann, A. Schlachetzki, F. Bertram, T. Riemann, and J. Christen, “InGaAs quantum wires and wells on V-grooved InP substrates,” J. Appl. Phys. 86(9), 5207–5214 (1999).
[Crossref]

Wu, J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Wu, Y.

Q. Huang, Y. Wu, K. Ma, J. Zhang, W. Xie, X. Fu, Y. Shi, K. Chen, J.-J. He, D. Van Thourhout, G. Roelkens, L. Liu, and S. He, “Low driving voltage band-filling-based III-V-on-silicon electroabsorption modulator,” Appl. Phys. Lett. 108(14), 141104 (2016).
[Crossref]

Wüllner, D.

T. Schrimpf, P. Bönsch, D. Wüllner, H.-H. Wehmann, A. Schlachetzki, F. Bertram, T. Riemann, and J. Christen, “InGaAs quantum wires and wells on V-grooved InP substrates,” J. Appl. Phys. 86(9), 5207–5214 (1999).
[Crossref]

Xie, W.

Q. Huang, Y. Wu, K. Ma, J. Zhang, W. Xie, X. Fu, Y. Shi, K. Chen, J.-J. He, D. Van Thourhout, G. Roelkens, L. Liu, and S. He, “Low driving voltage band-filling-based III-V-on-silicon electroabsorption modulator,” Appl. Phys. Lett. 108(14), 141104 (2016).
[Crossref]

Yang, H.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

Ye, Z.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Yi, H.

X. Chen, B. Zhao, Z. Ren, J. Tong, X. Wang, X. Zhuo, J. Zhang, D. Li, H. Yi, and S. Li, “Advantages of InGaN/GaN multiple quantum well solar cells with stepped-thickness quantum wells,” Chin. Phys. B 22(7), 078402 (2013).
[Crossref]

Yu, H.

Z. Li, M. Wang, X. Fang, Y. Li, X. Zhou, H. Yu, P. Wang, W. Wang, and J. Pan, “Monolithic integration of InGaAs/InP multiple quantum wells on SOI substrates for photonic devices,” J. Appl. Phys. 123(5), 053102 (2018).
[Crossref]

M. Li, L. Zhang, H. Yu, L. Yuan, Q. Kan, W. Chen, Y. Ding, S. Li, J. Mi, G. Ran, and J. Pan, “A Hybrid Single-Mode Laser Based on Slotted Silicon Waveguides,” IEEE Photonics Technol. Lett. 28(9), 1 (2016).
[Crossref]

L. Yuan, L. Tao, H. Yu, W. Chen, D. Lu, Y. Li, G. Ran, and J. Pan, “Hybrid InGaAsP-Si evanescent laser by selective-area metal-bonding method,” IEEE Photonics Technol. Lett. 25(12), 1180–1183 (2013).
[Crossref]

Yuan, L.

M. Li, L. Zhang, H. Yu, L. Yuan, Q. Kan, W. Chen, Y. Ding, S. Li, J. Mi, G. Ran, and J. Pan, “A Hybrid Single-Mode Laser Based on Slotted Silicon Waveguides,” IEEE Photonics Technol. Lett. 28(9), 1 (2016).
[Crossref]

L. Yuan, L. Tao, H. Yu, W. Chen, D. Lu, Y. Li, G. Ran, and J. Pan, “Hybrid InGaAsP-Si evanescent laser by selective-area metal-bonding method,” IEEE Photonics Technol. Lett. 25(12), 1180–1183 (2013).
[Crossref]

Zhang, J.

Q. Huang, Y. Wu, K. Ma, J. Zhang, W. Xie, X. Fu, Y. Shi, K. Chen, J.-J. He, D. Van Thourhout, G. Roelkens, L. Liu, and S. He, “Low driving voltage band-filling-based III-V-on-silicon electroabsorption modulator,” Appl. Phys. Lett. 108(14), 141104 (2016).
[Crossref]

X. Chen, B. Zhao, Z. Ren, J. Tong, X. Wang, X. Zhuo, J. Zhang, D. Li, H. Yi, and S. Li, “Advantages of InGaN/GaN multiple quantum well solar cells with stepped-thickness quantum wells,” Chin. Phys. B 22(7), 078402 (2013).
[Crossref]

Zhang, L.

M. Li, L. Zhang, H. Yu, L. Yuan, Q. Kan, W. Chen, Y. Ding, S. Li, J. Mi, G. Ran, and J. Pan, “A Hybrid Single-Mode Laser Based on Slotted Silicon Waveguides,” IEEE Photonics Technol. Lett. 28(9), 1 (2016).
[Crossref]

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

Zhang, S.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

Zhang, Y.

Zhao, B.

X. Chen, B. Zhao, Z. Ren, J. Tong, X. Wang, X. Zhuo, J. Zhang, D. Li, H. Yi, and S. Li, “Advantages of InGaN/GaN multiple quantum well solar cells with stepped-thickness quantum wells,” Chin. Phys. B 22(7), 078402 (2013).
[Crossref]

Zhao, H.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111(3), 032105 (2017).
[Crossref]

Zhou, K.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

Zhou, X.

Z. Li, M. Wang, X. Fang, Y. Li, X. Zhou, H. Yu, P. Wang, W. Wang, and J. Pan, “Monolithic integration of InGaAs/InP multiple quantum wells on SOI substrates for photonic devices,” J. Appl. Phys. 123(5), 053102 (2018).
[Crossref]

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108(2), 021902 (2016).
[Crossref]

S. Li, X. Zhou, X. Kong, M. Li, J. Mi, J. Bian, W. Wang, and J. Pan, “Evaluation of growth mode and optimization of growth parameters for GaAs epitaxy in V-shaped trenches on Si,” J. Cryst. Growth 426, 147–152 (2015).
[Crossref]

Zhou, Y.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

Zhu, S.

Y. Han, Q. Li, K. W. Ng, S. Zhu, and K. M. Lau, “InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands,” Nanotechnology 29(22), 225601 (2018).
[Crossref] [PubMed]

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111(21), 212101 (2017).
[Crossref]

Zhuo, X.

X. Chen, B. Zhao, Z. Ren, J. Tong, X. Wang, X. Zhuo, J. Zhang, D. Li, H. Yi, and S. Li, “Advantages of InGaN/GaN multiple quantum well solar cells with stepped-thickness quantum wells,” Chin. Phys. B 22(7), 078402 (2013).
[Crossref]

APL Mater. (1)

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Appl. Phys. Lett. (7)

J. Z. Li, J. Bai, J. S. Park, B. Adekore, K. Fox, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping,” Appl. Phys. Lett. 91(2), 021114 (2007).
[Crossref]

D. Andrijasevic, M. Austerer, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Hybrid integration of GaAs quantum cascade lasers with Si substrates by thermocompression bonding,” Appl. Phys. Lett. 92(5), 51117 (2008).
[Crossref]

S. Li, X. Zhou, M. Li, X. Kong, J. Mi, M. Wang, W. Wang, and J. Pan, “Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate,” Appl. Phys. Lett. 108(2), 021902 (2016).
[Crossref]

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111(3), 032105 (2017).
[Crossref]

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300 mm silicon substrate,” Appl. Phys. Lett. 109(9), 091101 (2016).
[Crossref]

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111(21), 212101 (2017).
[Crossref]

Q. Huang, Y. Wu, K. Ma, J. Zhang, W. Xie, X. Fu, Y. Shi, K. Chen, J.-J. He, D. Van Thourhout, G. Roelkens, L. Liu, and S. He, “Low driving voltage band-filling-based III-V-on-silicon electroabsorption modulator,” Appl. Phys. Lett. 108(14), 141104 (2016).
[Crossref]

Appl. Surf. Sci. (1)

H. Dinges, H. Burkhard, R. Lösch, H. Nickel, and W. Schlapp, “Refractive indices of InAlAs and InGaAs/InP from 250 to 1900 nm determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 54, 477–481 (1992).
[Crossref]

Chin. Phys. B (1)

X. Chen, B. Zhao, Z. Ren, J. Tong, X. Wang, X. Zhuo, J. Zhang, D. Li, H. Yi, and S. Li, “Advantages of InGaN/GaN multiple quantum well solar cells with stepped-thickness quantum wells,” Chin. Phys. B 22(7), 078402 (2013).
[Crossref]

Cryst. Growth Des. (1)

M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III-V materials on Si for nanoscale logic and photonic devices,” Cryst. Growth Des. 12(10), 4696–4702 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (3)

M. Li, L. Zhang, H. Yu, L. Yuan, Q. Kan, W. Chen, Y. Ding, S. Li, J. Mi, G. Ran, and J. Pan, “A Hybrid Single-Mode Laser Based on Slotted Silicon Waveguides,” IEEE Photonics Technol. Lett. 28(9), 1 (2016).
[Crossref]

H. Duprez, A. Descos, C. Jany, C. Seassal, and B. Ben Bakir, “Hybrid III-V on silicon laterally coupled distributed feedback laser operating in the o–band,” IEEE Photonics Technol. Lett. 28(18), 1920–1923 (2016).
[Crossref]

L. Yuan, L. Tao, H. Yu, W. Chen, D. Lu, Y. Li, G. Ran, and J. Pan, “Hybrid InGaAsP-Si evanescent laser by selective-area metal-bonding method,” IEEE Photonics Technol. Lett. 25(12), 1180–1183 (2013).
[Crossref]

J. Appl. Phys. (3)

Z. Li, M. Wang, X. Fang, Y. Li, X. Zhou, H. Yu, P. Wang, W. Wang, and J. Pan, “Monolithic integration of InGaAs/InP multiple quantum wells on SOI substrates for photonic devices,” J. Appl. Phys. 123(5), 053102 (2018).
[Crossref]

T. Schrimpf, P. Bönsch, D. Wüllner, H.-H. Wehmann, A. Schlachetzki, F. Bertram, T. Riemann, and J. Christen, “InGaAs quantum wires and wells on V-grooved InP substrates,” J. Appl. Phys. 86(9), 5207–5214 (1999).
[Crossref]

S. Jiang, C. Merckling, W. Guo, N. Waldron, M. Caymax, W. Vandervorst, M. Seefeldt, and M. Heyns, “Evolution of (001) and (111) facets for selective epitaxial growth inside submicron trenches,” J. Appl. Phys. 115(2), 23517 (2014).
[Crossref]

J. Cryst. Growth (2)

S. Li, X. Zhou, X. Kong, M. Li, J. Mi, J. Bian, W. Wang, and J. Pan, “Evaluation of growth mode and optimization of growth parameters for GaAs epitaxy in V-shaped trenches on Si,” J. Cryst. Growth 426, 147–152 (2015).
[Crossref]

Y. Bogumilowicz, J. M. Hartmann, N. Rochat, A. Salaun, M. Martin, F. Bassani, T. Baron, S. David, X. Y. Bao, and E. Sanchez, “Threading dislocations in GaAs epitaxial layers on various thickness Ge buffers on 300 mm Si substrates,” J. Cryst. Growth 453, 180–187 (2016).
[Crossref]

J. Electron. Mater. (1)

E. A. Fitzgerald and N. Chand, “Epitaxial necking in GaAs grown on pre-patterned Si substrates,” J. Electron. Mater. 20(7), 839–853 (1991).
[Crossref]

J. Vac. Sci. Technol. A (1)

C. Prohl, H. Döscher, P. Kleinschmidt, T. Hannappel, and A. Lenz, “Cross-sectional scanning tunneling microscopy of antiphase boundaries in epitaxially grown GaP layers on Si(001),” J. Vac. Sci. Technol. A 34(3), 031102 (2016).
[Crossref]

Nanotechnology (1)

Y. Han, Q. Li, K. W. Ng, S. Zhu, and K. M. Lau, “InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands,” Nanotechnology 29(22), 225601 (2018).
[Crossref] [PubMed]

Nat. Photonics (4)

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

Opt. Express (1)

Phys. Rev. B Condens. Matter Mater. Phys. (1)

G. Biasiol, A. Gustafsson, K. Leifer, and E. Kapon, “Mechanisms of Self-Ordering in Nonplanar Epitaxy of Semiconductor Nanostructures,” Phys. Rev. B Condens. Matter Mater. Phys. 65(20), 205306 (2002).
[Crossref]

Other (1)

E. Palik, Handbook of Optical Constants of Solids (Academic, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The preparation process of InGaAs/InP MQW nanowires on a v-groove-patterned SOI substrate. (a) Preparing 1-μm-thick SiO2 on top Si layer. (b) Preparing 500-nm-wide SiO2 trenches with a 3-μm gap on the wafer. (c) Etching v-grooves in the top Si layer by a KOH solution. (d) Epitaxy growth of the III-V compound semiconductors.
Fig. 2
Fig. 2 (a) The cross-sectional SEM image of a III-V nanowire on the SOI substrate. (b) The plan-view SEM image of the III-V nanowire array. (c) and (d) The cross-sectional TEM images of the InGaAs/InP MQW nanowire. (e) Normalized μ-PL spectra of a III-V MQW nanowire under two different pump power densities at room temperature.
Fig. 3
Fig. 3 The FDTD simulation results of a III-V nanowire on the v-groove-patterned SOI substrate. (a) The optical transverse mode (TE00) supported by a III-V nanowire, viewed in the XY plane. (b) The optical mode distribution after a 200-μm propagation, viewed in the XY plane. (c) The optical field distribution along a 200-μm propagation length, viewed in the YZ plane.
Fig. 4
Fig. 4 (a) For this III-V nanowire structure, the SiO2 close to both sides of the nanowire can be first etched away. (b) The SEM image of a III-V nanowire on the SOI substrate after etching SiO2 for 40 seconds with an HF solution. (c) and (d) are the SEM images of III-V nanowires on the SOI substrate after etching SiO2 for 60 seconds by an HF solution and etching the top Si for 26 minutes by a KOH solution with a mass fraction of 45%.
Fig. 5
Fig. 5 The FDTD simulation results of a III-V nanowire on the SOI substrate after etching away part of top Si on both sides of the nanowire. (a) The optical transverse mode (TE00) supported by the III-V nanowire, viewed in the XY plane. (b) The optical mode distribution after a 200-μm propagation, viewed in the XY plane. (c) The optical field distribution along a 200-μm propagation length, viewed in the YZ plane.
Fig. 6
Fig. 6 The FDTD simulation results of a III-V nanowire fully exposed to the air. (a) The optical transverse mode (TE00) supported by the III-V nanowire, viewed in the XY plane. (b) The optical mode distribution after a 200-μm propagation, viewed in the XY plane. (c) The optical field distribution along a 200-μm propagation length inside the III-V nanowire, viewed in the YZ plane.
Fig. 7
Fig. 7 (a) The attenuation of the total optical power inside the III-V nanowire above the top Si layer in the three structures after a 200-μm propagation, were obtained by simulation respectively. (b) The optical confinement factors in the three structures were obtained by simulation respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α c = 1 L 2 L 1 ln( P 2 P 1 )

Metrics