Abstract

We demonstrate a multichannel fiber Bragg grating (MC-FBG) based distributed temperature field sensor with millimeter-order spatial resolution. The MC-FBG was designed by using the layer peeling (LP) algorithm with a tailored group delay characteristic and fabricated using seamless UV-inscription. We have achieved a 21-channel MC-FBG with 0.2 nm bandwidth of each channel and 0.5 nm channel gap. The sensor was tested by using a temperature field distribution. Experimental results show that the sensor had a spatial resolution of 3 mm and could measure a maximum temperature gradient of 7.85 °C/mm.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Distributed sensing technology of high-spatial resolution based on dense ultra-short FBG array with large multiplexing capacity

Gui Xin, Li Zhengying, Wang Fan, Wang Yiming, Wang Changjia, Zeng Siyue, and Yu Haihu
Opt. Express 25(23) 28112-28122 (2017)

Characterization of strong fiber Bragg gratings using an applied thermal chirp and iterative algorithm

Gary A. Miller, John R. Peele, Charles G. Askins, and Geoffrey A. Cranch
Appl. Opt. 50(36) 6617-6626 (2011)

Spot event detection along a large-scale sensor based on ultra-weak fiber Bragg gratings using time–frequency analysis

Amelia Lavinia Ricchiuti and Salvador Sales
Appl. Opt. 55(5) 1054-1060 (2016)

References

  • View by:
  • |
  • |
  • |

  1. N. N. Jarenwattananon, S. Glöggler, T. Otto, A. Melkonian, W. Morris, S. R. Burt, O. M. Yaghi, and L. S. Bouchard, “Thermal maps of gases in heterogeneous reactions,” Nature 502(7472), 537–540 (2013).
    [Crossref] [PubMed]
  2. M. Mecklenburg, W. A. Hubbard, E. R. White, R. Dhall, S. B. Cronin, S. Aloni, and B. C. Regan, “Nanoscale temperature mapping in operating microelectronic devices,” Science 347(6222), 629–632 (2015).
    [Crossref] [PubMed]
  3. H. Li, H. Yang, E. Li, Z. Liu, and K. Wei, “Wearable sensors in intelligent clothing for measuring human body temperature based on optical fiber Bragg grating,” Opt. Express 20(11), 11740–11752 (2012).
    [Crossref] [PubMed]
  4. X. Wu and R. Hull, “A novel nano-scale non-contact temperature measurement technique for crystalline materials,” Nanotechnology 23(46), 465707 (2012).
    [Crossref] [PubMed]
  5. X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
    [Crossref] [PubMed]
  6. V. Márquez-Cruz and J. Albert, “High resolution NIR TFBG-assisted biochemical sensors,” J. Lightwave Technol. 33(16), 3363–3373 (2015).
    [Crossref]
  7. J. W. Arkwright, N. G. Blenman, I. D. Underhill, S. A. Maunder, M. M. Szczesniak, P. G. Dinning, and I. J. Cook, “In-vivo demonstration of a high resolution optical fiber manometry catheter for diagnosis of gastrointestinal motility disorders,” Opt. Express 17(6), 4500–4508 (2009).
    [Crossref] [PubMed]
  8. R. Rathod, R. D. Pechstedt, D. A. Jackson, and D. J. Webb, “Distributed temperature-change sensor based on Rayleigh backscattering in an optical fiber,” Opt. Lett. 19(8), 593–595 (1994).
    [Crossref] [PubMed]
  9. J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” Photonics J. 6(3), 1–8 (2014).
    [Crossref]
  10. M. A. Soto, P. K. Sahu, S. Faralli, G. Bolognini, F. Di Pasquale, B. Nebendahl, and C. Rueck, “Distributed temperature sensor system based on Raman scattering using correlation-codes,” Electron. Lett. 43(16), 862–864 (2007).
    [Crossref]
  11. M. A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. Di Pasquale, “Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding,” Opt. Lett. 36(13), 2557–2559 (2011).
    [Crossref] [PubMed]
  12. K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
    [Crossref] [PubMed]
  13. A. Masoudi, M. Belal, and T. P. Newson, “Distributed dynamic large strain optical fiber sensor based on the detection of spontaneous Brillouin scattering,” Opt. Lett. 38(17), 3312–3315 (2013).
    [Crossref] [PubMed]
  14. M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7(1), 10870 (2016).
    [Crossref] [PubMed]
  15. D. A. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. Joseph Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
  16. J. W. Arkwright, I. D. Underhill, S. A. Maunder, N. Blenman, M. M. Szczesniak, L. Wiklendt, I. J. Cook, D. Z. Lubowski, and P. G. Dinning, “Design of a high-sensor count fibre optic manometry catheter for in-vivo colonic diagnostics,” Opt. Express 17(25), 22423–22431 (2009).
    [Crossref] [PubMed]
  17. K. Yuksel, V. Moeyaert, P. Megret, and M. Wuilpart, “Complete analysis of multireflection and spectral-shadowing crosstalks in a quasi-distributed fiber sensor interrogated by OFDR,” IEEE Sens. J. 12(5), 988–995 (2012).
    [Crossref]
  18. A. K. Sang, M. E. Froggatt, S. T. Kreger, and D. K. Gifford, “Millimeter resolution distributed dynamic strain measurements using optical frequency domain reflectometry,” Proc. SPIE 7753, 77532S (2011).
    [Crossref]
  19. D. Wada, H. Igawa, and T. Kasai, “Vibration monitoring of a helicopter blade model using the optical fiber distributed strain sensing technique,” Appl. Opt. 55(25), 6953–6959 (2016).
    [Crossref] [PubMed]
  20. A. L. Ricchiuti, D. Barrera, K. Nonaka, and S. Sales, “Temperature gradient sensor based on a long-fiber Bragg grating and time-frequency analysis,” Opt. Lett. 39(19), 5729–5731 (2014).
    [Crossref] [PubMed]
  21. R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35(8), 1105–1115 (1999).
    [Crossref]
  22. J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
    [Crossref]
  23. J. Skaar and O. H. Waagaard, “Design and characterization of finite-length fiber gratings,” IEEE J. Quantum Electron. 39(10), 1238–1245 (2003).
    [Crossref]
  24. H. Li and Y. Sheng, “Direct design of multichannel fiber Bragg grating with discrete layer-peeling algorithm,” IEEE Photonic. Tech. L. 15(9), 1252–1254 (2003).
    [Crossref]
  25. E. G. Turitsyna, A. Gbadebo, and J. A. Williams, “A technique for mitigating the effect of the writing-beam profile on fibre Bragg grating fabrication,” Opt. Express 23(10), 12628–12635 (2015).
    [Crossref] [PubMed]
  26. M. Li, X. Chen, J. Hayashi, and H. Li, “Advanced design of the ultrahigh-channel-count fiber Bragg grating based on the double sampling method,” Opt. Express 17(10), 8382–8394 (2009).
    [Crossref] [PubMed]
  27. L. A. Everall, K. Sugden, J. A. R. Williams, I. Bennion, X. Liu, J. S. Aitchison, S. Thoms, and R. M. De La Rue, “Fabrication of multipassband moiré resonators in fibers by the dual-phase-mask exposure method,” Opt. Lett. 22(19), 1473–1475 (1997).
    [Crossref] [PubMed]
  28. A. Lin, L. Wang, W. Zhao, X. Hu, X. Liu, and Y. Gong, “Optimal design of multichannel fiber Bragg grating filters with small dispersion and low index modulation,” J. Lightw. Tech. 27(15), 3235–3240 (2009).
    [Crossref]
  29. M. Li and J. Yao, “Multichannel arbitrary-order photonic temporal differentiator for wavelength-division-multiplexed signal processing using a single fiber Bragg grating,” J. Lightw. Tech. 29(17), 2506–2511 (2011).
    [Crossref]
  30. A. M. Gillooly, H. Dobb, L. Zhang, and I. Bennion, “Distributed load sensor by use of a chirped moiré fiber Bragg grating,” Appl. Opt. 43(35), 6454–6457 (2004).
    [Crossref] [PubMed]
  31. H. Cao, J. Atai, X. Shu, and G. Chen, “Direct design of high channel-count fiber Bragg grating filters with low index modulation,” Opt. Express 20(11), 12095–12110 (2012).
    [Crossref] [PubMed]

2016 (2)

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7(1), 10870 (2016).
[Crossref] [PubMed]

D. Wada, H. Igawa, and T. Kasai, “Vibration monitoring of a helicopter blade model using the optical fiber distributed strain sensing technique,” Appl. Opt. 55(25), 6953–6959 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (2)

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” Photonics J. 6(3), 1–8 (2014).
[Crossref]

A. L. Ricchiuti, D. Barrera, K. Nonaka, and S. Sales, “Temperature gradient sensor based on a long-fiber Bragg grating and time-frequency analysis,” Opt. Lett. 39(19), 5729–5731 (2014).
[Crossref] [PubMed]

2013 (2)

A. Masoudi, M. Belal, and T. P. Newson, “Distributed dynamic large strain optical fiber sensor based on the detection of spontaneous Brillouin scattering,” Opt. Lett. 38(17), 3312–3315 (2013).
[Crossref] [PubMed]

N. N. Jarenwattananon, S. Glöggler, T. Otto, A. Melkonian, W. Morris, S. R. Burt, O. M. Yaghi, and L. S. Bouchard, “Thermal maps of gases in heterogeneous reactions,” Nature 502(7472), 537–540 (2013).
[Crossref] [PubMed]

2012 (5)

X. Wu and R. Hull, “A novel nano-scale non-contact temperature measurement technique for crystalline materials,” Nanotechnology 23(46), 465707 (2012).
[Crossref] [PubMed]

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

K. Yuksel, V. Moeyaert, P. Megret, and M. Wuilpart, “Complete analysis of multireflection and spectral-shadowing crosstalks in a quasi-distributed fiber sensor interrogated by OFDR,” IEEE Sens. J. 12(5), 988–995 (2012).
[Crossref]

H. Li, H. Yang, E. Li, Z. Liu, and K. Wei, “Wearable sensors in intelligent clothing for measuring human body temperature based on optical fiber Bragg grating,” Opt. Express 20(11), 11740–11752 (2012).
[Crossref] [PubMed]

H. Cao, J. Atai, X. Shu, and G. Chen, “Direct design of high channel-count fiber Bragg grating filters with low index modulation,” Opt. Express 20(11), 12095–12110 (2012).
[Crossref] [PubMed]

2011 (3)

M. A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. Di Pasquale, “Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding,” Opt. Lett. 36(13), 2557–2559 (2011).
[Crossref] [PubMed]

A. K. Sang, M. E. Froggatt, S. T. Kreger, and D. K. Gifford, “Millimeter resolution distributed dynamic strain measurements using optical frequency domain reflectometry,” Proc. SPIE 7753, 77532S (2011).
[Crossref]

M. Li and J. Yao, “Multichannel arbitrary-order photonic temporal differentiator for wavelength-division-multiplexed signal processing using a single fiber Bragg grating,” J. Lightw. Tech. 29(17), 2506–2511 (2011).
[Crossref]

2009 (4)

2007 (1)

M. A. Soto, P. K. Sahu, S. Faralli, G. Bolognini, F. Di Pasquale, B. Nebendahl, and C. Rueck, “Distributed temperature sensor system based on Raman scattering using correlation-codes,” Electron. Lett. 43(16), 862–864 (2007).
[Crossref]

2006 (1)

2004 (1)

2003 (2)

J. Skaar and O. H. Waagaard, “Design and characterization of finite-length fiber gratings,” IEEE J. Quantum Electron. 39(10), 1238–1245 (2003).
[Crossref]

H. Li and Y. Sheng, “Direct design of multichannel fiber Bragg grating with discrete layer-peeling algorithm,” IEEE Photonic. Tech. L. 15(9), 1252–1254 (2003).
[Crossref]

2001 (1)

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
[Crossref]

1999 (1)

R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35(8), 1105–1115 (1999).
[Crossref]

1997 (2)

D. A. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. Joseph Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).

L. A. Everall, K. Sugden, J. A. R. Williams, I. Bennion, X. Liu, J. S. Aitchison, S. Thoms, and R. M. De La Rue, “Fabrication of multipassband moiré resonators in fibers by the dual-phase-mask exposure method,” Opt. Lett. 22(19), 1473–1475 (1997).
[Crossref] [PubMed]

1994 (1)

Aitchison, J. S.

Albert, J.

Aloni, S.

M. Mecklenburg, W. A. Hubbard, E. R. White, R. Dhall, S. B. Cronin, S. Aloni, and B. C. Regan, “Nanoscale temperature mapping in operating microelectronic devices,” Science 347(6222), 629–632 (2015).
[Crossref] [PubMed]

Arkwright, J. W.

Askins, C. G.

D. A. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. Joseph Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).

Atai, J.

Bao, X.

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” Photonics J. 6(3), 1–8 (2014).
[Crossref]

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

Baronti, F.

Barrera, D.

Belal, M.

Bennion, I.

Blenman, N.

Blenman, N. G.

Bolognini, G.

M. A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. Di Pasquale, “Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding,” Opt. Lett. 36(13), 2557–2559 (2011).
[Crossref] [PubMed]

M. A. Soto, P. K. Sahu, S. Faralli, G. Bolognini, F. Di Pasquale, B. Nebendahl, and C. Rueck, “Distributed temperature sensor system based on Raman scattering using correlation-codes,” Electron. Lett. 43(16), 862–864 (2007).
[Crossref]

Bouchard, L. S.

N. N. Jarenwattananon, S. Glöggler, T. Otto, A. Melkonian, W. Morris, S. R. Burt, O. M. Yaghi, and L. S. Bouchard, “Thermal maps of gases in heterogeneous reactions,” Nature 502(7472), 537–540 (2013).
[Crossref] [PubMed]

Burt, S. R.

N. N. Jarenwattananon, S. Glöggler, T. Otto, A. Melkonian, W. Morris, S. R. Burt, O. M. Yaghi, and L. S. Bouchard, “Thermal maps of gases in heterogeneous reactions,” Nature 502(7472), 537–540 (2013).
[Crossref] [PubMed]

Cao, H.

Chen, G.

Chen, L.

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” Photonics J. 6(3), 1–8 (2014).
[Crossref]

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

Chen, X.

Cook, I. J.

Cronin, S. B.

M. Mecklenburg, W. A. Hubbard, E. R. White, R. Dhall, S. B. Cronin, S. Aloni, and B. C. Regan, “Nanoscale temperature mapping in operating microelectronic devices,” Science 347(6222), 629–632 (2015).
[Crossref] [PubMed]

Davis, M. A.

D. A. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. Joseph Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).

De La Rue, R. M.

Dhall, R.

M. Mecklenburg, W. A. Hubbard, E. R. White, R. Dhall, S. B. Cronin, S. Aloni, and B. C. Regan, “Nanoscale temperature mapping in operating microelectronic devices,” Science 347(6222), 629–632 (2015).
[Crossref] [PubMed]

Di Pasquale, F.

M. A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. Di Pasquale, “Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding,” Opt. Lett. 36(13), 2557–2559 (2011).
[Crossref] [PubMed]

M. A. Soto, P. K. Sahu, S. Faralli, G. Bolognini, F. Di Pasquale, B. Nebendahl, and C. Rueck, “Distributed temperature sensor system based on Raman scattering using correlation-codes,” Electron. Lett. 43(16), 862–864 (2007).
[Crossref]

Dinning, P. G.

Dobb, H.

Erdogan, T.

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
[Crossref]

Everall, L. A.

Faralli, S.

M. A. Soto, P. K. Sahu, S. Faralli, G. Bolognini, F. Di Pasquale, B. Nebendahl, and C. Rueck, “Distributed temperature sensor system based on Raman scattering using correlation-codes,” Electron. Lett. 43(16), 862–864 (2007).
[Crossref]

Feced, R.

R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35(8), 1105–1115 (1999).
[Crossref]

Froggatt, M. E.

A. K. Sang, M. E. Froggatt, S. T. Kreger, and D. K. Gifford, “Millimeter resolution distributed dynamic strain measurements using optical frequency domain reflectometry,” Proc. SPIE 7753, 77532S (2011).
[Crossref]

Gbadebo, A.

Gifford, D. K.

A. K. Sang, M. E. Froggatt, S. T. Kreger, and D. K. Gifford, “Millimeter resolution distributed dynamic strain measurements using optical frequency domain reflectometry,” Proc. SPIE 7753, 77532S (2011).
[Crossref]

Gillooly, A. M.

Glöggler, S.

N. N. Jarenwattananon, S. Glöggler, T. Otto, A. Melkonian, W. Morris, S. R. Burt, O. M. Yaghi, and L. S. Bouchard, “Thermal maps of gases in heterogeneous reactions,” Nature 502(7472), 537–540 (2013).
[Crossref] [PubMed]

Gong, Y.

A. Lin, L. Wang, W. Zhao, X. Hu, X. Liu, and Y. Gong, “Optimal design of multichannel fiber Bragg grating filters with small dispersion and low index modulation,” J. Lightw. Tech. 27(15), 3235–3240 (2009).
[Crossref]

Hayashi, J.

He, Z.

Hotate, K.

Hu, X.

A. Lin, L. Wang, W. Zhao, X. Hu, X. Liu, and Y. Gong, “Optimal design of multichannel fiber Bragg grating filters with small dispersion and low index modulation,” J. Lightw. Tech. 27(15), 3235–3240 (2009).
[Crossref]

Hubbard, W. A.

M. Mecklenburg, W. A. Hubbard, E. R. White, R. Dhall, S. B. Cronin, S. Aloni, and B. C. Regan, “Nanoscale temperature mapping in operating microelectronic devices,” Science 347(6222), 629–632 (2015).
[Crossref] [PubMed]

Hull, R.

X. Wu and R. Hull, “A novel nano-scale non-contact temperature measurement technique for crystalline materials,” Nanotechnology 23(46), 465707 (2012).
[Crossref] [PubMed]

Igawa, H.

Jackson, D. A.

Jarenwattananon, N. N.

N. N. Jarenwattananon, S. Glöggler, T. Otto, A. Melkonian, W. Morris, S. R. Burt, O. M. Yaghi, and L. S. Bouchard, “Thermal maps of gases in heterogeneous reactions,” Nature 502(7472), 537–540 (2013).
[Crossref] [PubMed]

Joseph Friebele, E.

D. A. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. Joseph Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).

Kasai, T.

Kersey, D. A.

D. A. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. Joseph Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).

Koo, K. P.

D. A. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. Joseph Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).

Kreger, S. T.

A. K. Sang, M. E. Froggatt, S. T. Kreger, and D. K. Gifford, “Millimeter resolution distributed dynamic strain measurements using optical frequency domain reflectometry,” Proc. SPIE 7753, 77532S (2011).
[Crossref]

Lazzeri, A.

LeBlanc, M.

D. A. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. Joseph Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).

Li, E.

Li, H.

Li, M.

M. Li and J. Yao, “Multichannel arbitrary-order photonic temporal differentiator for wavelength-division-multiplexed signal processing using a single fiber Bragg grating,” J. Lightw. Tech. 29(17), 2506–2511 (2011).
[Crossref]

M. Li, X. Chen, J. Hayashi, and H. Li, “Advanced design of the ultrahigh-channel-count fiber Bragg grating based on the double sampling method,” Opt. Express 17(10), 8382–8394 (2009).
[Crossref] [PubMed]

Li, W.

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” Photonics J. 6(3), 1–8 (2014).
[Crossref]

Lin, A.

A. Lin, L. Wang, W. Zhao, X. Hu, X. Liu, and Y. Gong, “Optimal design of multichannel fiber Bragg grating filters with small dispersion and low index modulation,” J. Lightw. Tech. 27(15), 3235–3240 (2009).
[Crossref]

Liu, X.

A. Lin, L. Wang, W. Zhao, X. Hu, X. Liu, and Y. Gong, “Optimal design of multichannel fiber Bragg grating filters with small dispersion and low index modulation,” J. Lightw. Tech. 27(15), 3235–3240 (2009).
[Crossref]

L. A. Everall, K. Sugden, J. A. R. Williams, I. Bennion, X. Liu, J. S. Aitchison, S. Thoms, and R. M. De La Rue, “Fabrication of multipassband moiré resonators in fibers by the dual-phase-mask exposure method,” Opt. Lett. 22(19), 1473–1475 (1997).
[Crossref] [PubMed]

Liu, Z.

Lu, P.

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” Photonics J. 6(3), 1–8 (2014).
[Crossref]

Lubowski, D. Z.

Márquez-Cruz, V.

Masoudi, A.

Maunder, S. A.

Mecklenburg, M.

M. Mecklenburg, W. A. Hubbard, E. R. White, R. Dhall, S. B. Cronin, S. Aloni, and B. C. Regan, “Nanoscale temperature mapping in operating microelectronic devices,” Science 347(6222), 629–632 (2015).
[Crossref] [PubMed]

Megret, P.

K. Yuksel, V. Moeyaert, P. Megret, and M. Wuilpart, “Complete analysis of multireflection and spectral-shadowing crosstalks in a quasi-distributed fiber sensor interrogated by OFDR,” IEEE Sens. J. 12(5), 988–995 (2012).
[Crossref]

Melkonian, A.

N. N. Jarenwattananon, S. Glöggler, T. Otto, A. Melkonian, W. Morris, S. R. Burt, O. M. Yaghi, and L. S. Bouchard, “Thermal maps of gases in heterogeneous reactions,” Nature 502(7472), 537–540 (2013).
[Crossref] [PubMed]

Moeyaert, V.

K. Yuksel, V. Moeyaert, P. Megret, and M. Wuilpart, “Complete analysis of multireflection and spectral-shadowing crosstalks in a quasi-distributed fiber sensor interrogated by OFDR,” IEEE Sens. J. 12(5), 988–995 (2012).
[Crossref]

Morris, W.

N. N. Jarenwattananon, S. Glöggler, T. Otto, A. Melkonian, W. Morris, S. R. Burt, O. M. Yaghi, and L. S. Bouchard, “Thermal maps of gases in heterogeneous reactions,” Nature 502(7472), 537–540 (2013).
[Crossref] [PubMed]

Muriel, M. A.

R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35(8), 1105–1115 (1999).
[Crossref]

Nannipieri, T.

Nebendahl, B.

M. A. Soto, P. K. Sahu, S. Faralli, G. Bolognini, F. Di Pasquale, B. Nebendahl, and C. Rueck, “Distributed temperature sensor system based on Raman scattering using correlation-codes,” Electron. Lett. 43(16), 862–864 (2007).
[Crossref]

Newson, T. P.

Nonaka, K.

Otto, T.

N. N. Jarenwattananon, S. Glöggler, T. Otto, A. Melkonian, W. Morris, S. R. Burt, O. M. Yaghi, and L. S. Bouchard, “Thermal maps of gases in heterogeneous reactions,” Nature 502(7472), 537–540 (2013).
[Crossref] [PubMed]

Patrick, H. J.

D. A. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. Joseph Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).

Pechstedt, R. D.

Putnam, M. A.

D. A. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. Joseph Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).

Ramírez, J. A.

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7(1), 10870 (2016).
[Crossref] [PubMed]

Rathod, R.

Regan, B. C.

M. Mecklenburg, W. A. Hubbard, E. R. White, R. Dhall, S. B. Cronin, S. Aloni, and B. C. Regan, “Nanoscale temperature mapping in operating microelectronic devices,” Science 347(6222), 629–632 (2015).
[Crossref] [PubMed]

Ricchiuti, A. L.

Roncella, R.

Rueck, C.

M. A. Soto, P. K. Sahu, S. Faralli, G. Bolognini, F. Di Pasquale, B. Nebendahl, and C. Rueck, “Distributed temperature sensor system based on Raman scattering using correlation-codes,” Electron. Lett. 43(16), 862–864 (2007).
[Crossref]

Sahu, P. K.

M. A. Soto, P. K. Sahu, S. Faralli, G. Bolognini, F. Di Pasquale, B. Nebendahl, and C. Rueck, “Distributed temperature sensor system based on Raman scattering using correlation-codes,” Electron. Lett. 43(16), 862–864 (2007).
[Crossref]

Sales, S.

Sang, A. K.

A. K. Sang, M. E. Froggatt, S. T. Kreger, and D. K. Gifford, “Millimeter resolution distributed dynamic strain measurements using optical frequency domain reflectometry,” Proc. SPIE 7753, 77532S (2011).
[Crossref]

Sheng, Y.

H. Li and Y. Sheng, “Direct design of multichannel fiber Bragg grating with discrete layer-peeling algorithm,” IEEE Photonic. Tech. L. 15(9), 1252–1254 (2003).
[Crossref]

Shu, X.

Signorini, A.

Skaar, J.

J. Skaar and O. H. Waagaard, “Design and characterization of finite-length fiber gratings,” IEEE J. Quantum Electron. 39(10), 1238–1245 (2003).
[Crossref]

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
[Crossref]

Song, J.

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” Photonics J. 6(3), 1–8 (2014).
[Crossref]

Song, K. Y.

Soto, M. A.

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7(1), 10870 (2016).
[Crossref] [PubMed]

M. A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. Di Pasquale, “Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding,” Opt. Lett. 36(13), 2557–2559 (2011).
[Crossref] [PubMed]

M. A. Soto, P. K. Sahu, S. Faralli, G. Bolognini, F. Di Pasquale, B. Nebendahl, and C. Rueck, “Distributed temperature sensor system based on Raman scattering using correlation-codes,” Electron. Lett. 43(16), 862–864 (2007).
[Crossref]

Sugden, K.

Szczesniak, M. M.

Thévenaz, L.

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7(1), 10870 (2016).
[Crossref] [PubMed]

Thoms, S.

Turitsyna, E. G.

Underhill, I. D.

Waagaard, O. H.

J. Skaar and O. H. Waagaard, “Design and characterization of finite-length fiber gratings,” IEEE J. Quantum Electron. 39(10), 1238–1245 (2003).
[Crossref]

Wada, D.

Wang, L.

A. Lin, L. Wang, W. Zhao, X. Hu, X. Liu, and Y. Gong, “Optimal design of multichannel fiber Bragg grating filters with small dispersion and low index modulation,” J. Lightw. Tech. 27(15), 3235–3240 (2009).
[Crossref]

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
[Crossref]

Webb, D. J.

Wei, K.

White, E. R.

M. Mecklenburg, W. A. Hubbard, E. R. White, R. Dhall, S. B. Cronin, S. Aloni, and B. C. Regan, “Nanoscale temperature mapping in operating microelectronic devices,” Science 347(6222), 629–632 (2015).
[Crossref] [PubMed]

Wiklendt, L.

Williams, J. A.

Williams, J. A. R.

Wu, X.

X. Wu and R. Hull, “A novel nano-scale non-contact temperature measurement technique for crystalline materials,” Nanotechnology 23(46), 465707 (2012).
[Crossref] [PubMed]

Wuilpart, M.

K. Yuksel, V. Moeyaert, P. Megret, and M. Wuilpart, “Complete analysis of multireflection and spectral-shadowing crosstalks in a quasi-distributed fiber sensor interrogated by OFDR,” IEEE Sens. J. 12(5), 988–995 (2012).
[Crossref]

Xu, Y.

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” Photonics J. 6(3), 1–8 (2014).
[Crossref]

Yaghi, O. M.

N. N. Jarenwattananon, S. Glöggler, T. Otto, A. Melkonian, W. Morris, S. R. Burt, O. M. Yaghi, and L. S. Bouchard, “Thermal maps of gases in heterogeneous reactions,” Nature 502(7472), 537–540 (2013).
[Crossref] [PubMed]

Yang, H.

Yao, J.

M. Li and J. Yao, “Multichannel arbitrary-order photonic temporal differentiator for wavelength-division-multiplexed signal processing using a single fiber Bragg grating,” J. Lightw. Tech. 29(17), 2506–2511 (2011).
[Crossref]

Yuksel, K.

K. Yuksel, V. Moeyaert, P. Megret, and M. Wuilpart, “Complete analysis of multireflection and spectral-shadowing crosstalks in a quasi-distributed fiber sensor interrogated by OFDR,” IEEE Sens. J. 12(5), 988–995 (2012).
[Crossref]

Zervas, M. N.

R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35(8), 1105–1115 (1999).
[Crossref]

Zhang, L.

Zhao, W.

A. Lin, L. Wang, W. Zhao, X. Hu, X. Liu, and Y. Gong, “Optimal design of multichannel fiber Bragg grating filters with small dispersion and low index modulation,” J. Lightw. Tech. 27(15), 3235–3240 (2009).
[Crossref]

Appl. Opt. (2)

Electron. Lett. (1)

M. A. Soto, P. K. Sahu, S. Faralli, G. Bolognini, F. Di Pasquale, B. Nebendahl, and C. Rueck, “Distributed temperature sensor system based on Raman scattering using correlation-codes,” Electron. Lett. 43(16), 862–864 (2007).
[Crossref]

IEEE J. Quantum Electron. (3)

R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35(8), 1105–1115 (1999).
[Crossref]

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
[Crossref]

J. Skaar and O. H. Waagaard, “Design and characterization of finite-length fiber gratings,” IEEE J. Quantum Electron. 39(10), 1238–1245 (2003).
[Crossref]

IEEE Photonic. Tech. L. (1)

H. Li and Y. Sheng, “Direct design of multichannel fiber Bragg grating with discrete layer-peeling algorithm,” IEEE Photonic. Tech. L. 15(9), 1252–1254 (2003).
[Crossref]

IEEE Sens. J. (1)

K. Yuksel, V. Moeyaert, P. Megret, and M. Wuilpart, “Complete analysis of multireflection and spectral-shadowing crosstalks in a quasi-distributed fiber sensor interrogated by OFDR,” IEEE Sens. J. 12(5), 988–995 (2012).
[Crossref]

J. Lightw. Tech. (2)

A. Lin, L. Wang, W. Zhao, X. Hu, X. Liu, and Y. Gong, “Optimal design of multichannel fiber Bragg grating filters with small dispersion and low index modulation,” J. Lightw. Tech. 27(15), 3235–3240 (2009).
[Crossref]

M. Li and J. Yao, “Multichannel arbitrary-order photonic temporal differentiator for wavelength-division-multiplexed signal processing using a single fiber Bragg grating,” J. Lightw. Tech. 29(17), 2506–2511 (2011).
[Crossref]

J. Lightwave Technol. (2)

D. A. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. Joseph Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).

V. Márquez-Cruz and J. Albert, “High resolution NIR TFBG-assisted biochemical sensors,” J. Lightwave Technol. 33(16), 3363–3373 (2015).
[Crossref]

Nanotechnology (1)

X. Wu and R. Hull, “A novel nano-scale non-contact temperature measurement technique for crystalline materials,” Nanotechnology 23(46), 465707 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7(1), 10870 (2016).
[Crossref] [PubMed]

Nature (1)

N. N. Jarenwattananon, S. Glöggler, T. Otto, A. Melkonian, W. Morris, S. R. Burt, O. M. Yaghi, and L. S. Bouchard, “Thermal maps of gases in heterogeneous reactions,” Nature 502(7472), 537–540 (2013).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (6)

Photonics J. (1)

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” Photonics J. 6(3), 1–8 (2014).
[Crossref]

Proc. SPIE (1)

A. K. Sang, M. E. Froggatt, S. T. Kreger, and D. K. Gifford, “Millimeter resolution distributed dynamic strain measurements using optical frequency domain reflectometry,” Proc. SPIE 7753, 77532S (2011).
[Crossref]

Science (1)

M. Mecklenburg, W. A. Hubbard, E. R. White, R. Dhall, S. B. Cronin, S. Aloni, and B. C. Regan, “Nanoscale temperature mapping in operating microelectronic devices,” Science 347(6222), 629–632 (2015).
[Crossref] [PubMed]

Sensors (Basel) (1)

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) The target spectrum (red) and reconstructed spectrum (blue) of a 9-channel FBG. (b) The index modulation profile of the 9-channel FBG.
Fig. 2
Fig. 2 The schematic of the channels overlap (the gradient of red represents the contribution to the channel spectrum).
Fig. 3
Fig. 3 (a) The index modulation profile of the channel (1-channel MC-FBG). (b) The spectral degradation under a non-uniform field (Lf, full length, L1, L2, and L3, are defined by the normal index modulation intensity of 10%, 50%, and 67%).
Fig. 4
Fig. 4 The measured reflection spectrum using real-time interrogation method for the MC-FBG.
Fig. 5
Fig. 5 (a) The index modulation profile. (b) The reconstructed spectrum of the 21-channel FBG.
Fig. 6
Fig. 6 (a) The schematic of the fabrication system. (b) The structure and spectrum of the 21-channel FBG.
Fig. 7
Fig. 7 Experimental setup for temperature field monitoring.
Fig. 8
Fig. 8 The temperature sensitivity of the 21-channel FBG.
Fig. 9
Fig. 9 (a) The real time monitoring of the temperature field variation (from uniform distribution to gradient distribution). (b) The temperature field monitored in the time of 175 s along the grating length.
Fig. 10
Fig. 10 (a) The temperature field map of the 21-channel FBG induced by the 300 °C point heat source. (b) The heat transfer model and the simulated temperature gradient at the position of fiber. (c) The comparison of the experimental and simulated temperature gradients at 116 s.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

r(λ)= R × j=1 N exp( ( 2π n eff a j ( 1 λ 1 λ j ) ) b j ) exp( i2π n eff ( 1 λ 1 λ B ) d j ),j=1,2,3...N
d j =2×[ L 0 +( j1 ) L s ],j=1,2,3...N

Metrics