Abstract

Absolute measurements of photoluminescence are commonly performed using an integrating sphere setup, as this allows the collection of all emitted photons independent of the spatial characteristics of the emission. However, such measurements are plagued by multiple reflection effects occurring within the integrating sphere that make the sample illumination and sphere throughput sample dependent. To address this problem, we developed a matrix theory for integrating spheres with photoluminescent surfaces. In conjunction with a bispectral luminescence data set, this model allows for multiple reflection effects to be fully accounted for. The bispectral data is obtained by mounting both the sample and a non-luminescent reference on the sphere and permuting their positions in order to compare direct and diffuse sample illumination conditions. Experimental measurements of a photoluminescent standard confirm the validity of the method.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Luminescence of turbid materials: a theoretical model and its comparison with experiment

D. Spitzer and J. J. Ten Bosch
Appl. Opt. 15(4) 934-939 (1976)

Characterization and reduction of reabsorption losses in luminescent solar concentrators

Lindsay R. Wilson, Brenda C. Rowan, Neil Robertson, Omar Moudam, Anita C. Jones, and Bryce S. Richards
Appl. Opt. 49(9) 1651-1661 (2010)

On the fluorescence from integrating spheres

Ping-Shine Shaw and Zhigang Li
Appl. Opt. 47(21) 3962-3967 (2008)

References

  • View by:
  • |
  • |
  • |

  1. J. C. Zwinkels, “Metrology of photoluminescent materials,” Metrologia 47, S182 (2010).
    [Crossref]
  2. H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nature Communications 5, 4312 (2014).
    [Crossref] [PubMed]
  3. T. Shakespeare and J. Shakespeare, “Problems in colour measurement of fluorescent paper grades,” Analytica Chimica Acta 380, 227–242 (1999).
    [Crossref]
  4. J. C. de Mello, H. F. Wittmann, and R. H. Friend, “An improved experimental determination of external photoluminescence quantum efficiency,” Advanced Materials 9, 230–232 (1997).
    [Crossref]
  5. T.-S. Ahn, R. O. Al-Kaysi, A. M. Müller, K. M. Wentz, and C. J. Bardeen, “Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements,” Review of Scientific Instruments 78, 086105 (2007).
    [Crossref] [PubMed]
  6. D. H. Alman and F. W. Billmeyer Jr, “Integrating-sphere errors in the colorimetry of fluorescent materials,” Color Research & Application 1, 141–145 (1976).
  7. D. Gundlach and H. Terstiege, “Problems in measurement of fluorescent materials,” Color Research & Application 19, 427–436 (1994).
    [Crossref]
  8. N. Greenham, I. Samuel, G. Hayes, R. Phillips, Y. Kessener, S. Moratti, A. Holmes, and R. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chemical Physics Letters 241, 89–96 (1995).
    [Crossref]
  9. K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, “Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned ccd detector,” Physical Chemistry Chemical Physics 11, 9850–9860 (2009).
    [Crossref] [PubMed]
  10. L. Wilson and B. Richards, “Measurement method for photoluminescent quantum yields of fluorescent organic dyes in polymethyl methacrylate for luminescent solar concentrators,” Applied Optics 48, 212–220 (2009).
    [Crossref] [PubMed]
  11. C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Comparison of methods and achievable uncertainties for the relative and absolute measurement of photoluminescence quantum yields,” Analytical Chemistry 83, 3431–3439 (2011).
    [Crossref] [PubMed]
  12. C. Würth, J. Pauli, C. Lochmann, M. Spieles, and U. Resch-Genger, “Integrating sphere setup for the traceable measurement of absolute photoluminescence quantum yields in the near infrared,” Analytical Chemistry 84, 1345–1352 (2012).
    [Crossref] [PubMed]
  13. C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Relative and absolute determination of fluorescence quantum yields of transparent samples,” Nature Protocols 8, 1535 (2013).
    [Crossref] [PubMed]
  14. J. Valenta, “Determination of absolute quantum yields of luminescing nanomaterials over a broad spectral range: from the integrating sphere theory to the correct methodology,” Nanoscience Methods 3, 11–27 (2014).
    [Crossref]
  15. C.-H. Hung and C.-H. Tien, “Phosphor-converted LED modeling by bidirectional photometric data,” Optics Express 18, A261–A271 (2010).
    [Crossref] [PubMed]
  16. D. Timmerman, J. Valenta, K. Dohnalová, W. De Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nature Nanotechnology 6, 710 (2011).
    [Crossref] [PubMed]
  17. R. Donaldson, “Spectrophotometry of fluorescent pigments,” British Journal of Applied Physics 5, 210 (1954).
    [Crossref]
  18. T. A. Germer, J. C. Zwinkels, and B. K. Tsai, Spectrophotometry: Accurate measurement of optical properties of materials, vol. 46 (Elsevier, 2014).
  19. J. C. Zwinkels and F. Gauthier, “Instrumentation, standards, and procedures used at the National Research Council of Canada for high-accuracy fluorescence measurements,” Analytica Chimica Acta 380, 193–209 (1999).
    [Crossref]
  20. H. Minato, M. Nanjo, and Y. Nayatani, “Colorimetry and its accuracy in the measurement of fluorescent materials by the two-monochromator method,” Color Research & Application 10, 84–91 (1985).
    [Crossref]
  21. W. Budde and C. X. Dodd, “Absolute reflectance measurements in the d/0° geometry,” Die Farbe 19, 94–102 (1970).
  22. R. D. Saunders and W. R. Ott, “Spectral irradiance measurements: effect of uv-produced fluorescence in integrating spheres,” Applied Optics 15, 827–828 (1976).
    [Crossref] [PubMed]
  23. P.-S. Shaw, Z. Li, U. Arp, and K. R. Lykke, “Ultraviolet characterization of integrating spheres,” Applied Optics 46, 5119–5128 (2007).
    [Crossref] [PubMed]
  24. P.-S. Shaw and Z. Li, “On the fluorescence from integrating spheres,” Applied Optics 47, 3962–3967 (2008).
    [Crossref] [PubMed]
  25. J. Valenta, “Photoluminescence of the integrating sphere walls, its influence on the absolute quantum yield measurements and correction methods,” AIP Advances 8, 105123 (2018).
    [Crossref]
  26. Y. Zong, S. W. Brown, B. C. Johnson, K. R. Lykke, and Y. Ohno, “Simple spectral stray light correction method for array spectroradiometers,” Applied Optics 45, 1111–1119 (2006).
    [Crossref] [PubMed]
  27. J. Zwinkels, W. Neil, and M. Noël, “Characterization of a versatile reference instrument for traceable fluorescence measurements using different illumination and viewing geometries specified in practical colorimetry - part 1: bidirectional geometry (45: 0),” Metrologia 53, 1215 (2016).
    [Crossref]
  28. J. Zwinkels, W. Neil, M. Noël, and E. Côté, “Characterization of a versatile reference instrument for traceable fluorescence measurements using different illumination and viewing geometries specified in practical colorimetry - part 2: sphere geometry (8: d),” Metrologia 54, 129 (2017).
    [Crossref]
  29. P. Jaanson, F. Manoocheri, and E. Ikonen, “Goniometrical measurements of fluorescence quantum efficiency,” Measurement Science and Technology 27, 025204 (2016).
    [Crossref]
  30. P. C. DeRose, E. A. Early, and G. W. Kramer, “Qualification of a fluorescence spectrometer for measuring true fluorescence spectra,” Review of Scientific Instruments 78, 033107 (2007).
    [Crossref] [PubMed]
  31. T. L. Chow, Mathematical Methods for Physicists: A concise introduction(Cambridge University, 2000).
    [Crossref]

2018 (1)

J. Valenta, “Photoluminescence of the integrating sphere walls, its influence on the absolute quantum yield measurements and correction methods,” AIP Advances 8, 105123 (2018).
[Crossref]

2017 (1)

J. Zwinkels, W. Neil, M. Noël, and E. Côté, “Characterization of a versatile reference instrument for traceable fluorescence measurements using different illumination and viewing geometries specified in practical colorimetry - part 2: sphere geometry (8: d),” Metrologia 54, 129 (2017).
[Crossref]

2016 (2)

P. Jaanson, F. Manoocheri, and E. Ikonen, “Goniometrical measurements of fluorescence quantum efficiency,” Measurement Science and Technology 27, 025204 (2016).
[Crossref]

J. Zwinkels, W. Neil, and M. Noël, “Characterization of a versatile reference instrument for traceable fluorescence measurements using different illumination and viewing geometries specified in practical colorimetry - part 1: bidirectional geometry (45: 0),” Metrologia 53, 1215 (2016).
[Crossref]

2014 (2)

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nature Communications 5, 4312 (2014).
[Crossref] [PubMed]

J. Valenta, “Determination of absolute quantum yields of luminescing nanomaterials over a broad spectral range: from the integrating sphere theory to the correct methodology,” Nanoscience Methods 3, 11–27 (2014).
[Crossref]

2013 (1)

C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Relative and absolute determination of fluorescence quantum yields of transparent samples,” Nature Protocols 8, 1535 (2013).
[Crossref] [PubMed]

2012 (1)

C. Würth, J. Pauli, C. Lochmann, M. Spieles, and U. Resch-Genger, “Integrating sphere setup for the traceable measurement of absolute photoluminescence quantum yields in the near infrared,” Analytical Chemistry 84, 1345–1352 (2012).
[Crossref] [PubMed]

2011 (2)

C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Comparison of methods and achievable uncertainties for the relative and absolute measurement of photoluminescence quantum yields,” Analytical Chemistry 83, 3431–3439 (2011).
[Crossref] [PubMed]

D. Timmerman, J. Valenta, K. Dohnalová, W. De Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nature Nanotechnology 6, 710 (2011).
[Crossref] [PubMed]

2010 (2)

C.-H. Hung and C.-H. Tien, “Phosphor-converted LED modeling by bidirectional photometric data,” Optics Express 18, A261–A271 (2010).
[Crossref] [PubMed]

J. C. Zwinkels, “Metrology of photoluminescent materials,” Metrologia 47, S182 (2010).
[Crossref]

2009 (2)

K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, “Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned ccd detector,” Physical Chemistry Chemical Physics 11, 9850–9860 (2009).
[Crossref] [PubMed]

L. Wilson and B. Richards, “Measurement method for photoluminescent quantum yields of fluorescent organic dyes in polymethyl methacrylate for luminescent solar concentrators,” Applied Optics 48, 212–220 (2009).
[Crossref] [PubMed]

2008 (1)

P.-S. Shaw and Z. Li, “On the fluorescence from integrating spheres,” Applied Optics 47, 3962–3967 (2008).
[Crossref] [PubMed]

2007 (3)

P.-S. Shaw, Z. Li, U. Arp, and K. R. Lykke, “Ultraviolet characterization of integrating spheres,” Applied Optics 46, 5119–5128 (2007).
[Crossref] [PubMed]

P. C. DeRose, E. A. Early, and G. W. Kramer, “Qualification of a fluorescence spectrometer for measuring true fluorescence spectra,” Review of Scientific Instruments 78, 033107 (2007).
[Crossref] [PubMed]

T.-S. Ahn, R. O. Al-Kaysi, A. M. Müller, K. M. Wentz, and C. J. Bardeen, “Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements,” Review of Scientific Instruments 78, 086105 (2007).
[Crossref] [PubMed]

2006 (1)

Y. Zong, S. W. Brown, B. C. Johnson, K. R. Lykke, and Y. Ohno, “Simple spectral stray light correction method for array spectroradiometers,” Applied Optics 45, 1111–1119 (2006).
[Crossref] [PubMed]

1999 (2)

J. C. Zwinkels and F. Gauthier, “Instrumentation, standards, and procedures used at the National Research Council of Canada for high-accuracy fluorescence measurements,” Analytica Chimica Acta 380, 193–209 (1999).
[Crossref]

T. Shakespeare and J. Shakespeare, “Problems in colour measurement of fluorescent paper grades,” Analytica Chimica Acta 380, 227–242 (1999).
[Crossref]

1997 (1)

J. C. de Mello, H. F. Wittmann, and R. H. Friend, “An improved experimental determination of external photoluminescence quantum efficiency,” Advanced Materials 9, 230–232 (1997).
[Crossref]

1995 (1)

N. Greenham, I. Samuel, G. Hayes, R. Phillips, Y. Kessener, S. Moratti, A. Holmes, and R. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chemical Physics Letters 241, 89–96 (1995).
[Crossref]

1994 (1)

D. Gundlach and H. Terstiege, “Problems in measurement of fluorescent materials,” Color Research & Application 19, 427–436 (1994).
[Crossref]

1985 (1)

H. Minato, M. Nanjo, and Y. Nayatani, “Colorimetry and its accuracy in the measurement of fluorescent materials by the two-monochromator method,” Color Research & Application 10, 84–91 (1985).
[Crossref]

1976 (2)

R. D. Saunders and W. R. Ott, “Spectral irradiance measurements: effect of uv-produced fluorescence in integrating spheres,” Applied Optics 15, 827–828 (1976).
[Crossref] [PubMed]

D. H. Alman and F. W. Billmeyer Jr, “Integrating-sphere errors in the colorimetry of fluorescent materials,” Color Research & Application 1, 141–145 (1976).

1970 (1)

W. Budde and C. X. Dodd, “Absolute reflectance measurements in the d/0° geometry,” Die Farbe 19, 94–102 (1970).

1954 (1)

R. Donaldson, “Spectrophotometry of fluorescent pigments,” British Journal of Applied Physics 5, 210 (1954).
[Crossref]

Ahn, T.-S.

T.-S. Ahn, R. O. Al-Kaysi, A. M. Müller, K. M. Wentz, and C. J. Bardeen, “Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements,” Review of Scientific Instruments 78, 086105 (2007).
[Crossref] [PubMed]

Al-Kaysi, R. O.

T.-S. Ahn, R. O. Al-Kaysi, A. M. Müller, K. M. Wentz, and C. J. Bardeen, “Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements,” Review of Scientific Instruments 78, 086105 (2007).
[Crossref] [PubMed]

Alman, D. H.

D. H. Alman and F. W. Billmeyer Jr, “Integrating-sphere errors in the colorimetry of fluorescent materials,” Color Research & Application 1, 141–145 (1976).

Arp, U.

P.-S. Shaw, Z. Li, U. Arp, and K. R. Lykke, “Ultraviolet characterization of integrating spheres,” Applied Optics 46, 5119–5128 (2007).
[Crossref] [PubMed]

Bardeen, C. J.

T.-S. Ahn, R. O. Al-Kaysi, A. M. Müller, K. M. Wentz, and C. J. Bardeen, “Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements,” Review of Scientific Instruments 78, 086105 (2007).
[Crossref] [PubMed]

Billmeyer Jr, F. W.

D. H. Alman and F. W. Billmeyer Jr, “Integrating-sphere errors in the colorimetry of fluorescent materials,” Color Research & Application 1, 141–145 (1976).

Boer, W. De

D. Timmerman, J. Valenta, K. Dohnalová, W. De Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nature Nanotechnology 6, 710 (2011).
[Crossref] [PubMed]

Brown, S. W.

Y. Zong, S. W. Brown, B. C. Johnson, K. R. Lykke, and Y. Ohno, “Simple spectral stray light correction method for array spectroradiometers,” Applied Optics 45, 1111–1119 (2006).
[Crossref] [PubMed]

Budde, W.

W. Budde and C. X. Dodd, “Absolute reflectance measurements in the d/0° geometry,” Die Farbe 19, 94–102 (1970).

Cao, Y.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nature Communications 5, 4312 (2014).
[Crossref] [PubMed]

Chen, X.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nature Communications 5, 4312 (2014).
[Crossref] [PubMed]

Chow, T. L.

T. L. Chow, Mathematical Methods for Physicists: A concise introduction(Cambridge University, 2000).
[Crossref]

Côté, E.

J. Zwinkels, W. Neil, M. Noël, and E. Côté, “Characterization of a versatile reference instrument for traceable fluorescence measurements using different illumination and viewing geometries specified in practical colorimetry - part 2: sphere geometry (8: d),” Metrologia 54, 129 (2017).
[Crossref]

de Mello, J. C.

J. C. de Mello, H. F. Wittmann, and R. H. Friend, “An improved experimental determination of external photoluminescence quantum efficiency,” Advanced Materials 9, 230–232 (1997).
[Crossref]

DeRose, P. C.

P. C. DeRose, E. A. Early, and G. W. Kramer, “Qualification of a fluorescence spectrometer for measuring true fluorescence spectra,” Review of Scientific Instruments 78, 033107 (2007).
[Crossref] [PubMed]

Dodd, C. X.

W. Budde and C. X. Dodd, “Absolute reflectance measurements in the d/0° geometry,” Die Farbe 19, 94–102 (1970).

Dohnalová, K.

D. Timmerman, J. Valenta, K. Dohnalová, W. De Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nature Nanotechnology 6, 710 (2011).
[Crossref] [PubMed]

Donaldson, R.

R. Donaldson, “Spectrophotometry of fluorescent pigments,” British Journal of Applied Physics 5, 210 (1954).
[Crossref]

Early, E. A.

P. C. DeRose, E. A. Early, and G. W. Kramer, “Qualification of a fluorescence spectrometer for measuring true fluorescence spectra,” Review of Scientific Instruments 78, 033107 (2007).
[Crossref] [PubMed]

Friend, R.

N. Greenham, I. Samuel, G. Hayes, R. Phillips, Y. Kessener, S. Moratti, A. Holmes, and R. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chemical Physics Letters 241, 89–96 (1995).
[Crossref]

Friend, R. H.

J. C. de Mello, H. F. Wittmann, and R. H. Friend, “An improved experimental determination of external photoluminescence quantum efficiency,” Advanced Materials 9, 230–232 (1997).
[Crossref]

Gauthier, F.

J. C. Zwinkels and F. Gauthier, “Instrumentation, standards, and procedures used at the National Research Council of Canada for high-accuracy fluorescence measurements,” Analytica Chimica Acta 380, 193–209 (1999).
[Crossref]

Germer, T. A.

T. A. Germer, J. C. Zwinkels, and B. K. Tsai, Spectrophotometry: Accurate measurement of optical properties of materials, vol. 46 (Elsevier, 2014).

Grabolle, M.

C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Relative and absolute determination of fluorescence quantum yields of transparent samples,” Nature Protocols 8, 1535 (2013).
[Crossref] [PubMed]

C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Comparison of methods and achievable uncertainties for the relative and absolute measurement of photoluminescence quantum yields,” Analytical Chemistry 83, 3431–3439 (2011).
[Crossref] [PubMed]

Greenham, N.

N. Greenham, I. Samuel, G. Hayes, R. Phillips, Y. Kessener, S. Moratti, A. Holmes, and R. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chemical Physics Letters 241, 89–96 (1995).
[Crossref]

Gregorkiewicz, T.

D. Timmerman, J. Valenta, K. Dohnalová, W. De Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nature Nanotechnology 6, 710 (2011).
[Crossref] [PubMed]

Gundlach, D.

D. Gundlach and H. Terstiege, “Problems in measurement of fluorescent materials,” Color Research & Application 19, 427–436 (1994).
[Crossref]

Hayes, G.

N. Greenham, I. Samuel, G. Hayes, R. Phillips, Y. Kessener, S. Moratti, A. Holmes, and R. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chemical Physics Letters 241, 89–96 (1995).
[Crossref]

Holmes, A.

N. Greenham, I. Samuel, G. Hayes, R. Phillips, Y. Kessener, S. Moratti, A. Holmes, and R. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chemical Physics Letters 241, 89–96 (1995).
[Crossref]

Hung, C.-H.

C.-H. Hung and C.-H. Tien, “Phosphor-converted LED modeling by bidirectional photometric data,” Optics Express 18, A261–A271 (2010).
[Crossref] [PubMed]

Ikonen, E.

P. Jaanson, F. Manoocheri, and E. Ikonen, “Goniometrical measurements of fluorescence quantum efficiency,” Measurement Science and Technology 27, 025204 (2016).
[Crossref]

Ishida, H.

K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, “Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned ccd detector,” Physical Chemistry Chemical Physics 11, 9850–9860 (2009).
[Crossref] [PubMed]

Jaanson, P.

P. Jaanson, F. Manoocheri, and E. Ikonen, “Goniometrical measurements of fluorescence quantum efficiency,” Measurement Science and Technology 27, 025204 (2016).
[Crossref]

Johnson, B. C.

Y. Zong, S. W. Brown, B. C. Johnson, K. R. Lykke, and Y. Ohno, “Simple spectral stray light correction method for array spectroradiometers,” Applied Optics 45, 1111–1119 (2006).
[Crossref] [PubMed]

Kaneko, S.

K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, “Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned ccd detector,” Physical Chemistry Chemical Physics 11, 9850–9860 (2009).
[Crossref] [PubMed]

Kessener, Y.

N. Greenham, I. Samuel, G. Hayes, R. Phillips, Y. Kessener, S. Moratti, A. Holmes, and R. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chemical Physics Letters 241, 89–96 (1995).
[Crossref]

Kobayashi, A.

K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, “Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned ccd detector,” Physical Chemistry Chemical Physics 11, 9850–9860 (2009).
[Crossref] [PubMed]

Kong, J.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nature Communications 5, 4312 (2014).
[Crossref] [PubMed]

Kramer, G. W.

P. C. DeRose, E. A. Early, and G. W. Kramer, “Qualification of a fluorescence spectrometer for measuring true fluorescence spectra,” Review of Scientific Instruments 78, 033107 (2007).
[Crossref] [PubMed]

Li, Z.

P.-S. Shaw and Z. Li, “On the fluorescence from integrating spheres,” Applied Optics 47, 3962–3967 (2008).
[Crossref] [PubMed]

P.-S. Shaw, Z. Li, U. Arp, and K. R. Lykke, “Ultraviolet characterization of integrating spheres,” Applied Optics 46, 5119–5128 (2007).
[Crossref] [PubMed]

Lin, C. C.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nature Communications 5, 4312 (2014).
[Crossref] [PubMed]

Liu, R.-S.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nature Communications 5, 4312 (2014).
[Crossref] [PubMed]

Liu, Y.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nature Communications 5, 4312 (2014).
[Crossref] [PubMed]

Liu, Z.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nature Communications 5, 4312 (2014).
[Crossref] [PubMed]

Lochmann, C.

C. Würth, J. Pauli, C. Lochmann, M. Spieles, and U. Resch-Genger, “Integrating sphere setup for the traceable measurement of absolute photoluminescence quantum yields in the near infrared,” Analytical Chemistry 84, 1345–1352 (2012).
[Crossref] [PubMed]

Luo, W.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nature Communications 5, 4312 (2014).
[Crossref] [PubMed]

Lykke, K. R.

P.-S. Shaw, Z. Li, U. Arp, and K. R. Lykke, “Ultraviolet characterization of integrating spheres,” Applied Optics 46, 5119–5128 (2007).
[Crossref] [PubMed]

Y. Zong, S. W. Brown, B. C. Johnson, K. R. Lykke, and Y. Ohno, “Simple spectral stray light correction method for array spectroradiometers,” Applied Optics 45, 1111–1119 (2006).
[Crossref] [PubMed]

Ma, E.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nature Communications 5, 4312 (2014).
[Crossref] [PubMed]

Manoocheri, F.

P. Jaanson, F. Manoocheri, and E. Ikonen, “Goniometrical measurements of fluorescence quantum efficiency,” Measurement Science and Technology 27, 025204 (2016).
[Crossref]

Minato, H.

H. Minato, M. Nanjo, and Y. Nayatani, “Colorimetry and its accuracy in the measurement of fluorescent materials by the two-monochromator method,” Color Research & Application 10, 84–91 (1985).
[Crossref]

Moratti, S.

N. Greenham, I. Samuel, G. Hayes, R. Phillips, Y. Kessener, S. Moratti, A. Holmes, and R. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chemical Physics Letters 241, 89–96 (1995).
[Crossref]

Müller, A. M.

T.-S. Ahn, R. O. Al-Kaysi, A. M. Müller, K. M. Wentz, and C. J. Bardeen, “Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements,” Review of Scientific Instruments 78, 086105 (2007).
[Crossref] [PubMed]

Nanjo, M.

H. Minato, M. Nanjo, and Y. Nayatani, “Colorimetry and its accuracy in the measurement of fluorescent materials by the two-monochromator method,” Color Research & Application 10, 84–91 (1985).
[Crossref]

Nayatani, Y.

H. Minato, M. Nanjo, and Y. Nayatani, “Colorimetry and its accuracy in the measurement of fluorescent materials by the two-monochromator method,” Color Research & Application 10, 84–91 (1985).
[Crossref]

Neil, W.

J. Zwinkels, W. Neil, M. Noël, and E. Côté, “Characterization of a versatile reference instrument for traceable fluorescence measurements using different illumination and viewing geometries specified in practical colorimetry - part 2: sphere geometry (8: d),” Metrologia 54, 129 (2017).
[Crossref]

J. Zwinkels, W. Neil, and M. Noël, “Characterization of a versatile reference instrument for traceable fluorescence measurements using different illumination and viewing geometries specified in practical colorimetry - part 1: bidirectional geometry (45: 0),” Metrologia 53, 1215 (2016).
[Crossref]

Noël, M.

J. Zwinkels, W. Neil, M. Noël, and E. Côté, “Characterization of a versatile reference instrument for traceable fluorescence measurements using different illumination and viewing geometries specified in practical colorimetry - part 2: sphere geometry (8: d),” Metrologia 54, 129 (2017).
[Crossref]

J. Zwinkels, W. Neil, and M. Noël, “Characterization of a versatile reference instrument for traceable fluorescence measurements using different illumination and viewing geometries specified in practical colorimetry - part 1: bidirectional geometry (45: 0),” Metrologia 53, 1215 (2016).
[Crossref]

Ohno, Y.

Y. Zong, S. W. Brown, B. C. Johnson, K. R. Lykke, and Y. Ohno, “Simple spectral stray light correction method for array spectroradiometers,” Applied Optics 45, 1111–1119 (2006).
[Crossref] [PubMed]

Oishi, S.

K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, “Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned ccd detector,” Physical Chemistry Chemical Physics 11, 9850–9860 (2009).
[Crossref] [PubMed]

Ott, W. R.

R. D. Saunders and W. R. Ott, “Spectral irradiance measurements: effect of uv-produced fluorescence in integrating spheres,” Applied Optics 15, 827–828 (1976).
[Crossref] [PubMed]

Pauli, J.

C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Relative and absolute determination of fluorescence quantum yields of transparent samples,” Nature Protocols 8, 1535 (2013).
[Crossref] [PubMed]

C. Würth, J. Pauli, C. Lochmann, M. Spieles, and U. Resch-Genger, “Integrating sphere setup for the traceable measurement of absolute photoluminescence quantum yields in the near infrared,” Analytical Chemistry 84, 1345–1352 (2012).
[Crossref] [PubMed]

C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Comparison of methods and achievable uncertainties for the relative and absolute measurement of photoluminescence quantum yields,” Analytical Chemistry 83, 3431–3439 (2011).
[Crossref] [PubMed]

Phillips, R.

N. Greenham, I. Samuel, G. Hayes, R. Phillips, Y. Kessener, S. Moratti, A. Holmes, and R. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chemical Physics Letters 241, 89–96 (1995).
[Crossref]

Resch-Genger, U.

C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Relative and absolute determination of fluorescence quantum yields of transparent samples,” Nature Protocols 8, 1535 (2013).
[Crossref] [PubMed]

C. Würth, J. Pauli, C. Lochmann, M. Spieles, and U. Resch-Genger, “Integrating sphere setup for the traceable measurement of absolute photoluminescence quantum yields in the near infrared,” Analytical Chemistry 84, 1345–1352 (2012).
[Crossref] [PubMed]

C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Comparison of methods and achievable uncertainties for the relative and absolute measurement of photoluminescence quantum yields,” Analytical Chemistry 83, 3431–3439 (2011).
[Crossref] [PubMed]

Richards, B.

L. Wilson and B. Richards, “Measurement method for photoluminescent quantum yields of fluorescent organic dyes in polymethyl methacrylate for luminescent solar concentrators,” Applied Optics 48, 212–220 (2009).
[Crossref] [PubMed]

Samuel, I.

N. Greenham, I. Samuel, G. Hayes, R. Phillips, Y. Kessener, S. Moratti, A. Holmes, and R. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chemical Physics Letters 241, 89–96 (1995).
[Crossref]

Saunders, R. D.

R. D. Saunders and W. R. Ott, “Spectral irradiance measurements: effect of uv-produced fluorescence in integrating spheres,” Applied Optics 15, 827–828 (1976).
[Crossref] [PubMed]

Shakespeare, J.

T. Shakespeare and J. Shakespeare, “Problems in colour measurement of fluorescent paper grades,” Analytica Chimica Acta 380, 227–242 (1999).
[Crossref]

Shakespeare, T.

T. Shakespeare and J. Shakespeare, “Problems in colour measurement of fluorescent paper grades,” Analytica Chimica Acta 380, 227–242 (1999).
[Crossref]

Shaw, P.-S.

P.-S. Shaw and Z. Li, “On the fluorescence from integrating spheres,” Applied Optics 47, 3962–3967 (2008).
[Crossref] [PubMed]

P.-S. Shaw, Z. Li, U. Arp, and K. R. Lykke, “Ultraviolet characterization of integrating spheres,” Applied Optics 46, 5119–5128 (2007).
[Crossref] [PubMed]

Shiina, Y.

K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, “Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned ccd detector,” Physical Chemistry Chemical Physics 11, 9850–9860 (2009).
[Crossref] [PubMed]

Shu, S.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nature Communications 5, 4312 (2014).
[Crossref] [PubMed]

Spieles, M.

C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Relative and absolute determination of fluorescence quantum yields of transparent samples,” Nature Protocols 8, 1535 (2013).
[Crossref] [PubMed]

C. Würth, J. Pauli, C. Lochmann, M. Spieles, and U. Resch-Genger, “Integrating sphere setup for the traceable measurement of absolute photoluminescence quantum yields in the near infrared,” Analytical Chemistry 84, 1345–1352 (2012).
[Crossref] [PubMed]

C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Comparison of methods and achievable uncertainties for the relative and absolute measurement of photoluminescence quantum yields,” Analytical Chemistry 83, 3431–3439 (2011).
[Crossref] [PubMed]

Suzuki, K.

K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, “Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned ccd detector,” Physical Chemistry Chemical Physics 11, 9850–9860 (2009).
[Crossref] [PubMed]

Takehira, K.

K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, “Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned ccd detector,” Physical Chemistry Chemical Physics 11, 9850–9860 (2009).
[Crossref] [PubMed]

Terstiege, H.

D. Gundlach and H. Terstiege, “Problems in measurement of fluorescent materials,” Color Research & Application 19, 427–436 (1994).
[Crossref]

Tien, C.-H.

C.-H. Hung and C.-H. Tien, “Phosphor-converted LED modeling by bidirectional photometric data,” Optics Express 18, A261–A271 (2010).
[Crossref] [PubMed]

Timmerman, D.

D. Timmerman, J. Valenta, K. Dohnalová, W. De Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nature Nanotechnology 6, 710 (2011).
[Crossref] [PubMed]

Tobita, S.

K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, “Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned ccd detector,” Physical Chemistry Chemical Physics 11, 9850–9860 (2009).
[Crossref] [PubMed]

Tsai, B. K.

T. A. Germer, J. C. Zwinkels, and B. K. Tsai, Spectrophotometry: Accurate measurement of optical properties of materials, vol. 46 (Elsevier, 2014).

Valenta, J.

J. Valenta, “Photoluminescence of the integrating sphere walls, its influence on the absolute quantum yield measurements and correction methods,” AIP Advances 8, 105123 (2018).
[Crossref]

J. Valenta, “Determination of absolute quantum yields of luminescing nanomaterials over a broad spectral range: from the integrating sphere theory to the correct methodology,” Nanoscience Methods 3, 11–27 (2014).
[Crossref]

D. Timmerman, J. Valenta, K. Dohnalová, W. De Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nature Nanotechnology 6, 710 (2011).
[Crossref] [PubMed]

Wentz, K. M.

T.-S. Ahn, R. O. Al-Kaysi, A. M. Müller, K. M. Wentz, and C. J. Bardeen, “Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements,” Review of Scientific Instruments 78, 086105 (2007).
[Crossref] [PubMed]

Wilson, L.

L. Wilson and B. Richards, “Measurement method for photoluminescent quantum yields of fluorescent organic dyes in polymethyl methacrylate for luminescent solar concentrators,” Applied Optics 48, 212–220 (2009).
[Crossref] [PubMed]

Wittmann, H. F.

J. C. de Mello, H. F. Wittmann, and R. H. Friend, “An improved experimental determination of external photoluminescence quantum efficiency,” Advanced Materials 9, 230–232 (1997).
[Crossref]

Würth, C.

C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Relative and absolute determination of fluorescence quantum yields of transparent samples,” Nature Protocols 8, 1535 (2013).
[Crossref] [PubMed]

C. Würth, J. Pauli, C. Lochmann, M. Spieles, and U. Resch-Genger, “Integrating sphere setup for the traceable measurement of absolute photoluminescence quantum yields in the near infrared,” Analytical Chemistry 84, 1345–1352 (2012).
[Crossref] [PubMed]

C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Comparison of methods and achievable uncertainties for the relative and absolute measurement of photoluminescence quantum yields,” Analytical Chemistry 83, 3431–3439 (2011).
[Crossref] [PubMed]

Yoshihara, T.

K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, “Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned ccd detector,” Physical Chemistry Chemical Physics 11, 9850–9860 (2009).
[Crossref] [PubMed]

Zhu, H.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nature Communications 5, 4312 (2014).
[Crossref] [PubMed]

Zong, Y.

Y. Zong, S. W. Brown, B. C. Johnson, K. R. Lykke, and Y. Ohno, “Simple spectral stray light correction method for array spectroradiometers,” Applied Optics 45, 1111–1119 (2006).
[Crossref] [PubMed]

Zwinkels, J.

J. Zwinkels, W. Neil, M. Noël, and E. Côté, “Characterization of a versatile reference instrument for traceable fluorescence measurements using different illumination and viewing geometries specified in practical colorimetry - part 2: sphere geometry (8: d),” Metrologia 54, 129 (2017).
[Crossref]

J. Zwinkels, W. Neil, and M. Noël, “Characterization of a versatile reference instrument for traceable fluorescence measurements using different illumination and viewing geometries specified in practical colorimetry - part 1: bidirectional geometry (45: 0),” Metrologia 53, 1215 (2016).
[Crossref]

Zwinkels, J. C.

J. C. Zwinkels, “Metrology of photoluminescent materials,” Metrologia 47, S182 (2010).
[Crossref]

J. C. Zwinkels and F. Gauthier, “Instrumentation, standards, and procedures used at the National Research Council of Canada for high-accuracy fluorescence measurements,” Analytica Chimica Acta 380, 193–209 (1999).
[Crossref]

T. A. Germer, J. C. Zwinkels, and B. K. Tsai, Spectrophotometry: Accurate measurement of optical properties of materials, vol. 46 (Elsevier, 2014).

Advanced Materials (1)

J. C. de Mello, H. F. Wittmann, and R. H. Friend, “An improved experimental determination of external photoluminescence quantum efficiency,” Advanced Materials 9, 230–232 (1997).
[Crossref]

AIP Advances (1)

J. Valenta, “Photoluminescence of the integrating sphere walls, its influence on the absolute quantum yield measurements and correction methods,” AIP Advances 8, 105123 (2018).
[Crossref]

Analytica Chimica Acta (2)

J. C. Zwinkels and F. Gauthier, “Instrumentation, standards, and procedures used at the National Research Council of Canada for high-accuracy fluorescence measurements,” Analytica Chimica Acta 380, 193–209 (1999).
[Crossref]

T. Shakespeare and J. Shakespeare, “Problems in colour measurement of fluorescent paper grades,” Analytica Chimica Acta 380, 227–242 (1999).
[Crossref]

Analytical Chemistry (2)

C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Comparison of methods and achievable uncertainties for the relative and absolute measurement of photoluminescence quantum yields,” Analytical Chemistry 83, 3431–3439 (2011).
[Crossref] [PubMed]

C. Würth, J. Pauli, C. Lochmann, M. Spieles, and U. Resch-Genger, “Integrating sphere setup for the traceable measurement of absolute photoluminescence quantum yields in the near infrared,” Analytical Chemistry 84, 1345–1352 (2012).
[Crossref] [PubMed]

Applied Optics (5)

L. Wilson and B. Richards, “Measurement method for photoluminescent quantum yields of fluorescent organic dyes in polymethyl methacrylate for luminescent solar concentrators,” Applied Optics 48, 212–220 (2009).
[Crossref] [PubMed]

R. D. Saunders and W. R. Ott, “Spectral irradiance measurements: effect of uv-produced fluorescence in integrating spheres,” Applied Optics 15, 827–828 (1976).
[Crossref] [PubMed]

P.-S. Shaw, Z. Li, U. Arp, and K. R. Lykke, “Ultraviolet characterization of integrating spheres,” Applied Optics 46, 5119–5128 (2007).
[Crossref] [PubMed]

P.-S. Shaw and Z. Li, “On the fluorescence from integrating spheres,” Applied Optics 47, 3962–3967 (2008).
[Crossref] [PubMed]

Y. Zong, S. W. Brown, B. C. Johnson, K. R. Lykke, and Y. Ohno, “Simple spectral stray light correction method for array spectroradiometers,” Applied Optics 45, 1111–1119 (2006).
[Crossref] [PubMed]

British Journal of Applied Physics (1)

R. Donaldson, “Spectrophotometry of fluorescent pigments,” British Journal of Applied Physics 5, 210 (1954).
[Crossref]

Chemical Physics Letters (1)

N. Greenham, I. Samuel, G. Hayes, R. Phillips, Y. Kessener, S. Moratti, A. Holmes, and R. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chemical Physics Letters 241, 89–96 (1995).
[Crossref]

Color Research & Application (3)

D. H. Alman and F. W. Billmeyer Jr, “Integrating-sphere errors in the colorimetry of fluorescent materials,” Color Research & Application 1, 141–145 (1976).

D. Gundlach and H. Terstiege, “Problems in measurement of fluorescent materials,” Color Research & Application 19, 427–436 (1994).
[Crossref]

H. Minato, M. Nanjo, and Y. Nayatani, “Colorimetry and its accuracy in the measurement of fluorescent materials by the two-monochromator method,” Color Research & Application 10, 84–91 (1985).
[Crossref]

Die Farbe (1)

W. Budde and C. X. Dodd, “Absolute reflectance measurements in the d/0° geometry,” Die Farbe 19, 94–102 (1970).

Measurement Science and Technology (1)

P. Jaanson, F. Manoocheri, and E. Ikonen, “Goniometrical measurements of fluorescence quantum efficiency,” Measurement Science and Technology 27, 025204 (2016).
[Crossref]

Metrologia (3)

J. Zwinkels, W. Neil, and M. Noël, “Characterization of a versatile reference instrument for traceable fluorescence measurements using different illumination and viewing geometries specified in practical colorimetry - part 1: bidirectional geometry (45: 0),” Metrologia 53, 1215 (2016).
[Crossref]

J. Zwinkels, W. Neil, M. Noël, and E. Côté, “Characterization of a versatile reference instrument for traceable fluorescence measurements using different illumination and viewing geometries specified in practical colorimetry - part 2: sphere geometry (8: d),” Metrologia 54, 129 (2017).
[Crossref]

J. C. Zwinkels, “Metrology of photoluminescent materials,” Metrologia 47, S182 (2010).
[Crossref]

Nanoscience Methods (1)

J. Valenta, “Determination of absolute quantum yields of luminescing nanomaterials over a broad spectral range: from the integrating sphere theory to the correct methodology,” Nanoscience Methods 3, 11–27 (2014).
[Crossref]

Nature Communications (1)

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nature Communications 5, 4312 (2014).
[Crossref] [PubMed]

Nature Nanotechnology (1)

D. Timmerman, J. Valenta, K. Dohnalová, W. De Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nature Nanotechnology 6, 710 (2011).
[Crossref] [PubMed]

Nature Protocols (1)

C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Relative and absolute determination of fluorescence quantum yields of transparent samples,” Nature Protocols 8, 1535 (2013).
[Crossref] [PubMed]

Optics Express (1)

C.-H. Hung and C.-H. Tien, “Phosphor-converted LED modeling by bidirectional photometric data,” Optics Express 18, A261–A271 (2010).
[Crossref] [PubMed]

Physical Chemistry Chemical Physics (1)

K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, “Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned ccd detector,” Physical Chemistry Chemical Physics 11, 9850–9860 (2009).
[Crossref] [PubMed]

Review of Scientific Instruments (2)

T.-S. Ahn, R. O. Al-Kaysi, A. M. Müller, K. M. Wentz, and C. J. Bardeen, “Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements,” Review of Scientific Instruments 78, 086105 (2007).
[Crossref] [PubMed]

P. C. DeRose, E. A. Early, and G. W. Kramer, “Qualification of a fluorescence spectrometer for measuring true fluorescence spectra,” Review of Scientific Instruments 78, 033107 (2007).
[Crossref] [PubMed]

Other (2)

T. L. Chow, Mathematical Methods for Physicists: A concise introduction(Cambridge University, 2000).
[Crossref]

T. A. Germer, J. C. Zwinkels, and B. K. Tsai, Spectrophotometry: Accurate measurement of optical properties of materials, vol. 46 (Elsevier, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Multiple reflection effects occurring in an integrating sphere with photoluminescent sample.
Fig. 2
Fig. 2 Two-monochromator configuration with integrating sphere for measuring the Ds matrix of a photoluminescent sample.
Fig. 3
Fig. 3 (a)-(c) Matrices Vs, Vr, and Ds measured with the 20 cm sphere. (d)-(f) Matrices Vs, Vr, and Ds measured with the 30 cm sphere. Vs and Vr have been normalized to their maximum values. (g) Normalized slit scattering function NSSF(λ) measured at 410 nm. (h) Diagonal elements ϕ o ( μ ) of the spectral excitation matrix Φo. (i)Sample spectral reflectance ρ s ( μ ), corresponding to diagonal elements of matrix Ds measured in the 20 cm sphere.
Fig. 4
Fig. 4 (a) Emission profile D s ( λ ) under μ = 350 nm excitation for the 20 and 30 cm data sets. (b) Spectral quantum yield QY(μ) for the 20 and 30 cm data sets. (c) Difference between the spectral QY derived from the 20 and 30 cm data sets compared with the experimental reproducibility. Inset to (b): Sample absorption 1 ρ s ( μ ) measured in the 30 cm sphere.
Fig. 5
Fig. 5 (a) Emission profiles D s ( λ ) under μ = 350 nm excitation and (b) spectral quantum yields QY(μ) from the full matrix method for the 20 cm sphere compared with the results of the partial matrix method for the 20 and 30 cm spheres.

Tables (1)

Tables Icon

Table 1 Dimensions of the two integrating spheres.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

ϕ r ( λ ) = ρ ( λ ) ϕ e ( λ ) + 0 β ( λ , μ ) ϕ e ( μ ) d μ .
ϕ r ( λ i ) = ρ ( λ i ) ϕ e ( λ i ) + Δ μ j = 0 m β ( λ i , μ j ) ϕ e ( μ j ) .
ϕ r = ρ ϕ e + Δ μ β ϕ e = D ϕ e ,
ϕ t = ϕ 1 + ϕ 2 + ϕ 3 + = D f ϕ o + D ¯ D f ϕ o + D ¯ 2 D f ϕ o + = [ I + D ¯ + D ¯ 2 + ] D f ϕ o = M D f ϕ o .
Δ μ = x e ( τ ) d τ x e ( 0 ) ,
v j = K M D f ϕ o , j ,
V s = K M D s Φ o ,
V r = K M D r Φ o .
D s = D r Φ o V r 1 V s Φ o 1 .
Q Y ( μ ) = 350 700 λ β s ( λ , μ ) d λ / μ 1 ρ s ( μ ) ,
X j ( μ ) = ϕ o ( μ j ) x ( μ μ j ) ,
E i ( λ ) = A ( λ i ) e ( λ λ i ) ,
ϕ j 1 ( λ ) = 0 [ ρ f ( μ ) δ ( μ λ ) + β f ( λ , μ ) ] X j ( μ ) d μ ,
v i j 1 = 0 E i ( λ ) ϕ j 1 ( λ ) d λ = 0 E i ( λ ) 0 X j ( μ ) [ ρ f ( μ ) δ ( μ λ ) + β f ( λ , μ ) ] d μ d λ A ( λ i ) ϕ o ( μ j ) ρ f ( μ j ) δ i j 0 e ( λ λ i ) x ( λ λ i ) d λ + A ( λ i ) ϕ o ( μ j ) β f ( λ i , μ j ) 0 e ( λ λ i ) d λ 0 x ( μ μ j ) d μ K i [ ρ f ( μ j ) δ i j + Δ μ β f ( λ i , μ j ) ] ϕ o ( μ j ) K i D f , i j ϕ o ( μ j ) .
K i = A ( λ i ) 0 d λ e ( λ λ i ) x ( λ λ i ) ,
Δ μ = 0 x ( μ μ j ) d μ 0 e ( λ λ j ) d λ 0 x ( λ λ j ) e ( λ λ j ) d λ = x e ( τ ) d τ x e ( 0 ) ,
v j 1 = K D f ϕ o , j .
ϕ j 2 ( λ ) = 0 [ ρ ¯ ( γ ) δ ( γ λ ) + β ¯ ( λ , γ ) ] ϕ j 1 ( γ ) d γ
v i j 2 = 0 E i ( λ ) ϕ j 2 ( λ ) d λ = A ( λ i ) 0 e ( λ λ i ) ρ ¯ ( λ ) ϕ 1 j ( λ ) d λ + A ( λ i ) 0 e ( λ λ i ) β ¯ ( λ , γ ) ϕ 1 j ( γ ) d γ d λ K i ρ ¯ ( λ i ) D f , i j ϕ o ( μ j ) + A ( λ i ) ϕ o ( μ j ) 0 0 e ( λ λ i ) β ¯ ( λ , γ ) ρ f ( γ ) x ( γ μ j ) d γ d λ + A ( λ i ) ϕ o ( μ j ) 0 0 0 e ( λ λ i ) β ¯ ( λ , γ ) β f ( γ , μ ) x ( μ μ j ) d γ d λ d μ K i ρ ¯ ( λ i ) D f , i j ϕ o ( μ j ) + A ( λ i ) ϕ o ( μ j ) ρ f ( μ j ) β ¯ ( λ i , μ j ) 0 e ( λ λ i ) d λ 0 x ( γ μ j ) d γ + A ( λ i ) ϕ o ( μ j ) 0 β ¯ ( λ i , γ ) β f ( γ , μ j ) d γ 0 e ( λ λ i ) d λ 0 x ( μ μ j ) d μ K i ρ ¯ ( λ i ) D f , i j ϕ o ( μ j ) + K i Δ μ ρ f ( μ j ) β ¯ ( λ i , μ j ) ϕ o ( μ j ) + K i Δ μ ϕ o ( μ j ) 0 β ¯ ( λ i , γ ) β f ( γ , μ j ) d γ K i ρ ¯ ( λ i ) D f , i j ϕ o ( μ j ) + K i Δ μ ρ f ( μ j ) β ¯ ( λ i , μ j ) ϕ o ( μ j ) + K i ( Δ μ ) 2 ϕ o ( μ j ) l = 0 m β ¯ ( λ i , γ l ) β f ( γ l , μ j ) .
v j 2 K ρ ¯ D f ϕ o , j + Δ μ K β ¯ ρ f ϕ o , j + ( Δ μ ) 2 K β ¯ β f ϕ o , j K [ ρ ¯ + Δ μ β ¯ ] D f ϕ o , j K D ¯ D f ϕ o , j
v j = K [ I + D ¯ + D ¯ 2 + ] D f ϕ o , j = K M D f ϕ o , j .

Metrics