J. Valenta, “Photoluminescence of the integrating sphere walls, its influence on the absolute quantum yield measurements and correction methods,” AIP Advances 8, 105123 (2018).
[Crossref]
J. Zwinkels, W. Neil, M. Noël, and E. Côté, “Characterization of a versatile reference instrument for traceable fluorescence measurements using different illumination and viewing geometries specified in practical colorimetry - part 2: sphere geometry (8: d),” Metrologia 54, 129 (2017).
[Crossref]
P. Jaanson, F. Manoocheri, and E. Ikonen, “Goniometrical measurements of fluorescence quantum efficiency,” Measurement Science and Technology 27, 025204 (2016).
[Crossref]
J. Zwinkels, W. Neil, and M. Noël, “Characterization of a versatile reference instrument for traceable fluorescence measurements using different illumination and viewing geometries specified in practical colorimetry - part 1: bidirectional geometry (45: 0),” Metrologia 53, 1215 (2016).
[Crossref]
H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nature Communications 5, 4312 (2014).
[Crossref]
[PubMed]
J. Valenta, “Determination of absolute quantum yields of luminescing nanomaterials over a broad spectral range: from the integrating sphere theory to the correct methodology,” Nanoscience Methods 3, 11–27 (2014).
[Crossref]
C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Relative and absolute determination of fluorescence quantum yields of transparent samples,” Nature Protocols 8, 1535 (2013).
[Crossref]
[PubMed]
C. Würth, J. Pauli, C. Lochmann, M. Spieles, and U. Resch-Genger, “Integrating sphere setup for the traceable measurement of absolute photoluminescence quantum yields in the near infrared,” Analytical Chemistry 84, 1345–1352 (2012).
[Crossref]
[PubMed]
C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Comparison of methods and achievable uncertainties for the relative and absolute measurement of photoluminescence quantum yields,” Analytical Chemistry 83, 3431–3439 (2011).
[Crossref]
[PubMed]
D. Timmerman, J. Valenta, K. Dohnalová, W. De Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nature Nanotechnology 6, 710 (2011).
[Crossref]
[PubMed]
C.-H. Hung and C.-H. Tien, “Phosphor-converted LED modeling by bidirectional photometric data,” Optics Express 18, A261–A271 (2010).
[Crossref]
[PubMed]
J. C. Zwinkels, “Metrology of photoluminescent materials,” Metrologia 47, S182 (2010).
[Crossref]
K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, “Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned ccd detector,” Physical Chemistry Chemical Physics 11, 9850–9860 (2009).
[Crossref]
[PubMed]
L. Wilson and B. Richards, “Measurement method for photoluminescent quantum yields of fluorescent organic dyes in polymethyl methacrylate for luminescent solar concentrators,” Applied Optics 48, 212–220 (2009).
[Crossref]
[PubMed]
P.-S. Shaw and Z. Li, “On the fluorescence from integrating spheres,” Applied Optics 47, 3962–3967 (2008).
[Crossref]
[PubMed]
P.-S. Shaw, Z. Li, U. Arp, and K. R. Lykke, “Ultraviolet characterization of integrating spheres,” Applied Optics 46, 5119–5128 (2007).
[Crossref]
[PubMed]
P. C. DeRose, E. A. Early, and G. W. Kramer, “Qualification of a fluorescence spectrometer for measuring true fluorescence spectra,” Review of Scientific Instruments 78, 033107 (2007).
[Crossref]
[PubMed]
T.-S. Ahn, R. O. Al-Kaysi, A. M. Müller, K. M. Wentz, and C. J. Bardeen, “Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements,” Review of Scientific Instruments 78, 086105 (2007).
[Crossref]
[PubMed]
Y. Zong, S. W. Brown, B. C. Johnson, K. R. Lykke, and Y. Ohno, “Simple spectral stray light correction method for array spectroradiometers,” Applied Optics 45, 1111–1119 (2006).
[Crossref]
[PubMed]
J. C. Zwinkels and F. Gauthier, “Instrumentation, standards, and procedures used at the National Research Council of Canada for high-accuracy fluorescence measurements,” Analytica Chimica Acta 380, 193–209 (1999).
[Crossref]
T. Shakespeare and J. Shakespeare, “Problems in colour measurement of fluorescent paper grades,” Analytica Chimica Acta 380, 227–242 (1999).
[Crossref]
J. C. de Mello, H. F. Wittmann, and R. H. Friend, “An improved experimental determination of external photoluminescence quantum efficiency,” Advanced Materials 9, 230–232 (1997).
[Crossref]
N. Greenham, I. Samuel, G. Hayes, R. Phillips, Y. Kessener, S. Moratti, A. Holmes, and R. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chemical Physics Letters 241, 89–96 (1995).
[Crossref]
D. Gundlach and H. Terstiege, “Problems in measurement of fluorescent materials,” Color Research & Application 19, 427–436 (1994).
[Crossref]
H. Minato, M. Nanjo, and Y. Nayatani, “Colorimetry and its accuracy in the measurement of fluorescent materials by the two-monochromator method,” Color Research & Application 10, 84–91 (1985).
[Crossref]
R. D. Saunders and W. R. Ott, “Spectral irradiance measurements: effect of uv-produced fluorescence in integrating spheres,” Applied Optics 15, 827–828 (1976).
[Crossref]
[PubMed]
D. H. Alman and F. W. Billmeyer Jr, “Integrating-sphere errors in the colorimetry of fluorescent materials,” Color Research & Application 1, 141–145 (1976).
W. Budde and C. X. Dodd, “Absolute reflectance measurements in the d/0° geometry,” Die Farbe 19, 94–102 (1970).
R. Donaldson, “Spectrophotometry of fluorescent pigments,” British Journal of Applied Physics 5, 210 (1954).
[Crossref]
T.-S. Ahn, R. O. Al-Kaysi, A. M. Müller, K. M. Wentz, and C. J. Bardeen, “Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements,” Review of Scientific Instruments 78, 086105 (2007).
[Crossref]
[PubMed]
T.-S. Ahn, R. O. Al-Kaysi, A. M. Müller, K. M. Wentz, and C. J. Bardeen, “Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements,” Review of Scientific Instruments 78, 086105 (2007).
[Crossref]
[PubMed]
D. H. Alman and F. W. Billmeyer Jr, “Integrating-sphere errors in the colorimetry of fluorescent materials,” Color Research & Application 1, 141–145 (1976).
P.-S. Shaw, Z. Li, U. Arp, and K. R. Lykke, “Ultraviolet characterization of integrating spheres,” Applied Optics 46, 5119–5128 (2007).
[Crossref]
[PubMed]
T.-S. Ahn, R. O. Al-Kaysi, A. M. Müller, K. M. Wentz, and C. J. Bardeen, “Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements,” Review of Scientific Instruments 78, 086105 (2007).
[Crossref]
[PubMed]
D. H. Alman and F. W. Billmeyer Jr, “Integrating-sphere errors in the colorimetry of fluorescent materials,” Color Research & Application 1, 141–145 (1976).
D. Timmerman, J. Valenta, K. Dohnalová, W. De Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nature Nanotechnology 6, 710 (2011).
[Crossref]
[PubMed]
Y. Zong, S. W. Brown, B. C. Johnson, K. R. Lykke, and Y. Ohno, “Simple spectral stray light correction method for array spectroradiometers,” Applied Optics 45, 1111–1119 (2006).
[Crossref]
[PubMed]
W. Budde and C. X. Dodd, “Absolute reflectance measurements in the d/0° geometry,” Die Farbe 19, 94–102 (1970).
H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nature Communications 5, 4312 (2014).
[Crossref]
[PubMed]
H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nature Communications 5, 4312 (2014).
[Crossref]
[PubMed]
T. L. Chow, Mathematical Methods for Physicists: A concise introduction(Cambridge University, 2000).
[Crossref]
J. Zwinkels, W. Neil, M. Noël, and E. Côté, “Characterization of a versatile reference instrument for traceable fluorescence measurements using different illumination and viewing geometries specified in practical colorimetry - part 2: sphere geometry (8: d),” Metrologia 54, 129 (2017).
[Crossref]
J. C. de Mello, H. F. Wittmann, and R. H. Friend, “An improved experimental determination of external photoluminescence quantum efficiency,” Advanced Materials 9, 230–232 (1997).
[Crossref]
P. C. DeRose, E. A. Early, and G. W. Kramer, “Qualification of a fluorescence spectrometer for measuring true fluorescence spectra,” Review of Scientific Instruments 78, 033107 (2007).
[Crossref]
[PubMed]
W. Budde and C. X. Dodd, “Absolute reflectance measurements in the d/0° geometry,” Die Farbe 19, 94–102 (1970).
D. Timmerman, J. Valenta, K. Dohnalová, W. De Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nature Nanotechnology 6, 710 (2011).
[Crossref]
[PubMed]
R. Donaldson, “Spectrophotometry of fluorescent pigments,” British Journal of Applied Physics 5, 210 (1954).
[Crossref]
P. C. DeRose, E. A. Early, and G. W. Kramer, “Qualification of a fluorescence spectrometer for measuring true fluorescence spectra,” Review of Scientific Instruments 78, 033107 (2007).
[Crossref]
[PubMed]
N. Greenham, I. Samuel, G. Hayes, R. Phillips, Y. Kessener, S. Moratti, A. Holmes, and R. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chemical Physics Letters 241, 89–96 (1995).
[Crossref]
J. C. de Mello, H. F. Wittmann, and R. H. Friend, “An improved experimental determination of external photoluminescence quantum efficiency,” Advanced Materials 9, 230–232 (1997).
[Crossref]
J. C. Zwinkels and F. Gauthier, “Instrumentation, standards, and procedures used at the National Research Council of Canada for high-accuracy fluorescence measurements,” Analytica Chimica Acta 380, 193–209 (1999).
[Crossref]
T. A. Germer, J. C. Zwinkels, and B. K. Tsai, Spectrophotometry: Accurate measurement of optical properties of materials, vol. 46 (Elsevier, 2014).
C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Relative and absolute determination of fluorescence quantum yields of transparent samples,” Nature Protocols 8, 1535 (2013).
[Crossref]
[PubMed]
C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Comparison of methods and achievable uncertainties for the relative and absolute measurement of photoluminescence quantum yields,” Analytical Chemistry 83, 3431–3439 (2011).
[Crossref]
[PubMed]
N. Greenham, I. Samuel, G. Hayes, R. Phillips, Y. Kessener, S. Moratti, A. Holmes, and R. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chemical Physics Letters 241, 89–96 (1995).
[Crossref]
D. Timmerman, J. Valenta, K. Dohnalová, W. De Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nature Nanotechnology 6, 710 (2011).
[Crossref]
[PubMed]
D. Gundlach and H. Terstiege, “Problems in measurement of fluorescent materials,” Color Research & Application 19, 427–436 (1994).
[Crossref]
N. Greenham, I. Samuel, G. Hayes, R. Phillips, Y. Kessener, S. Moratti, A. Holmes, and R. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chemical Physics Letters 241, 89–96 (1995).
[Crossref]
N. Greenham, I. Samuel, G. Hayes, R. Phillips, Y. Kessener, S. Moratti, A. Holmes, and R. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chemical Physics Letters 241, 89–96 (1995).
[Crossref]
C.-H. Hung and C.-H. Tien, “Phosphor-converted LED modeling by bidirectional photometric data,” Optics Express 18, A261–A271 (2010).
[Crossref]
[PubMed]
P. Jaanson, F. Manoocheri, and E. Ikonen, “Goniometrical measurements of fluorescence quantum efficiency,” Measurement Science and Technology 27, 025204 (2016).
[Crossref]
K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, “Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned ccd detector,” Physical Chemistry Chemical Physics 11, 9850–9860 (2009).
[Crossref]
[PubMed]
P. Jaanson, F. Manoocheri, and E. Ikonen, “Goniometrical measurements of fluorescence quantum efficiency,” Measurement Science and Technology 27, 025204 (2016).
[Crossref]
Y. Zong, S. W. Brown, B. C. Johnson, K. R. Lykke, and Y. Ohno, “Simple spectral stray light correction method for array spectroradiometers,” Applied Optics 45, 1111–1119 (2006).
[Crossref]
[PubMed]
K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, “Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned ccd detector,” Physical Chemistry Chemical Physics 11, 9850–9860 (2009).
[Crossref]
[PubMed]
N. Greenham, I. Samuel, G. Hayes, R. Phillips, Y. Kessener, S. Moratti, A. Holmes, and R. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chemical Physics Letters 241, 89–96 (1995).
[Crossref]
K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, “Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned ccd detector,” Physical Chemistry Chemical Physics 11, 9850–9860 (2009).
[Crossref]
[PubMed]
H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nature Communications 5, 4312 (2014).
[Crossref]
[PubMed]
P. C. DeRose, E. A. Early, and G. W. Kramer, “Qualification of a fluorescence spectrometer for measuring true fluorescence spectra,” Review of Scientific Instruments 78, 033107 (2007).
[Crossref]
[PubMed]
P.-S. Shaw and Z. Li, “On the fluorescence from integrating spheres,” Applied Optics 47, 3962–3967 (2008).
[Crossref]
[PubMed]
P.-S. Shaw, Z. Li, U. Arp, and K. R. Lykke, “Ultraviolet characterization of integrating spheres,” Applied Optics 46, 5119–5128 (2007).
[Crossref]
[PubMed]
H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nature Communications 5, 4312 (2014).
[Crossref]
[PubMed]
H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nature Communications 5, 4312 (2014).
[Crossref]
[PubMed]
H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nature Communications 5, 4312 (2014).
[Crossref]
[PubMed]
H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nature Communications 5, 4312 (2014).
[Crossref]
[PubMed]
C. Würth, J. Pauli, C. Lochmann, M. Spieles, and U. Resch-Genger, “Integrating sphere setup for the traceable measurement of absolute photoluminescence quantum yields in the near infrared,” Analytical Chemistry 84, 1345–1352 (2012).
[Crossref]
[PubMed]
H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nature Communications 5, 4312 (2014).
[Crossref]
[PubMed]
P.-S. Shaw, Z. Li, U. Arp, and K. R. Lykke, “Ultraviolet characterization of integrating spheres,” Applied Optics 46, 5119–5128 (2007).
[Crossref]
[PubMed]
Y. Zong, S. W. Brown, B. C. Johnson, K. R. Lykke, and Y. Ohno, “Simple spectral stray light correction method for array spectroradiometers,” Applied Optics 45, 1111–1119 (2006).
[Crossref]
[PubMed]
H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nature Communications 5, 4312 (2014).
[Crossref]
[PubMed]
P. Jaanson, F. Manoocheri, and E. Ikonen, “Goniometrical measurements of fluorescence quantum efficiency,” Measurement Science and Technology 27, 025204 (2016).
[Crossref]
H. Minato, M. Nanjo, and Y. Nayatani, “Colorimetry and its accuracy in the measurement of fluorescent materials by the two-monochromator method,” Color Research & Application 10, 84–91 (1985).
[Crossref]
N. Greenham, I. Samuel, G. Hayes, R. Phillips, Y. Kessener, S. Moratti, A. Holmes, and R. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chemical Physics Letters 241, 89–96 (1995).
[Crossref]
T.-S. Ahn, R. O. Al-Kaysi, A. M. Müller, K. M. Wentz, and C. J. Bardeen, “Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements,” Review of Scientific Instruments 78, 086105 (2007).
[Crossref]
[PubMed]
H. Minato, M. Nanjo, and Y. Nayatani, “Colorimetry and its accuracy in the measurement of fluorescent materials by the two-monochromator method,” Color Research & Application 10, 84–91 (1985).
[Crossref]
H. Minato, M. Nanjo, and Y. Nayatani, “Colorimetry and its accuracy in the measurement of fluorescent materials by the two-monochromator method,” Color Research & Application 10, 84–91 (1985).
[Crossref]
J. Zwinkels, W. Neil, M. Noël, and E. Côté, “Characterization of a versatile reference instrument for traceable fluorescence measurements using different illumination and viewing geometries specified in practical colorimetry - part 2: sphere geometry (8: d),” Metrologia 54, 129 (2017).
[Crossref]
J. Zwinkels, W. Neil, and M. Noël, “Characterization of a versatile reference instrument for traceable fluorescence measurements using different illumination and viewing geometries specified in practical colorimetry - part 1: bidirectional geometry (45: 0),” Metrologia 53, 1215 (2016).
[Crossref]
J. Zwinkels, W. Neil, M. Noël, and E. Côté, “Characterization of a versatile reference instrument for traceable fluorescence measurements using different illumination and viewing geometries specified in practical colorimetry - part 2: sphere geometry (8: d),” Metrologia 54, 129 (2017).
[Crossref]
J. Zwinkels, W. Neil, and M. Noël, “Characterization of a versatile reference instrument for traceable fluorescence measurements using different illumination and viewing geometries specified in practical colorimetry - part 1: bidirectional geometry (45: 0),” Metrologia 53, 1215 (2016).
[Crossref]
Y. Zong, S. W. Brown, B. C. Johnson, K. R. Lykke, and Y. Ohno, “Simple spectral stray light correction method for array spectroradiometers,” Applied Optics 45, 1111–1119 (2006).
[Crossref]
[PubMed]
K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, “Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned ccd detector,” Physical Chemistry Chemical Physics 11, 9850–9860 (2009).
[Crossref]
[PubMed]
R. D. Saunders and W. R. Ott, “Spectral irradiance measurements: effect of uv-produced fluorescence in integrating spheres,” Applied Optics 15, 827–828 (1976).
[Crossref]
[PubMed]
C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Relative and absolute determination of fluorescence quantum yields of transparent samples,” Nature Protocols 8, 1535 (2013).
[Crossref]
[PubMed]
C. Würth, J. Pauli, C. Lochmann, M. Spieles, and U. Resch-Genger, “Integrating sphere setup for the traceable measurement of absolute photoluminescence quantum yields in the near infrared,” Analytical Chemistry 84, 1345–1352 (2012).
[Crossref]
[PubMed]
C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Comparison of methods and achievable uncertainties for the relative and absolute measurement of photoluminescence quantum yields,” Analytical Chemistry 83, 3431–3439 (2011).
[Crossref]
[PubMed]
N. Greenham, I. Samuel, G. Hayes, R. Phillips, Y. Kessener, S. Moratti, A. Holmes, and R. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chemical Physics Letters 241, 89–96 (1995).
[Crossref]
C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Relative and absolute determination of fluorescence quantum yields of transparent samples,” Nature Protocols 8, 1535 (2013).
[Crossref]
[PubMed]
C. Würth, J. Pauli, C. Lochmann, M. Spieles, and U. Resch-Genger, “Integrating sphere setup for the traceable measurement of absolute photoluminescence quantum yields in the near infrared,” Analytical Chemistry 84, 1345–1352 (2012).
[Crossref]
[PubMed]
C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Comparison of methods and achievable uncertainties for the relative and absolute measurement of photoluminescence quantum yields,” Analytical Chemistry 83, 3431–3439 (2011).
[Crossref]
[PubMed]
L. Wilson and B. Richards, “Measurement method for photoluminescent quantum yields of fluorescent organic dyes in polymethyl methacrylate for luminescent solar concentrators,” Applied Optics 48, 212–220 (2009).
[Crossref]
[PubMed]
N. Greenham, I. Samuel, G. Hayes, R. Phillips, Y. Kessener, S. Moratti, A. Holmes, and R. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chemical Physics Letters 241, 89–96 (1995).
[Crossref]
R. D. Saunders and W. R. Ott, “Spectral irradiance measurements: effect of uv-produced fluorescence in integrating spheres,” Applied Optics 15, 827–828 (1976).
[Crossref]
[PubMed]
T. Shakespeare and J. Shakespeare, “Problems in colour measurement of fluorescent paper grades,” Analytica Chimica Acta 380, 227–242 (1999).
[Crossref]
T. Shakespeare and J. Shakespeare, “Problems in colour measurement of fluorescent paper grades,” Analytica Chimica Acta 380, 227–242 (1999).
[Crossref]
P.-S. Shaw and Z. Li, “On the fluorescence from integrating spheres,” Applied Optics 47, 3962–3967 (2008).
[Crossref]
[PubMed]
P.-S. Shaw, Z. Li, U. Arp, and K. R. Lykke, “Ultraviolet characterization of integrating spheres,” Applied Optics 46, 5119–5128 (2007).
[Crossref]
[PubMed]
K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, “Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned ccd detector,” Physical Chemistry Chemical Physics 11, 9850–9860 (2009).
[Crossref]
[PubMed]
H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nature Communications 5, 4312 (2014).
[Crossref]
[PubMed]
C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Relative and absolute determination of fluorescence quantum yields of transparent samples,” Nature Protocols 8, 1535 (2013).
[Crossref]
[PubMed]
C. Würth, J. Pauli, C. Lochmann, M. Spieles, and U. Resch-Genger, “Integrating sphere setup for the traceable measurement of absolute photoluminescence quantum yields in the near infrared,” Analytical Chemistry 84, 1345–1352 (2012).
[Crossref]
[PubMed]
C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Comparison of methods and achievable uncertainties for the relative and absolute measurement of photoluminescence quantum yields,” Analytical Chemistry 83, 3431–3439 (2011).
[Crossref]
[PubMed]
K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, “Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned ccd detector,” Physical Chemistry Chemical Physics 11, 9850–9860 (2009).
[Crossref]
[PubMed]
K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, “Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned ccd detector,” Physical Chemistry Chemical Physics 11, 9850–9860 (2009).
[Crossref]
[PubMed]
D. Gundlach and H. Terstiege, “Problems in measurement of fluorescent materials,” Color Research & Application 19, 427–436 (1994).
[Crossref]
C.-H. Hung and C.-H. Tien, “Phosphor-converted LED modeling by bidirectional photometric data,” Optics Express 18, A261–A271 (2010).
[Crossref]
[PubMed]
D. Timmerman, J. Valenta, K. Dohnalová, W. De Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nature Nanotechnology 6, 710 (2011).
[Crossref]
[PubMed]
K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, “Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned ccd detector,” Physical Chemistry Chemical Physics 11, 9850–9860 (2009).
[Crossref]
[PubMed]
T. A. Germer, J. C. Zwinkels, and B. K. Tsai, Spectrophotometry: Accurate measurement of optical properties of materials, vol. 46 (Elsevier, 2014).
J. Valenta, “Photoluminescence of the integrating sphere walls, its influence on the absolute quantum yield measurements and correction methods,” AIP Advances 8, 105123 (2018).
[Crossref]
J. Valenta, “Determination of absolute quantum yields of luminescing nanomaterials over a broad spectral range: from the integrating sphere theory to the correct methodology,” Nanoscience Methods 3, 11–27 (2014).
[Crossref]
D. Timmerman, J. Valenta, K. Dohnalová, W. De Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nature Nanotechnology 6, 710 (2011).
[Crossref]
[PubMed]
T.-S. Ahn, R. O. Al-Kaysi, A. M. Müller, K. M. Wentz, and C. J. Bardeen, “Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements,” Review of Scientific Instruments 78, 086105 (2007).
[Crossref]
[PubMed]
L. Wilson and B. Richards, “Measurement method for photoluminescent quantum yields of fluorescent organic dyes in polymethyl methacrylate for luminescent solar concentrators,” Applied Optics 48, 212–220 (2009).
[Crossref]
[PubMed]
J. C. de Mello, H. F. Wittmann, and R. H. Friend, “An improved experimental determination of external photoluminescence quantum efficiency,” Advanced Materials 9, 230–232 (1997).
[Crossref]
C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Relative and absolute determination of fluorescence quantum yields of transparent samples,” Nature Protocols 8, 1535 (2013).
[Crossref]
[PubMed]
C. Würth, J. Pauli, C. Lochmann, M. Spieles, and U. Resch-Genger, “Integrating sphere setup for the traceable measurement of absolute photoluminescence quantum yields in the near infrared,” Analytical Chemistry 84, 1345–1352 (2012).
[Crossref]
[PubMed]
C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Comparison of methods and achievable uncertainties for the relative and absolute measurement of photoluminescence quantum yields,” Analytical Chemistry 83, 3431–3439 (2011).
[Crossref]
[PubMed]
K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, “Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned ccd detector,” Physical Chemistry Chemical Physics 11, 9850–9860 (2009).
[Crossref]
[PubMed]
H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nature Communications 5, 4312 (2014).
[Crossref]
[PubMed]
Y. Zong, S. W. Brown, B. C. Johnson, K. R. Lykke, and Y. Ohno, “Simple spectral stray light correction method for array spectroradiometers,” Applied Optics 45, 1111–1119 (2006).
[Crossref]
[PubMed]
J. Zwinkels, W. Neil, M. Noël, and E. Côté, “Characterization of a versatile reference instrument for traceable fluorescence measurements using different illumination and viewing geometries specified in practical colorimetry - part 2: sphere geometry (8: d),” Metrologia 54, 129 (2017).
[Crossref]
J. Zwinkels, W. Neil, and M. Noël, “Characterization of a versatile reference instrument for traceable fluorescence measurements using different illumination and viewing geometries specified in practical colorimetry - part 1: bidirectional geometry (45: 0),” Metrologia 53, 1215 (2016).
[Crossref]
J. C. Zwinkels, “Metrology of photoluminescent materials,” Metrologia 47, S182 (2010).
[Crossref]
J. C. Zwinkels and F. Gauthier, “Instrumentation, standards, and procedures used at the National Research Council of Canada for high-accuracy fluorescence measurements,” Analytica Chimica Acta 380, 193–209 (1999).
[Crossref]
T. A. Germer, J. C. Zwinkels, and B. K. Tsai, Spectrophotometry: Accurate measurement of optical properties of materials, vol. 46 (Elsevier, 2014).
J. C. de Mello, H. F. Wittmann, and R. H. Friend, “An improved experimental determination of external photoluminescence quantum efficiency,” Advanced Materials 9, 230–232 (1997).
[Crossref]
J. Valenta, “Photoluminescence of the integrating sphere walls, its influence on the absolute quantum yield measurements and correction methods,” AIP Advances 8, 105123 (2018).
[Crossref]
J. C. Zwinkels and F. Gauthier, “Instrumentation, standards, and procedures used at the National Research Council of Canada for high-accuracy fluorescence measurements,” Analytica Chimica Acta 380, 193–209 (1999).
[Crossref]
T. Shakespeare and J. Shakespeare, “Problems in colour measurement of fluorescent paper grades,” Analytica Chimica Acta 380, 227–242 (1999).
[Crossref]
C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Comparison of methods and achievable uncertainties for the relative and absolute measurement of photoluminescence quantum yields,” Analytical Chemistry 83, 3431–3439 (2011).
[Crossref]
[PubMed]
C. Würth, J. Pauli, C. Lochmann, M. Spieles, and U. Resch-Genger, “Integrating sphere setup for the traceable measurement of absolute photoluminescence quantum yields in the near infrared,” Analytical Chemistry 84, 1345–1352 (2012).
[Crossref]
[PubMed]
L. Wilson and B. Richards, “Measurement method for photoluminescent quantum yields of fluorescent organic dyes in polymethyl methacrylate for luminescent solar concentrators,” Applied Optics 48, 212–220 (2009).
[Crossref]
[PubMed]
R. D. Saunders and W. R. Ott, “Spectral irradiance measurements: effect of uv-produced fluorescence in integrating spheres,” Applied Optics 15, 827–828 (1976).
[Crossref]
[PubMed]
P.-S. Shaw, Z. Li, U. Arp, and K. R. Lykke, “Ultraviolet characterization of integrating spheres,” Applied Optics 46, 5119–5128 (2007).
[Crossref]
[PubMed]
P.-S. Shaw and Z. Li, “On the fluorescence from integrating spheres,” Applied Optics 47, 3962–3967 (2008).
[Crossref]
[PubMed]
Y. Zong, S. W. Brown, B. C. Johnson, K. R. Lykke, and Y. Ohno, “Simple spectral stray light correction method for array spectroradiometers,” Applied Optics 45, 1111–1119 (2006).
[Crossref]
[PubMed]
R. Donaldson, “Spectrophotometry of fluorescent pigments,” British Journal of Applied Physics 5, 210 (1954).
[Crossref]
N. Greenham, I. Samuel, G. Hayes, R. Phillips, Y. Kessener, S. Moratti, A. Holmes, and R. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chemical Physics Letters 241, 89–96 (1995).
[Crossref]
D. H. Alman and F. W. Billmeyer Jr, “Integrating-sphere errors in the colorimetry of fluorescent materials,” Color Research & Application 1, 141–145 (1976).
D. Gundlach and H. Terstiege, “Problems in measurement of fluorescent materials,” Color Research & Application 19, 427–436 (1994).
[Crossref]
H. Minato, M. Nanjo, and Y. Nayatani, “Colorimetry and its accuracy in the measurement of fluorescent materials by the two-monochromator method,” Color Research & Application 10, 84–91 (1985).
[Crossref]
W. Budde and C. X. Dodd, “Absolute reflectance measurements in the d/0° geometry,” Die Farbe 19, 94–102 (1970).
P. Jaanson, F. Manoocheri, and E. Ikonen, “Goniometrical measurements of fluorescence quantum efficiency,” Measurement Science and Technology 27, 025204 (2016).
[Crossref]
J. Zwinkels, W. Neil, and M. Noël, “Characterization of a versatile reference instrument for traceable fluorescence measurements using different illumination and viewing geometries specified in practical colorimetry - part 1: bidirectional geometry (45: 0),” Metrologia 53, 1215 (2016).
[Crossref]
J. Zwinkels, W. Neil, M. Noël, and E. Côté, “Characterization of a versatile reference instrument for traceable fluorescence measurements using different illumination and viewing geometries specified in practical colorimetry - part 2: sphere geometry (8: d),” Metrologia 54, 129 (2017).
[Crossref]
J. C. Zwinkels, “Metrology of photoluminescent materials,” Metrologia 47, S182 (2010).
[Crossref]
J. Valenta, “Determination of absolute quantum yields of luminescing nanomaterials over a broad spectral range: from the integrating sphere theory to the correct methodology,” Nanoscience Methods 3, 11–27 (2014).
[Crossref]
H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nature Communications 5, 4312 (2014).
[Crossref]
[PubMed]
D. Timmerman, J. Valenta, K. Dohnalová, W. De Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nature Nanotechnology 6, 710 (2011).
[Crossref]
[PubMed]
C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Relative and absolute determination of fluorescence quantum yields of transparent samples,” Nature Protocols 8, 1535 (2013).
[Crossref]
[PubMed]
C.-H. Hung and C.-H. Tien, “Phosphor-converted LED modeling by bidirectional photometric data,” Optics Express 18, A261–A271 (2010).
[Crossref]
[PubMed]
K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, “Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned ccd detector,” Physical Chemistry Chemical Physics 11, 9850–9860 (2009).
[Crossref]
[PubMed]
T.-S. Ahn, R. O. Al-Kaysi, A. M. Müller, K. M. Wentz, and C. J. Bardeen, “Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements,” Review of Scientific Instruments 78, 086105 (2007).
[Crossref]
[PubMed]
P. C. DeRose, E. A. Early, and G. W. Kramer, “Qualification of a fluorescence spectrometer for measuring true fluorescence spectra,” Review of Scientific Instruments 78, 033107 (2007).
[Crossref]
[PubMed]
T. L. Chow, Mathematical Methods for Physicists: A concise introduction(Cambridge University, 2000).
[Crossref]
T. A. Germer, J. C. Zwinkels, and B. K. Tsai, Spectrophotometry: Accurate measurement of optical properties of materials, vol. 46 (Elsevier, 2014).